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Abstract

N6-methyladenosine (m6A) is the most abundant internal eukaryotic mRNA modification, and is involved in the regulation of various
biological processes. Direct Nanopore sequencing of native RNA (dRNA-seq) emerged as a leading approach for its identification. Several
software were published for m6A detection and there is a strong need for independent studies benchmarking their performance on
data from different species, and against various reference datasets. Moreover, a computational workflow is needed to streamline
the execution of tools whose installation and execution remains complicated. We developed NanOlympicsMod, a Nextflow pipeline
exploiting containerized technology for comparing 14 tools for m6A detection on dRNA-seq data. NanOlympicsMod was tested on
dRNA-seq data generated from in vitro (un)modified synthetic oligos. The m6A hits returned by each tool were compared to the
m6A position known by design of the oligos. In addition, NanOlympicsMod was used on dRNA-seq datasets from wild-type and
m6A-depleted yeast, mouse and human, and each tool’s hits were compared to reference m6A sets generated by leading orthogonal
methods. The performance of the tools markedly differed across datasets, and methods adopting different approaches showed different
preferences in terms of precision and recall. Changing the stringency cut-offs allowed for tuning the precision-recall trade-off towards
user preferences. Finally, we determined that precision and recall of tools are markedly influenced by sequencing depth, and that
additional sequencing would likely reveal additional m6A sites. Thanks to the possibility of including novel tools, NanOlympicsMod
will streamline the benchmarking of m6A detection tools on dRNA-seq data, improving future RNA modification characterization.
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INTRODUCTION
RNA molecules are known to be decorated by more than
160 different chemical modifications, which can be found on

both the nitrogenous base and the ribose sugar [1] and have
profound consequences on the fate of coding and non-coding
RNA species [2]. Many studies have been conducted to investigate
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the prevalence, transcriptome distribution, and functional role
of N6-methyladenosine (m6A), the most abundant internal
modification of eukaryotic coding transcripts [3, 4]. m6A is a
reversible and dynamic mark deposited by methyltransferases,
mainly at the RRACH (R = A/G, H = U/A/C) consensus motif,
removed by demethylases, and recognized by specific effector
proteins which mediate a large set of effects [3]. Indeed, m6A
has been shown to markedly impact RNA metabolism, including
processing, degradation, translation and localization [5, 6].
Additionally, m6A has been shown to be involved in wide-
ranging roles of gene expression regulation, both in physiological
conditions, including cellular differentiation, meiosis, heat
stress response, gametogenesis and neurons activity [7], and
pathological conditions, such as viral infection and several types
of cancer [8, 9].

The development of various methods for quantification and
mapping of RNA modifications was pivotal for the surge of RNA
modifications research in the last decade [10]. In particular,
various approaches based on high-throughput sequencing were
developed for m6A profiling that rely on immunoprecipitation
of modified molecules (e.g. MeRIP-seq [11], m6A-seq [12], m6A-
seq2 [13], miCLIP [14], miCLIP2 [15] and m6A-LAIC-seq [16]), or
on biochemical treatments that leave characteristic footprints on
the cDNA, depending on the presence of the RNA modification
of interest (e.g. PA-Seq [17], MAZTER-seq [18], m6A-REF-seq [19],
DART-seq [20], m6A-SEAL-seq [21], m6A-label-seq [22], GLORI [23]
and m6A-SAC-seq [24]). However, specific antibodies, enzymes
and chemical compounds are currently available only for a
limited set of RNA modifications, they can have low specificity,
they are typically semi-quantitative, they are inadequate for
profiling more than one modification simultaneously [25, 26],
and they lack isoform and single molecule-resolution. Recently,
Oxford Nanopore Technologies (ONT) launched a platform
to directly sequence native RNA molecules (dRNA-seq) [27].
The electric signal recorded by ONT sequencing platform was
shown to be altered by the presence of RNA modifications
[27–29]. This paved the way to the single-molecule and single-
base characterization of RNA modifications and prompted
the development of computational tools to profile m6A from
dRNA-seq data [30, 31]. These tools can be divided into two
main groups: (i) single-condition tools, which require training
a machine learning algorithm capable of distinguishing between
modified and unmodified nucleotides and (ii) multi-condition
tools, which require sequencing an additional condition devoid
of the modification(s) of interest. The latter is typically generated
through knock-down, knock-out or pharmacological inhibition
of methyltransferases or by in vitro transcription. Tools can be
additionally divided depending on whether they rely on the ionic
current signal, or errors in the base calling. Furthermore, some
tools can provide the modification stoichiometry, and some can
achieve base-level or single-molecule resolution depending on
whether they work in the genome or transcriptome reference
space [32].

More than a dozen tools were already published, and others
are likely to be released in the near future. These tools are often
complex to install and have high demands in terms of storage
and computing power [33]. Although each software has already
been compared against selected tools at the time of publication,
only recently a study covered multiple tools for m6A detection
on dRNA-seq data focusing on the mouse epitranscriptome [34].
Altogether, users are left with limited guidance on how to priori-
tize the choice of the tool, on how to set significance cut-offs, and
on how to coherently test additional novel tools.

To address these needs and open questions, we developed
NanOlympicsMod, a computational workflow designed to
maximize reproducibility and portability in the compara-
tive assessment of dRNA-seq m6A detection tools. We used
NanOlympicsMod to execute and compare 14 tools on four
different dRNA-seq datasets differing in terms of synthetic/bi-
ological origin, transcriptome size and coverage depth. The
results were benchmarked against reference m6A sets obtained
from established orthogonal techniques. This study showed
a remarkable heterogeneity in the performances of the tools,
underlying the importance of a critical selection of the software
and cut-off settings depending on the desired precision and recall
targets.

RESULTS
The NanOlympicsMod benchmarking framework
We set up NanOlympicsMod, a framework to benchmark software
profiling RNA modifications on Nanopore dRNA-seq data. This
framework was adopted for the comparative evaluation of 14
computational tools (Supplementary Table 1, see Supplementary
Data available online at http://bib.oxfordjournals.org/) and was
designed to facilitate the inclusion and test of additional tools.
NanOlympicsMod includes a computational pipeline based on
Nextflow [35] workflow manager, and was applied to four dif-
ferent dRNA-seq datasets, together with a set of correspond-
ing reference sets of m6A hits generated by various short-reads
sequencing based techniques (Figure 1).

NanOlympicsMod relies on Nextflow, guaranteeing portability
across platforms and support for different job schedulers,
and adopts Docker and Singularity container technologies,
removing the need to install required software dependencies
and ensuring reproducibility. The pipeline includes a pre-
processing module, preparing the input files required by each
tool, a module for the parallel execution of the tools, a post-
processing module converting the output of the tools in a common
format, and a module implementing a set of analyses for the
assessment of the tools results, their mutual concordance, and
their agreement with independent reference sets of m6A hits
(Figure 1A).

We applied NanOlympicsMod to three recently released dRNA-
seq datasets for the profiling of m6A on synthetic RNAs, yeast,
and mouse transcriptomes, and to a dRNA-seq dataset produced
in the context of this work for the profiling of m6A on human
transcriptome (Figure 1B and Supplementary Table 2, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
Each dataset includes an m6A-depleted condition to be used for
the comparative tools. The datasets are fully described in the
Supplementary data.

Various matching reference sets of m6A hits were considered
that encompass different methods for the profiling of the mark,
either relying or not on m6A-specific antibodies, including m6A-
seq and MAZTER-seq for yeast, miCLIP2 and GLORI for mouse
and GLORI for human (Figure 1B and Supplementary Table 3, see
Supplementary Data available online at http://bib.oxfordjournals.
org/).

Computational requirements, number and
location of hits
We ran all the 14 considered tools (Supplementary Table 1, see
Supplementary Data available online at http://bib.oxfordjournals.
org/) on the four test datasets (Figure 1). For some of the tools we
were not able to complete the analysis or to obtain exploitable
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Figure 1. The NanOlympicsMod workflow and adopted datasets. (A) Schema of NanOlympicsMod, including input data, pre-processing steps, tools
execution, post-processing and comparative analyses. (B) Experimental design for the four different datasets analysed by NanOlympicsMod; the methods
used to generate the reference set of m6A hits in yeast and mouse are illustrated.

results in some of the datasets. Eventually, we were able to
complete the analysis for 12 tools in the synthetic oligos dataset,
9 tools in the yeast dataset, 11 tools in the mouse dataset and 11
tools in the human dataset. For nine of these tools, we were able
to obtain results in all four datasets. We were unable to complete
the analysis in any of the four datasets with one tool, nanoDoc.
Each software had different computational requirements, which
were influenced by the size of the reference and/or the amount
of available sequencing reads (Supplementary Figure S1, see
Supplementary Data available online at http://bib.oxfordjournals.
org/).

The various tools differ in terms of parameters that can be
tuned to set significance cut-offs or filtering thresholds, thus
defining the stringency of the analysis, and each tool has its
own default value for these settings (Supplementary Table 4, see
Supplementary Data available online at http://bib.oxfordjournals.
org/). We initially decided to run each tool with their respective
default settings. In these conditions the tools returned a number
of hits that varied by several orders of magnitude, ranging from
less than one hundred to more than 1e5 hits. The tools ranking in
terms of numerosity of the hits was relatively consistent across
the yeast, mouse and human datasets (Figure 2A-D).

The patterning of m6A hits returned by each tool was deter-
mined along the length of the synthetic oligos, and along a meta-
gene for the yeast, mouse and human datasets. For the modified
oligos, all adenosines were replaced by m6A resulting in an even

distribution of the modification across the entire RNA length.
Given that the sequencing coverage for this dataset is rather
uniform, we expected the m6A hits returned by the tools to
be uniformly distributed. Indeed, most of the tools returned a
relatively flat profile of m6A hits along the oligos. Only MINES,
m6Anet, EpiNano-SVM and EpiNano-Error favoured specific parts
of the oligos (Figure 2E). In yeast, mouse and human, the m6A hits
returned by most of the tools were enriched at 3′ ends and at the
stop codon, in agreement with the known location of m6A marks
for these species [4]. Only MINES and m6Anet found the m6A hits
for the yeast dataset enriched in the mid part of the coding region
(Figure 2F-H).

Overlap among the tools
Once we determined the number and location of m6A hits for
each tool, we compared them across the tools. Since Nanopore-
based analyses are reflecting the combined influence of a k-mer
of bases, typically a 5-mer, it is not trivial to assign m6A hits to
specific bases, especially when k-mers contain multiple As. For
this reason, we decided to bin the query space (i.e. the oligos or
the transcribed portion of yeast, mouse and human genomes).
This also allowed to avoid penalizing the concordance between
tools whose m6A hits might be separated by a few bases and
to avoid inflating the concordance between tools which report
multiple adjacent hits for a single modification event. We then
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Figure 2. Key results executing the tools with default settings. (A) Number of hits detected by NanOlympicsMod for each tool in the Oligos dataset. (B) As
(A) for the yeast dataset. (C) As (A) for the mouse dataset. (D) As (A) for the human dataset. (E) Distribution of m6A hits for each tool along the synthetic
oligos. (F) as (E) for the yeast metagene. (G) as (E) for the mouse metagene. (H) as (E) for the human metagene. (I) Heatmap reporting the overlap of m6A
hits for each pair of tools executed with default settings on the oligos dataset. The value in a cell represents, for each pair of tools, the proportion of hits
in common to the number of hits of the tool on the row (see the schema on the left of the panel). (J) As in (I) for the yeast dataset. (K) As in (I) for the
mouse dataset. (L) As in (I) for the human dataset.

determined, for each pair of tools, the overlap of bins with at least
one identified m6A. In the oligos dataset, the tools that identified
the most m6A sites (> 1000) were in very good agreement among
each other, with an average overlap of 0.93 (Figure 2I). The same
was observed for the tools with fewer identified m6A sites, in the
order of dozens, whose sites were largely a subset of the tools with
a higher number of sites. Similar results were obtained for yeast,
mouse and human (Figure 2J-L), where the m6A sites identified by
the tools with fewer calls were largely confirmed by the sites of the
tools with the largest number of calls. The tools that completed
the analysis on both yeast and mouse datasets had similar mutual
concordance.

Agreement with reference sets of m6A sites
Once we established that the pattern of m6A hits was plausible
and assessed that the tools concordance was largely driven by
the number of identified sites, we set to evaluate the tools pre-
cision and recall. To this end, the various datasets are differently
informative. The distribution of m6A marks in yeast, mouse and
human is dictated by the in vivo constraints, yet there is no
ground truth about the location of the marks. On the contrary,

the distribution of m6A marks in the synthetic oligo dataset is
artificial, yet their location is known by design.

We determined the precision and recall for each tool using
each tool’s documented default settings. We also calculated the F1
score to capture the collective impact of both metrics. In the oligo
dataset, the precision was high (>0.75) for all tools, while they
returned either very high or very low recall F1 score (Figure 3A).
In particular, the multi-sample tools performed better than the
single-sample tools, except for EpiNano-SVM. We then generated
precision-recall curves by considering various significance cut-
offs in addition to the default setting, as described in the Methods
(Figure 3B). Even with very different settings the performance
of the tools was always good in terms of precision, while it
recapitulated the preference for low or high recall obtained at
default settings. Tools performed similarly also in terms of Area
Under the Precision-Recall Curve (AUPRC), with a high fraction
of overlapping AUPRCs 95% Confidence Intervals (Supplementary
Figure S2, see Supplementary Data available online at http://bib.
oxfordjournals.org/). This is due to the small number of positive
bins (1543) which resulted in large CIs compared to the range
covered by the AUPRCs (the median CI covered 27% of the range).
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Figure 3. Agreement with reference sets of m6A hits. (A) Precision, recall and F1 score for each tool executed at default conditions on the oligos dataset.
According to Supplementary Table 1, GM and TM identify tools working on the genome (G) or transcriptome (T) space and require multiple conditions,
respectively. GS and TS identify tools working on the genome (G) or transcriptome (T) space and requiring a single condition, respectively. (B) Precision
and recall curves at different cut-off values for the tools indicated in (A) on the oligos dataset; for each tool, the default cut-off is indicated by a square;
the performance of a random classifier is included. (C) As in (A) for the yeast dataset. (D) as in (A) for the mouse dataset. (E) as in (A) for the human
dataset. (F) as in (B) for the yeast dataset. (G) as in (B) for the mouse dataset. (H) as in (B) for the human dataset.

Noticeably, this resulted in the overlap of four tools with the
random classifier whose AUPRC was inflated due to the high
fraction of positive bins.

For the yeast, mouse and human datasets, we integrated
various orthogonal methods based on short reads sequencing
for the profiling of m6A as surrogate of the missing ground
truth: m6A-seq, MAZTER-seq, miCLIP2 and GLORI (as outlined
in Figure 1B and detailed in the Supplementary Data, see
Supplementary Data available online at http://bib.oxfordjournals.
org/). The performance of all tested tools in these datasets was
significantly worse than the oligos dataset, especially in terms of
recall. None of the tools were able to obtain both high precision
and high recall using the default settings. Furthermore, the tool’s
performance for precision and recall was different among the
three non-synthetic datasets, especially comparing mammalian
with yeast datasets (Figure 3C-E). The precision-recall curves
generalized this trend (Figure 3F-H). Indeed, the yeast dataset
presented large AUPRC CIs due to the limited number of positive
bins (1453), while the opposite was true in mESC and HEK293T
(84 060 and 18 932 positive bins respectively); this resulted in
a variable fraction of overlapping tools (Supplementary Figure
S2, see Supplementary Data available online at http://bib.
oxfordjournals.org/). In the latter datasets, the overlaps were more
frequent when considering smaller bin sets (RRACH+ and/or
high-coverage bins). Nevertheless, only Tombo CIs consistently
overlapped with those of Nanocompore (in yeast) and Yanocomp
(in human). Noticeably, the best performing tool for each analysis
usually did not overlap with others independently from the
number of positive bins. The tuning of the significance cut-
off allowed exploring the precision-recall space, penalizing one
metric in favour of increased performance for the other.

Performance at RRACH and for highly expressed
sites
The analysis presented above ignores three key features of m6A,
which distinguish the yeast, mouse and human datasets from the

oligos one: the existence of preferred sequence contexts, the exis-
tence of exclusion zones where m6A is unlikely to be deposited,
and the in vivo stoichiometry of the marks. Indeed, m6A is pref-
erentially found at RRACH sequence motifs [4], and typically has
low prevalence and stoichiometry [36]. In addition, it has recently
been found to be markedly excluded from extreme transcripts
ends and from the regions adjacent to exon–intron junctions
[37]. Therefore, we tested whether restricting the analyses to
those bins containing RRACH sequence motifs, falling outside of
exclusion zones, or having substantial expression would improve
the performance of the considered tools.

Reassessing the mouse precision-recall curves in the context
of the RRACH containing bins only marginally improved the tools
performance in terms of precision (compare Figure A and B with
Figure 3D and G). Re-evaluating the tools only for those bins that
are outside exclusion zones did not significantly contribute to
increasing the metrics (Figure C and D). Rather, imposing a filter
on expression markedly improved the performance, especially
in terms of recall (Figure E and F). The positive impact of the
filter on expression was confirmed in human (Supplementary
Figure S3, see Supplementary Data available online at http://bib.
oxfordjournals.org/).

Sequence features associated to true positive,
false positive and false negative hits
We then asked whether there are specific sequence features
where m6A marks are particularly easier or more difficult to
detect. For each tool, we tested if there are sequence features
that are enriched within either true positive (TP) or false positive
(FP) bins.

We determined for each tool the accuracy of all the 12 vari-
ants of the RRACH motif, finding up to several fold differences
(Figure 5A). Interestingly, the most common variants—those that
are more often associated with m6A marks in vivo—are also
those with the highest accuracy for all the tools (Figure 5B).
Regarding the false positive bins, we searched for enriched motifs
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Figure 4. Agreement with reference sets of m6A hits on RRACH+, accessible, and high-coverage bins. (A) Precision, recall and F1 score for each tool
executed at default conditions on the mouse dataset on RRACH+ bins. According to Supplementary Table 1, GM and TM identify tools working on
the genome (G) or transcriptome (T) space and requiring multiple conditions, respectively. GS and TS identify tools working on the genome (G) or
transcriptome (T) space and requiring a single condition, respectively. (B) Precision and recall curves at different cut-off values for the tools indicated
in (A) on the mouse dataset; for each tool, the default cut-off is indicated by a square; the performance of a random classifier is included. (C) as in (A)
for DRACH+ bins outside of splice-site exclusion zones. (D) as in (B) for DRACH+ bins outside of splice-site exclusion zones. (E) as in (A) for bins with
high coverage. (F) as in (B) for bins with high coverage.

compared to a shuffled background (Figure 5C). We recapitulated
the expected AC pattern only for the tools which constitutively
analyse RRACH sites. For the other software, we obtained repeti-
tive sequences mainly enriched in Ts and As which did not match
with any known m6A motif.

We also characterized TP, FP and false negative (FN) bins in
terms of GC content, free energy, which are proxy for the tran-
scripts structural complexity, and Shannon Entropy, which is
indicative of sequence information content. For all the tools we
observed lower GC content and higher free energy in FN bins com-
pared to TP ones, suggesting that all methods tend to miss m6A
hits in less structured sequence contexts (Figure 5D and E). Rather,
FP bins exhibited lower and more heterogeneous Shannon entropy
compared to the other two classes (Figure 5F). This observation is
in agreement with the repetitive motifs that we observed for tools
not restricted to RRACHs, suggesting that FP in Nanopore based
methods tend to occur in low complexity regions.

Saturation analysis
Finally, we exploited the high coverage of the in house sequenced
human dataset to thoroughly assess the impact of coverage depth
on the tools’ performances. Indeed, while it is clear that higher
coverage is beneficial for a more comprehensive identification of
m6A sites, it is unclear, at the considered sequencing coverage,
how closely we are reaching the saturation of m6A calling. To
this end, we determined the number of m6A hits identified by
each tool on 25%, 50% and 75% of the reads for the human
dataset and compared it to the number of hits called on the
entire dataset. We observed an increase in the number of hits with
higher coverage for all the tools (Figure 6A) —with the exception of

DiffErr, which showed the opposite trend. We then evaluated the
impact of sequencing depth on the F1 score for each tool’s default
conditions and observed marginally improved performances with
higher sequencing coverage, except for EpiNano-SVM and Dif-
fErr, which showed an opposite trend (Figure 6B and Supple-
mentary Figure S4, see Supplementary Data available online at
http://bib.oxfordjournals.org/, respectively). Finally, when explor-
ing precision and recall values obtained varying the confidence
parameter, we noticed a consistent increase in AUPRC with higher
sequencing coverage, except for EpiNano-SVM (Figure 6C). Alto-
gether, these results indicated that, while with the coverage of a
PromethION flow-cell we are getting closer to saturation, addi-
tional sequencing would be likely beneficial and lead to the
identification of additional m6A sites.

Replicates merging
For all the analyses discussed so far, replicates were presented
as separate samples to the methods designed to handle them; in
agreement with the specifications of the developers. To address
this aspect, we focused on the tools capable of replicates analysis,
and we reanalyzed the yeast dataset by providing either repli-
cates as separate samples or combining them. Most of the tools
involved in this analysis were indeed affected by the merging
of replicates (Supplementary Figure S5, see Supplementary Data
available online at http://bib.oxfordjournals.org/). While the two
configurations typically differed in terms of number of significant
sites, the number of replicate samples was not predictive of the
number of identified sites. However, the hits of the configuration
with the smaller set of methylated sites were typically a subset
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Figure 5. Sequence features associated with true positive, false positive and false negative hits. (A) m6A hits of each tool were stratified based on their
association to specific RRACH motifs, and their number and accuracy on the mouse dataset was reported. (B) Distribution of accuracy stratified for
common and uncommon RRACH motifs. (C) De novo motif enrichment analysis was performed on 50 nt regions centred at false positive hits for each
tool on the mouse dataset, and the most significant motif was reported, together with statistical significance and consensus motif; tools marked with
∗ are restricted to RRACH/DRACH motifs by implementation. (D) Distribution of the GC content for 50 nt regions centred at true positive (TP), false
negative (FN) and false positive (FP) m6A hits. (E) as (D) for the free energy. (F) as (D) for the Shannon entropy.

Figure 6. m6A calling saturation analysis. (A) Saturation analysis for m6A calling by various tools on the human dataset; the number of hits (y-axis)
identified on subsets of the whole dataset (x-axis) is reported as a proportion of the number of hits identified on the whole dataset. (B) As in (A) where
the y-axis reports the corresponding F1 score. (C) as in (A) where the y-axis reports the AUPRC.

of the other configuration (overlap always greater than 59%, and
over 99% for four out of six tools).

DISCUSSION
The advent of Nanopore sequencing of native transcripts
generated rich datasets whose potential is still being explored.
Numerous computational methods were developed for the
analysis of these data, converting ionic current features into
valuable information regarding RNA sequence, splicing variants,

structure and polyA tails. These data promised to be highly
informative on the multitude of modifications that decorate
coding and non-coding transcripts. Indeed, numerous methods
were published in a few years to profile the epitranscriptional
landscape from dRNA-seq data, and others are likely to be
available soon. However, users are left with limited guidance on
how to prioritize the choice of the tool.

We benchmarked 14 tools—all those that were available in
November 2022—for the detection of m6A on these data (Sup-
plementary Table 1, see Supplementary Data available online at
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http://bib.oxfordjournals.org/). We applied them to the analysis
of four different dRNA-seq datasets with specific strengths and
limitations (Figure 1). The oligos dataset represents an artificial
condition that poorly recapitulates the relative location and fre-
quency of in vivo marks, and that lacks the confounding effect
of additional modifications that might be present in proximity of
m6A marks—even though in a yet unknown manner. However,
as an important advantage, the ground truth in terms of m6A
positioning and abundance is known in the oligos dataset. The
yeast, mouse and human datasets lack a ground truth, but fully
represent in vivo conditions of location, stoichiometry and context
of m6A marks. While the yeast transcriptome is compact, and
sequenced at high depth, the mouse transcriptome is signifi-
cantly larger but sequenced at lower depth. To complement these
datasets, we sequenced a human dataset taking advantage of the
higher throughput PromethION platform, which could provide
dRNA-seq of a transcriptome of complexity comparable to the
mouse’s, but at a higher sequencing depth.

The datasets processed for this work were heavy and com-
plex, consisting of >22 M files totalling 4 TB of raw data, and
likewise is the effort required for their analysis. We experienced
difficulties completing the run for several tools, and for few of
them we had to renounce, due to lack of evident progress in
the run or the unexpected generation of empty output files. The
tools returned a remarkably different number of hits. However,
these had a plausible distribution, given the expected location in
each specific test datasets, and pairwise overlap (Figure 2). These
results suggested that the tools might have different performance
in terms of precision and recall.

The m6A calls returned by the tools were compared to refer-
ence sets of m6A hits (Figure 1) to define precision, recall and F1
scores (Figure 3). In the case of the oligos dataset, the reference
set is known by design and includes all the As available in the
artificial sequences. For yeast, mouse and human, the reference
set was obtained by integrating various independent datasets
obtained with recent leading approaches for m6A profiling relying
on short reads high-throughput sequencing. The analysis of pre-
cision and recall indicated that the tools performed very well on
the synthetic oligos dataset, while the yeast, mouse and human
datasets represented a more challenging task. The precision ver-
sus recall curves showed that the default settings for some of
the tools nicely identify a good trade-off between precision and
recall. For other tools, these curves could be used to point to
better cut-off conditions for those users aiming at maximizing
both metrics. Altogether, these analyses showed that, if needed,
there is broad space to steer the preference towards either one of
the two metrics.

The low F1 scores in the yeast, mouse, and human datasets
compared to the oligos dataset can possibly be attributed to the
stoichiometry of m6A marks at each position or differences in
bias between the orthogonal reference m6A sets and nanopore
based m6A techniques. By mixing unmodified reads and mod-
ified reads from the oligos datasets, we could simulate a more
biologically equivalent m6A stoichiometry in the synthetic oligos
to address its effect on nanopore m6A detection. Most of the
software tools had lower F1 scores at lower m6A stoichiometry
in the in silico mixed samples (Supplementary Figure S6, see
Supplementary Data available online at http://bib.oxfordjournals.
org/), which agrees with previous observations using a subset of
the tools we tested with NanOlympicsMod (Nanocompore and
xPore). This suggests that the lower expected m6A stoichiometry
in the biological datasets is at least partially responsible for the
observed reduced F1 scores.

The tested tools can be grouped according to the genome or the
transcriptome being the required reference sequence, and accord-
ing to their requirement or not of a baseline sample depleted
of the modification of interest (Supplementary Table 1, see Sup-
plementary Data available online at http://bib.oxfordjournals.
org/). Tools of any class performed well with the synthetic oligos
dataset, especially in terms of precision, while at default settings
they had different preferences in terms of recall, the multi-sample
tools typically achieving higher recall values. The high precision
obtained by all tools in this dataset is also a consequence of
the high density of m6A nucleotides, constraining the minimum
precision value to the ratio of m6A+ bins to all the bins. The multi-
sample tools, such as ELIGOS, Yanocomp, DiffErr and Nanocom-
pore performed better in the yeast dataset, probably benefiting
from the higher coverage. Rather, the single-sample tools working
in transcriptome space, such as m6Anet and DENA, performed
better in the mouse and human datasets, likely because they
were able to capture m6A features in complex transcriptomes.
Interestingly, m6Anet and DENA were applied for the analysis
of yeast and mouse datasets despite they were trained on data
obtained for Homo sapiens and Arabidopsis thaliana species (Sup-
plementary Table 1, see Supplementary Data available online
at http://bib.oxfordjournals.org/), which might partially explain
those tools’ reduced performance in the yeast dataset. Similarly,
EpiNano-SVM and Nanom6A were trained on synthetic oligos
which lack the complexity of real transcriptomes and potential
confounding factors like endogenous RNA modifications, poten-
tially impacting their performances when applied to yeast, mouse
and human data.

We tested whether restricting to specific sets of bins, such as
those associated with RRACH motifs, high coverage or far from
exclusion zones, could improve the performance (Figure :). We
found that, for those tools that are limited by design to only test
RRACH or DRACH sites, this reassessment had limited chances
of significant improvement. Only by filtering for highly expressed
bins significatively boosted precision and recall.

Finally, we identified specific sequence features that character-
ized TP, FP and FN bins (Figure 5). We showed that m6A at specific
RRACH variants can be detected with higher accuracy and that
the tested tools differ in terms of sequence motifs that could
divert them. Additionally, we revealed that all the considered
Nanopore-based tools tend to miss hits in unstructured regions,
while identifying m6A unsupported by orthogonal techniques in
low complexity domains. These observations are indicative of
sequencing platforms-specific biases. For instance, the system-
atic occurrence of FNs in low-entropy bins could stem from the
suboptimal performance of dRNA-seq with homopolymers, or
from short reads alignment issues in repetitive sequences. Fur-
thermore, short-read based methods may exhibit biases towards
less structured transcripts, where antibodies and chemical com-
pounds could more efficiently access the substrate. Further in-
depth studies are warranted, likely with both short-read and
Nanopore based approaches, to better understand and assess
these limitations.

We then evaluated the tools’ performances in terms of number
of hits, F1 score at default conditions and area under the PR curve
at different coverage depth values. Results from this saturation
analysis showed a marked increase in the number of hits at higher
coverage depth, with a decrease in the slope of the curve between
75% and 100% of the available coverage, suggesting the curve
was about to reach a plateau. Interestingly, DiffErr showed an
opposite trend, suggesting that the tool may be designed to use the
additional information to restrict the set of candidate hits. When
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considering the F1 score value at default conditions, we observed
only marginally improving performances with higher sequencing
coverage for most of the tools. This result may suggest that the
increase in coverage depth leads to an increase in the number
of hits which, in turn, results in a higher sensitivity; however,
the increase in sensitivity is also accompanied by a decrease in
precision, with an overall effect of saturation of the F1 score.
Finally, most of the tools showed an increase in the AUPRC with
higher coverage depth, consistent with an overall improvement
in m6A identification with higher coverage. This result also sug-
gests that cut-off settings should be tuned also considering the
available coverage depth. Only EpiNano-SVM showed a decrease
in the AUPRC value at higher coverage depth: this result may
be explained by features of the dataset used for the training
of the algorithm. Interestingly, we showed that tools based on
differential errors identification, as ELIGOS and DiffErr, were able
to identify a consistent number of hits also in both the mouse and
human datasets, confirming the presence of a differential error
due to the presence/lack of m6A, despite the different sequencing
platform and the associated base-calling model.

In general, we recommend focusing on high-coverage regions,
as this allows obtaining a marked increase in the tools’ perfor-
mances. We observed that m6Anet outperformed all the tools
both in the mouse and in the human dataset. On the oligos
and yeast datasets, m6Anet was not among the top performers,
possibly due to the fact that we were using the default neural
network trained on a human dataset. If it is not possible to re-
train m6Anet on a dataset from a related species, we advise the
users to run multi-sample tools for yeast, such as ELIGOS and
Nanocompore, as they were the top performers in terms of AUC in
yeast and oligos datasets. As an alternative, we advise the users
to integrate the predictions from multiple tools for obtaining a
more accurate set of m6A modifications. The set of tools may
be chosen by ranking them by the AUC value obtained in this
study. In particular, the user may want to build a meta-classifier
integrating the performances of multiple tools. We picked the top
5 performing tools, according to the AUC value, in the analysis of
high-coverage bins of human dataset, and tested the performance
of three meta-classifiers obtained as either the intersection, the
majority vote or the union of their predictions. The majority vote
classifier was the most balanced among the three in terms of
recall and precision, allowing to obtain the highest F1 score at
default conditions (0.40) (Supplementary Figure S7, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/),
outperforming the best tool (MINES, F1 score = 0.38).

A recent study from Zhong et al. [34] benchmarked multi-
ple tools for m6A detection on dRNA-seq data focusing on the
mouse epitranscriptome. Our results are largely consistent with
the results reported by the Zhong study. However, we would like
to stress key points where our study significantly improves com-
pared to what has been published. First, in our study we describe
the development and release of NanOlympicsMod, a Nextflow
pipeline exploiting containerized technology for the benchmark-
ing of m6A detection tools on dRNA-seq. A similar resource was
completely missing in the Zhong paper and will be of utmost
importance in the field. Not only for reproducing the results,
but also for testing further tools that are likely to be published
soon in this very active research field. Second, we benchmarked
14 tools on datasets from three different species, yeast, mouse,
and human. The Zhong paper was primarily focused on a mouse
dataset only. Third, the production of a high sequencing depth
dataset for human allowed us to perform a saturation analysis of
m6A calling that was not included in the Zhong paper. Fourth, we

also tested the tools on a dataset relying on synthetic oligos, which
was missing in the Zhong paper. This is particularly important,
since it is the only condition in which the ground truth is known,
being the position of m6A known by design of the oligos.

Altogether, our analyses indicate that the target sequencing
depth and the adopted cut-off settings are likely the most impor-
tant choices for m6A profiling on dRNA-seq data. The choice of
the specific tool likely depends also on whether one wishes to
map the m6A hits directly on specific transcripts or not (genome
versus transcriptome-based tools), whether one wishes to have
direct evidence of the modification of interest (multi-sample ver-
sus single-sample tools) and whether m6A or other marks are
sought. The NanOlympicsMod framework represents a portable,
reproducible, and scalable resource to run and compare Nanopore
Direct RNA Sequencing-based tools for the profiling of m6A or
other marks, which will facilitate these decisions and will stream-
line the test of additional detection tools. Moreover, we think that
the produced sequencing dataset will serve as a valuable resource
for set-up and validation of novel dRNA-seq based tools.

METHODS
Cell culture treatment with STM2457
HEK293T cells were grown using Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% Fetal Bovine Serum
(FBS) and 1% penicillin–streptomycin. Cells were treated with
vehicle (Ethanol 100%) or with 20 μM STM2457 and incubated for
24 hours at 37 ◦C.

RNA extraction and mRNA purification
Total RNA was extracted from 10 million cells using Qiazol (Qiagen
79306) and RNeasy Micro Kit (Qiagen 74004). mRNA purifica-
tion was performed with 100 ug of Total RNA using μMACS™
mRNA Isolation Kit (Miltenyi Biotec 130–075-201) following the
manufacturer’s protocol.

Bulk m6A quantification
Bulk m6A mRNA levels were quantified using Elisa kit (EpiQuik-
Epigentek). A total of 100 ng of mRNA were loaded. Samples were
incubated with m6A antibody for 1 h following manufacturer’s
protocol. The detected signal was quantified colorimetrically by
reading the absorbance in a microplate spectrophotometer at a
wavelength of 450 nm.

Nanopore direct RNA sequencing
A total of 150 ng of mRNA were used as an input for Nanopore
Direct RNA sequencing libraries preparation. A total of 152 ng and
120 ng of library were obtained for HEK293T control and HEK293T
Storm, respectively. Both samples were loaded on PromethION
flow cells, with 7562 pores for HEK293T control and 8233 pores
for HEK293T treated with STM2457.

Reference files and datasets preparation
See Supplemental Data for a comprehensive description of the
considered and produced datasets. The description on how the
data were processed follows here:

Synthetic oligos
The sequences of synthetic oligos were downloaded from [38] and
concatenated into a single fasta file. Then, the coordinates of all
‘A’ nucleotides were obtained using vMatchPattern function of
Biostrings v2.66.0 R package and saved to file in bed format.
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Yeast dataset
The yeast Nanopore dRNA-seq data were retrieved from [39].
Reference genome and transcriptome files for SK1 yeast strain,
together with the set of reference peaks, were downloaded
from [39]. In particular, ‘MvO’ genome assembly was down-
loaded from http://cbio.mskcc.org/public/SK1_MvO/, while
‘SGD_2015_JRIH00000000’ reference transcriptome was down-
loaded from http://sgd-archive.yeastgenome.org/sequence/
strains/.SK1/SK1_SGD_2015_JRIH00000000/. Since we could not
retrieve a proper gtf annotation file for SK1 strain, we first aligned
the transcriptome to the genome with minimap2 v2.24.0 [40]
with -x splice mode. We then converted the alignment bam
file in bed12 format with bedtools bamtobed v2.30.0 [41] and
finally obtained a gtf annotation file using a combination of
bedToGenePred and genePredTogtf from UCSC tools v377 (https://
github.com/ucscGenomeBrowser/kent). The m6A hits reference
set was obtained combining the hits from MAZTER-seq [18]
and m6A-seq [42] released as supplemental material in Garcia-
Campos et al. and Schwartz et al., respectively, and collapsing
overlapping hits with bedtools merge v2.30.0 [41].

Mouse dataset
The mouse Nanopore dRNA-seq data were retrieved from [43].
Reference genome and transcriptome fasta files for mouse,
together with gtf annotation file, were downloaded from https://
www.gencodegenes.org/mouse/release_M23.html. The m6A
reference set was obtained combining the hits from miCLIP2 [15]
and GLORI [23] released as supplemental material in Körtel et al.
and Liu et al. respectively, and collapsing overlapping hits with
bedtools merge v2.30.0 [41].

Human dataset
The human dRNA-seq data were produced as part of this work
and were uploaded to SRA (BioProject ID: PRJNA995902). The
reference genome for human was downloaded from https://
hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz,
while the gtf annotation file was downloaded from https://ftp.
ensembl.org/pub/release-109/gtf/homo_sapiens/Homo_sapiens.
GRCh38.109.gtf.gz. Sequence and annotations for chromosome
chr1 were then subset from the full files with bash custom scripts.
The transcriptome fasta file for human was generated from the
reference fasta and the annotation gtf files with bedtools getfasta
v2.30.0 [41]. The m6A reference set was obtained downloading
GLORI hits release as supplemental material in Liu et al. [23] and
subsetting hits from chromosome chr1.

The NanOlympicsMod workflow
The NanOlympicsMod workflow is composed of four steps: pre-
processing, tools execution, post-processing and comparative analyses
(Figure 1A).

Pre-processing
FAST5 files for the four datasets were re-basecalled using Guppy
v6.2.1 with command ‘guppy_basecaller -i <input_path> -r -x
“auto” -s <save_path> –fast5_out -c rna_r9.4.1_70bps_hac.cfg’.
FAST5 files are converted from multi-reads to single-read with
multi_to_single ONT API v4.0.0 (https://github.com/nanoporetech/
ont_fast5_api) and the base-called sequences are extracted in
FASTQ format with Poretools v0.6.0 [44]. Then, sequencing reads
are aligned to the transcriptome (−x map-ont) and to the genome
(−x splice) with Minimap2 v2.24.0 [40]. Alignment files are then
used for signal resquiggling with both Tombo v1.5.1 [45] and

Nanopolish v0.8.4 [46]. The pre-processing steps are performed
in parallel for all the samples involved in the analysis, and the
resulting files are then provided to each tool according to their
requirements.

Tools execution
Fourteen tools for m6A detection on dRNA-seq data are run in
parallel and the corresponding output is stored in a dedicated
folder tree. As outlined in Supplementary Table 1, we ran ELIGOS
v2.1.0 [43], m6Anet v1.1.0 [47], MINES [48], Tombo v1.5.1 [45],
DRUMMER [49], EpiNano-SVM v1.2 [38], EpiNano-Error v1.2 [38],
DENA [50], Yanocomp v0.2 [51], Nanocompore v1.0.3 [39], xPore
v2.0 [52], DiffErr v0.2 [29], nanom6A [53] and nanoDoc [54]. If
replicates are available, they are provided as separate samples to
the tools designed to handle them (Yanocomp, xPore, Nanocom-
pore, m6Anet, ELIGOS, DiffErr and DRUMMER); otherwise they are
merged.

Post-processing
Post-processing is based on an R script that collects all the tools
output. This is heterogeneous in terms of format and information
and this workflow step converts each tool’s output into a common
file format. First, for those tools which rely on transcriptome
alignment, a lift-over from transcriptome-based to genome-based
coordinates is also performed with the transcriptToGenome func-
tion from ensembldb v2.18.4 R package. Although this may not
be a compulsory step in a standard analysis, it was required
for comparing these tools to those providing hits in genome-
based coordinates and to the reference sets. Finally, a BED file
for each tool is produced, which contains the genomic position
of each call, its modification status (modified or unmodified) -
defined according to criteria suggested by the developers - and
the numerical value which drove the classification, if available
(i.e. False Discovery Rate, modification probability, P-value).

Comparative analyses
The comparative analysis consists of an R script designed to
process all the BED files returned by the post-processing step and
to perform the analyses described in the main text. The details of
these analyses are described in the section Additional analyses.

Additional analyses
Binning
The gene space is first binned into fixed-size windows, starting
from the 3′ end of the gene. In case the gene length is not multiple
of the window size, the last window at the 5′ end is discarded. We
chose 5 nt as window size for the oligos dataset, and 50 nt for
yeast, mouse and human datasets. Smaller windows of 40, 30, 20
and 10 nt were also tested for the human dataset, showing a small
while progressive increase in the AUC with increasing window
size (Supplementary Figure S8, see Supplementary Data available
online at http://bib.oxfordjournals.org/). The smaller window size
for the oligos dataset was required by the high density of As,
since a larger window size would have resulted in having only
m6A+ bins.

Collecting the m6A hits of each tool
A matrix of m6A hits with number of rows equal to the number of
bins and number of columns equal to the number of tools plus 1
(the reference set) is created. The matrix columns are initialized
to 0 or − 1, depending on whether the confidence parameter for
the tool needs to be maximized (i.e. probability of modification)
or minimised (i.e. P-value), respectively. For each tool, the overlaps
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between the hits and the genes bins are evaluated and the value
of the confidence parameter is reported in the corresponding cell
of the matrix. In case multiple hits occur within the same bin, the
value corresponding to the least confident hit is reported. In case
smaller confidence parameter values imply higher confidence for
a tool (e.g. P-value), scores for that tool are multiplied by −1. This is
required by PRROC v1.3.1 R package [55] that we used for plotting
Precision-Recall curves, as it expects that higher values of the
parameter correspond to higher confidence calls (see below).

An auxiliary binary matrix of hits is also created, containing 1
or 0 depending on whether the bin should be called as m6A+
or not after filtering the hits at the default parameter threshold.
This matrix is then used for evaluating the hits’ overlaps and for
evaluating recall, precision and F1 score at default conditions.

Overlap analyses
The overlap of m6A hits for each pair of tools is stored in a matrix
with the number of rows and columns equal to the number of
tools. Each (i,j) cell of this matrix reports the number of m6A+ bins
identified by both tools i and j, divided by the number of m6A+
bins identified by tool i (the one reported in the rows in Figure 3).
The matrix was then visualised as a heatmap with the pheatmap
function of pheatmap v1.0.12 R package.

Comparison of hits to reference m6A set
The tools default conditions were defined as described in Sup-
plementary Table 4, see Supplementary Data available online at
http://bib.oxfordjournals.org/. The binary matrix of m6A hits at
default conditions was used to compare the bins identified as
m6A+ for a given tool to the bins classified as m6A+ according to
the reference set of each dataset. The recall was then determined
as the ratio of m6A+ bins in the reference set that were identified
as m6A+ also by the tool, while the precision was computed as the
ratio of m6A+ bins identified by the tool that were confirmed by
the reference set. The F1 score was determined as the harmonic
mean of precision and recall.

For assessing precision and recall at various stringency cut-
offs, the scores of the matrix of m6A hits were screened according
to each cut-off and compared to the hits of the corresponding
reference m6A set to define true and false positive bins for each
tool. Precision-Recall curves were plotted with the pr.curve func-
tion of PRROC v1.3.1 R package [55] which also provided the
corresponding AUPRC. The approach described in [56] was applied
to estimate AUPRCs 95% Confidence Intervals.

Selection of RRACH, accessible, and
high-coverage bins
RRACH-containing bins were determined using the vMatchPattern
function of Biostrings v2.66.0 R package.

Accessible bins were identified as those bins overlapping to
‘GGACC’, ‘AGACA’, ‘TGACT’, ‘AGACT’, ‘GAACT’, ‘GGACA’ and
‘GGACT’ motifs, occurring outside of inaccessible regions, defined
as 100 nt at the ends of each exon, using a combination of
vMatchPattern and resize function of GenomicFeatures package.

High-coverage bins were determined importing genome align-
ment files in R v4.2.1 using readGAlignments function of Genom-
icAlignments v1.32.1 R package and evaluating the read counts
for each exon, using a combination of makeTxDbFromGFF, exons
and findOverlaps functions of GenomicFeatures v1.48.3 package.
The genomic coordinates of exons with more than 100 read counts
were saved to a file in BED format and were used to identify the
subset of high-coverage bins.

Metagene plots
Starting from BED files including genomic coordinates of m6A hits
filtered at default parameter values, we produced metagene plots
showing m6A hits distribution along transcriptional units using
GuitarPlot function of Guitar v2.12.0 package.

Sequence features associated with either true or
false positive calls
We first annotated genomic bins with a specific motif, in case
a single hit in the reference set overlapped to the bin and to a
RRACH motif. We then evaluated the accuracy (i.e. the recall)
of each tool at detecting true positive bins for each motif and
produced a barplot. Moreover, we performed a de novo motif
enrichment analysis on the sequence of false positive bins using
XSTREME program from MEME Suite v5.5.2 [57] (online imple-
mentation). The gene sequence of 50 nt bins where the tools
detected m6A hits that were not confirmed by the reference
set was extracted and used for a motif enrichment analysis,
using shuffled input sequences as control. Only the top motif for
each tool was reported, together with its statistical significance
and the resulting consensus motif. We additionally obtained the
sequences of false negative bins for each tool, which are bins not
called by the tool but present in the reference set. For each tool
and bin in the true positive, false negative, and false positive sets,
we calculated the GC content using R, we determined the free
energy using RNAfold v2.5.0 from the Vienna RNA package [58],
and we calculated the Shannon entropy using the Entropy method
from the R package DescTools (v0.99.49).

Source code
The source code for the NanOlympicsMod workflow, and for
reproducing all the results included in this study, are available
at the following GitHub repository: https://github.com/mfurla/
NanOlympicsMod.

Key Points

• Nanopore direct RNA-seq sequencing (dRNA-seq) allows
the identification of various RNA modifications includ-
ing N6-Methyladenosine (m6A)

• Numerous tools were developed to identify m6A from
dRNA-seq data, however a comprehensive benchmark-
ing across species and against established orthogonal
methods is missing

• We developed the NanOlympicsMod workflow to facil-
itate comparing tools for m6A detection on dRNA-seq
data, and we used it to benchmark 14 software on syn-
thetic RNA oligos, yeast, mouse and human transcrip-
tomes

• The performance of the tools varies between synthetic
and real datasets and is particularly sensitive to the
expression of the tested regions

• Tools relying on specific approaches, i.e. working on
transcriptome or genome space and requiring single or
multiple conditions, have different preferences in terms
of precision and recall

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.
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