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Conjugacy and centralizers in groups of piecewise
projective homeomorphisms

Francesco Matucci and Altair Santos de Oliveira-Tosti

Abstract. In 2013, Monod introduced a family of Thompson-like groups which provides natural
counterexamples to the von Neumann–Day conjecture. We construct a characterization of conjugacy
and an invariant and use them to compute centralizers in one group of this family.

1. Introduction

The von Neumann conjecture states that a group is non-amenable if and only if it contains
non-abelian free subgroups. It was formulated in 1957 by Mahlon Marsh Day and dis-
proved in 1980 by Alexander Ol’shanskii in [15] through a non-amenable Tarski monster
group without any non-abelian free subgroup. The historically first potential counterex-
ample to such conjecture is Thompson’s group F of piecewise-linear homeomorphisms
of the real line. The group F does not contain any non-abelian free subgroup, but is still
not known to be amenable.

Nicolas Monod introduced in [14] a class of groupsH.A/ depending on a subringA of
R providing another family of counterexamples of the von Neumann–Day conjecture [14].
Monod’s groups are very natural and “Thompson-like” as they are described by piecewise
projective homeomorphisms of the real line. Later on, Yash Lodha and Justin Moore [11]
found that H.ZŒ1=

p
2�/ contains a finitely presented subgroup, thus providing the first

torsion-free finitely presented counterexample.
Thompson-like groups have been extensively studied from the point of view of deci-

sion problems. Decision problems play an important role in group theory, giving a measure
of the complexity of groups. A finitely presented groupG has solvable conjugacy problem
if there exists an algorithm which, given that y; z 2 G, determines whether or not there is
an element g 2 G such that g�1yg D z. This problem has been studied for many classes
of groups and is generally unsolvable. The conjugacy problem has been studied for sev-
eral Thompson-like groups [1,2,5–8,10,13,16,17]. Monod’s groups share commonalities
used in approaches used to study the conjugacy problem, such as being a topological full
group. In this paper, we exploit such commonalities to understand conjugacy in Monod’s
group H WD H.R/ and find a criterion (see Corollary 3.17) to establish conjugacy within
the group.
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Matthew Brin and Craig Squier construct in [3] a conjugacy invariant in the infinitely
generated group PLC.R/ of all piecewise-linear homeomorphisms of the real line with
finitely many breakpoints and use it to compute element centralizers by adapting tech-
niques developed in [12]. This invariant has been revisited later in [6, 13] and we adapt it
in Theorem 4.2 to produce our own version of this invariant and compute centralizers by
the following theorem.

Theorem A. Given that z 2 H , then

CH .z/ Š .Z;C/
n
� .R;C/m �H k ;

for suitable k;m; n 2 Z�0.

Several of our results adapt to the general Monod groups H.A/ for a subring A of
R, but there are some for which the proofs given for H do not immediately apply to the
groups H.A/. More precisely, the results of Section 3 can be easily rephrased and proved
for H.A/, while those from Sections 4 and 5 may extend too, but our proofs do not apply
to H.A/.

The work is organized as follows: in Section 2, we define Monod groups and present
some basic properties, some of which shared with Thompson’s group F . In Section 3,
we discuss a characterization of conjugacy, which is an adaptation of the Stair algorithm,
developed by Kassabov and the first author in [10]. In Section 4, we define a conjugacy
invariant (the Mather invariant) for a class of elements by adapting techniques developed
in [12], and we show the relation between the Stair algorithm and the Mather invariant. In
Section 5, we compute the centralizer subgroups of elements from H as applications of
the preceding tools.

2. Monod’s groups

In this section, we will discuss groups of piecewise projective orientation-preserving
homeomorphisms of RP1 which stabilize infinity and discuss some of their properties.
These groups are called Monod’s groups and they were introduced by Nicolas Monod
in [14].

We now introduce the notation that will be used in the paper. If A is a subring of R
with unit, the group of Möbius transformations PSL2.A/, under composition of functions,
is the group of transformations of the real projective line RP1 D R [ ¹1º of the form
f W t 7! atCb

ctCd
for a; b; c; d 2 A, where the determinant of the associated matrix Mf D�

a b
c d

�
is equal to 1. We say that f is hyperbolic if j tr.Mf /j > 2. We consider the group

PPSL2.A/ of piecewise projective homeomorphisms of RP1 with multiplication given by
composition of functions. We say that f 2 PPSL2.A/ if there are finitely many points
t0; t1; : : : ; tnC1 2 RP1 so that on each interval .�1; t0�, Œti ; tiC1�, i D 0; 1; : : : ; n� 1, and
Œtn;1/ the map is a Möbius transformation

f W t 7!
ai t C bi

ci t C di
;
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where aidi � cibi D 1, for suitable ai ; bi ; ci ;di 2A. Monod’s groupH.A/ is the subgroup
of PPSL2.A/, where f .1/ D1 and the points t0; : : : ; tn lie in the set PA of fixed points
of hyperbolic Möbius transformations in PSL2.A/. In the case A D R, we simply write
H.R/ D H . We say that a point t0 2 PA is a breakpoint of f 2 PPSL.A/ if there exists a
" > 0 such that there do not exist a; b; c; d 2 A, where ad � cb D 1 and f .t/ D atCb

ctCd
on

.t0 � "; t0 C "/.
One of the requirements to adapt the Stair algorithm to this setting is to be able to

simultaneously send a tuple of intervals to another such tuple, which means having a form
of transitivity. We need H to act order k-transitively on RP1 and this is a property shared
with Thompson’s group F . The proof of the following result is analogous to the one for
PLC.R/.

Lemma 2.1. Let t1 < t2 < � � � < tk and s1 < s2 < � � � < sk be elements from RP1 n ¹1º.
Then there exists f 2 H such that f .ti / D si , for all i D 1; 2; : : : ; k.

Proof. For all i 2 ¹1; 2; : : : ; k � 1º, let us consider the intervals Œti ; tiC1� and Œsi ; siC1�.
Since PSL2.R/ is 2-transitive on RP1 (see [9, Theorem 5.2.1 (ii)]), there exists an element
fi 2 PSL2.R/ such that

fi .ti / D si and fi .tiC1/ D siC1:

Thus it is enough to glue together these maps with two functions f0;fk 2 PSL2.R/ defined
on .�1; t1� and Œtk ;C1/, respectively, as

f0.t/ D
a0t C b0

d0
and fkC1.t/ D

akt C bk

dk
;

where a0d0DakdkD1 and a0, b0, d0, ak , bk , dk are chosen in such a way that f0.t1/Ds1
and fk.tk/ D sk . To finish, we construct the following element from H :

f .t/ WD

8̂̂<̂
:̂
f0.t/; if t 2 .�1; t1�;

fi .t/; if t 2 Œti ; tiC1�;

fk.t/; if t 2 Œtk ;C1/;

for i 2 ¹1; 2; : : : ; k � 1º, so that f .ti / D si , for all i 2 ¹1; 2; : : : ; kº.

Remark 2.2. The proof that Lemma 2.1 is true for H does not immediately carry over to
H.A/, for a subring A of R, as we are not aware of a transitivity result for fixed points of
hyperbolic Möbius transformations. In this paper, we sometimes make use of Lemma 2.1
and, in these instances, our proofs do not immediately carry over to H.A/, although it is
not clear that they cannot be achieved through a different route. Several of the results of
this paper carry over to H.A/, while for others we cannot immediately say that they do.

If f 2 H.A/, there are finitely many points t1; t2; : : : ; tn 2 PA such that on each
interval .�1; t1�, Œti ; tiC1� for i D 1; : : : ; n � 1, and Œtn;C1/ we have

f W t 7!
ai t C bi

ci t C di
;
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where aidi � cibi D 1, for suitable ai ; bi ; ci ; di 2 A. Since f .˙1/ D ˙1, we must
have c1 D cn D 0 and so f W t 7! .a0t C b0/=d0 and f W t 7! .ant C bn/=dn on .�1; t1�
and Œtn;C1/, respectively, where a0d0 D 1 D andn, for a0; an; b0; bn 2 A. Then we can
say that elements in H.A/ have affine germs at ˙1. In other words, when t 2 .�1; t1�,
we rewrite f in this interval as f .t/ D a20t C a0b0, for all t 2 .�1; t1�, since a0d0 D 1.
Similarly, we can rewrite f as f .t/ D a2nt C anbn, for all t 2 Œtn;C1/, since andn D 1.

Remark 2.3 ([4]). Notice that, for all elements in H.A/, the germs at infinity satisfy that
the slopes a20 and a2n are units of the ring A. Thus, if the only units of A are ˙1, the first
and last parts of maps inH.A/ are translations. For instance, ifADZ, the only possibility
is that a20 D a

2
n D 1.

A property that is inherently used while studying the conjugacy problem in the works
[10, 13] which we will adapt to work for Monod’s group H is that the Thompson–Stein
groups PLA;G.I /, defined for a subring A of R and a subgroup G of the positive units of
A, are full groups.

Definition 2.4. Let G be a group of homeomorphisms of some topological space X .

(a) A homeomorphism h of X locally agrees with G if for every point p 2 X , there
exists a neighborhood U of p and an element g 2 G such that

h
ˇ̌
U
D g

ˇ̌
U
:

We denote the set of all homeomorphisms ofXwhich locally agree withG by ŒG�.

(b) The group G is full if every homeomorphism of X that locally agrees with G
belongs to G. In other words, G is a full group if G D ŒG�.

Lemma 2.5. Monod’s group H.A/ is a full group for any subring A of R.

Proof. Given a subring A of R and h 2 ŒH.A/�, compactness of RP1 implies that h has
only finitely many breakpoints, as it locally agrees with maps from H.A/. Moreover, h
must have affine germs around˙1, since it coincides with some element fromH.A/ and
so h 2 H.A/. Therefore, ŒH.A/� � H.A/ and so H.A/ is a full group.

We finally recall another property of Monod’s group which is shared with Thompson’s
group F (see [14]).

Lemma 2.6. Monod’s group H.A/ is torsion-free for any subring A of R.

For more properties of Monod’s groups, we encourage the interested reader to consult
the references [4, 14].

3. The Stair algorithm

In this section, we adapt the Stair algorithm developed in [5,10]. If there exists a conjuga-
tor between two elements, this algorithm allows us to construct such conjugator from an
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“initial germ”. The algorithm constructs the conjugator by looking at necessary conditions
it should satisfy and building it piece by piece until we reach the so-called “final box” and
ending of the construction. We show that, if a conjugator exists, it has to coincide with the
homeomorphism we construct. In the following, if y; z 2 H and there is a g 2 H such
that g�1yg D z, we will write yg D z.

3.1. Notations

Let us fix some notation. Given an h 2 H , we define the support of h to be supp.f / D
¹t 2 R j f .t/ ¤ tº.

Definition 3.1. Let G be any subset of H . We define G> as the subset of G of all maps
that lie above the diagonal, that is,

G> WD
®
g 2 G j g.t/ > t; t 2 R

¯
:

Similarly, we defineG<. A homeomorphism g 2G> [G< is called a one-bump function.
Moreover, for every �1 � p < q � C1, we define G.p; q/ as the set of elements of G
with support contained inside .p; q/, that is,

G.p; q/ WD
®
g 2 G j g.t/ D t; t … .p; q/

¯
:

We also define the subset

G>.p; q/ WD
®
g 2 G j g.t/ D t; 8t … .p; q/ and g.t/ > t; 8t 2 .p; q/

¯
:

Analogously, we define G<.p; q/. If g 2 G>.p; q/ [ G<.p; q/, we say that g is a one-
bump function on .p; q/.

Remark 3.2. If G is a subgroup, then g 2 G> if, and only if, g�1 2 G<.

Since elements f 2H are defined for all real numbers, we will define suitable “boxes”
for real numbers around ˙1. In order to work with numbers sufficiently close to ˙1,
we give the next definition.

Definition 3.3. A property P holds for t negative sufficiently large (respectively, for t
positive sufficiently large) to mean that there exists a real number L < 0 such that P holds
for every t � L (respectively, there is a positive real number R so that P holds for every
t � R).

3.2. Necessary conditions

In [10], Kassabov and the first author worked with the initial and final slopes of elements
from PLC.Œ0; 1�/. If two elements from PLC.Œ0; 1�/ are conjugate, they coincide on suit-
able “boxes” around 0 and 1. Let us define similar concepts for elements from H .

Given that y 2 H , let us denote the slope of y for t negative sufficiently large as

y0.�1/ WD lim
t!�1

y0.t/:
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Similarly, we denote the slope of y for t positive sufficiently large by y0.C1/. However,
if two elements from H have the same slopes for t negative sufficiently large, they do not
necessarily coincide around �1. Thus, in order to ensure that two elements coincide for
t negative sufficiently large, we give the following definition.

Definition 3.4. We define the germ of y 2 H at �1 as the pair

y�1 WD
�
y0.�1/; y.L/ � y0.�1/L

�
;

where L is the largest real number for which y is the affine map with slope y0.�1/ on
the interval .�1; L�. If y is affine on R, then L can be taken to be any real number. We
call y�1 the initial germ. Analogously, we define the final germ yC1.

We remark that, for an element y 2 H , the initial germ y�1 and the final germ
yC1 are elements of the affine group Aff.R/, which is defined as the semidirect product
Aff.R/ WD R>0 Ë R, where R>0 denotes the multiplicative group .R>0; �/ and R denotes
the additive group .R;C/. The operation of this group is .a; b/.c; d/ WD .ac; b C ad/.
The identity element is .1; 0/ and inverses are given by .a; b/�1 D .a�1;�a�1b/.

The following observation on slopes is the first necessary condition we test for conju-
gacy. Its proof is a straightforward calculation.

Lemma 3.5. Let y; z 2 H be such that yg D z, for some g 2 H . Then for t negative
(respectively, positive) sufficiently large one has that y0.�1/ D z0.�1/ (respectively,
.y0.C1/ D z0.C1//).

The next necessary condition we observe is that if the conjugacy classes of the germs
of y; z 2 H at �1, or atC1, are different, then y and z cannot be conjugate.

Lemma 3.6. For any y; z 2 H such that yg D z for some g 2 H , the conjugacy classes
y

Aff.R/
�1 and zAff.R/

�1 of y�1 and z�1 inside Aff.R/ coincide. Similarly,

y
Aff.R/
C1 D z

Aff.R/
C1 :

Proof. Assume that g�1 D .a2; ab/ and y�1 D .a20; a0b0/. Since yg D z, it is straight-
forward to see that, for t negative sufficiently large, we have that

z�1 D .y
g/�1 D y

g�1
�1 D .a

�2;�a�1b/ � .a20; a0b0/ � .a
2; ab/

D
�
a20; a0b0a

�2
C .a20 � 1/a

�1b
�
:

Thus yAff.R/
�1 D z

Aff.R/
�1 . Similarly, we see that yAff.R/

C1 D z
Aff.R/
C1 .

From now on, if y�1 and z�1 are conjugate in Aff.R/, we will denote it by
y�1 �Aff.R/ z�1.

3.3. Initial and final boxes

In this subsection, we see that a possible conjugator between two given elements is deter-
mined by its germs inside suitable boxes.



Conjugacy and centralizers in groups of piecewise projective homeomorphisms 7

Lemma 3.7 (Initial and final boxes). Let y; z 2 H>.�1; p/ for some �1 < p � C1

and let g 2 H be such that yg D z. Then there exists a constant L 2 R (depending on
y and z) such that g is affine on the initial box .�1; L�2. An analogous result holds, for
y; z 2 H>.p;C1/ for some �1 � p < C1 and a final box ŒR;C1/2.

Proof. By Lemma 3.5, there exists an L < min¹0; pº such that y0.t/ D z0.t/ for t � L.
Up to replacing L by a suitable L1 < L, we can assume that y0.t/ D z0.t/ for every
t � L. Assume that g�1 D .a2; ab/ and y�1 D .a20; a0b0/. Then, following the same
calculations of Lemma 3.6, we have that

y.t/ D a20t C a0b0 and z.t/ D a20t C a0b0a
�2
C a�1b.a20 � 1/

for all t � L and for suitable a; b 2 R.
We can rewrite our goal as follows: if we define

zL WD sup
®
r j g is affine on .�1; r�

¯
;

then zL � min¹L; g�1.L/º. Let us assume the opposite, that is, zL < min¹L; g�1.L/º and

g.t/ D

´
a2t C ab; if t 2 .�1; zL�;
NatCNb

NctC Nd
; if t 2 Œ zL;L2/;

for suitable Na; Nb; Nc; Nd 2 R and zL < L2 � L so that g has a breakpoint at zL. Without loss
of generality, we can assume that L2 D L.

Since zL < L < 0 and z 2 H>.�1; p/, we have L < z.L/ and so there exists a real
number � > 1 such that � zL< zL<L and zL< z.� zL/<L. On the other hand, zL<g�1.L/
and so � zL < g�1.L/. Thus we have g.� zL/ < L, which means that y is affine around
g.� zL/ and

y.g.� zL// D y.a2� zLC ab/ D a2.a20�
zL/C a20ab C a0b0

D a2.a20�
zLC a�2a0b0 C a

�1ba20 � a
�1b C a�1b/

D a2z.� zL/C ab: (3.1)

Since gz.t/ D yg.t/ for every real number t , then (3.1) returns

g
�
z.� zL/

�
D a2

�
z.� zL/

�
C ab; (3.2)

for any real number � > 1. By definition of g we also have that

g
�
z.� zL/

�
D
Na
�
z.� zL/

�
C Nb

Nc
�
z.� zL/

�
C Nd

: (3.3)

Then equating (3.2) and (3.3) we see that

a2
�
z.� zL/

�
C ab D

Na
�
z.� zL/

�
C Nb

Nc
�
z.� zL/

�
C Nd

: (3.4)
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By rewriting (3.4), we get that

a2 Nc
�
z.� zL/

�2
C .ab Nc C a2 Nd/z.� zL/C ab Nd D Naz.� zL/C Nb: (3.5)

Equation (3.5) is a polynomial equation that holds for all � > 1 such that � zL < zL < L
and so, since there is an interval worth of such � ’s, either a2 D 0 or Nc D 0. If a2 D 0, then
g would not be a homeomorphism for t < L, which is impossible. If Nc D 0, then (3.5),
coupled with the fact that Na Nd D 1, implies that

a2z.� zL/C ab D Na2z.� zL/C Na Nb;

and so g.t/D a2t C ab for t 2 .�1;M � for someM > zL, a contradiction to the definition
of the breakpoint zL. Hence, in all cases we have a contradiction to the assumption that
zL < min¹L; g�1.L/º and so we have that zL � min¹L; g�1.L/º. The proof for the final
box is similar.

Remark 3.8. We notice that Lemma 3.7 also holds for y; z 2H<.�1; p/, by just apply-
ing its statement to y�1 and z�1.

3.4. Building a candidate conjugator

In this subsection, we prove several lemmas which show how to build a conjugator if it
exists. If this is the case, then we prove that the conjugator must be unique. Given two
elements y; z 2 H , the set of their conjugators is a coset of the centralizer of either y
or z. Thus it is important to begin by obtaining properties of centralizers, which we will
do next. After that, we will identify y and z inside a box close to the initial box using
a suitable conjugator, as mentioned before. Then we repeat this process and build more
pieces of this potential conjugator until we reach the final affinity box. We omit the proof
of some of the lemmas, since they follow word-by-word from the original ones in [10]
with a slight adaptation in which we use the initial germs. The proofs of the following two
results are the same as those of [10, Lemma 4.4] and [10, Corollary 4.5].

Lemma 3.9. Let z 2 H and suppose that there exist real numbers � and � satisfying
�1 < � � � < C1, z.t/ � �, for all t 2 .�1; �� and that there is g 2 H so that
g.t/ D t for all t 2 .�1; �� and g�1zg.t/ D z.t/ for each t 2 .�1; ��. Then g is the
identity map up to �.

In case of z 2 H<, the previous lemma yields the following consequence.

Corollary 3.10. Let z 2H< and g 2H such that g�1 D .1; 0/ and g�1zg D z. Then g
is the identity map.

The preceding two results allow us to construct a group monomorphism between the
group of centralizers of elements fromH and the group Aff.R/ as well as showing unique-
ness of conjugators
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Lemma 3.11. Given that z 2 H<, the map

'z WCH .z/! Aff.R/; g 7! g�1

is a group monomorphism.

Proof. First of all, for each g1; g2 2 CH .z/, with .g1/�1 D .a20; a0b0/ and .g2/�1 D
. Na20; Na0

Nb0/, there exists L 2 R so that g1g2.t/ D a20 Na
2
0t C a

2
0 Na0
Nb0 C a0b0 on .�1; L�.

Then

.g1g2/�1 D .a
2
0 Na
2
0; a0b0 C a

2
0 Na0
Nb0/ D .a

2
0; a0b0/ � . Na

2
0; Na0
Nb0/ D .g1/�1.g2/�1;

so that 'z is a well-defined group homomorphism. To show injectivity, suppose that
'.g1/ D '.g2/ for g1; g2 2 CH .z/. Then .a20; a0b0/ D . Na20; Na0

Nb0/. Thus there exists a
number L 2 R so that g1.t/ D g2.t/ for all t 2 .�1; L�. Let us define g WD g1g�12 . We
have that g.t/ D t for each t 2 .�1; L�. Moreover, we have that g�1zg D z. It follows
from Corollary 3.10 that g.t/D t for all t 2 R, which implies that g1.t/D g2.t/ for each
t 2 R. Therefore, 'z is a monomorphism.

Proposition 3.12 (Uniqueness). Let y; z 2H< and g 2H be maps so that yg D z. Then
the conjugator g is uniquely determined by its initial germ g�1.

Proof. Let us assume that there are g1; g2 2 H so that g�11 yg1 D z and g�12 yg2 D z

and with the same initial germ. Then .g1g�12 /�1y.g1g
�1
2 / D y. Defining g WD g1g

�1
2 ,

we get that g.t/ D t for all t 2 .�1; L�, which implies that the initial germ of g is
g�1 D .1; 0/. By Corollary 3.10, the unique centralizer of y with initial germ .1; 0/ is
the identity map. Then g.t/ D t for all t 2 R. Therefore, g1 D g2, which proves the
uniqueness of a conjugator with a given initial germ if it exists.

The next lemma gives a tool to identify the graphs of y and z inside suitable boxes via
some candidate conjugator.

Lemma 3.13 (Identification lemma). Let y; z 2 H< and L 2 R be such that y.t/ D z.t/
for all t 2 .�1; L�. Then there exists g 2 H so that z.t/ D g�1yg.t/ for every t 2
.�1; z�1.L/� and g.t/D t in .�1;L�. Moreover, this element g is uniquely determined
on .L; z�1.L/�.

Proof. We start showing that, if such a g 2 H exists, then it is uniquely determined on
.L; z�1.L/�. In fact, if such a g 2 H exists then, for each t 2 .L; z�1.L/�, we have
that y.g.t// D g.z.t// D z.t/, since z.t/ � L. Therefore, g.t/ D y�1z.t/, for every
t 2 .L; z�1.L/�.

To show existence, we just define

g.t/ WD

´
t; if t 2 .�1; L�;

y�1z.t/; if t 2
�
L; z�1.L/

�
and we extend it to the real line from the point .z�1.L/; y�1.L//, by gluing some order-
preserving affine map defined on Œz�1.L/;C1/. We also define g.˙1/ D ˙1.
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We repeatedly apply Lemma 3.13 so that, if we iterate it N times, we can build g on
.�1; z�N .L/� and this will be the key step for the Stair algorithm in the next subsection.
We conclude this subsection with a result whose proof can be obtained word for word
from [10, Lemma 4.13].

Lemma 3.14. Let y; z 2H<. Assume that g 2H and n 2 Z>0. Then yg D z if, and only
if, .yn/g D zn.

3.5. The Stair algorithm for H

We now adapt to H the Stair algorithm from [10] which constructs the unique candidate
conjugator between two elements y; z 2 H with a given initial germ .a2; ab/ 2 Aff.R/,
that is, an element g 2 H such that, if there exists an h 2 H so that h�1 D .a2; ab/ and
yg D z, then h D g.

Theorem 3.15 (Stair algorithm). Let y; z 2H< and let .�1;L�2 be the initial box given
by y and z. Assume that .a2; ab/ 2 Aff.R/ so that a2L C ab � L. Then there exists
N 2 Z>0 such that the unique candidate conjugator g 2 H between y and z with initial
germ g�1 D .a

2; ab/ is given by

g.t/ D y�Ng0z
N .t/; for t 2

�
�1; z�N .L/

�
;

and affine otherwise, where g0 2 H is an arbitrary homeomorphism which is affine on
.�1; L�2 and so that .g0/�1 D .a2; ab/.

Remark 3.16. We observe that the hypothesis on .a2; ab/ is a mild one. It ensures that
g0.L/ � L and so, up to replacing g0 by g�10 and switching the role of y and z, we can
always assume that a2LC ab � L.

Before giving the proof of Theorem 3.15, we observe the following corollary and make
a comment about completely characterizing conjugacy in Monod’s group H .

Corollary 3.17. Let y; z 2 H< and let .�1; L�2 and ŒR;C1/2 be, respectively, the
initial and the final box given by y and z. There is a g 2 H such that yg D z if and only
if there is some .a2; ab/ 2 Aff.R/ so that a2LC ab � L and

lim
N!1

y�Ng0z
N .t/

is affine inside ŒR;C1/2 and where g0 2 H is an arbitrary homeomorphism which is
affine on .�1; L�2 and so that .g0/�1 D .a2; ab/.

Remark 3.18. Corollary 3.17 gives a characterization of conjugacy inside Monod’s group
H . However, as is, such characterization cannot be used to construct a finite set of can-
didate conjugators and thus use them to solve the conjugacy problem in Monod’s group
H.A/ for a suitable subring A � R in a manner analogous to what was done for the
Thompson–Stein groups PLA;G.Œ0; 1�/ in [10] for a suitable subring A � R and subgroup
G � U.A/>0 of the group of the positive units of A. We now explain better why not.
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Lemma 5.4 in [10] shows that there are only finitely conjugators between y and z whose
initial and final slopes lie within a bounded interval. After having used a suitable iso-
morphism (see Lemma 5.7) and thus considering a version of H over the unit interval
Œ0; 1�, we prove in Lemma 5.9 a similar result for centralizers with first and second deriva-
tives lying within bounded intervals. Even if Lemma 5.9 can indeed be generalized to
study conjugators with bounded first and second derivatives (to get a result analogous to
[10, Lemma 5.4]), we cannot use the same trick of [10, Lemmas 7.1 and 7.2] to bound both
derivatives. By replacing a conjugator g with yng, we can only bound the first derivative
(so that it lives in a bounded interval), but have no available bound on the second derivative
appearing in Lemma 5.9: in other words, we can bound the a appearing in g�1D .a2;ab/,
but not the b and so we would have to test continuum many b’s (or equivalently, continuum
many initial germs) to find candidate conjugators.

Proof of Theorem 3.15. First of all, we notice that we will consider y; z 2 H< such that
their initial germs are in the same conjugacy class in Aff.R/, otherwise y and z cannot
be conjugate to each other by Lemma 3.6. Moreover, we further assume that .a2; ab/ 2
Aff.R/ conjugates y�1 to z�1 in Aff.R/, otherwise there cannot be a conjugator g for y
and z with initial germ g�1 D .a

2; ab/, again by Lemma 3.6. Now, let ŒR;C1/2 be the
final box and letN 2Z>0 be sufficiently large so that min¹z�N .L/; y�N .a2LCab/º>R.

We will now build a candidate conjugator g between yN and zN as the product of two
functions g0 and g1 and then use Lemma 3.14. Since y;z 2H<, a direct calculation shows
that yN and zN are affine in the initial and final boxes of y and z, so we can take them as
the initial and final boxes of yN and zN . We define g0 as g0.t/ WD a2t C ab, on .�1;L�2

and extend it to the real line so that g0 2 H . Our assumption on .a2; ab/ ensures that
g0.L/ � L. Now we define y1 WD g�10 yg0 and we look for a conjugator g1 between yN1
and zN . We remark that yN1 and zN coincide on .�1; L�, since yN1 D g

�1
0 yNg0 D z

N

and yN ; zN 2 H< are affine on .�1; L�.
Making use of the Identification Lemma 3.13, we define a g1 2 H so that

g1.t/ WD

´
t; if t 2 .�1; L�;

y�N1 zN .t/; if t 2
�
L; z�N .L/

�
:

By construction we have that g�11 yN1 g1 D zN on .�1; z�N .L/�. We now construct a
function g on .�1; z�N .L/� by defining g.t/ WD g0g1.t/, for t 2 .�1; z�N .L/�. We
observe that the last part of g is defined inside in the final box since t D z�N .L/ > R and

g
�
z�N .L/

�
D g0g1

�
z�N .L/

�
> R:

Moreover, by construction, g is a conjugator for yN and zN on .�1; z�N .L/�, that is,
g D y�NgzN on .�1; z�N .L/�. Therefore,

g.t/ D y�NgzN .t/ D y�Ng0g1z
N .t/ D y�Ng0z

N .t/;

since g1zN .t/ D zN .t/ for every t 2 .�1; z�N .L/�.
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If g is not an affine Möbius function on ŒR; z�N .L/�, then g cannot be extended to
a conjugator of yN and zN and the uniqueness of the shape of g (Proposition 3.12) says
that continuing the Stair algorithm will build a function that cannot be a conjugator and,
therefore, a conjugator with initial germ .a2; ab/ cannot exist or it would coincide with
g on .�1; z�N .L/�. In the case that g is an affine Möbius function on ŒR; z�N .L/�, we
extend g to the whole real line by extending its affine piece on ŒR; z�N .L/�. The map that
we construct (which we still call g) lies in H .

By Lemma 3.7 and Proposition 3.12, if there exists a conjugator between yN and zN ,
with initial germ .a2; ab/, it must be equal to g. Then we just check if g conjugates yN

to zN . If g conjugates yN to zN then, by Lemma 3.14, g is a conjugator between y and
z, as desired.

Remark 3.19. Let us suppose that y; z 2 H< [H>. In order to be conjugate, Lemma
3.6 says that their initial germ must be in the same conjugacy class in Aff.R/. Similarly,
their final germs must be in the same conjugacy class in Aff.R/. In other words, either
both y and z are in H< or both are in H>. Furthermore, since g�1yg D z if and only if
g�1y�1g D z�1, we can reduce the study to the case where they are both in H<.

Remark 3.20. The Stair algorithm forH< can be reversed. This means that we can apply
it in order to build a candidate for a conjugator between y;z 2H>. Thus, given an element
.a2;ab/ 2Aff.R/, we can determine whether or not there is a conjugator g with final germ
gC1 D .a

2; ab/. The proof is similar. We just begin to construct g from the final box.

We observe that the proof of Stair algorithm does not depend on the choice of g0, the
only requirement on it is that it be affine on the initial box and g0�1 D .a

2; ab/. Moreover,
it gives a way to find candidate conjugators, if they exist, and we have chosen an initial
germ.

The following are two examples of construction of candidate conjugators via the Stair
algorithm. In the first example, the candidate is indeed a conjugator, while in the second
it is not.

Example 3.21. Consider the maps y.t/ D t � 1 and

z.t/ D

8̂̂<̂
:̂

2t�2
�3
2 tC2

; if t 2 Œ0; 1�;
�2tC2
�3
2 tC1

; if t 2 Œ1; 2�;

t � 1; otherwise:

Notice that y; z 2 H< and that their initial and final germs are equal. Moreover, we have
thatLD 0 andRD 2. Now we take .1;�1/ 2Aff.R/ and construct a candidate conjugator
between y4 and z4. We follow the procedure of the proof of the Stair algorithm and define
the maps g0.t/ WD t � 1 and

g1.t/ WD

8<:
1
2 t

� 32 tC2
; if t 2 Œ0; 1�;

t; otherwise:
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We then define g WD g0g1 and see that

g.t/ WD

8<: 2t�2
�3
2 tC2

; if t 2 Œ0; 1�;

t � 1; otherwise:
and g�1.t/ D

8<: 2tC2
3
2 tC2

; if t 2 Œ�1; 0�;

t C 1; otherwise:

We notice that g 2 H . A direct calculation shows that g conjugates y4 to z4. By Lemma
3.14, the element g is a conjugator between y and z.

Example 3.22. Consider the maps y.t/ D t � 1 and

z.t/ D

8<: �2tC2�3
2 tC1

; if t 2 Œ1; 2�;

t � 1; otherwise:

Notice that y; z 2 H< and that their initial and final germs are equal. We observe that
L D 1 and R D 2. Now we take .1; 0/ 2 Aff.R/ and construct a candidate conjugator
between y3 and z3. We follow the procedure of the proof of the Stair algorithm and define
the maps g0.t/ D t and

g1.t/ D

8̂̂̂<̂
ˆ̂:
� 72 tC3

� 32 tC1
; if t 2 Œ1; 2�;

�5tC9
�3
2 tC

5
2

; if t 2 Œ2; 3�;

t; otherwise:

We then define g WD g0g1 and see that

g.t/ D

8̂̂̂<̂
ˆ̂:
� 72 tC3

� 32 tC1
; if t 2 Œ1; 2�;

�5tC9
�3
2 tC

5
2

; if t 2 Œ2; 3�;

t; otherwise:

We notice that g is not a linear Möbius function on Œ2; 3�. Thus, by Theorem 3.15, the
element g cannot be a conjugator between y3 and z3. By Lemma 3.14, g cannot be a
conjugator between y and z as well.

Remark 3.23. Although this section is stated for H for the sake of consistency of the
paper, there are proofs that all the results of this section hold for H.A/ too, with the
following provisions.

(1) The elements L and R defined for the affinity boxes in Lemma 3.7 must live in A.
This can always be achieved since, given any initial box .�1; L�2, we can then
take an L0 � L in L 2 A and consider the box .�1; L0�2. Similarly, we can do
that for the final one.

(2) Lemma 3.6 needs to be stated by saying that yAff.A/
�1 D z

Aff.A/
�1 , where the affine

group of A is the subgroup of Aff.R/ defined by Aff.A/ D .U.A/>0; �/ Ë .A;C/,
where U.A/>0 is the group of the positive units of A. Similarly, we must have that
y

Aff.A/
C1 D z

Aff.A/
C1 .
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4. The Mather invariant

We now construct a conjugacy invariant for a class of functions, called Mather invariant,
by adapting ideas from [12,13]. While in the previous section we worked with y; z 2H<,
in this section we will work with y; z 2 H> as it helps with the arguments and we can do
so without loss of generality because of Remark 3.19. We construct such an invariant to
deal with the case y0.˙1/D z0.˙1/D 1, where the point of view of the Stair algorithm
cannot be used to cover all cases when computing element centralizers of elements which
will be studied in Section 5.

In the remainder of this section, we assume that y; z 2 H> such that y.t/ D z.t/ D
tCb0 if t2.�1;L� and z.t/Dy.t/D tCb1 if t2ŒR;C1/, for some suitable b0; b1>0,
where L and R are, respectively, sufficiently large negative and positive real numbers.

Let N 2 Z>0 be large enough so that

yN
��
y�1.L/; L

��
[ zN

��
z�1.L/; L

��
� .R;C1/:

We intend to find a map s 2 H such that s.yk.L// D k, for every k 2 Z. We thus define
the map s as

sWR! R

t 7! s.t/ WD

8̂̂<̂
:̂
s�1.t/; if t 2 .�1; L�;

sj .t/; if t 2
�
yj .L/; yjC1.L/

�
;

sN�1.t/; if t 2
�
yN�1.L/;C1

�
;

where

s�1W
�
y�1.L/; L

�
! Œ�1; 0�

t 7!
t � L

b0
;

sN�1W
�
yN�1.L/; yN .L/

�
! ŒN � 1;N �

t 7!
t � yN�1.L/

b1
CN � 1;

sj W
�
yj .L/; yjC1.L/

�
! Œj; j C 1�

t 7!
t � yj .L/

yjC1.L/ � yj .L/
C j; 8j D 0; 1; : : : ; N � 2:

Since L is a fixed point of some hyperbolic element from PSL2.R/, so is yj .L/,
for every j D 0; 1; : : : ; N � 2; N � 1. Also, since all of the si ’s are affine with strictly
positive slopes, they can all be written as si .t/ D a2i t C aibi for suitable ai ; bi 2 R and
so s 2 H . Moreover, it is clear that s.yk.L// D k, for all k 2 Z. If we define Ny WD sys�1

and Nz WD szs�1, we get that both functions are well defined and lie inH . Now, we observe
that
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(i) if t 2 .�1; 0� [ ŒN � 1;C1/, then Ny.t/ D Nz.t/ D t C 1;

(ii) NyN ; NzN 2 H .

We define the circles

C0 D .�1; 0�=¹t � t C 1º and C1 D ŒN � 1;C1/=¹t � t C 1º:

Let us consider the natural projections p0W .�1; 0�! C0 and p1W ŒN � 1;C1/! C1.
Then we restrict NyN to the interval Œ�1; 0� such that p0 surjects it onto C0. Since N is
sufficiently large so that NyN .. Ny�1.L/; L// � ŒR;C1/, it follows that NyN maps Œ�1; 0�
to ŒR;C1/. Passing to quotients, we define Ny1WC0 ! C1 such as Ny1.Œt �/ D Œ NyN .t/�

making the following diagram commutative:

Œ�1; 0�

˚p0

��

NyN
// ŒN � 1;C1/

p1

��

C0
Ny1

// C1

We emphasize that the map Ny1 does not depend on the specific chosen value of N , since
if m � N , then Nym.t/ D Nym�N . NyN .t//, where NyN .t/ 2 .R;C1/ and

NyN .t/ � NyN .t/C 1 D Ny
�
NyN .t/

�
� � � � � Nym�N

�
NyN .t/

�
D Nym.t/:

Similarly, we define the map Nz1. We remark that both these maps are piecewise-Möbius
homeomorphisms from the circle C0 to the circle C1. They are called the Mather invari-
ants of Ny and Nz.

Assume now that there exists a g 2H such that gz D yg. By conjugating by s, we get
the equation gz D Ny Ng, where Ng 2H . Since Ny and Nz are equal to the translation t 7! t C 1

around ˙1, then the equation gz D Ny Ng implies that Ng 2 H is periodic for real numbers
that are sufficiently large positive and negative and so, around�1, where Ng.t/Da2tCab
is affine, we must have that a2D 1 so Ng is a translation, otherwise Ng would not be periodic.
Similarly, Ng is a translation around C1. Thus g itself is a translation around ˙1. We
record this observation for independent later use.

Remark 4.1. If an affine map g.t/D a2t C ab commutes with a translation z.t/D t C k,
then a2 D 1.

Now, going back to the argument above, we see that it induces the equation gzN D
NyN Ng, where Ng is periodic on .�1; 0/[ .N � 1;C1/ since it commutes with Ny and Nz on
such intervals, and so Ng passes to quotients and becomes

v1;m Nz
1
D Ny1v0;`; (4.1)

as done in [5,13], since Ng; Ny; Nz 2 H and v0;` WD p0 Ng and v1;m WD p1 Ng are rotations of the
circles C0 and C1, respectively, where `;m are the translation terms of g on .�1; 0/ and
.N � 1C1/, respectively.
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The proof of the next result shows the relation between the Stair algorithm and the
Mather invariant.

Theorem 4.2. Let y; z 2 H> be such that y.t/ D z.t/ D t C b0 for t 2 .�1; L� and
y.t/ D z.t/ D t C b1 for t 2 ŒR;C1/ and let Ny1; Nz1WC0 ! C1 be the corresponding
Mather invariants. Then y and z are conjugate in H if and only if Ny1 and Nz1 differ by
rotations v0;` and v1;m of the domain and range circles, for some `;m 2 R:

C0

˚v0;`

��

Nz1 // C1

v1;m

��

C0
Ny1
// C1

Proof. The calculations above yield that, if g 2 H conjugates y and z, then (4.1) is sat-
isfied, which is equivalent to say that Ny1 and Nz1 differ by rotations v0;` and v1;m of the
domain and range circles, for some `;m 2 R.

Conversely, let us assume that there are `;m 2 R such that equation (4.1) is satisfied.
Then we choose g0 2 H which is affine in the initial box with a initial germ .g0/�1 D

.1; `/. Then we define a map g as the following pointwise limit:

g.t/ WD lim
n!C1

yng0z
�n.t/:

By the Stair algorithm in Theorem 3.15, we have that gz D yg, where g 2 HomeoC.R/
and it is such that, on any bounded interval, it coincides with the restriction of some
function PPSL.R/ to such an interval. We need to show that g 2 H . By construction, g
has finitely many breakpoints in .�1; N � 1�. Conjugating both sides of the equation
gz D yg by s, we get

gz D yg:

For all t 2 .�1; 0�[ ŒN � 1;C1/, we have that Ny.t/ D Nz.t/ D t C 1. Thus Ng.t C 1/ D
Ng.t/C 1, for each t 2 .�1; 0�[ ŒN � 1;C1/ and we can pass to quotients. Moreover, as
argued above during the definition of the Mather invariants, we have that Ng is a translation
Ng.t/DtC` on .�1; 0�, while we still need to show that Ng is a translation on ŒN�1;C1/.
Up to switch the role of Ny and Nz, we can assume that ` � 0. Passing the equation Ng NzN D
NyN Ng to quotients, we obtain that

Ngind Nz
1
�
Œt �
�
D Ny1v0;`

�
Œt �
�
;

for a suitable well-defined Ngind . By (4.1), we have that

Ngind Nz
1
�
Œt �
�
D v1;m Nz

1
�
Œt �
�
;

and so, by the cancelation law, we have that

Ngind D v1;m
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so that Ngind is a rotation by m of the circle C1. We now choose N0 � N large enough so
that d WD NzN0.�1 � `/ � N � 1 and

NzN0
�
Œ�1 � `;�`�

�
D NzN0

��
� 1 � `; z.�1 � `/

��
D
�
d; z.d/

�
D Œd; d C 1�;

Ng.d/ D NyN0
�
Ng.�1 � `/

�
D NyN0.�1/ � N � 1:

Hence the following commutative diagram holds:

Œ�1 � `;�`�

p0

��

NzN0 //

Ng

rr

Œd;C1/

p1

��

Ng

rr

Œ�1; 0�

p0

��

NyN0

// ŒN � 1;C1/

p1

��

C0
Nz1 //

v0;`

rr

C1

NgindDv1;m
rrC0

Ny1
// C1

To finish the proof, we need to see that Ng is an affine Möbius map on ŒN � 1;C1/, which
will mean that Ng 2 H . From the previous commutative diagram we get v1;mp1 D p1 Ng,
which implies that Œ Ng.t/� D Œt Cm� for Œt � 2 C1. By definition of the equivalence relation
and the fact that Ng is a periodic continuous function, we have that there exists some r 2 Z
such that, Ng.t/ WD t CmC r , for all t 2 ŒN � 1;C1/. Therefore, Ng 2 H .

Remark 4.3. The results of this section rely on Lemma 2.1 and so, in order to generalize
them to H.A/, one needs to prove a generalized version of Lemma 2.1 for H.A/. In par-
ticular, the construction of the homeomorphism s at the beginning of this section requires
a version of Lemma 2.1 for H.A/ to construct the maps sj for j D 0; : : : ; N D 2. This is
thus true for Section 5 too.

5. Centralizers

In this section, we use the conjugacy tools we have just constructed to calculate the cen-
tralizers of elements from H . We start by performing some calculations for centralizers
of elements in Aff.R/ and use this information to classify the centralizers of elements
from H .

5.1. Centralizers in Aff.R/

Since Lemma 3.11 gives a monomorphism 'z WCH .z/! Aff.R/, it makes sense to inves-
tigate centralizers in Aff.R/.
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If .a; b/ 2 Aff.R/ and a ¤ 1, then .c; d/ 2 CAff.R/.a; b/ if and only if

.c; d/ D .a�1;�a�1b/.c; d/.a; b/ D .c;�a�1b C a�1d C a�1bc/

which is equivalent to d D b.c�1/
a�1

, and so

CAff.R/.a; b/ D

²�
c;
b.c � 1/

a � 1

�
2 Aff.R/ j c 2 R>0

³
Š .R;C/:

If .1; b/ 2 Aff.R/ and .c; d/ 2 CAff.R/.a; b/, we get

.c; d/ D .1;�b/.c; d/.1; b/ D
�
c; b.c � 1/C d

�
which implies that

d D b.c � 1/C d ) b.c � 1/ D 0) b D 0 or c D 1:

If b D 0, then
CAff.R/.1; 0/ D Aff.R/:

If b ¤ 0, then
CAff.R/.1; b/ D

®
.1; d/ j d 2 .R;C/

¯
Š .R;C/:

We collect our calculations in the following result.

Lemma 5.1. If .1; 0/ ¤ .a; b/ 2 Aff.R/, then CAff.R/.a; b/ Š .R;C/.

5.2. Centralizers in H

We start by noticing that, since H is torsion-free by Lemma 2.6, the subgroup CH .z/ is
infinite for any non-trivial z 2 H . Next, we will divide the study of centralizers of the
elements from H into several cases.

First, we consider z 2 H without breakpoints, that is, the case where z is an affine
map. Let us consider that z.t/ D a2t C ab for all t 2 R. If a ¤ ˙1, then we have the
following result.

Proposition 5.2. Let z 2H be so that z.t/D a2t C ab, for all t 2 R, with a¤˙1. Then
CH .z/ Š .R;C/.

Proof. First, notice that, in this case, z�1 D zC1 D .a2; ab/. A direct calculation shows
that

T WD

²
f 2 H j f .t/ D ct C

ab.c � 1/

a2 � 1
; 8t 2 R; c > 0

³
is a subgroup of CH .z/. Using the map 'z from Lemma 3.11, we have that

'z.T / D

²�
c;
ab.c � 1/

a2 � 1

�
j c 2 .R>0; �/

³
D CAff.R/.a

2; ab/:

From 'z.T /� 'z.CH .z//� CAff.R/.a
2; ab/, we get 'z.CH .z//D CAff.R/.a

2; ab/. Since
'z is a group monomorphism, we have thatCH .z/ŠCAff.R/.a

2;ab/. Therefore,CH .z/Š
.R;C/ by Lemma 5.1.
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From the previous result, we have the following.

Corollary 5.3. Let y 2 H be an element such that y D g�1zg, where z; g 2 H and z is
an affine map z.t/ D a2t C ab, with a2 ¤ 1. Then CH .y/ Š .R;C/.

Now we consider the case z.t/ D a2t C ab for all t 2 R and with a D ˙1, that is, z
is a translation.

Proposition 5.4. If z 2 H< is a translation, then CH .z/ Š .R;C/.

Proof. Let g 2CH .z/. Since g 2H , we have that g.t/D a20t C a0b0, for some a0;b0 2R,
t 2 .�1; L� and for suitable L 2 R. The map g commutes with the translation z.t/ D
t C k, for some k < 0, so g is periodic of period jkj and so, by Remark 4.1, we have
that a20 D 1. Hence g is a translation around �1 and it is periodic, so we must have that
g.t/ D t C b0 for every t 2 R. Therefore, if 'z is the map of Lemma 3.11, we have that

CH .z/ Š 'z
�
CH .z/

�
Š
®
.1; b0/ j b0 2 R

¯
Š .R;C/:

The previous proposition implies the following result.

Corollary 5.5. Let y 2 H be an element such that y D g�1zg, where z; g 2 H and z is
a translation. Then CH .y/ Š .R;C/.

Let us now consider z 2H< such that z0.�1/ ¤ z0.C1/ and z has breakpoints. We
start with the following result.

Lemma 5.6. Let z 2 H< such that its initial and final affinity boxes with respect to z
and itself are .�1; L�2 and ŒR;C1/2, respectively, and so that z0.�1/ ¤ z0.C1/. Let
s 2 Z>0 be such that zs.R/ < L. Then either z�s is not affine on Œzs.R/; L� or z�2s is
not affine on Œz2s.R/; L�.

Proof. First of all, since z 2H<, then z�1 2H>. Let us suppose that z.t/D a20t C a0b0
on .�1; L� and z.t/ D a2nt C anbn on ŒR;C1/. Then, by hypothesis, a20 D z

0.�1/ ¤

z0.C1/ D a2n. Moreover, z�1.t/ D a�20 t � a�10 b0 on .�1; z.L/� and z�1.t/ D a�2n t �

a�1n bn on Œz.R/;C1/. Then, since z�1 2H>, we have that z�s is affine on .�1; zs.L/�,
with initial germ

.z�s/�1 D

�
a�2s0 ;�

sX
jD1

a
�2jC1
0 b0

�
:

Moreover, z�s is affine on Œzs.R/;C1/, which contains ŒR;C1/ with final germ

.z�s/C1 D

�
a�2sn ;�

sX
jD1

a�2jC1n bn

�
:

Let us assume, by contradiction, that both z�s and z�2s are affine on Œzs.R/; L� and
Œz2s.R/;L�, respectively, and that their germs on these two intervals are .a; b/ and .c; d/,
respectively. Since z�2s D z�s ı z�s , we get that z�2s is affine on Œzs.R/;L�, because z�s
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is affine on Œzs.R/; L� by our assumption and z�s is affine on ŒR; z�s.L/� � ŒR;C1/,
with germ �

a�2sn ;�

sX
jD1

a�2jC1n bn

�
.a; b/:

Moreover, z�2s is also affine on Œz2s.R/; zs.L/�, since z�s is affine on .�1; zs.L/� and
on Œzs.R/; L� by our assumption, with germ

.a; b/

�
a�2s0 ;�

sX
jD1

a
�2jC1
0 b0

�
:

By comparing the germ .c; d/ of z�2s on Œz2s.R/; L� with the germs of the same map
z�2s on the two subintervals Œzs.R/; L� and Œz2s.R/; zs.L/� of the interval Œz2s.R/; L�,
we get�

a�2sn ;�

sX
jD1

a�2jC1n bn

�
.a; b/ D .c; d/ D .a; b/

�
a�2s0 ;�

sX
jD1

a
�2jC1
0 b0

�
:

From this, we must have that
a�2sn a D aa�2s0 :

Since the group .R>0; �/ is abelian, we have that a�2s0 D a�2sn . However, we are consid-
ering z 2 H< such that the a20 ¤ a

2
n, so that a�2s0 ¤ a�2sn and we have a contradiction.

Therefore, either z�s is not affine on Œzs.R/; L� or z�2s is not affine on Œz2s.R/; L�.

Lemma 5.7. The group H is isomorphic to the group K of all piecewise Möbius trans-
formations of Œ0; 1� to itself with finitely many breakpoints.

Proof. We explicitly construct an isomorphism r W H ! K.
We use Lemma 2.1 to construct an element h2H such that h.�3/D 1

3
and h.�1/D 1

2
.

Now consider the map

f .t/ D

8̂̂<̂
:̂
�1
t
; t 2 .�1;�3�;

h.t/; t 2 Œ�3;�1�;
tC2
tC3

; t 2 Œ�1;C1/:

We now define

r.g/.t/ D

´
fgf �1.t/; t 2 .0; 1/;

t; t 2 ¹0; 1º

and notice that a direct calculation shows that im.r/ � K. Thus the map r W H ! K is
well defined and it is clearly a group isomorphism with an obvious inverse.

Remark 5.8. The isomorphism r of the proof of Lemma 5.7 switches �1 with 0 and
C1 with 1 and allows us to study maps in Monod’s group from a bounded point of view
which will be useful in the proof of Lemma 5.9. Moreover, a straightforward calculation
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shows that, if y; z 2 H are such that y�1 D z�1 and yC1 D zC1, then the initial and
final affinity boxes of y and z correspond to initial and final Möbius boxes of r.y/ and
r.z/, where the images coincide and are Möbius and a conjugator has to be Möbius.

In the next result, we will freely use the isomorphism r W H ! K of Lemma 5.7.

Lemma 5.9. Let z 2 H< be such that z.t/ D a2t C ab at �1 with a2 > 1. Then there
exists " > 0 such that the only g 2 CH .z/ with 1� " < Qg0.0/ < 1C " and �" < Qg00.0/ < ",
where Qg D r.g/, is g D id.

Proof. Let us consider Qz to be a conjugate version of z from the proof of Lemma 5.7; that
is, Qz D r.z/. Let Œ0; ˛� and Œˇ; 1� be, respectively, the initial and final Möbius boxes of Qz
(see Remark 5.8) for suitable 0 < ˛ < ˇ < 1. By Lemma 5.6, there exists an N1 2 Z>0
such that Qz�N1 has a breakpoint �1 on Œ QzN1.ˇ/; ˛�. We now consider a real number ˛0

such that 0 < ˛0 < �1 < ˛ and we take a new initial (and smaller) Möbius box Œ0; ˛0�
for z. We use Lemma 5.6 again and find that there exists N2 2 Z>0 such that Qz�N2 has a
breakpoint �2 on Œ QzN2.ˇ/; ˛0�. Without loss of generality, assume that QzN2.ˇ/ � QzN1.ˇ/.
Then there exists " > 0 such that ¹�2 < �1º � I" WD Œ QzN2.

ˇC"
1C"

/; .1 � "/˛�.

Fact 5.10. Let 0 < " < 1
3

and g 2 CH .z/ such that

1 � " < Qg0.0/ < 1C " and � " < Qg00.0/ < ":

Then j Qg.t/ � id.t/j < 3"C 2"2, for all t 2 Œ0; ˛�, and so the family of functions Qg can be
seen as uniformly converging to the identity function id on the interval Œ0; ˛�.

Proof of Fact 5.10. Let us consider Qg D r.g/ so that Qg.t/ D atCb
ctCd

on Œ0; ˛�, where
ad � bcD 1. Then Qg.0/D 0 and, consequently, bD 0 and ad D 1. Let us define Qg0.0/ WD�
and Qg00.0/ D �. Since

Qg0.t/ D
1

.ct C d/2
and Qg00.t/ D �

2c

.ct C d/3
;

we have that � D 1
d2

and � D � 2c
d3

. Therefore, d2 D 1
�

and c D ��d
3

2
. Observe that

Qg.t/ D
at

ct C d
D

t

cdt C d2
D

t
��t

2�2
C

1
�

D
2�2t

��t C 2�

and so ˇ̌
Qg.t/ � id.t/

ˇ̌
D

ˇ̌̌̌
2�2t

��t C 2�
� t

ˇ̌̌̌
D

ˇ̌̌̌
2�2t � 2�t C �t2

��t C 2�

ˇ̌̌̌
� j2�2t � 2�t C �t2j

� 2j�j � j� � 1j � jt j C j�j � jt j

� 2.1C "/"C "

� 3"C 2"2;
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where at the various steps we have observed that jt j � 1, j�j � 1C ", j� � 1j � " and,
since j�j < " < 1

3
, we have that

j � �t C 2�j �
ˇ̌
2� � j�t j

ˇ̌
� j2� � "j �

ˇ̌
2.1 � "/ � "

ˇ̌
D j2 � 3"j � 1:

Fact 5.11. Let t0 2 .0; ˛/. Then, for any 1 � " < Qg0.0/ D � < 1C ", there is at most one
g 2 CH .z/ such that �" < Qg00.0/ D � < " and such that Qg�1.t0/ D t0.

Proof of Fact 5.11. We write Qg on the open interval .0; ˛/ using the expression that was
computed in the proof of Fact 5.10. Assume that Qg.t0/ D t0, then

t0 D
2�2t0

��t0 C 2�

and so

1 D
2�2

��t0 C 2�

and so
��t0 C 2� D 2�

2

and so

� D
2� � 2�2

t0
:

If we assume that � D 1C � for �" � � � ", then

� D
2.1C �/ � 2.1C �/2

t0
D
�2� � 2�2

t0
:

For any �" � � � ", the expression above returns a unique �. In case such an expression
returns j�j � ", then g cannot exist. On the other hand, if such an expression returns
j�j < ", then the pair .�; �/ satisfies the required conditions. Therefore, for each � we
obtain at most one g satisfying the requirements.

End of the proof of Lemma 5.9. Since we know that

(i) �i is a breakpoint for Qz�Ni ,

(ii) Qz�Ni .�i / 2 Œ0; ˛�, and

(iii) Qg is a Möbius transformation on Œ0; ˛�,

it follows that �i is a breakpoint for Qg Qz�Ni . On the other hand, when we consider Qz�Ni Qg,
the map Qg pushes the breakpoint �i of Qz�Ni to Qg�1.�i /, then Qg�1.�i / is a breakpoint for
Qz�Ni Qg.

By construction, the set of breakpoints of Qg QzNi on I" is B WD ¹ı1 < � � � < ıkº �

¹�1 < �2º and the set of breakpoints of QzNi Qg on Qg�1.I"/ is Qg�1.B/ D ¹ Qg�1.ı1/ < � � � <
Qg�1.ık/º¹ Qg

�1.�1/ < Qg
�1.�2/º. However, since g 2 CH .z/, then Qg QzNi .t/D QzNi Qg.t/, for

every t 2 I" and so Qg�1.ıi / D ıi for i D 1; : : : ; k and in particular Qg�1.�i / D �i for
i D 1; 2.
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By Fact 5.11, there can exist at most one id ¤ g 2 CH .z/ fixing �1 and, since Qg fixes
0 too, it cannot also fix �2, otherwise g would be the identity map by [9, Corollary 2.5.3].
Similarly, there can exist at most one id¤ g 2 CH .z/ fixing �2 and such a map cannot fix
�1 too. Then the only way to avoid a contradiction and have a g 2 CH .z/ such that Qg0.0/
and Qg00.0/ satisfy the given conditions with respect to the chosen " > 0 is that g D id.

We now show that in many cases centralizers are infinite cyclic.

Proposition 5.12. Let z 2 H< be such that z.t/ D a2t C ab around �1 and a2 > 1.
Then CH .z/ is a discrete subgroup of .R;C/ and so it is isomorphic to .Z;C/.

Proof. By Lemma 5.9, the subgroupCH .z/ is a discrete set. SinceCH .z/Š 'z.CH .z//�
CAff.R/.z/ Š .R;C/ and the subgroups of .R;C/ are either discrete (then isomorphic to
.Z;C/) or dense, we get CH .z/ Š .Z;C/.

5.2.1. Mather invariant and centralizers. As done in Section 4, we consider z 2 H>

that is a translation around˙1 and we use the Mather invariant of z in order to understand
centralizers.

Proposition 5.13. Consider that z 2 H> such that z.t/ D t C b0 for t 2 .�1; L� and
z.t/ D t C b1 for t 2 ŒR;C1/. Then either CH .z/ Š .Z;C/ or CH .z/ Š .R;C/.

Proof. We follow notations from Section 4. Let N 2 Z>0 be large enough so that

zN
��
z�1.L/; L

��
� .R;C1/:

Up to conjugating z with s, we will work with z.t/D tC1. We define the relation t � tC1
and construct the circles C0 WD .�1; 0�= � and C1 WD ŒN � 1;C1/= �. By Theorem
4.2, a g 2 H is a centralizer of z if and only if the following equation is satisfied:

z1v0;` D v1;mz
1: (5.1)

We now consider the map V0WR! R defined by V0.t/ D t C `, which is a lift of v0;`,
that is, it makes the following diagram commute:

R

˚p0

��

V0 // R

p0

��

C0 v0;`
// C0

Similarly, V1.t/ D t Cm makes the following diagram commute:

R

˚p1

��

V1 // R

p1

��

C1 v1;m
// C1
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Let Z W R! R be a lift of z1. The previous two commutative diagrams and (5.1) form
three faces of a commutative cube analogous to that appearing in the proof of Theorem
4.2 and so they imply that ZV0 D V1Z. In other words, for t 2 R, we have that

Z.t C `/ D ZV0.t/ D V1Z.t/ D Z.t/Cm; (5.2)

which means that the graph of Z is shifted back to itself. If the lift of z1 does not have
breakpoints, the graph of Z is affine. Thus there are infinitely many pairs `; m 2 R for
which the graph can be shifted back to itself and so, for each ` 2 R, there exists anm 2 R
so that (5.2) holds. Consequently, the image of the map 'z from Lemma 3.11 is so that
'z.CH .z// Š .R;C/. Otherwise, the lift of z1 has breakpoints and the set of candidates
for ` forms a discrete subgroup of .R;C/. Then 'z.CH .z//Š .Z;C/. Therefore, we have
either CH .z/ Š .Z;C/ or CH .z/ Š .R;C/.

We see two examples: in the first one, the subgroup of centralizers is isomorphic to
.R;C/, while in the second it is isomorphic to .Z;C/.

Example 5.14. If we conjugate y.t/ D t C 1 by

g.t/ D

8<: t�2
3
2 t�2

; if t 2 Œ0; 1�;

t C 1; otherwise;

then we get that

z.t/ D

8̂̂<̂
:̂

2tC2
3
2 tC2

; if t 2 Œ�1; 0�;
t�2
3
2 t�2

; if t 2 Œ0; 1�;

t C 1; otherwise;

see Figure 1. Then CH .z/ Š .R;C/ by Corollary 5.5.

Example 5.15. Let us consider

z.t/ D

8<: t�2
3
2 t�2

; if t 2 Œ0; 1�;

t C 1; otherwise;

Figure 1. Graph of z, from Example 5.14.
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Figure 2. Graph of z, from Example 5.15.

see Figure 2. Note that z 2 H> and that L D 0 and R D 1. Its inverse is given by

z�1.t/ D

8<: 2t�2
3
2 t�1

; if t 2 Œ1; 2�;

t � 1; otherwise:

If N D 2, then we have that

z2
��
z�1.0/; 0

��
� Œ1;C1/:

Notice that we do not need to conjugate by the map s, since it is a translation by one
around˙1; that is Nz WD z. Moreover,

z2.t/ D

8̂̂̂<̂
ˆ̂:

t�1
3
2 t�

1
2

; if t 2 Œ�1; 0�;

5
2 t�4
3
2 t�2

; if t 2 Œ0; 1�;

t C 2; otherwise:

Considering the relation t � t C 1, we define C0 WD .�1; 0�=t � t C 1 and C1 WD
Œ1;C1/=t � t C 1. Then we get the Mather invariant

z1WC0 ! C1

Œt � 7! z1
�
Œt �
�
D
�
z2.t/

�
:

The lift of this map making the following diagram commute

R

˚p0

��

Z // R

p1

��

C0
z1
// C1

is given by the periodic extension of the restriction of z2 (see Figure 3) defined on Œ�1; 0�
by

Z.t/ D z2.t � x/C x;

if x � 1 � t � x, where x 2 Z (see Figure 4). Then the centralizer of Z is .Z;C/. More-
over, notice that Z … H .
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Figure 3. Graph of z2.

Figure 4. Graph of the lift Z.

5.2.2. Main result about centralizers. We can now give a structure result for centraliz-
ers in H (Theorem A in Section 1).

Theorem 5.16. Given that z 2 H , then

CH .z/ Š .Z;C/
n
� .R;C/m �H k ;

for suitable k;m; n 2 Z�0.

Proof. The element z has finitely many (possibly unbounded) intervals of fixed points,
so its boundary @ Fix.z/ D ¹t0 < t1 < � � � < tnº has only finitely points. If g 2 CH .z/,
then g fixes @ Fix.z/ setwise. Moreover, since g is order-preserving, it must fix ti for
each i D 1; : : : ; n. As a consequence, we can restrict to study centralizers in each of the
subgroups

H
�
Œti ; tiC1�

�
D
®
h 2 H j h.t/ D t; 8t … Œti ; tiC1�

¯
Š H;

where i D 0; 1; : : : ; n � 1. If z.t/ D t on Œti ; tiC1�, then it is easy to see that

CH.Œti ;tiC1�/.z/ D H
�
Œti ; tiC1�

�
Š H:

Otherwise, Corollaries 5.3 and 5.5 and Propositions 5.12 and 5.13 cover the remaining
cases (when z is conjugate to an affine map or entirely above or below the diagonal)
showing that either CH.Œti ;tiC1�/.z/ Š .R;C/ or CH.Œti ;tiC1�/.z/ Š .Z;C/.
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