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We propose a new paradigm to design a network-based self-adaptive epidemic model that relies on the interplay
between the network and its line graph. We implement this proposal on a Susceptible-Infected-Susceptible model in
which both nodes and edges are considered susceptible and their respective probabilities of being infected result in a
real-time re-modulation of the weights of both the graph and its line graph. The new model can be considered as an
appropriate perturbation of the standard Susceptible-Infected-Susceptible model, and the coupling between the graph
and its line graph is interpreted as a reinforcement factor that fosters diffusion through a continuous adjustment of
the parameters involved. We study the existence and stability conditions of the endemic and disease-free states for
general network topologies. Moreover, we introduce, through the asymptotic values in the endemic steady states, a
new type of eigenvector centrality where the score of a node depends on both the neighboring nodes and the edges
connected to it. We also investigate the properties of this new model on some specific synthetic graphs, such as
cycle, regular, and star graphs. Finally, we perform a series of numerical simulations and prove their effectiveness in
capturing some empirical evidence on behavioral adoption mechanisms.

The spread of a disease within a population, the
propagation of a shock among financial institutions, the
diffusion of opinions in online social networks, or the
adoption of a behavior by members of a community, are
all examples of diffusive phenomena within a network of
interacting individuals. Despite their similarities, these
processes can be very different and cannot always be
reduced to simple models. For example, the phenomenon
by which a repeated message becomes a personal belief
and is adopted by an individual is not the same as the
spread of a cold through contact between individuals
in the same social network. It is known that opinions
and behaviors require reinforcement, and only when the
individual is reached by multiple messages does he or she
adopt them, whereas a single contact could be sufficient
to transmit a sexual disease. Similarly, the propagation
of shocks through financial or transportation networks
is hardly captured by standard contagion models. In this
paper, we propose a new diffusion model in networks that
exploits the mutual interaction between spread processes
over nodes and edges. This mutual reinforcement is able
to explain some well-known empirical evidence about
adoption mechanisms and how they differ from other
contagion processes.

I. INTRODUCTION

In the last few decades, massive research efforts have
focused on evolutionary and dynamical models in complex
networks. The spread of a disease within a population, the
propagation of a financial shock among banks, the ripple
effect of an accident on traffic and transportation networks
or an attack on cybersecurity networks, the spread of trends
in online social networks, or the adoption of a behavior by
members of a given community are all examples of diffusive
phenomena in networks of interconnected entities.1 Despite
their similarities, these processes can be very different and
can hardly be reduced to simple contagion models.

The pioneering work by Kermack and McKendrick 2 in
1927 embedded for the first time an epidemic process in a
closed population with homogeneous mixing. Since then,
it has been pointed out that compartmental models such as
the Susceptible-Infected-Susceptible (SIS) and Susceptible-
Infected-Recovered (SIR) models fail to describe many types
of propagation phenomena and several variants have been
proposed to provide a more realistic representation of the
spread dynamics in different contexts.3–10

For example, Van Mieghem et al. 11 propose a
generalization to the so-called ε-SIS model by adding a
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source of self-infection in a cybersecurity network due, for
instance, to accessing malicious websites, opening emails
with worms, or downloading files containing malware. The
heterogeneous SIS (H-SIS) model proposed by Ottaviano
et al. 12 allows the infection rate along each link to be
different, and makes these rates dependent on the type
of connection between the two nodes. Antonio et al. 13 ,
starting from a market basket analysis, construct a weighted
communication network of different computers of a given
company, and propose a HG-SIS model as a generalization
of the H-SIS model, in which the infection rate is a function
of the communication weight and a self-infection is allowed.

In general, the state of a node can influence the infection
rate by altering the flow along a given edge. For example,
in a transportation network, nodes affected by a shock, such
as an accident, can induce changes in movement patterns,
thereby affecting the likelihood of shock transmission in the
network. Addressing this issue, Punzo 14 proposes a flow-
regulated infection rate which accounts for the tendency of
infection carriers to prefer healthy nodes over infected ones.

The limitations of the SIS and SIR models appear
most clearly in the context of social interactions, opinion
dissemination, and behavioral adoption, where it is well
known that a single exposure to a piece of information is not
sufficient for an individual to adopt that opinion or behavior.

The process through which a repeated message transforms
into a personal belief and is adopted by an individual within
a social network differs significantly from the process of
spreading a cold through direct contact between individuals
in the same network. Opinions and behaviors require
reinforcement, and only when the individual is exposed to
multiple messages does he or she adopt them.15 This leads
to unexpected interactions with the topological structure of
the network, which responds differently depending on the
type of diffusion process it hosts. For instance, a disease and
an opinion spread very differently in regular networks such
as lattices compared to random networks.16

Our proposal stems from the search for a model that is
flexible enough to potentially adapt to different contexts. The
key idea is to design a process in which the weights on the
edges in the network adapt to the actual epidemiological
state of the nodes, and vice versa. These weights are not
statically assigned at the beginning of the process; instead,
they naturally emerge as the outcome of a coupled secondary
process. We refer to this process as the “dual process”,
and its interplay with the primary one results in a unique,
brand-new diffusion process that we call the self-Adaptive
SIS (ASIS) model.

In other words, we avoid suggesting any extrinsic dynamic
process that superimposes on the epidemiological model by
modifying the infection rates along the edges according to
arbitrary criteria. Rather, the system autonomously adapts
to the actual epidemiological state of the network. This
results in a tunable coupling between the primary and the
dual process, which can be interpreted as a reinforcement
effect in message transmission.

The concept of a reciprocal action in which node and
edge attributes are mutually dependent has recently been
used to propose a nonlinear eigenvector centrality for both
nodes and edges.17 The purpose of the authors is to define a
mutually reinforcing static centrality measure, in which the
node’s score inherits that of its connecting edges and the
edge’s score that of its extreme nodes. Instead, our goal is
to employ a dynamic approach that leverages a similar but
distinct mutual reinforcement between the attributes of nodes
and edges. To this end, in the ASIS model, the node score
is associated with the asymptotic steady state probability of
that node in the primary process and is influenced by the
score of the connected edges. Similarly, the edge score is
associated with its steady state probability in the dual process
and is contingent on the scores of the nodes at its ends.
These scores evolve simultaneously, interacting with each
other over time.

One of the implications of the ASIS model is that it
induces a brand new definition of self-adaptive eigenvector
centrality. Traditionally, eigenvector centrality assigns
importance to nodes based on the importance of their
neighbors. Our model allows to consider jointly nodes and
edges relevance. Node centrality is indeed proportional
to the product of the scores of its neighboring nodes by
that of the corresponding edges connecting that node to its
neighbors. Differently from Tudisco and Higham 17 , these
scores emerge at the end of an iterative process that gradually
updates them to stationary values.

The paper is structured as follows. In Section II,
we provide the motivations and the intuition behind the
ASIS model. The main background and preliminaries are
introduced in Section III. In Section IV, we describe the
details of the ASIS model and the analytical results for the
cycle and complete graph. Section V focuses on steady
states and the related nonlinear eigenproblem. The self-
adaptive eigenvector centrality is defined in Section VI. The
model is tested on an illustrative example in Section VII and
a variety of numerical simulations in Section VIII, while
its effectiveness in online social networks is discussed in
Section IX. Conclusions follow.
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II. MOTIVATION AND MODEL OVERVIEW

In 2010, Centola 15 conducted an influential experiment on
the spread of behavior in online social networks, highlighting
the pivotal role of social reinforcement in the adoption
process. Social reinforcement pertains to the common
scenario where an individual requires multiple cues from
peers before adopting a particular opinion or behavior.18,19

Indeed, the experiment showed that a single signal exerts
minimal influence on individuals’ decision making, while
redundant signals can improve the probability of approval
and behavior adoption. It is only when a node receives a
reinforced message that it may transition to adopting the
opinion or behavior it carries.

The reinforcement effect in the spread of information,
opinions, and behaviors within social networks, particularly
in online contexts where face-to-face interactions are absent,
is known to radically alter diffusion dynamics compared to
the case of biological diseases. For example, it has been
observed that in cases where the infection rate is not too
high, reinforcement favors diffusion in regular networks over
random networks.16

It is, therefore, important to devise a mechanism that
takes into account the intensity with which a given node is
able to transmit a message. In the standard SIS epidemic
model on networks, initial infection probabilities for nodes
evolve over time according to a dynamics that depends on
the infection rate β , the recovery rate γ and, assuming a
weighted network, on a static assignment of weights to the
edges. The weight of the edge conveys how likely that
edge is to be a channel for the spread of the infection.
Hence, the potential of an edge to transmit the infection
may be different from edge to edge due to the intrinsic and
topological features of the network. However, this capability
may vary over time as a result of the diffusion itself.20

For opinions and behaviors, the more information
individuals receive, the more inclined they are to accept
them. However, this information is obtained from other
individuals who are engaged in the same process and who
may be more or less convinced or at a more or less advanced
stage in the adoption process. The presence of an edge and its
initial weight are not sufficient to explain this phenomenon,
unless the weight is adjusted over time based on the level of
actual infection/adoption of neighboring nodes.

The evolution of these weights over time can be described
by a similar contagion process. In fact, the intensity of the
message transmitted along an edge is ultimately governed by
the probabilities that nodes at its ends are at varying stages

of the adoption process and evolve accordingly.
We then introduce an adaptive reinforcement mechanism

in the signal transmission from one node to another that
accounts for the graded nature typical of social responses in
contrast to the all-or-nothing nature which is more typical
of infectious diseases spread. Furthermore, since we leave
open the possibility that an individual may suddenly abandon
the idea or behavior for various reasons and return to the
susceptible state, we turn to an SIS-type model.

To further support this idea, let us consider this analogy.
In a traffic network, nodes represent locations, such as
squares, intersections, or prominent sites, while edges denote
streets, roads, or connections between them. Consider a
shock propagating across the network. When a location
is affected by an accident, the edges linked to that node
experience traffic blockage, regardless of their weights in
terms of traffic volume. A realistic model should therefore
update the weights of those edges, to reflect the heightened
probability of the shock being transmitted along a road
originating from that location. In other words, the probability
that an edge is a channel for the transmission of an infection
is not independent of the probability that its end points are
infected. This mirrors the fact that the probability that a
node is infected at time t is not independent of the probability
that an edge would transmit the epidemic, which is typically
expressed by its weight.

A natural way to implement this idea is to run two
parallel SIS processes over nodes and over edges. More
precisely, to consider an auxiliary, or dual, process in
which the information propagates among edges through the
nodes; that is, a process occurring in a new network in
which edges become nodes and nodes become edges. This
network is usually defined in the literature as line graph.21

Specifically, we consider two SIS processes, one on the
original network GP (primary process) and one on its line
graph GD (dual process). The updated values of the edge
weights are computed as outcomes of the dual process on
the line graph. Let GP = (VP,EP) be the primary network
and GD = (VD,ED) the corresponding line graph and denote
by xi(t) the probability that node i ∈ VP is infected at time
t, and y j(t) the probability that node j ∈ VD is infected at
time t. The probabilities y j(t) will serve as weight attributes
for the edges in EP, while the probabilities xi(t) will be
used as weight attributes for the edges in ED. In this
way, we generate a pair of intertwined processes that evolve
simultaneously over time utilizing the probability derived
by each other. The model works jointly on both networks,
leveraging the interrelated properties of nodes and edges.
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To further illustrate the intuition behind the proposed
mechanism, consider the binary network GP shown in Fig.
1, panel (a). Edges are labeled by letters a, b, c and d.
Panel (b) shows the corresponding line graph GD, in which
the nodes adopt the labels of the corresponding edges and
the edges retain the colors of the corresponding nodes in
GP. At each step, the probabilities obtained through the

evolution of an SIS process on GP are assigned as edge
weights of the dual network GD, as shown in panel (c).
Similarly, the probabilities obtained from the SIS process on
GD are reassigned to the primary network GP in the form of
updated edge weights, as shown in panel (d). This simple
example will be analyzed in more depth in Section VII, after
discussing the details of the model.

(a) (b)

(c) (d)

FIG. 1: Primary network model, panel (a), and its line graph, panel (b). Panels (c) and (d) illustrate the interplay between the
two processes and the mechanism that models the interdependence between the probabilities xi(t) and yi(t).
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III. BACKGROUND

We give a brief overview of standard SIS models, mainly
to recall some background ideas and to introduce notations
that will be extended in the rest of the paper. The scalar SIS
model is described by the following differential equation{

ẋ(t) = β [1− x(t)]x(t)− γx(t)
x(0) = p

(1)

where x(t) denotes the prevalence of infected individuals at
time t, β ≥ 0 is the infection rate, γ ≥ 0 the recovery rate,
and 0 < p < 1 the initial prevalence of infected individuals
at time t = 0. If n is the population size, then nx(t) is the size
of the infected compartment, and βnx(t) is the total rate of
infectious contacts. Conversely, n[1− x(t)] is the size of the
susceptible compartment. A closed solution for Eq. (1) is

x(t) =

(
1− γ

β

)
p

p+(1− γ

β
− p)e−β

(
1− γ

β

)
t

(2)

where R := β

γ
is called basic reproductive ratio. It is known

from the related literature that, if R < 1, all trajectories
converge to the unique disease-free steady state x⋆ = 0 and
the epidemic disappears. If R > 1, each trajectory from
initial condition 0 < p < 1 converges to the exponentially
stable endemic steady state x⋆ = 1− γ

β
, and the disease-free

steady state is unstable. Therefore, a transcritical bifurcation
occurs at R = 1 (see Kiss et al. 22 for an in-depth discussion).

The first step toward an SIS model on networks is the
Kermack-McKendrick model.2 This model is based on the
homogeneous mean-field assumption that nodes have an
average number of neighbors ⟨k⟩ and that their degrees have
only small fluctuations around this mean value. With the
same meanings as before, the prevalence evolution equation
is given by{

ẋ(t) = β ⟨k⟩ [1− x(t)]x(t)− γx(t)
x(0) = p

. (3)

By setting x⋆ · [β ⟨k⟩(1− x⋆)− γ] = 0, the equilibrium states
are obtained: x⋆ = 0 and x⋆ = 1− γ

β ⟨k⟩ . For R < 1
⟨k⟩ , x⋆ = 0 is

asymptotically stable; whereas, for R > 1
⟨k⟩ , x⋆ = 1− γ

β ⟨k⟩ is
asymptotically stable and x⋆ = 0 is unstable. This means that
τ := 1

⟨k⟩ represents the threshold below which the epidemic
cannot spread, since more nodes are recovered by γ than are
infected by β .

Let us now turn to the network-based model. We consider
an undirected weighted network G = (V,E) with n × n
adjacency matrix A = [Ai j]. We denote henceforth by k =
[k1, . . . ,kn]

T the degree vector of G, by λi, i = 1, . . . ,n, the
eigenvalues of A with λ1≥ λ2≥ ·· · ≥ λn and ψi, i= 1, . . . ,n,
the corresponding eigenvectors. A weight wi j ∈ [0,1] is
associated with each edge (i, j). The weight represents the
probability that the disease is transmitted along that edge,
or, in other words, how likely that edge is to be a channel
for the spread of infection. The SIS model on network is
then described by the n differential equations represented, in
matrix form, by the following system{

ẋ(t) = β [In−diagx(t)]Ax(t)− γx(t)
x(0) = p (4)

where In is the n× n identity matrix and diagx(t) is the
diagonal matrix whose diagonal entries are xi(t), i = 1, ...,n.
Let us remark that we make some assumptions that we will
preserve throughout the paper: first, β and γ are the same
for all nodes; second, the initial infection probabilities pi are
identical on all nodes, namely p = pun where p ∈ (0,1] and
un = [1,1, . . . ,1]T ∈ Rn.
Steady states
Although a closed solution of the non-linear problem in Eq.
(4) cannot be provided, we can obtain information about its
steady states. A steady state is achieved when ẋ(t) = 0 as
t→+∞, that is

β [In−diagx]Ax− γx = 0.

The disease-free steady state is given by the trivial solution
xi = 0, ∀i. If we consider the linearization of Eq. (4) around
the disease-free steady state, that is{

ẋ(t) = βAx(t)− γx(t)
x(0) = p ,

then the study of the steady state involves the resolution of
the eigenvalue problem

βAx− γx = 0.

Recalling that λ is an eigenvalue of A if and only if βλ −
γ is an eigenvalue of βA− γIn, the threshold that ensures
the stability of the null solution is given by βλ1− γ < 0, or,
equivalently, R < 1

λ1
. Therefore, if the reproductive ratio is

less than 1
λ1

, this state is stable and the process dies out.
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Conversely, if xi > 0 for at least one i, the system evolves
into an endemic state. In this case, the steady states can be
viewed as solutions of the implicit recurrence relation

xi =
β ∑

n
j=1 Ai jx j

γ +β ∑
n
j=1 Ai jx j

= 1− 1
1+R ∑

n
j=1 Ai jx j

. (5)

A sufficient condition for the existence of the endemic state
is R > maxi

1
ki

, where ki, ∀i = 1, . . . ,n, is the degree of
node i. In this case, there exists a constant c ≤ 1− γ

βki
,

∀i = 1, . . . ,n, such that c ≤ xi ≤ 1 holds for all i (see
Kiss et al. 22 ). It has been shown that this condition can
be relaxed. Indeed, a refined sufficient condition for the
existence and stability of the endemic steady-state solution is
R > 1

λ1
. It can be proved that, under this condition, if x(0)∈

[0,1]n then x(t) ∈ [0,1]n for all t > 0 and if x(0) > 0 then
x(t)> 0 for all t > 0.22 Moreover, there exists an equilibrium
point x⋆ = 0, the epidemic outbreak, which is exponentially
unstable, and an endemic state x⋆ ̸= 0, which is exponentially
stable. Something more can be said about the behavior of
the endemic solution at the ends of the interval

(
1

λ1
,+∞

)
in

R: if R →
(

1
λ1

)+
then x⋆ → a(Rλ1−1)ψ1 with a =

||ψ1||2
ψT

1 diag(ψ1)ψ1
, while if R→+∞ then x⋆→ un− 1

R diagk−1.

It should be emphasized that the value 1
λ1

represents a
lower bound for the actual threshold τ of the process in
networks, τ ≥ 1

λ1
(while it as an exact value for the N-

intertwined mean-field approximation, see Van Mieghem
et al. 11 ). For some graphs, such as the complete graph,
this value is a good approximation of the actual threshold,
while for other graphs, such as the star, it is less accurate.
In general, the larger the heterogeneity in the degree
distribution, the larger the deviation from the first-order
mean-field approximation. For d-regular graphs, where all
degrees are equal to d, the lower bound is 1

λ1
= 1

d .

IV. THE SELF-ADAPTIVE SIS MODEL

A. Primary network epidemic model and its dual

To facilitate the understanding of the model architecture,
we initially assume that the primary network and its dual
are unweighted. Hence, let us suppose that the original
network GP is represented by a binary undirected graph
with adjacency matrix BP ∈ Rn×n and incidence matrix

E ∈ Rn×m, and the dual binary network GD has adjacency
matrix BD ∈ Rm×m. By graph theory, it is known that
BP = EET − diag(kP) and BD = ET E− diag(kD), where
diag(kP) is the diagonal matrix with diagonal entries given
by the node degrees of the network GP, and diag(kD) is the
analog diagonal matrix of the dual network GD. Note that,
in the latter case, the diagonal entries count the number of
nodes each edge contains, hence diag(kD) = 2Im.

Now suppose that both the nodes and the edges of the
network GP are assigned numerical attributes represented by
vectors x = [x1, . . . ,xn]

T and y = [y1, . . . ,ym]
T , respectively.

The attributes y of the edges in the network GP can be
naturally and uniquely assigned to the nodes of the dual
network GD in a one-to-one correspondence. Conversely, to
assign attributes to the edges of the dual network GD from
those assigned to the nodes of GP, we proceed as follows.
An edge in GD is the bridge between two vertices in GD
and corresponds to a specific node in GP. This node is
the common end of the two corresponding edges in GP.
Therefore, we assign to an edge in GD the same attribute
xi as the common node between the two edges in GP. Of
course, the same attribute xi can be used multiple times.

The adjacency matrices of the networks GP and GD are
then modified as follows

AP = EdiagyET −diagkP

AD = ET diagxE−diagkD

(6)

where kP = Ey and kD = ET x. These relations play a central
role because they link the entries of the adjacency matrices
of one network with the attributes of the nodes of the other.

Setting the initial conditions x(0) = x0 and y(0) = y0
on the nodes of GP and GD, respectively, by Eq. (4), the
two parallel SIS processes on the GP and GD networks are
described by

ẋ(t) = βP [In−diagx(t)]AP x(t)− γPx(t)

ẏ(t) = βD [Im−diagy(t)]AD y(t)− γDy(t)
(7)

where βP (βD) and γP (γD) are the infection and recovery
rates on the primary (dual) network.

What we aim to do is to consider the non-autonomous
version of system (7). Specifically, the time dependence of
the two matrices AP and AD can be introduced by setting
kP(t) = Ey(t) and kD(t) = ET x(t), where Ey(t) returns, for
each node in the network GP, a weight equal to the sum of
the attributes of the edges connected to that node, and ET x(t)
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returns, for each edge in the network GP, a weight equal to
the sum of the attributes of its two end nodes. Hence, the
two adjacency matrices of the network GP and GD become,
respectively

AP(y(t)) = Ediagy(t)ET −diag(Ey(t))

AD(x(t)) = ET diagx(t)E−diag(ET x(t))
. (8)

Let us emphasize that, by formula (8), edges in network
GP inherit the weights from the node probabilities in network
GD to produce an updated version of the adjacency matrix23

AP(t) at time t. Similarly, AD(t) inherits the weights
from the node probabilities in network GP, by assigning to
the edges of the dual network GD the probabilities of the
corresponding nodes in network GP at time t in a non-one-
to-one correspondence. Expressions in Eq. (8) make clear
that the adjacency matrix controlling the SIS evolution on the
network GP depends on the attributes y(t) and the adjacency
matrix controlling the SIS evolution on the network GD
depends on the attributes x(t). It is worth noting that,
in our model, originally binary networks become weighted
networks in a natural way, through the introduction of node
attributes and edge attributes.

Equations (7) can be conveniently expressed in a more
compact form as[

ẋ
ẏ

]
=

[
βP [In−diagx]AP(y)− γPIn 0n×m

0m×n βD [Im−diagy]AD(x)− γDIm

][
x
y

]
. (9)

Although the model allows working with different parameter
values on the networks GP and GD, we will only consider
analytically the case βP = βD = β and γP = γD = γ . By

introducing the new variable z :=
[

x
y

]
∈ Rn+m, Eq. (9) can

be expressed as

ż =
[

β [In−diagx]AP(y)− γIn 0n×m

0m×n β [Im−diagy]AD(x)− γIm

]
z. (10)

The variables x and y can be regained from z by means of
the following two relations x = Pnz := [In|0n×m]z and y =
Qmz := [0m×n|Im]z, so that we can write

ż =
[

β [In−diag(Pnz)]AP(z)− γIn 0n×m

0m×n β [Im−diag(Qmz)]AD(z)− γIm

]
z

= β

[
[In−diag(Pnz)] 0n×m

0m×n [Im−diag(Qmz)]

]
·
[

AP(z) 0n×m

0m×n AD(z)

]
z− γz.

(11)

Now, let us define the two matrices

G(z) :=
[

AP(z) 0n×m

0m×n AD(z)

]
(12)

and

H(z) := β [In+m−diagz]G(z)− γIn+m. (13)

The self-adaptive SIS model is finally expressed by the
ordinary differential equation

ż = H(z)z. (14)

Remark. It is worth focusing on the initial values of the
adjacency matrices in Eq. (8). At time t = 0, we set the
initial attributes x(0) = x0 = pun and y(0) = y0 = pum,
where p ∈ R, p ∈ (0,1] represents the initial probability of
being infected, uniformly distributed across nodes in network
GP and nodes in network GD.24 We denote by q the initial
probability of being susceptible: q= 1− p. The initial values
of the two matrices AP(t) and AD(t) in Eq. (8) are then

AP(0) = pEET − pdiag(Eum) = pBP

AD(0) = pET E− pdiag(Eun) = pBD

(15)

where BP and BD are the original binary adjacency matrices
of the two networks, containing the information about their
topological structure.

Since a real network GP is often originally edge-weighted,
we now discuss how to incorporate the original weights in
the process described earlier.

Let WP be the weighted adjacency matrix of the primary
network GP obtained by BP by adding weights to edges.
Our aim is to re-modulate this matrix with the probabilities
produced as the process evolves. To do this, we modify only
the matrix AP(t) in Eq. (8) as follows

AP(t) = WP⊙
(
Ediagy(t)ET −diag(Ey(t))

)
(16)

where ⊙ is the Hadamard (i.e. element by element) product
between the two matrices. Now the matrix AP(t) can
be understood as a weighted matrix that encompasses in
itself both the original topological properties of the network
(through WP) and the probabilities induced by the evolution
of the process (through y). It is worth stressing that we do
not need to modify the expression of the matrix AD(t). The
construction of a line graph from an edge-weighted graph
does not produce an edge-weighted dual graph, therefore the
dual network is always structurally conceived as a binary
network (that is WD = BD), and weights on the edges in GD
are only due to the effect of the evolving process. This raises
no issue for the model since this network serves exclusively
as an auxiliary network to trigger the process.
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B. Reinforcement factor

We introduce here a parameter that allows a smooth
transition from the standard SIS model in Eq. (4) to the ASIS
model in Eq. (7). In particular, we can modulate the weights
of the adjacency matrices updated at each time, weighing the
level of self-adaptivity that we want to apply. Let e ∈ [0,1]
and let us define

xe(t) = ex(t)+(1− e)pun, (17)
ye(t) = ey(t)+(1− e)pum. (18)

If we replace, in Eq. (10), AP(y(t)) by AP(ye(t)) and
AD(x(t)) by AD(xe(t)), we reshape the weights of the
adjacency matrices by quantities varying between the initial
fixed probabilities of the model p (e = 0) and the actual
probabilities of the nodes and edges at time t (e = 1). For
e = 0, we get two parallel and disentangled SIS processes
on the primary and dual networks. For e = 1, we get the
fully self-adaptive SIS model, described above. Thus, for
any value 0 < e < 1, we obtain a general model that includes
the standard and the fully self-adaptive model as extremal
and special cases. As a consequence, this general model
yields perturbed solutions between the two extreme ones. We
call the scalar parameter e reinforcement factor because it
conveys the intensity of the mutual reinforcement between
the primary and dual processes. This parameter, which is a
measure of the level of self-adaptivity of the epidemic model,
will be used to calibrate the reciprocal reinforcement action
that typically takes place in social networks and discussed
in the introduction. In the following, where not explicitly
specified, by ASIS model we will mean the case e = 1.

C. Application to synthetic graphs

In this section we present some analytical results about the
steady state solutions of the ASIS model for some specific
classes of binary networks (cycle, regular, complete and star
networks). We report here only results concerning the cycle
and the complete graph. We refer to Appendix A for the
proofs of the theorems, and for the general case of regular
graphs and star graphs.

Let GP be a cycle with n nodes, n edges and adjacency
matrix B. In this case, GD is also a cycle with n nodes, n
edges and same adjacency matrix B, then GP = GD = Cn,
and the probabilities of all nodes in both graphs are identical.
Since diagx(t) = x(t)In, diagy(t) = y(t)In, and diag(Eun) =

diag(ET un) = 2In, Eq. (8) reduces to
AP(t) = y(t)B

AD(t) = x(t)B
. (19)

Moreover, x(t) = y(t) as we focus on the case in which the
infectivity and recovery rates are the same for both GP and
GD. Therefore, for every node and edge in the cycle, Eq. (7)
reduces to a single equation:

ẋ(t) = β [1− x(t)]
n

∑
h=1

(AP)ih xh(t)− γx(t)

= β [1− x(t)]2y(t)x(t)− γx(t) =−2βx3(t)+2βx2(t)− γx(t).

(20)

The steady states of the nonlinear mapping in Eq. (20) are
characterized by the following

Theorem 1. The stable equilibrium points of the ASIS model
on the cycle Cn and its dual network, described by Eq. (20),
are given by

x⋆ = 0 if R < τc

x⋆ = 1
2

(
1+
√

1− 2
R

)
if R > τc

(21)

where

τc =

{
1

2p(1−p) if 0 < p < 1
2

2 if 1
2 ≤ p < 1

(22)

is the threshold of the epidemic dynamics on cycles.

Notice that the threshold τc(p) is a nonincreasing function
of 0 < p < 1; in particular, it is always greater than or equal
to 2 and such that τc(p) → +∞ when p → 0. Moreover,
when R → τ+c and 0 < p < 1

2 , it is easy to show by simple
calculations that x⋆→ 1− p, i.e., the asymptotic probability
of the endemic state is equal to the initial probability that
a node is susceptible. If R → τ+c and 1

2 < p < 1, then
x⋆ → 1

2 , i.e., the endemic asymptotic state stabilizes on an
equal distribution of infected and susceptible cases.25 For
R = τc(p), x(t) = p, ∀t. Observe that, when γ = 0, we
are in the case of a self-adaptive SI model; being β > 0 and
p > 0, the only stable asymptotic solution reduces to x⋆ = 1,
as in any SI model. The result obtained for the cycle Cn
can be generalized to regular graphs Kd

n with n vertices of
degree ki = d, ∀i = 1, ...,n. We report here the result for the
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complete graph Kn and we refer the reader to appendix A
for the detailed proof of the case Kd

n . If GP is the complete
graph Kn of n nodes, its dual GD is a regular graph of degree
2(n− 2).26 The following theorem provides the values of
the steady states and the expression of the corresponding
threshold on the complete graph.

Theorem 2. The stable equilibrium points of the ASIS model
with reproductive ratio R on the complete graph Kn are
given by


x⋆ = 0 if R < τcompl

x⋆ = 1
2

(
1− n−3

2(n−1)(n−2)R +

√
ξ

2(n−1)(n−2)R

)
if R > τcompl

(23)

where ξ = [(n−3)−2(n−1)(n−2)R]2−8(n−1)2(n−2)R and

τcompl =


(n−1)+(n−3)p
2(n−1)(n−2) ·

1
p(1−p) if 0 < p < 1

1+
√

2(n−2)
n−1[

1√
n−1

+ 1√
2(n−2)

]2

if 1

1+
√

2(n−2)
n−1

≤ p < 1
(24)

is the epidemic threshold on complete graphs.

In Fig. 2, panels (a) and (b), we illustrate the evolution of
the ASIS model above and below the threshold τc, compared
with the standard SIS model for a cycle with n = 5 and
p = 0.2. In both panels, the threshold is τc(p) = 3.125.
In panel (a), R = 5, and, in panel (b), R = 1.333. The
stable asymptotic solution above the threshold, in panel (a),

for the ASIS model is x⋆ = 1
2

(
1+
√

1− 2
R

)
= 0.8872983,

while for the standard SIS model is x⋆ = 1− 1
2pR = 0.5. In

Fig. 2, panel (c), we represent the same evolution for the
complete graph Kn with n = 6 and p = 1

6 , and with threshold
τcompl(p) = 0.990. Then, for R = 2, the endemic state in Eq.
(23) reduces to x⋆ = 0.892.

(a)

(b)

(c)

FIG. 2: Probability x(t) for the self-adaptive SIS model (in
red circle points) and for the standard SIS model (in blue
square points) for (a) cycle graph with n= 5, p= 1/5, R = 5
(β = 0.005 and γ = 0.001); (b) cycle graph with n = 5, p =
1/5, R = 1.333 (β = 0.002 and γ = 0.0015); (c) complete
graph with n= 6, p= 1/6, R = 2 (β = 0.002 and γ = 0.001).
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V. GENERAL STEADY STATES ANALYSIS

Our goal now is to study the general steady states of
the ASIS model described by Eq. (14), ż(t) = H(z(t))z(t),
where G(z(t)) and H(z(t)) are defined in Eq. (12) and (13).

A. Nonlinear eigenproblem

First, we observe that, for all t, [I−diagz(t)]G(z(t)) is
the product of two symmetric matrices, the first of which
is a diagonal matrix with nonnegative entries. Therefore,
although the product is not a necessarily symmetric matrix,
it has only real eigenvalues and its eigenvectors can always
be chosen with real components.27

The identification of the endemic steady states of Eq. (14)
can be interpreted as a nonlinear eigenproblem. In fact, by
setting H(z⋆)z⋆ = 0, we get28:

z⋆ = R [I−diagz⋆]G(z⋆)z⋆. (25)

Therefore, the vector representing the steady state is
an eigenvector of the non-symmetric matrix M(z⋆) :=
R [I−diagz⋆]G(z⋆). The problem belongs to a peculiar
class of eigenvalue problems in which the nonlinearity is
produced by the matrix itself depending on and containing
the eigenvector being pursued. Although problems of
this type have received less attention in the literature than
nonlinear eigenproblems, where the nonlinearity is only
related to the eigenvalues, some iterative methods for
obtaining the dominant eigenvector have been proposed.
However, they rely heavily on specific assumptions required
on the matrix M(z) (see Meyer 29 and Jarlebring et al. 30 ).

To the best of our knowledge, no effective algorithm has
been proposed to find the dominant eigenvector of non-
symmetric nonlinear problems like the one in Eq. (25).
The approach we propose to fill this gap is inspired by the
two above-mentioned contributions existing in the literature.
In particular, Meyer 29 proposes a nonlinear eigenvector
algorithm to show the global convergence for problems of
the form R(z)z = λS(z)z where R(z) and S(z) are real
symmetric block-diagonal matrices. The basic idea is to
start with some arbitrary vector z0, and fixed matrices R(z0)
and S(z0), and solve an ordinary generalized eigenproblem
to find out the eigenvector z1 corresponding to the largest
eigenvalue. Then the matrices are updated to R(z1) and
S(z1), treated as fixed, and another eigenproblem is solved,
and so on until the procedure converges. We stress that the

entire procedure is applied to matrices R(z) and S(z) that
are symmetric, while, in our case, the matrix M(z∗) is a real
block-diagonal matrix but it is not symmetric.

An alternative iterative method has been proposed in
Jarlebring et al. 30 for scale invariant matrices, that is
matrices M(z) such that M(αz) = M(z), ∀α ∈ R. This
inverse algorithm is based on the Jacobian matrix J(z) of the
problem and the iteration takes the form

zk+1 =
(J−σI)−1 zk

||(J−σI)−1 zk||
(26)

where σ ∈ R is called shift and controls to which pair of
eigenvalue and eigenvector the iteration converges. An M-
version is also discussed, in which the Jacobian matrix is
replaced by the matrix M(z), at the cost of losing some
convergence properties. Even neglecting that we have no
explicit expression of the Jacobian matrix, however, again,
this approach relies dramatically on the invariance property
of the matrix M(z), which is not the case of the matrix
involved in our model.

We will retain the basic idea of the algorithm proposed
by Meyer 29 in the discretization of the ASIS problem that
will be proposed shortly, and we will use the M-version of
Eq. (26) to numerically compute the dominant eigenvector.
In fact, we aim at providing an appropriate discretization
of the model which can be interpreted as an algorithm
for constructing a non-normalized version of the dominant
eigenvectors.

Let us first introduce the rescaled time variable t ′ = γt so
that Eq. (14) becomes

ż = R [I−diagz]G(z)z− z (27)

equivalent to
ẋ = R [In−diagx]AP(y)x−x

ẏ = R [Im−diagy]AD(x)y−y
. (28)

Let us now consider the following forward discretization of
the two processes in Eq. (28). Let {tk}, k ∈ N, such that
the step size is assumed, for the sake of simplicity, to be
constant and equal to 1: tk+1− tk = 1. Let us set zk = z(tk)
and similar expressions for x and y. Eq. (28) transforms into
the following set of discrete-time Markovian equations:

xk+1 = R [In−diagxk]AP(yk)xk

yk+1 = R [Im−diagyk]AD(xk)yk

(29)
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which iteratively update matrices AP(yk) and AD(xk) and
compute the new vectors xk+1 and yk+1. The process ends
when a stopping tolerance ε is reached. The discretized
ASIS model is illustrated in the Algorithm 1.

Algorithm 1: SELF-ADAPTIVE SIS MODEL

Input: Incidence matrix E; initial probabilities x0 and y0;
stopping tolerance ε

Output: Steady state probabilities x⋆ and y⋆
1 x0 = pun and y0 = pum
2 repeat
3 AP(yk)← Ediag(yk)ET −diag(Eyk)

4 AD(xk)← ET diag(xk)E−diag(ET xk)
5 xk+1←R [In−diagxk]AP(yk)xk
6 yk+1←R [Im−diagyk]AD(xk)yk
7 until ||xk+1−xk||/||xk||+ ||yk+1−yk||/||yk||< ε;
8 return x⋆, y⋆

This algorithm, although modified, traces the idea
of the powers method and particularly that in the
nonlinear case discussed above. Let us observe that,
being (M(z)−σI)−1 z = (1 − σ)−1z, for σ ∈ R, then
matrix (M(z)−σI)−1 has the same eigenvectors as M(z).
Therefore, we can devise an inverse iteration method which
is similar to the one in Eq. (26), provided that we keep as
the argument of the nonlinear matrix M the non-normalized
version of the vector z. It is worth noting that the largest
eigenvalue of the block matrix M(z⋆) is λ

(1)
M = 1 with

multiplicity 2, as it represents the adjacency matrix of a
network with two disconnected components, the network
GP and its line graph GD. The corresponding dominant
eigenvectors are z∗1 = [x⋆,0m]

T and z∗2 = [0n,y⋆]T and the
corresponding normalized eigenvectors are then ψ

(1)
M =

z⋆1/||z⋆1|| and ψ
(2)
M = z⋆2/||z⋆2||.

B. Stability of the general endemic and disease-free steady
states

We now turn to the problem of the stability of equilibrium
solutions. We present first two preliminary results about
the matrix G(z) and the Jacobian matrix J(z) of the general
problem in Eq. (14).

Lemma 2.1. The linear operator G(z) : Rn+m→ Rn+m is a
homogeneous operator of degree 1

G(αz) = αG(z), ∀α ∈ R. (30)

Proof. By definitions (8), AP(αy) = αAP(y) and AD(αx) =
αAD(x),∀α ∈ R .

Lemma 2.2. The Jacobian matrix J(z) of the system in Eq.
(14) satisfies the following relation

J(z)z = [β (2I−3diagz)G(z)− γI]z. (31)

Proof. By definition,

J(z)z = lim
ε→0

H(z+ εz)(z+ εz)−H(z)(z)
ε

= lim
ε→0

β [(I− diag(z+ εz))G(z+ εz)− γI] (z+ εz)−β [(I− diag(z))G(z)− γI]z
ε

= lim
ε→0

β (1+ ε)2 [(I− (1+ ε)diag(z))G(z)z]−β [(I−diag(z))G(z)z]− γεz
ε

= lim
ε→0

β
[(
(1+ ε)2−1

)
I−
(
(1+ ε)3−1

)
diag(z)

]
G(z)z− γεz

ε

= lim
ε→0

β
[(

2ε + ε)2
)

I−
(
3ε +3ε2 + ε3

)
diag(z)

]
G(z)z− γεz

ε

= [β (2I−3diagz)G(z)− γI]z

It is important to note that we cannot provide an explicit
expression of the Jacobian matrix J(z). However, through
Lemma (2.2), we are able to describe the action of this
matrix, evaluated in a general vector z, on the same vector
z. We now turn to the main Theorem.

Theorem 3. Given an undirected, weighted and connected
network, a non-null equilibrium solution z⋆ of Eq. (14)
represents a stable endemic steady state for the ASIS model
if z⋆i ≥ 1−

√
2

2 , ∀i = 1, ...,n+m.

Proof. Let us show that an endemic stable steady state exists,
by a constructive proof. The steady state of the general
problem in Eq. (14) is defined by the nonlinear eigenvalue
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problem H(z)z = 0, equivalent to β (I−diagz)G(z)z = γz.
Then, the steady state has to satisfy the equality

βG(z)z = γ(I−diagz)−1z (32)

for zi ̸= 1,∀i = 1, . . . ,n + m. Conversely, in the steady
state, by Lemma (2.2), each component i of the vector J(z)z
satisfies:

(J(z)z)i = ([β (2I−3diagz)G(z)− γI]z)i

= ((2I−3diagz)βG(z)z)i− γzi

= γ((2I−3diagz)(I−diag(z))−1z)i− γzi

= γ

(
2−3zi

1− zi

)
zi− γzi = γ

(
1−2zi

1− zi

)
zi.

(33)

We analyze the behavior around a stationary solution z⋆. Let
us define the error ∆z(t) = z(t)− z⋆. By linearizing around
z⋆ (see Medio and Lines 31 ), we get

∆̇z(t) = J(z⋆)∆z(t) = J(z⋆)z(t)+ γc (34)

where ci =− 1
γ
(J(z⋆)z⋆)i =

(
2z⋆i −1
1−z⋆i

)
z⋆i . Now, since ∆̇z(t) =

ż(t), we have

ż(t) = J(z⋆)z(t)+ γc. (35)

In general, we do not have the explicit expression of the
Jacobian matrix J(z⋆) but, for z(t)→ z⋆, in the neighborhood
of z⋆:

ż(t)∼ J(z)z(t)+ γc (36)

which is approximated by the n + m nonlinear differential
equations żi = γ

(
1−2zi
1−zi

)
zi + γci, that is

żi = γ

[
ci +(1− ci)zi−2z2

i
1− zi

]
. (37)

For the sake of simplicity, we set zi = z and ci = c. Eq. (37)
is equivalent to∫ 1− z

c+(1− c)z−2z2 dz = γt +K, K ∈ R. (38)

For any 0 < z⋆ < 1, the denominator c+(1− c)z− 2z2 has
two real distinct roots z̃1 =− 1

4

[
(c−1)+

√
c2 +6c+1

]
= 2z⋆−1

2z⋆−2

z̃2 =− 1
4

[
(c−1)−

√
c2 +6c+1

]
= z⋆

(39)

then, by computing the integral:

I =
∫ 1− z

c+(1− c)z−2z2 dz =
1
2

∫ z−1
(z− z̃1)(z− z̃2)

dz

=
1− z⋆

|2z⋆2−4z⋆+1|
log
|z− z̃1|1+z̃1

|z− z̃2|1+z̃2
.

(40)

Therefore, Eq. (38) becomes∣∣∣z− 2z⋆−1
2z⋆−2

∣∣∣ 4z⋆−3
2z⋆−2

|z− z⋆|1+z⋆ = κ · exp
(
|2z⋆2−4z⋆+1|

1− z⋆
γt
)
, κ ∈ R+.

(41)
Moreover, since ∆z = z− z⋆, Eq. (41) can be rewritten in
terms of ∆z as:∣∣∣∆z+ 2z⋆2−4z⋆+1

2z⋆−2

∣∣∣ 4z⋆−3
2z⋆−2

|∆z|1+z⋆ = κ · exp
(

2z⋆2−4z⋆+1
z⋆−1

γt
)
. (42)

Let us call α = 2z⋆2−4z⋆+1
z⋆−1 . Thus, we have:

∣∣∆z+ α

2

∣∣ 4z⋆−3
2z⋆−2

|∆z|1+z⋆ = κ · eαγt . (43)

Let us study the two cases, α > 0 and α < 0, separately:

• α > 0, that is 1−
√

2
2 < z⋆ < 1. It is useful to further

distinguish, in Eq. (43), two cases according to the
sign of the exponent 4z⋆−3

2z⋆−2 :
|∆z+ α

2 |
∣∣∣ 4z⋆−3

2z⋆−2

∣∣∣
|∆z|1+z⋆ = κ · eαγt for 1−

√
2

2 < z⋆ ≤ 3
4

|∆z+ α
2 |
−
∣∣∣ 4z⋆−3

2z⋆−2

∣∣∣
|∆z|1+z⋆ = κ · eαγt for 3

4 < z⋆ < 1

(44)

In both cases, if t→+∞, then eαγt →+∞.

In the first case, if it were ∆z → +∞, then the
left-hand side would be of order |∆z|

4z⋆−3
2z⋆−2−(1+z⋆) =

|∆z|
2z⋆2−4z⋆+1

2(1−z⋆) = |∆z|− α
2 . The exponent would be

negative and the left-hand side would go to 0, in
contrast to the right-hand side going to +∞. In the
second case, the exponent of the term in the numerator
is already negative and still the error can go neither to
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a finite nonzero value nor to infinity. Then the only
possibility is that ∆z→ 0.
In particular, in this second case, namely for 3

4 < z⋆ <
1, we are able to compute explicitly the Lyapunov
exponent. Indeed, when |∆z| vanishes, we have∣∣α

2

∣∣−∣∣∣ 4z⋆−3
2z⋆−2

∣∣∣
|∆z|1+z⋆ ∼ κ · eαγt . (45)

For t = 0, we have ∆z(0) = ∆z0 and, by (45), κ ≈
| α2 |

−
∣∣∣ 4z⋆−3

2z⋆−2

∣∣∣
|∆z0|1+z⋆ so that

|∆z|1+z⋆ ∼ |∆z0|1+z⋆ · e−αγt (46)

which, solved for ∆z, gives, for t→+∞:

|∆z| ∼ |∆z0| · e
− (−2z⋆2+4z⋆+1)

1−z⋆2 γt → 0. (47)

We can identify ζ =− (−2z⋆2+4z⋆+1)
1−z⋆2 γ as the Lyapunov

exponent of the dynamical system. In particular, ζ is
always negative, it is equal to−2 for z⋆ = 3

4 and it goes
to −∞ as z⋆→ 1.

• α < 0, that is 0≤ z⋆ < 1−
√

2
2 . In the ratio∣∣∆z+ α

2

∣∣ 4z⋆−3
2z⋆−2

|∆z|1+z⋆ = k · eαγt

the right-hand side goes to 0 for t→+∞. This implies
that either ∆z →

∣∣α

2

∣∣ or ∆z → ∞. If ∆z →
∣∣α

2

∣∣, the
numerator goes to 0 and the exponent is positive,
so that this a consistent solution. If ∆z → ∞, then
α

2 is negligible, and the ratio is asymptotic again to
|∆z|− α

2 , but, since α < 0, this quantity goes to infinity.
Therefore, the only consistent possibility is the first
one, where the error tends to a finite value, equal to∣∣α

2

∣∣= ∣∣∣ 2z⋆2−4z⋆+1
2(z⋆−1)

∣∣∣. Therefore, in the interval 0≤ z⋆ <

1−
√

2
2 , the error is positive and finite. Specifically, |α2 |

is a decreasing function of z⋆ and varies from 1
2 to 0.

This implies that, in this interval, we cannot find any
stable solution.

Finally for α = 0, by solving the integral, Eq. (38) becomes:
1

2
√

2∆z
+ 1

2 log(2∆z) = γt+k. Therefore, ∆z→ 0 as t→∞ and
the solution is stable.

Remark. By Theorem 3, it follows that 1−
√

2
2 represents

a critical value for the stability of the asymptotic solution.
This role is further confirmed by the following observation
that applies to the cycle graph. In Theorem 1 and its proof,
we found that the unstable and stable solution for the cycle

are x⋆1 = 1
2

(
1−
√

1− 2
R

)
and x⋆2 = 1

2

(
1+
√

1− 2
R

)
,

respectively. If we set the initial probability equal to p =

1−
√

2
2 , then the threshold of the model is τc =

1
2p(1−p) =

1 +
√

2. Above this threshold, that is for R ≥ 1 +
√

2,
the unstable solution lies exactly in the instability interval
claimed by Theorem 3, that is 0 < x⋆1 ≤ 1−

√
2

2 . Moreover,

the stable one lies in the range
√

2
2 < x⋆2 < 1. Furthermore,

as will be shown in Appendix A, for general regular graphs,

the unstable solution x⋆1 =
1
2

(
1− d−2

2d(d−1)R −
√

ξ

2d(d−1)R

)
lies

below 1−
√

2
2 exactly for 0<R ≤ τ1∪R ≥ τ2 (see Eq. (A10)

in Appendix A 2).

Let us conclude with a theorem that characterizes the
existence and stability of the disease-free steady state for
general topology.

Theorem 4. If R < 1
pλ1

, the disease-free steady state of the
ASIS model exists and it is stable

Proof. We show that if the model in Eq. (14) is initially
below the threshold of the standard SIS model (4), it remains
below that threshold throughout the process. In other words,
the existence of the extinction steady state is determined by
the initial conditions alone.

At t = 0, the values of the matrices AP(t) and AD(t) are
given by Eq. (15), that is AP(0) = pBP and AD(0) = pBD,
where BP and BD represent the original numerical adjacency
matrices of the network and its line graph. Therefore, the
early stages of the process are governed by the equation

ż = β p [I−diagz]
[

BP 0n×m

0m×n BD

]
z− γz. (48)

According to Kiss et al. 22 (see Theorem (3.8), ibidem),
the process described by Eq. (48) exhibits a transcritical
bifurcation at the critical value R = 1

pλ1
, where λ1 is the

largest eigenvalue of the block matrix32[
BP 0n×m

0m×n BD

]
. (49)
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In particular, the value 1
pλ1

represents a lower bound for the
epidemic threshold τ of the standard process, that is 1

pλ1
< τ .

The key point is the presence of the initial value p in the
denominator of this lower bound for the threshold, while
the term λ1 is fixed and determined only by the original
topological structure of the network. If, at t0 = 0, we have
R < 1

pλ1
< τ , then the process starts reducing the individual

probabilities xi(t) and yi(t), on both the graph and the line
graph, so that, at a later time t1 > t0, we have zi(t1) < p,
∀i = 1, . . . ,n + m. Now, by Algorithm 1, we replace the
original weights in the adjacency matrices by the new values
zi(t1). This step can be replicated at each subsequent time
0 = t0 < t1 < t2 < · · ·< tk < .. . , so that zi(tk)< zi(tk−1) and

R <
1

pλ1
<

1
maxi zi(t1)λ1

<
1

maxi zi(t2)λ1
< · · ·< 1

maxi zi(tk)λ1
. (50)

Then, the process, at every step, remains below the
corresponding threshold of the standard SIS model. Since,
under these assumptions, the latter has a stable null
asymptotic solution, the solution zi = 0, ∀i = 1, . . . ,n + m
of the ASIS model exists and is asymptotically stable.

Let us observe that Theorem 4 implies that, as far as the
extinction steady state is concerned, controlling the initial
stages of the process, means controlling the whole process.

VI. SELF-ADAPTIVE EIGENVECTOR CENTRALITY

We want to show now that the components of the
eigenvectors ψ

(1)
M and ψ

(2)
M introduced in Section V A,

and, therefore, the values of the stationary probabilities
appropriately normalized, can be interpreted as nonlinear
eigenvector centralities.

The idea stems from the observation that, in the limit
z → 0, the matrix M(z) approaches RG(z), so that Eq.
(25) has the typical implicit form that defines an eigenvector
centrality. Given a weighted adjacency matrix, we search for
the dominant eigenvector whose components are interpreted
as a score in which the importance of a node is proportional
to that of its neighboring elements, typically adjacent nodes.
Two aspects distinguish Eq. (25) from a usual equation
defining eigenvector centrality: the presence of matrices that
depend on the eigenvectors themselves, as already discussed,
and the trade-off between the centralities of the nodes and
those of the edges. In fact, Eq. (25) implies that the centrality
of a node is a function of the centrality of the edges it belongs

to and the centrality of an edge is a function of the centrality
of its extreme nodes.

A similar idea has already been proposed by Tudisco
and Higham 17 within a more general but static setting.
A generalization of their approach emerges here within a
dynamic setting in a quite natural way. Let us observe
that the authors define a node and edge score such that the
importance y j of an edge e j ∈ E is a nonnegative number
proportional to the importance of the nodes in e j, and the
importance xi of a node vi ∈ V is a nonnegative number
proportional to the importance of the edges it participates in.
In a notation consistent with our paper, their centralities are
given by the following equations

λx = Ediag(y0)y

µy = ET diag(x0)x
(51)

which are equivalent to
x = ρ [AP(y0)+KP(y0)]diag(x0)x

y = ρ [AD(x0)+KD(x0)]diag(y0)y
(52)

where ρ = 1/µλ . The authors compute the Perron
eigenvectors x⋆ and y⋆ of diagonally perturbed adjacency
matrices of the graph and the line graph and interpret their
components as eigenvector scores for the nodes and the
edges, respectively. Eq. (25), namely

x⋆ = R [In−diagx⋆]AP(y⋆)x⋆

y⋆ = R [Im−diagy⋆]AD(x⋆)y⋆
, (53)

play the same role of Eq. (52). In this perspective, our model
leads to a new centrality measure that we call self-adaptive
eigenvector centrality. Such a measure weights the score of
an element, either a node or an edge, as proportional to the
score of all the elements, nodes and edges, to which it is
connected.

Our centrality measure is similar to the one defined
by Tudisco and Higham 17 , but with some remarkable
differences. First, in Eq. (52), the matrices are all evaluated
at initial fixed values, which correspond to the topological
weights of the edges in the graph and in the line graph and
that we identified, in our notation, with the initial values x0
and y0. Conversely, in Eq. (53), matrices dynamically update
with the weights computed on the basis of an evolutionary
process. Second, the dependence of the elements of the



A Novel Self-Adaptive SIS Model 15

matrices on the scores to be attributed to nodes and edges
has a retroactive effect on the meaning of these scores. Let
us consider, for instance, a node i in the network GP. Its score
turns out to be proportional to ∑ j AP(y)i jx j, that is the sum
of the products between the score of its neighboring nodes
and the score of the corresponding edges connecting them to
node i. Hence, in our model, the centrality of a node does
not depend on the importance of neighboring nodes alone or
adjacent edges alone, but on the joint effect of both these
elements.

VII. ILLUSTRATIVE EXAMPLE

Let us examine the implementation of the ASIS model
through the example illustrated in Fig. 1. The adjacency
matrices of the network GP and GD are, respectively,

BP =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 , BD =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 .
Matrices in Eq. (8), at t = 0, are then AP(0) = pBP and
AD(0) = pBD, for 0 < p < 1. By introducing the variable
z∈R8, matrix G(z) in Eq. (12) and vector H(z)z in Eq. (13)
take the form

G(z) =



0 y1 y2 0 0 0 0 0
y1 0 y3 0 0 0 0 0
y2 y3 0 y4 0 0 0 0
0 0 y4 0 0 0 0 0
0 0 0 0 0 x1 x2 0
0 0 0 0 x1 0 x3 x3
0 0 0 0 x2 x3 0 x3
0 0 0 0 0 x3 x3 0



H(z)z =



β (1− x1)(x2y1 + x3y2)− γx1
β (1− x2)(x1y1 + x3y3)− γx2
β (1− x3)(x1y2 + x2y3 + x4y4)− γx3
β (1− x4) · x3y4− γx4
β (1− y1)(x1y2 + x2y3)− γy1
β (1− y2)(x1y1 + x3y3 + x3y4)− γy2
β (1− y3)(x2y1 + x3y2 + x3y4)− γy3
β (1− y4)(x3y2 + x3y3)− γy4


.

The nonlinear eigenproblem z⋆ = R [I−diagz⋆]G(z⋆)z⋆,
described in Eq. (25), that leads to the steady states solutions
and to the self-adaptive eigenvector centralities is explicitly



x⋆1
x⋆2
x⋆3
x⋆4
y⋆1
y⋆2
y⋆3
y⋆4


=



R(1− x⋆1)(x
⋆
2y⋆1 + x⋆3y⋆2)

R(1− x⋆2)(x
⋆
1y⋆1 + x⋆3y⋆3)

R(1− x⋆3)x
⋆
1y⋆2 + x⋆2y⋆3 + x⋆4y⋆4)

R(1− x⋆4) · x⋆3y⋆4
R(1− y⋆1)(x

⋆
1y⋆2 + x⋆2y⋆3)

R(1− y⋆2)x
⋆
1y⋆1 + x⋆3y⋆3 + x⋆3y⋆4)

R(1− y⋆3)(x
⋆
2y⋆1 + x⋆3y⋆2 + x⋆3y⋆4)

R(1− y⋆4)(x
⋆
3y⋆2 + x⋆3y⋆3)


. (54)

By Eq. (54), it is clear that the centrality of a node is
proportional to the sum of the products of the respective
scores of nodes and edges connected to it. For example, the
centrality x⋆1 of the node 1 is proportional to (x⋆2y⋆1 + x⋆3y⋆2):
the first term is the product of the score of node 2 and the
score of the edge connecting nodes 1 and 2; the second term
is the product of the score of node 3 and the score of the edge
connecting nodes 1 and 3.

We now present some numerical experiments. In Fig. 3,
panels (a-c), we show the prevalence of infected/adopted
individuals in the network GP, that is the cumulative
probabilities xi(t) as functions of t, under different
conditions. Nodes 1 and 2 are equivalent and the curves
have the same color code as in Fig. 1. Fig. 3, panels (d-
f), shows the incidence, that is the instantaneous increments
dxi(t), under the same corresponding conditions. Node 3, as
expected, is the node with the highest asymptotic probability,
being the most central. The opposite for node 4.

Fig. 4 represents the contour plots of the mean prevalence
for the network GP, under different conditions and at
different times. The mean prevalence in the plots is the
arithmetic mean of the probabilities xi(t) in the network GP.
In Fig. 4, panel (a), we plot a snapshot at a fixed time of
the mean prevalence as a function of the infection rate β

and recovery rate γ . In Fig. 4, panel (b), we plot the phase
diagram at a fixed value of the infection rate β as a function
of γ and t, and, in Fig. 4, panel (c), the phase diagram at a
fixed value of the recovery rate γ as a function of β and t. The
last two panels make it clear the presence of a transcritical
bifurcation at a specific value of the reproductive number
R. The values of the parameters used to build the plots are
specified in the caption of the figure.
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(a) (b)

(c) (d)

(e) (f)

FIG. 3: Prevalence (panels (a), (c) and (e)) and incidence (panels (b), (d) and (f)) for individual nodes in the examined network,
under different conditions; (a) and (b): p = 0.25, β = 0.004 and γ = 0.001; (c) and (d): p = 0.50, β = 0.002 and γ = 0.001;
(e) and (f) p = 0.75, β = 0.001 and γ = 0.001. Solid lines represent the self-adaptive SIS model, dashed lines the standard
SIS model.
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(a)

(b)

(c)

FIG. 4: Mean prevalence in the toy network, under different
conditions on β and γ and at different times t. In panel (a)
t = 500; in panel (b) β = 0.010; in panel (c) γ = 0.003.

Let us now focus on the particular case where p = 0.25, β =
0.004 and γ = 0.001, which is represented in Fig. 3, panels
(a) and (b). The steady states of the four nodes are: x⋆1 =

x⋆2 = 0.8613893, x⋆3 = 0.8984515 and x⋆4 = 0.7569336.33 The
corresponding normalized eigenvectors are given by

ψ
(1)
M = [0.508981,0.508981,0.530881,0.447260,0,0,0,0]T ,

ψ
(2)
M = [0,0,0,0,0.487407,0.510946,0.510946,0.490206]T .

The endemic steady state at the end of the ASIS process is
then, as expected, the non-normalized dominant eigenvector
of the matrix M(z⋆), and the values of the final probabilities
of each node are proportional to the components of the
dominant normalized eigenvectors of the matrix M(z⋆).
The components of the two eigenvectors ψ

(1)
M and ψ

(2)
M

are therefore interpreted as the self-adaptive eigenvector
centralities for nodes and edges defined in Section VI.

The stability of these solutions has been analyzed in
subsection V B. The error |∆z(t)| = |z(t) − z⋆| can be
computed by Eq. (47), which predicts an exponential decay
as a function of time. In Fig. 5, we illustrate in log-scale
the exponential decay of the numerical error for the four
nodes in the network under examination. Specifically, in the
numerical simulation, we choose |∆z0|= |z(1000)− z⋆|.

FIG. 5: Errors ∆z for the four nodes in the network example,
for p = 0.25, β = 0.004 and γ = 0.001.

The stability of the solutions is in this case also guaranteed
by the negative sign of the eigenvalues of the explicit
Jacobian matrix J(z), evaluated in the asymptotic solution.
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VIII. NUMERICAL EXPERIMENTS

In this section, we provide a numerical analysis to test
the behavior of the proposed model. To this end, we
consider three alternative classes of graphs: a random graph,
based on Erdős and Rényi 34 (ER) model (see also Erdős and
Rényi 35 ), a small-world (SW) network, based on Watts and
Strogatz 36model and a Barabasi and Albert 37 (BA) model.
Some sensitivity analyses have been explored by evaluating
the effect of both the topological aspects of the network (as
the number of nodes, density, etc.) and the parameters of the
model.

We start focusing on ER graphs and testing the effect of
the reinforcement factor e ∈ [0,1], defined in Section IV B,
on the diffusion process. To this end, we consider an ER
model with 30 nodes and an edge attachment probability of
0.5. In Fig. 6, we show the average prevalence rates over
time for both values of R above and below the threshold. In
Fig. 6, panel (a), we observe that the more the factor e tends
to 1, the faster the asymptotic level is reached. The ASIS
model relies on the mutual reinforcement effect between the
original network and the dual graph and this aspect can be
noticed by the fact that, when e = 0, the prevalence rates
x and y tend to be farther apart than in the case of higher
values of e. When e = 0, we actually have two separate
and independent SIS processes on the two networks. In
Fig. 6, panel (b), we notice instead that, when R is below
the epidemic threshold, for all values of e the diffusion will
die out and go to zero asymptotically. Differences between
models seem smoothed in this case, although it is confirmed
a slower convergence for the classical SIS model.

We now focus on the patterns of the prevalence rates
obtained by applying an ASIS model with fixed parameters,
and varying either the density (see Fig. 7) or the number
of nodes (see Fig. 8) of the ER graphs. We notice that
a higher density leads to a reduction of the heterogeneity
between the prevalence of nodes. On the one hand, the
structure of the network is more similar to the complete
graph and hence the variability of prevalence rates between
nodes is lower. On the other hand, a very fast convergence
toward the steady state is observed. Vice versa, very sparse
graphs lead to a higher heterogeneity between nodes as
well as a lower convergence. In terms of the self-adaptive
eigenvector centrality discussed in Section VI, this implies
larger differences in the centralities of nodes and edges.

(a)

(b)

FIG. 6: Average prevalence rates in the ASIS model for
different values of e. We consider a ER graph with 30 nodes
and density 0.5 and we set p = 1

30 . Panel (a): β = 0.004 and
γ = 0.001; panel (b): β = 0.001 and γ = 0.004.
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(a)

(b)

FIG. 7: Average (panel (a)) and standard deviation (panel
(b)) of prevalence rate distributions of the ASIS model
obtained by considering a ER graph with 30 nodes and
varying the density from 0.2 to 0.9 with steps of 0.1. We
set p = 1

30 , β = 0.004 and γ = 0.001.

(a)

(b)

FIG. 8: Average (panel (a)) and standard deviation (panel
(b)) of prevalence rate distributions of the ASIS model
obtained by considering a ER graph with a variable number
of nodes and a density equal to 0.5. We set p = 1

n , β = 0.004
and γ = 0.001.
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Moving on to consider the effect of the number of nodes
(see Fig. 8) and assuming one node infected at the beginning
of the process (i.e. p = 1

n ), we observe a slower propagation
for smaller networks. In this case, the networks have a
similar density, but when the order of the graph is higher,
although a lower probability is observed at the beginning,
the spreading dynamics increases and reaches the endemic
steady state faster. It is also noteworthy that the size of
the variability of the prevalence rates is not affected by the
number of nodes. Indeed, in Fig. 8, panel (b), we observe
that the heterogeneity between nodes and edges is similar,
but the curve is shifted forward in time due to a slower
process for smaller graphs.

We now focus on the ASIS diffusion on different graph
models. In Fig. 9, we provide a comparison of the prevalence
rates for diffusion processes above the threshold in the ER,
SW and BA models. According to the mean prevalence,
we do not observe great differences between the models.
On average, when the network has the same number of
nodes and edges, the patterns are similar with a slightly
lower endemic steady state for the BA model. However,
the topological characteristics of the BA graph are caught
in terms of a greater heterogeneity between nodes and edges
(see Fig. 9, panel (b)). Indeed, a higher volatility among
prevalence rates is noticeable for this model. This can be
explained by the fact that the BA graph follows a power-law
degree distribution, having few nodes with a significantly
higher number of connections, while the majority of nodes
have only a few connections. As a consequence, the BA
graph is favorable for information cascades due to its scale-
free nature. Influential nodes have indeed a higher chance
of triggering large-scale information cascades. This means
that information can propagate quickly through the network,
leading to widespread adoption or dissemination, and large
differences between nodes are observed at the steady state.
The differences in terms of variability between ER and
SW graphs are less relevant, although we notice that the
heterogeneity is a bit larger for SW. In SW graphs, the
presence of strong local clustering and short path lengths
allows for rapid containment of outbreaks within specific
clusters, limiting the overall spread. However, when
the infection bridges different clusters through long-range
connections, it leads to a larger-scale epidemic. The ER
graphs are more susceptible to disease spread due to the
lack of strong clustering and more random connectivity.
The absence of localized clusters hinders the containment of
outbreaks and information spread more uniformly across the
network providing a greater homogeneity between nodes.

(a)

(b)

FIG. 9: Average (panel (a)) and standard deviation (panel
(b)) of prevalence rate distributions of the ASIS model on
different graph models (ER, SW and BA, respectively). In all
cases, networks have been generated considering 30 nodes
and a density equal to 0.5. The same parameters have been
used for all models: p = 1

n , β = 0.002 and γ = 0.001.
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IX. SOCIAL REINFORCEMENT IN LATTICE AND
RANDOM NETWORKS

While epidemic models are employed to analyze the
spread of opinions and behaviors, it is important to note
that the dynamics of epidemic diffusion and of information
dissemination differ in several key aspects.

The propagation of epidemics is primarily driven by
biological factors such as transmission rates and incubation
periods, while the dissemination of information or behavior
is influenced by social and psychological factors such as
individual beliefs, social status, and personal interests.

Moreover, the spread of disease requires physical
contact, and in the absence of any policy, individuals
usually exhibit passive behavior. Conversely, the
dissemination of information, particularly in contemporary
times, predominantly happens through online connections in
addition to traditional face-to-face communication. In this
context, individuals tend to take a more active role in making
decisions, such as approving or disapproving behaviors.

By recognizing these differences, we can accurately
capture the dynamics of each type of spread and devise
effective interventions, including strategies to counteract
disease propagation and misinformation.

Hence, it has been frequently emphasized in the literature
that SIS and SIR models fail to explain the spread of
information or behavior, for example in online social
networks.38–40

For instance, in 2010, Centola conducted an influential
experiment on the spread of behavior in online social
networks.15 The experiment showed the critical role that
social reinforcement plays in the online spread of behavior.
Social reinforcement refers to the typical condition in which
an individual requires multiple prompts from peers before
adopting an opinion or behavior.18,19 Indeed, the experiment
showed that a single signal has a very weak effect on
individuals’ decision making, while redundant signals can
increase the probability of approval and behavior adoption.

Specifically, among the six networks analyzed by Centola,
three were regular networks and three were random networks
of the same size and average degree. The primary outcome of
the experiment challenges the prior assumption that random
networks are more conductive to the propagation of behavior
when compared to regular networks. In fact, behavior
spreads faster and to a greater extent in highly clustered
regular networks than in random ones, because in the former
individuals receive more redundant signals.

This evidence prompts the search for diffusion models that

involve reinforcing communication action between nodes.
In particular, Zheng et al.16 developed an interesting

model where the primary diffusion rate β , representing the
probability that an individual will adopt the behavior after
receiving the information for the first time, incorporates the
strength of social reinforcement. This reinforcement factor
considers how many times an individual receives a specific
piece of information. This aspect is particularly relevant in
online social networks, where connections are often weaker
compared to face-to-face communication. Their findings
align with the online behavioral diffusion experiment. In
fact, their model confirmed that when β takes small/medium
values, social reinforcement has an effect on the spreading
process, and spreading is faster and further in regular
networks than in random ones. For a large primary spreading
rate, an individual who receives information about her
neighbor’s behavior for the first time has a higher probability
to adopt it and to take the same action, so that the factor of
social reinforcement becomes less influential.

The ASIS model proposed in this paper automatically
incorporates a reinforcing action in the communication
between nodes. It achieves this by continuously updating the
edge weight based on the actual probability that a given node
has adopted a behavior or opinion. In particular, it avoids
the need to define extrinsic rules to update the infection
rate values. Due to these characteristics, it is well suited to
provide an accurate description of diffusion phenomena of
the nature described above.

In fact, it incorporates, in addition to the β infection and
γ recovery parameters, the reinforcement factor e defined
in Section IV B. This parameter represents the intensity
of the reinforcement action in the communication between
nodes. When e = 0, there is no reinforcement and the model
is suitable for describing disease propagation (SIS model).
When e ̸= 0, it includes such a reinforcement and is suitable
for describing the information dissemination, for example, in
online social networks (ASIS model). As e grows from 0 to
1 the intensity of the reinforcement grows accordingly.

Hence, we tested the hypothesis that the interaction
reinforcement introduced in our model and measured by
e may favor information dissemination within a regular
social network compared to a random network. To
ensure computational efficiency, we performed a variety of
numerical simulations on moderately sized binary networks.
We defer to a subsequent dedicated paper the detailed
analysis of an extended real-world network. In general,
the numerical evidence supports the results of Centola’s
experiment and aligns with the model by Zheng et al..
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We perform here a comparative analysis between random
networks, specifically Erdős-Rényi networks, and various
types of regular networks: square lattice with von-Neumann
neighborhood, square lattice with Moore neighborhood,
cycle and regular network with degree 3. In each pair
of graphs under comparison, we maintained an identical
number of nodes n and the same density δ (and consequently
the same size m). Results on random networks were averaged
over 100 different instances of Erdős-Rényi networks of type
G(n,m) with the same parameters.

In Fig. 10, we illustrate the behavior of the square lattice
with n = 25 and the corresponding random graph in the
parameter space (β ,e), where β is the infection rate and e
is the adaptive parameter of our model. In this simulation
we specifically assumed: δ = 0.1333, p = 5/25, γ = 0.02,
0.02 ≤ β ≤ 0.12 and 1 ≤ t ≤ 400. Panels (a) and (b)
show the contour plot of steady state probabilities in the
plane (β ,e), averaged over the nodes in the network. We
call these averaged values X⋆

lattice and X⋆
random for the two

kinds of network. In all the contour plots, blue represents
low probability values while red represents high values.
The horizontal slice at e = 0 represents the standard SIS
model, while the horizontal slice at e = 1 represents the
fully adaptive SIS model. As e increases from 0 to 1 (with
step 0.1), the reinforcement effect in the social interactions
increases. In general, in both panels (a) for the lattice
and (b) for the random network, in order to have the same
asymptotic probability as β increases, a lower reinforcement
effect e is sufficient. For a fixed value of β , the asymptotic
probability increases with e. In Fig. 10, panel (c), we
plot the difference X⋆

lattice−X⋆
random between the asymptotic

probability values on the lattice network and the random
network. As observed, this difference can take on positive
and negative values in the plane, contingent upon whether
diffusion predominates in the lattice model (positive values,
red in the plot) or in the random model (negative values,
blue in the plot). Let us consider, for instance, the value
β = 0.04: as e increases from 0 to 1, the difference increases
by approximately 0.1, thus showing a 10% higher probability
of diffusion in the lattice model compared to the random
model with the introduction of the reinforcement effect. The
difference proves to be significant within a specific range
of small to medium values of β , up to about 0.06. The
standard SIS model (e = 0) shows the widest interval in
which the difference is negative and, therefore, the spreading
range is much larger in random networks than in regular
networks. When β is beyond a certain value, the intensity
of the infection process becomes such that it levels out any

difference. When the reinforcement grows, the spreading
range in the regular network tends to be greater than that in
random network over a wider range of β . This evidence can
be further confirmed by observing panel (d) in Fig. 10. In
this panel we depicted the time evolution of the prevalence
curves for a fixed value β = 0.04 and for different values of
the reinforcement parameter. The solid lines represent the
lattice network, the dashed lines the random one. All solid
and dashed curves are coupled with the same color. The color
refers to the value of e, from the red one in the bottom (e= 0)
to the violet one in the top (e = 1). As can be seen, for lower
values of e the dashed lines end up above the solid lines and
the spreading is higher in the random network than in the
regular one. Conversely, for higher values of e, the solid lines
end up above the dashed one, indicating the dominance of the
spreading process in the lattice network over the random one.

For β values approximately above 0.06, the process enters
the overactive region where the infection rate is large enough
that the social reinforcement strength does not affect the
spreading range. In this case, the regular network appears
to foster diffusion better than the random one.

Let us now explore the dependence of this behavior on
network size and density. Fig. 11, panels (a)-(d), replicates
the aforementioned observations on a larger square grid
(n = 64) with a lower density δ = 0.0556. In this case,
we assumed: p = 8/64, γ = 0.02, 0.02 ≤ β ≤ 0.10 and
1 ≤ t ≤ 400. In particular, panel (c) confirms the earlier
findings with some distinctions. There is a well-identified
region in which diffusion on a random network dominates,
for β values below approximately 0.06. Again, by increasing
the parameter e with a fixed value of β , we transition toward
regions where diffusion on regular networks dominates that
on random networks, but it is notable that higher values of
the parameter are needed for this shift. Essentially, as the
density of the network decreases, a greater reinforcement
parameter is necessary to transition from one regime to
another. The dominance of diffusion on a random network
at low values of the parameter is confirmed by cases where
diffusion on a lattice leads to extinction while diffusion on
a random network reaches a stationary state, as depicted
in panel (d) for β = 0.04. In general, our conclusion
is consistent with Centola’s expectation that, in sparse
networks, reducing the network density can narrow the
difference in X⋆ between regular and random networks.
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(a)

(b)

(c)

(d)

FIG. 10: Contour plot of the steady state probabilities in the
parameter space (β ,e): in panel (a) X⋆

lattice for the square
lattice, and in panel (b) X⋆

random for the random network with
n = 25, δ = 0.1333, p = 5/25, γ = 0.02. In panel (c) contour
plot of the difference X⋆

lattice − X⋆
random. In panel (d) time

evolution of the mean prevalence for e in [0,1]. See the text
for detailed explanation.

(a)

(b)

(c)

(d)

FIG. 11: Contour plot of the steady state probabilities in the
parameter space (β ,e): in panel (a) X⋆

lattice for the square
lattice, and in panel (b) X⋆

random for the random network with
n = 64, δ = 0.0556, p = 8/64, γ = 0.02. In panel (c) contour
plot of the difference X⋆

lattice − X⋆
random. In panel (d) time

evolution of the mean prevalence for e in [0,1]. See the text
for detailed explanation.
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The analysis has been then repeated on a Moore lattice. In
this case, we obtain an interesting temporal dynamics of the
dominance of one regime over the other. Fig. 12 shows four
different time snapshots of the difference X⋆

lattice − X⋆
random

at times t = 100, t = 200, t = 300 and t = 400, the latter
representing the time at which the steady state is reached for
all values of e.

Fig. 12, panel (a), shows that in the early stages of the
epidemic there is a well-defined island for low values of
β , where the reinforcement exerts a strong pulling effect,
leading to an increase of the spread on regular networks.
Achieving the same effect over time only requires a gradually
decreasing value of e. On this type of network and with
these sizes, the adaptivity of the model appears to prevail
in the initial phases of the process, while in the final phases
the absolute values of the difference seem to decrease, while
maintaining the reinforcement effect in favor of the regular
network model. These results are in line with those obtained
in the model by Zheng et al.16.

Finally, we tested the difference between the behavior of
regular graphs, i.e. cycles and regular graphs with constant
degree equal to 3, and comparable random networks with
the same number of nodes and density. The results are
represented in Fig. 13. Panels (a) and (b) refer to a cycle
with n = 20 nodes, δ = 0.1053, p = 4/20 and γ = 0.01.
Panels (c) and (d) refer to a 3-regular graph with n = 20
nodes, δ = 0.1579, p = 4/20 and γ = 0.01. In this figure, the
contour plots refer to the asymptotic values only, at t = 400
and t = 800 respectively. The effect of reinforcement on the
setting of the regime in the two types of networks emerges
strongly. It is observed very clearly that at low values of
infectivity, as the parameter e increases, the regular graph
exhibits a higher spread of infection than the comparable
random graph.

(a)

(b)

(c)

(d)

FIG. 12: Four snapshots of the evolution the contour plot
of the difference X⋆

lattice − X⋆
random on a Moore lattice with

n = 25, δ = 0.34, p = 3/25, γ = 0.02 and t equal to (a) 100,
(b) 200, (c) 300, (d) 400.
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(a)

(b)

(c)

(d)

FIG. 13: Difference X⋆
lattice−X⋆

random and time evolution of
the prevalence for different values of e: panels (a) and (b),
cycle with n = 20, δ = 0.1053, p = 4/20 and γ = 0.01;
panels (c) and (d), 3−regular graph with n = 20, δ = 0.1579,
p = 4/20 and γ = 0.01.

X. CONCLUSION

We propose a new paradigm of interaction between a
complex network and its line graph, which is used to
implement a self-adaptive epidemic model based on the SIS
model equations on networks. We discuss the existence and
stability properties of the asymptotic solutions of the model
for general network topologies. We also provide the solution
in a closed form for some specific synthetic graphs. These
asymptotic endemic values are then interpreted as a new
centrality measure for both nodes and edges.

In its current form, the model allows for a reinforcement
action, where the probability of an edge being a transmission
channel increases as the infection probability of the nodes
connected to it increases, and vice versa. We used this
key factor to interpret the effects of reinforcement that
typically operates in online social networks during processes
of opinion or behavior adoption.

A slight variation of the model will allow the introduction
of a penalty effect, where the greater the probability of
a node being infected, the less weight is assigned to the
edges connected to it. In this way, we are confident that
we can extend the model’s capabilities to different real-
world scenarios. For instance, in the domains of viability
and navigation, the weights of links directed to a node
may decrease when its susceptibility to a particular form of
disruption or shock is identified.

Finally, we point out that the proposed idea, i.e. the
real-time interaction of a graph and its line graph, can be
extended beyond the SIS model studied here and we argue
that other dynamic processes can be effectively included in
the proposed paradigm.
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Appendix A: Application to synthetic graphs

In this Appendix, we provide analytical results for some
specific classes of graphs. We report the proof of Theorem
1 on the existence and stability of the equilibrium point for
cycle graphs. We then generalize the result to regular graphs,
that include the complete graphs as special cases. Finally, we
investigate the case of star graphs, which does not lead to a
closed solution, but to a bound on its stationary states.

1. Cycle graphs Cn

We prove Theorem 1.

Proof. The equilibrium points are solutions of the equation

x(2βx2−2βx+ γ) = 0, that is x⋆ = 0 and x⋆ = β±
√

β (β−2γ)

2β
.

It is immediate to observe that, studying the sign of the
derivative, the stable equilibrium points are only x⋆ = 0 for

β < 2γ , and x⋆ =
β+
√

β (β−2γ)

2β
for β > 2γ . If the initial

probability p is below the unstable equilibrium point, that

is if p <
β−
√

β (β−2γ)

2β
, the stable asymptotic solution is again

x⋆ = 0, since ẋ < 0. Therefore,
x⋆ = 0 if β < 2γ or β > 2γ ∧ p <

β−
√

β (β−2γ)

2β

x⋆ = 1
2

(
1+
√

1− 2γ

β

)
if β > 2γ ∧ p >

β−
√

β (β−2γ)

2β

(A1)

Recall that we set q = 1− p. Since p >
β−
√

β (β−2γ)

2β
implies

β > 2γ

1−(q−p)2 = γ

2pq , for 0 < p < 1
2 , and β > 2γ for 1

2 ≤
p < 1, we can identify τc(p) = 1

2pq as the threshold of the
epidemic dynamics on cycles for 0 < p < 1

2 . For 1
2 ≤ p < 1

the threshold becomes constant and equal to 2.

2. Regular graphs Kd
n

We now generalize the results obtained for cycle graphs
to a regular graph with n nodes, degree d < n, m = 1

2 nd
edges, and adjacency matrix BP. The corresponding line
graph is regular, has m = 1

2 nd vertices, 1
2 nd(d − 1) edges

and degree 2(d − 1). Let BD be its binary adjacency
matrix. The symmetry of matrices BP and BD ensures that
xi(t) = x(t), ∀i = 1, . . . ,n and y j(t) = y(t), ∀ j = 1, . . . ,m,
but, in general, x(t) ̸= y(t). Moreover: diagx(t) = x(t)In,

diagy(t) = y(t)Im, diag(Eum) = dIn, diag(ET un) = 2Im,
EdiagumET − diag(Eum) = BP ∈ Rn×n, and ET diagunE−
diag(ET un) = BD ∈ Rm×m, so that

AP(t) = y(t)BP

AD(t) = x(t)BD

. (A2)

For infectivity and recovery rates equal for the networks GP
and GD, Eq. (7) becomes

ẋi(t) = β [1− xi(t)]y(t)∑
n
h=1(AP)ih xh(t)− γxi(t) i = 1, . . . ,n

ẏ j(t) = β [1− y j(t)]x(t)∑
m
h=1(AD) jh yh(t)− γy j(t) j = 1, . . . ,m

(A3)

Let us handle the equation in xi(t) = x(t):

ẋ(t) =β [1− x(t)]y(t)
n

∑
h=1

(AP)ih xh(t)− γx(t)

=β [1− x(t)]y(t)x(t)
n

∑
h=1

(AP)ih− γx(t)

=βd [1− x(t)]y(t)x(t)− γx(t).

(A4)

Similarly for y(t), so that we get the system
ẋ(t) = βd [1− x(t)]y(t)x(t)− γx(t)

ẏ(t) = 2β (d−1) [1− y(t)]x(t)y(t)− γy(t)
. (A5)

The nature of the steady state equilibrium points of the
problem (A5) is characterized by the following:

Theorem 5. The stable equilibrium points of the ASIS
model on the d-regular graph Kd

n with infectivity rate β and
recovery rate γ on the network GP are given by

x⋆ = 0 if R < τr

x⋆ = 1
2

(
1− d−2

2d(d−1)R +

√
ξ

2d(d−1)R

)
if R > τr

(A6)

where R = β

γ
, ξ = [(d−2)−2d(d−1)R]2−8d2(d−1)R

and

τr =


d+(d−2)p
2d(d−1) ·

1
pq if 0 < p < 1

1+
√

2(d−1)
d[

1√
d
+ 1√

2(d−1)

]2

if 1

1+
√

2(d−1)
d

≤ p < 1
(A7)

is the threshold of the epidemic dynamics on regular graphs.
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Proof. The equilibrium points of the problem (A5) are given
by the null solutions x⋆ = 0 and y⋆ = 0 and by the solutions
of the nonlinear system

dR(1− x)y−1 = 0

2(d−1)R(1− y)x−1 = 0
. (A8)

The solving equation in x is 2d(d − 1)Rx2 +
[(d−2)−2d(d−1)R]x+d = 0. Therefore, we have

x⋆ = 1
2

(
1− d−2

2d(d−1)R ±
√

ξ

2d(d−1)R

)

y⋆ = 1
2

(
1+ d−2

2d(d−1)R ±
√

ξ

2d(d−1)R

) (A9)

with ξ = [(d−2)−2d(d−1)R]2−8d2(d−1)R. Note that
ξ ≥ 0 for 0 < R ≤ τ1∪R ≥ τ2 where

τ1,2 :=
3d−2

2d(d−1)
±

√
2

d(d−1)
=

1
d
+

1
2(d−1)

± 2√
2d(d−1)

=

(
1√
d
± 1√

2(d−1)

)2

.

(A10)
Let us focus on the steady states for the primary process. Let
us distinguish the following cases:

• τ1 < R < τ2: there is a unique equilibrium point, a
unique steady state solution and it is x⋆ = 0.

• 0 < R < τ1: the two non-trivial solutions x⋆ in Eq.
(A9) exist but they both are negative. Therefore the
sign of the right-hand side in Eq. (A5), that is the
sign of ẋ, is positive below x⋆ = 0 and negative above
x⋆ = 0. Therefore, the null solution is again the only
meaningful stable solution.

• R ≥ τ2: in addition to the null solution, both the non-
trivial solutions x⋆ in Eq. (A9) exist and they are
positive. We represent in Fig. 14 the signs of the first
derivative ẋ, where x⋆1 and x⋆2 refer to the solutions in
Eq. (A9).
To conclude the discussion about stability, let us
observe that, if the initial probability p at time t = 0
lies below the value of x⋆1 then again the only stable
steady state remains x⋆ = 0. If, instead, p > x⋆1, that is

p >
1
2

(
1− d−2

2d(d−1)R
−

√
ξ

2d(d−1)R

)
(A11)

the stable steady state becomes x⋆2. Inequality (A11)
solved for R gives

R > τr =


d+(d−2)p
2d(d−1) ·

1
pq if 0 < p < 1

1+
√

2(d−1)
d[

1√
d
+ 1√

2(d−1)

]2

if 1

1+
√

2(d−1)
d

≤ p < 1
.

FIG. 14: Sign of the derivative around the equilibrium points
x⋆1 and x⋆2.

Remark. Theorem 5 extends Theorem 1 proved for the case
of the cycle Cn. Indeed, when d = 2, we have ξ = 16R(R−
2), τ1 = 0 and τ2 = 2. Moreover 1

1+
√

2(d−1)
d

= 1
2 .

Remark. Threshold τr in Eq. (A7), in general, depends on
both p and d. There is a critical value, that is 1

1+
√

2(d−1)
d

,

which discriminates the two values of τr. In both cases τr
is a decreasing function of d, as expected. When p is below
the critical value, τr depends on p and it increases when p
decreases. Above the critical value, τr is independent of p.
Note also that it is equal to 1

2 for d = 2, and tends to
√

2−1
when d approaches +∞. Interestingly, the threshold of the
standard SIS model on a d-regular graph is 1

pλ1
= 1

p2(d−1)
and it is always lower than τr for any 0 < p < 1.

Consider as an example a regular graph with n = 6 nodes
and d = 3, so m = 9 edges. Under these conditions, the
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threshold is

τr =

{
3+p
12pq if 0 < p < 0.464
1.161 if 0.464≤ p < 1

.

(a)

(b)

FIG. 15: Prevalence x(t) for the ASIS model (in red) and
for the standard SIS model (in blue) for a graph K3

6 with (a)
β = 0.005 and γ = 0.001; (b) β = 0.002 and γ = 0.002.

In Fig. 15, panel (a), we plot the evolution of the model for
β = 0.005, γ = 0.001, then R = 5. We choose p = 1/6 =
0.167 < 0.464, so that τr = 1.9. We have R > τr and the
stable steady state is x⋆ = 0.9295435. In Fig. 15, panel (b),
we plot the evolution of the model for β = 0.002, γ = 0.002,
R = 1 and p = 1/6. Now R < τr and the asymptotic steady
state is x⋆ = 0.

Remark. We provide now a graphical interpretation of the
previous results in the x− y plane. The derivatives in Eq.
(A8) are both positive in a finite region identified by

y≥ 1
dR(1−x)

y≤ 1− 1
2(d−1)Rx

(A12)

whose boundary curves intersect at points
x⋆1 =

1
2

(
1− d−2

2d(d−1)R −
√

ξ

2d(d−1)R

)

y⋆1 =
1
2

(
1+ d−2

2d(d−1)R −
√

ξ

2d(d−1)R

)
and 

x⋆2 =
1
2

(
1− d−2

2d(d−1)R +

√
ξ

2d(d−1)R

)

y⋆2 =
1
2

(
1+ d−2

2d(d−1)R +

√
ξ

2d(d−1)R

)
(A13)

Fig. 16, panel (a), illustrates the region in Eq. (A12) and the
intersection points in Eq. (A13) for β = 0.005, γ = 0.001,
n = 6, and d = 4. Fig. 16, panel (b), illustrates the trajectory
(green line) of the time evolution of the epidemic in the x− y
plane under the same conditions and p = 1/6. The plus sign
(+) indicates the starting point of the phase diagram and
the empty circle (◦) the ending (asymptotic) point toward the
attractive stable solution.

Fig. 17, panels (a-d), illustrates the trajectories (green
line) of the evolution of the epidemic in the x− y plane when
the two nontrivial solutions in Eq. (A13) exist. Fig. 17,
panels (e-h), illustrates the analog trajectories (green line)
when the only equilibrium point is the null solution. To
better illustrate the behavior under different conditions we
have relaxed the assumption that the initial probability is
identical for nodes in network GP and nodes in network GD
and we used different values for the initial probabilities px
for the variable x and py for the variable y. In the different
panels, we used the following parameters: (a) β = 0.005,
γ = 0.001, px = 0.1, py = 0.9; (b) β = 0.005, γ = 0.001,
px = 0.9, py = 0.1; (c) β = 0.002, γ = 0.001, px = 0.10,
py = 0.15; (d) β = 0.002, γ = 0.001, px = 0.9, py = 0.9; (e)
β = 0.002, γ = 0.002, px = 1/6, py = 1/6; (f) β = 0.002,
γ = 0.002, px = 0.8, py = 0.8; (g) β = 0.002, γ = 0.002,
px = 0.2, py = 0.8; (h) β = 0.002, γ = 0.002, px = 0.8,
py = 0.2.



A Novel Self-Adaptive SIS Model 29

(a)

(b)

FIG. 16: (a) Different regions of the plane x− y according
the the asymptotic behavior of the model; (b) phase diagram
(green line) of the evolution of the probabilities x and y for
β = 0.005, γ = 0.001 and p = 1/6 in the regular graph with
n = 6 and d = 4. The plus sign (+) is the starting point, the
empty circle (◦) is the ending point.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 17: Panels (a)-(h): trajectories in the plane x− y under
the different conditions specified in the text.
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3. Star graphs Sn

Let us consider a star graph Sn with n nodes, m =
n − 1 edges, center in the node number 1 with degree
n− 1, and adjacency matrix B. The corresponding line
graph is complete, has m = n− 1 vertices, 1

2 (n− 1)(n− 2)
edges and constant degree n− 2. The symmetries in the
primary and dual processes ensure that the following apply:
xi(t) = x(t), ∀i = 2, . . . ,n and y j(t) = y(t), ∀ j = 1, . . . ,m.
Moreover: diag(x(t)) = diag(x1(t),x(t)un−1), diag(y(t)) =
y(t)diagum = y(t)Im, EdiagumET − diag(Eum) = BP ∈
Rn×n, ET diagxE− diag(ET x) = x1BD ∈ Rm×m, where BD
is the adjacency matrix of the complete graph with m nodes.
Therefore, Eq. (8) becomes

AP(t) = y(t)BP

AD(t) = x1(t)BD

(A14)

and, by components, Eq. (7) becomes


ẋ1(t) = β [1− x1(t)]y(t)∑
n
h=1(AP)1h xh(t)− γx1(t)

ẋi(t) = β [1− xi(t)]y(t)∑
n
h=1(AP)ih xh(t)− γxi(t) i = 2, . . . ,n

ẏ j(t) = β [1− y j(t)]x1(t)∑
m
h=1(AD) jh yh(t)− γy j(t) j = 1, . . . ,m

(A15)

The problem (A15) is equivalent to
ẋ1(t) = β (n−1) [1− x1(t)]y(t)x(t)− γx1(t)

ẋ(t) = β [1− x(t)]y(t)x1(t)− γx(t)

ẏ(t) = β (n−2) [1− y(t)]x1(t)y(t)− γy(t)

(A16)

The equilibrium points are, thus, given by
R(n−1) [1− x1]yx− x1 = 0

R [1− x]yx1− x = 0

R(n−2) [1− y]x1y− y = 0

(A17)

The resolution of the previous system is very cumbersome,
and a closed expression is not particularly useful.
Nonetheless, we can get some information about the steady
states. First, the relationship between the value of the
asymptotic probability for the node 1 and that for the other
nodes in the network GP, can be expressed as

x1 =
γ

β (n−2)
(n−3)x+1

1− x
. (A18)

Since it must be 0 < x1 < 1, we get an upper bound for x

x <
(n−2)R−1

(n−2)R+(n−3)
< 1. (A19)

This value represents a worst-case scenario for the infection
probability of the pendant nodes. For instance, for n = 6,
β = 0.005 and γ = 0.001, we get x < 0.826087. Eq. (A20)
for x can be used to compute the exact numerical solution for
specific values of n and R:

(n−1)(n−2)R [(n−2)R+(n−3)]x3

+
[
(n−3)2 +(n−1)(n−2)R− (n−1)(n−2)2R2]x2

+2(n−3)x+1 = 0.
(A20)

With the same parameters as before, the exact solution of the
previous equation is x = 0.818337. By this result, we get
also x1 = 0.9509388 and y = 0.9474204.
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