9

Filippo F. Favale* and Sonia Brivio On vector bundles over reducible curves with a node

DOI 10.1515/advgeom-2020-0010. Received 28 March, 2019; revised 1 November, 2019

Abstract: Let *C* be a curve with two smooth components and a single node, and let $\mathcal{U}_C(w, r, \chi)$ be the moduli space of *w*-semistable classes of depth one sheaves on *C* having rank *r* on both components and Euler characteristic χ . In this paper, under suitable assumptions, we produce a projective bundle over the product of the moduli spaces of semistable vector bundles of rank *r* on each component and we show that it is birational to an irreducible component of $\mathcal{U}_C(w, r, \chi)$. Then we prove the rationality of the closed subset containing vector bundles with given fixed determinant.

Keywords: Stability, vector bundles, nodal curves.

2010 Mathematics Subject Classification: Primary 14H60; Secondary 14D20

Communicated by: R. Cavalieri

Introduction

Moduli spaces of vector bundles on curves have always been a central topic in Algebraic Geometry. The construction of moduli space of isomorphism classes of stable vector bundle of rank *r* and degree *d* on a smooth projective curve of genus $g \ge 2$ is due to Mumford; see [15]. Such a moduli space is a non-singular quasiprojective variety, whose compactification was obtained by Seshadri in [22], by introducing the *S*-equivalence relation between semistable vector bundles, and it is denoted by $\mathcal{U}_C(r, d)$. The compactification is a normal irreducible projective variety of dimension $r^2(g - 1) + 1$. When *r* and *d* are coprime, the notion of semistability coincides with that of stability, so $\mathcal{U}_C(r, d)$ parametrizes isomorphism classes of stable vector bundles. Moreover, in this case there exists a Poincaré bundle on $\mathcal{U}_C(r, d)$, see [20]. If $L \in \text{Pic}^d(C)$ is a line bundle, the moduli space $\mathcal{S}U_C(r, L)$, parametrizing semistable vector bundles of rank *r* and fixed determinant *L*, is also of great interest. Indeed, up to a finite étale covering, the moduli space $\mathcal{U}_C(r, d)$ is isomorphic to the product of $\mathcal{S}U_C(r, L)$ and $\text{Pic}^0(C)$. Hence, a lot of the geometry of $\mathcal{U}_C(r, d)$ is encoded in $\mathcal{S}U_C(r, L)$. Moreover, $\mathcal{S}U_C(r, L)$ is interesting on its own and it is a rational variety when *r* and *d* are coprime, see [14]. The geometry of these moduli spaces has been studied by many authors, in particular its relation with generalized theta functions; see [3] for a survey, and [9], [8], [7], [6], [5] and [11] for recent works by the authors.

Unfortunately, as soon as the base curve becomes singular, the above results do not apply anymore. For example, for a singular irreducible curve, in order to have a compact moduli space one possible approach consists in considering torsion-free sheaves instead of locally free, see [18] and [23]. This method was generalized for a reducible (but reduced) curve by Seshadri. The idea was to include in the moduli space also depth one sheaves and to introduce the notion of polarization *w* and of *w*-semistability. More precisely, we denote by $\mathcal{U}_C(w, r, \chi)$ the moduli space parametrizing *w*-semistable sheaves of depth one of rank *r* on each component and Euler characteristic χ .

In this paper we assume that *C* is a nodal reducible curve with two smooth irreducible components C_1 and C_2 , of genera $g_i \ge 1$, with a single node *p*. We can obtain the curve by gluing C_1 and C_2 at the points q_1 and q_2 . Under this hypothesis, the moduli space $\mathcal{U}_C(w, r, \chi)$ is a connected reducible projective variety, see

^{*}Corresponding author: Filippo F. Favale, Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi, 55, 20125 Milano, Italy, email: filippo.favale@unimib.it

Sonia Brivio, Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi, 55, 20125 Milano, Italy, email: sonia.brivio@unimib.it

[∂] Open Access. © 2021 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

[24] and [25]; each irreducible component has dimension $r^2(p_a(C)-1)+1$ and it corresponds to a possible pair of multidegree, see Section 2 for details. For problems about the stability of Kernel bundles on such curves the reader can see [10].

Under the above hypothesis, choose any $r \ge 2$ and fix a pair of integers (d_1, d_2) which are both coprime with r. The existence of Poincaré vector bundles on the moduli spaces $\mathcal{U}_{C_i}(r, d_i)$ allows us to produce a projective bundle $\pi : \mathbb{P}(\mathcal{F}) \to \mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$, whose fiber at $([E_1], [E_2])$ is $\mathbb{P}(\text{Hom}(E_{1,q_1}, E_{2,q_2}))$, see Lemma 3.1. Let $u \in \mathbb{P}(\mathcal{F})$, $u = ((E_1], [E_2])$, $[\sigma]$), where σ is a non-zero homomorphism $E_{1,q_1} \to E_{2,q_2}$. We can associate to u a depth one sheaf E_u on the curve C, which is obtained, roughly speaking, by gluing E_1 and E_2 along the fibers at q_1 and q_2 with σ . This is a vector bundle if and only if σ is an isomorphism. Our first concern is to study when E_u turns out to be w-semistable for some polarization w: we are able to give some necessary and sufficient conditions to ensure w-semistability (see Section 3). Then we turn our attention to the rational map

$$\varphi : \mathbb{P}(\mathcal{F}) - \rightarrow \mathcal{U}_{\mathcal{C}}(w, r, \chi)$$

sending u to E_u . Our first result (Theorem 4.1) can be summarized in the following statement:

Theorem A. Let *C* be a reducible nodal curve as above. Let $r \ge 2$ and d_1 and d_2 be integers coprime with *r*. Set $\chi_i = d_i + r(1 - g_i)$ and $\chi = \chi_1 + \chi_2 - r$. For any pair (χ_1, χ_2) in a suitable non-empty subset of \mathbb{Z}^2 there exists a polarization *w* such that $\mathbb{P}(\mathcal{F})$ is birational to the irreducible component of the moduli space $\mathcal{U}_C(w, r, \chi)$ corresponding to the bidegree (d_1, d_2) .

The birational map of the statement is the map φ . We prove that it is an injective morphism on the open subset $\mathscr{U} \subset \mathbb{P}(\mathcal{F})$, given by points u where σ is an isomorphism. The image $\varphi(\mathscr{U})$ is a dense subset of the moduli space and its points are classes of vector bundles whose restriction to each component is stable (see Theorem 4.1). Moreover, when $g_i > r+1$, we can give some more information about the domain of φ as follows, see Theorem 4.3.

Theorem B. Assume that the hypothesis of Theorem A holds. If $g_i > r + 1$, then for any pair (χ_1, χ_2) in a suitable non-empty subset of \mathbb{Z}^2 there exists a non-empty open subset $V_1 \times V_2$ of $\mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$ and a polarization w such that $\varphi|_{\mathscr{U} \cup \mathscr{V}}$ is a morphism, where we set $\mathscr{V} = \pi^{-1}(V_1 \times V_2)$.

Then, in analogy with the smooth case, for any $L \in \text{Pic}(C)$ we define the variety $SU_C(w, r, L)$ which is, roughly, the closure in $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ of the locus parametrizing classes of vector bundles with fixed determinant L where $d_i = \deg(L|_{C_i})$. When r and d_i are coprime, as in the smooth case, we obtain the following result, see Theorem 5.2:

Theorem C. Under the hypothesis of Theorem A, $SU_C(w, r, L)$ is a rational variety.

Recent results concerning rationality of these moduli spaces on reducible curves are obtained in [12] and [2] in the case of rank two, and in [4] for an integral irreducible nodal curve.

The paper is organized as follows. In Section 1 we fix notation about reducible nodal curves. In Section 2 we introduce the notion of depth one sheaves, of polarization and *w*-semistability and we recall general properties on their moduli spaces. In Section 3 we introduce the projective bundle $\mathbb{P}(\mathcal{F})$, we define the sheaf E_u associated to $u \in \mathbb{P}(\mathcal{F})$ and we study when it is *w*-semistable. In Section 4 we prove Theorems A and B. Finally, in Section 5 we deal with moduli spaces with fixed determinant and we prove Theorem C.

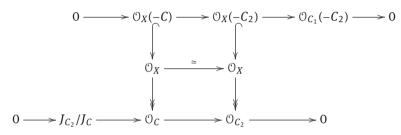
Acknowledgements: We would like to thank Alessandro Verra for comments on a preliminary version of this paper and the referee for several valuable advices. We are grateful to Prof. P. E. Newstead and Prof. A. Dey for suggesting us some references.

Funding: Both authors are partially supported by INdAM - GNSAGA.

1 Nodal reducible curves

In this paper we consider nodal reducible complex projective curves with two smooth irreducible components and one single node. Let *C* be such a curve; we consider a normalization map $v : C_1 \sqcup C_2 \to C$, where C_i is a smooth irreducible curve of genus $g_i \ge 1$. Hence $v^{-1}(x)$ is a single point except when *x* is the node *p* of *C*, in which case $v^{-1}(p) = \{q_1, q_2\}$ with $q_j \in C_j$. Since the restriction $v_{|C_i}$ is an isomorphism we identify C_1 and C_2 with the irreducible components of *C*.

Note that *C* can be embedded in a smooth surface *X*, on which *C* is an effective divisor $C = C_1 + C_2$ with $C_1C_2 = 1$. Let $J_C = \bigcirc_X(-C)$ and $J_{C_i} = \bigcirc_X(-C_i)$ be the ideal sheaves of *C* and C_i respectively in *X*; then we have the inclusion $J_C \subset J_{C_i}$ and the following commutative diagram



from which one deduces the isomorphism $J_{C_2}/J_C \simeq \mathcal{O}_{C_1}(-C_2)$. This gives the exact sequence

$$0 \to \mathcal{O}_{\mathcal{C}_1}(-\mathcal{C}_2) \to \mathcal{O}_{\mathcal{C}} \to \mathcal{O}_{\mathcal{C}_2} \to 0, \tag{1.1}$$

which is called the *decomposition sequence of C*. From it we can compute the Euler characteristic of \mathcal{O}_C :

$$\chi(\mathcal{O}_C) = \chi(\mathcal{O}_{C_1}(-C_2)) + \chi(\mathcal{O}_{C_2}).$$

Let $p_a(C) = 1 - \chi(\mathcal{O}_C)$ be the *arithmetic genus* of *C*. From the above relation we get that $p_a(C) = g_1 + g_2$.

Notation 1.1. We denote by $j_i: C_i \hookrightarrow C$ the natural inclusion of C_i in C, by \mathcal{O}_{q_i} the stalk of $(j_i)_* \mathcal{O}_{C_i}$ in p and by \mathcal{O}_p the stalk of \mathcal{O}_C in p.

2 Moduli space of depth one sheaves

Let *C* be a smooth irreducible projective curve of genus $g \ge 1$. The moduli space of semistable vector bundles of rank *r* and degree *d* on *C* is denoted by $\mathcal{U}_C(r, d)$. Its points are *S*-equivalence classes of semistable vector bundles on the curve. We denote by [*E*] the class of a vector bundle *E*. In [23] it is proved that $\mathcal{U}_C(r, d)$ is an irreducible and projective variety. Moreover, see [23] and [26], we have:

$$\dim \mathcal{U}_{\mathcal{C}}(r, d) = \begin{cases} r^2(g-1) + 1 & g \ge 2\\ \gcd(r, d) & g = 1. \end{cases}$$
(2.1)

In particular, when *r* and *d* are coprime, $U_C(r, d)$ is a smooth variety, whose points parametrizes isomorphism classes of stable vector bundles. Moreover, for g = 1, we also have an isomorphism $U_C(r, d) \simeq C$; see [1] and [26].

Let *C* be a nodal curve with a single node *p* and two smooth irreducible components C_1 and C_2 . To construct compactifications of moduli spaces of vector bundles on *C* we introduce depth one sheaves, following the approach of Seshadri [23].

Definition 2.1. A coherent sheaf *E* on *C* is of *depth one* if every torsion section vanishes identically on some components of *C*.

A coherent sheaf *E* on *C* is of depth one if and only if the stalk at the node *p* is isomorphic to $\mathcal{O}_p^a \oplus \mathcal{O}_{q_1}^b \oplus \mathcal{O}_{q_2}^c$, see [23]. In particular, any vector bundle *E* on *C* is a sheaf of depth one. If *E* is a sheaf of depth one on *C*, then its restriction $E|_{C_i}$ is a torsion free sheaf on $C_i \setminus p$ (possibly identically zero). Moreover, any subsheaf of *E* is of depth one too.

Let *E* be a sheaf of depth one on *C*. We define the *relative rank* of *E* on the component C_i as the rank of the restriction $E_i = E_{|C_i|}$ of *E* to C_i

$$r_i = \operatorname{Rk}(E_i) \tag{2.2}$$

and the *multirank* of *E* as the pair (r_1 , r_2). We define the *relative degree* of *E* with respect to the component C_i as the degree of the restriction E_i

$$d_i = \deg(E_i) = \chi(E_i) - r_i \chi(\mathcal{O}_{C_i}), \tag{2.3}$$

where $\chi(E_i)$ is the Euler characteristic of E_i . The *multidegree* of *E* is the pair (d_1, d_2) .

Definition 2.2. A *polarization* w of C is given by a pair of rational weights (w_1, w_2) such that $0 < w_i < 1$ and $w_1 + w_2 = 1$. For any sheaf E of depth one on C, of multirank (r_1, r_2) and $\chi(E) = \chi$, we define the *polarized slope* as

$$\mu_w(E)=\frac{\chi}{w_1r_1+w_2r_2}.$$

Definition 2.3. Let *E* be a sheaf of depth one on *C*. *E* is called *w*-*semistable* if for any subsheaf $F \subseteq E$ we have $\mu_w(F) \leq \mu_w(E)$; *E* is called *w*-*stable* if $\mu_w(F) < \mu_w(E)$ for all proper subsheafs *F* of *E*.

For each *w*-semistable sheaf *E* of depth one on *C* there exists a finite filtration of sheaves of depth one on *C*:

$$0 = E^0 \subset E^1 \subset E^2 \subset \cdots \subset E^k = E$$

such that each quotient E^i/E^{i-1} is a *w*-stable sheaf of depth one on *C* with polarized slope $\mu_w(E^i/E^{i-1}) = \mu_w(E)$. This is called a *Jordan–Holder filtration* of *E*. The sheaf

$$Gr_w(E) = \bigoplus_{i=1}^k E^i / E^{i-1}$$

is called the *graduate sheaf associated to E* and it depends only on the isomorphism class of *E*. Let *E* and *F* be *w*-semistable sheaves of depth one on *C*. We say that *E* and *F* are S_w -equivalent if and only if $Gr_w(E) \simeq Gr_w(F)$. If *E* and *F* are *w*-stable sheaves then S_w -equivalence is just isomorphism, as in the smooth case.

There exists a moduli space $\mathcal{U}_{C}^{c}(w, (r_{1}, r_{2}), \chi)$ parametrizing isomorphism classes of *w*-stable sheaves of depth one on *C* of multirank (r_{1}, r_{2}) and given Euler characteristic χ , see [23]. It has a natural compactification $\mathcal{U}_{C}(w, (r_{1}, r_{2}), \chi)$, whose points correspond to S_{w} -equivalence classes of *w*-semistable sheaves of depth one on *C* of multirank (r_{1}, r_{2}) and given Euler characteristic χ . In particular, when $r_{1} = r_{2} = r$, we denote by $\mathcal{U}_{C}(w, r, \chi)$ the corresponding moduli space. In this case we have the following result (see [24] and [25]):

Theorem 2.1. Let *C* be a nodal curve with a single node *p* and two smooth irreducible components C_i of genus $g_i \ge 1$, i = 1, 2. For a generic polarization *w* we have the following properties:

(1) any w-stable vector bundle $E \in U_C(w, r, \chi)$ satisfies the following condition:

$$w_i \chi(E) \le \chi(E_i) \le w_i \chi(E) + r, \tag{2.4}$$

where E_i is the restriction of E to C_i ;

- (2) if a vector bundle *E* on *C* satisfies the above condition for i = 1, 2 and the restrictions E_1 and E_2 are semistable vector bundles, then *E* is w-semistable. Moreover, if at least one of the restrictions is stable, then *E* is w-stable;
- (3) the moduli space $U_C(w, r, \chi)$ is connected, each irreducible component has dimension $r^2(p_a(C) 1) + 1$ and it corresponds to the choice of a multidegree (d_1, d_2) satisfying Conditions 2.4.

Definition 2.4. We denote by $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ the irreducible component of $\mathcal{U}_C(w, r, \chi)$ corresponding to the multidegree (d_1, d_2) .

3 Construction of depth one sheaves

In this section we deal with the construction of depth one sheaves on a nodal curve C with two irreducible components and a single node. We begin with the following lemma:

Lemma 3.1. Let C_1 and C_2 be smooth complex projective curves of genus $g_i \ge 1$, i = 1, 2, and $q_i \in C_i$. Fix $r \ge 2$ and $d_1, d_2 \in \mathbb{Z}$ such that r is coprime with both d_1 and d_2 . Then there exists a projective bundle

$$\pi: \mathbb{P}(\mathcal{F}) \to \mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$$

such that the fiber over $([E_1], [E_2])$ is $\mathbb{P}(\text{Hom}(E_{1,q_1}, E_{2,q_2}))$, where E_{i,q_i} is the fiber of E_i at the point q_i .

Proof. As *r* and *d_i* are coprime, there exists a Poincaré bundle \mathcal{P}_i for the moduli space of semistable vector bundles on *C_i* of rank *r* and degree *d_i*, i.e. a vector bundle \mathcal{P}_i on $\mathcal{U}_{C_i}(r, d_i) \times C_i$ such that $\mathcal{P}_i|_{[E_i] \times C_i} \simeq E_i$, under the identification $[E_i] \times C_i \simeq C_i$. This follows from a result of [20] if $g_i \ge 2$ and from the isomorphism $\mathcal{U}_{C_i}(r, d_i) \simeq C_i$ when $g_i = 1$. For i = 1, 2, consider the natural inclusion

$$\iota_i: \mathfrak{U}_{\mathcal{C}_i}(r, d_i) \times q_i \hookrightarrow \mathfrak{U}_{\mathcal{C}_i}(r, d_i) \times \mathcal{C}_i,$$

and the pull back $\iota_i^*(\mathcal{P}_i)$ of the Poincaré bundle. Since $\mathcal{U}_{C_i}(r, d_i) \times q_i$ is isomorphic to $\mathcal{U}_{C_i}(r, d_i)$, $\iota_i^*(\mathcal{P}_i)$ can be seen as a vector bundle on $\mathcal{U}_{C_i}(r, d_i)$ of rank r whose fiber at $[E_i]$ is actually E_{i,q_i} .

Note that the product $\mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$ is a smooth irreducible variety. Let p_1 and p_2 denote the projections of the product onto factors. We define on $\mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$ the following sheaf:

$$\mathcal{F}: = \mathcal{H}om(p_1^*(\iota_1^*(\mathcal{P}_1)), p_2^*(\iota_2^*(\mathcal{P}_2))).$$
(3.1)

By construction, \mathcal{F} is a vector bundle of rank r^2 whose fiber at the point ($[E_1], [E_2]$) is Hom(E_{1,q_1}, E_{2,q_2}). By taking the associated projective bundle we conclude the proof.

Let C_1 and C_2 be smooth irreducible curves. We consider a nodal curve C with two smooth components and a single node p which is obtained by identifying the points $q_1 \in C_1$ and $q_2 \in C_2$. Let E_i be a stable vector bundle of rank r and degree d_i on C_i and consider a non-zero homomorphism $\sigma : E_{1,q_1} \to E_{2,q_2}$ between the fibres. Assume that the rank of σ is k, with $1 \leq k \leq r$. We can associate to these data a depth one sheaf on the nodal curve C, roughly speaking, by gluing the vector bundles E_1 and E_2 along the fibers (at q_1 and q_2 respectively) with the homomorphism σ , as follows:

Let j_p be the inclusion of p in C and let $j_i: C_i \to C$ be the inclusion of C_i in C for i = 1, 2. The sheaf $j_{i*}E_i$ is a depth one sheaf on C whose stalk at p is the stalk of E_i at q_i . Hence, there is a natural surjective map given by restriction onto the fiber of E_i at q_i , i.e. the map

$$o_i: j_{i*}E_i \to E_{i,q_i}.$$

The sheaf $j_{1*}(E_1) \oplus j_{2*}(E_2)$ is of depth one on *C* and we have a surjective map

$$\rho_1 \oplus \rho_2 \colon j_{1*}E_1 \oplus j_{2*}E_2 \to E_{1,q_1} \oplus E_{2,q_2}.$$

The sheaf $j_{p_*}j_{p_*}j_{2_*}(E_2)$ has depth one too, and it is a skyscraper sheaf over p whose stalk is E_{2,q_2} . So we have again a surjective map

$$\rho: j_{p_*} j_{p^*} j_{2_*}(E_2) \to E_{2,q_2}.$$

Let $\sigma: E_{1,q_1} \to E_{2,q_2}$ be a non-zero homomorphism and consider the induced surjective map

$$\sigma \oplus id \colon E_{1,q_1} \oplus E_{2,q_2} \to \operatorname{Im}(\sigma) \oplus E_{2,q_2}.$$

We have, moreover, the map

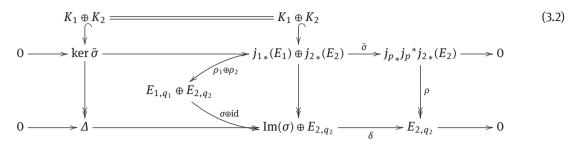
$$\delta: \operatorname{Im}(\sigma) \oplus E_{2,q_2} \to E_{2,q_2}$$

which sends (u, v) to u - v. We denote by $\Delta \subset \text{Im}(\sigma) \oplus \text{Im}(\sigma)$ the diagonal. By construction we have $\Delta \simeq \mathbb{C}_p^k$.

Finally we define the map of sheaves

$$\tilde{\sigma}: j_{1*}(E_1) \oplus j_{2*}(E_2) \to j_{p*}j_{p*}j_{2*}(E_2)$$

by requiring that the following diagram commutes.



It follows immediately by construction that ker $\tilde{\sigma}$ is a sheaf of depth one on *C*, which coincides with E_i on $C_i \setminus p$. One can easily see that the isomorphism class of ker $\tilde{\sigma}$ does not depend on the isomorphism classes of the E_i . Moreover, the same happens if one uses $\sigma' = \lambda \sigma$ with $\lambda \in \mathbb{C}^*$, instead of σ .

From now on, we assume that the hypothesis of Lemma 3.1 holds. Let $\mathbb{P}(\mathcal{F})$ be the projective bundle on $\mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$. We can conclude that the construction of ker $\tilde{\sigma}$ depends on the data contained in $u = (([E_1], [E_2]), [\sigma]) \in \mathbb{P}(\mathcal{F})$ and not on the particular choices of E_1, E_2 and σ .

Definition 3.1. We denote by E_u the kernel of $\tilde{\sigma}$ defined by $u \in \mathbb{P}(\mathcal{F})$.

The above construction gives the following:

Proposition 3.2. Let E_u be the sheaf defined by $u = (([E_1], [E_2]), [\sigma]) \in \mathbb{P}(\mathcal{F})$. Then E_u is a depth one sheaf on C with $\chi(E_u) = \chi(E_1) + \chi(E_2) - r$ and multirank (r, r). It is a vector bundle if and only if σ is an isomorphism. In this case, $E_{u|C_i} = E_i$.

Proof. Let $\operatorname{Rk}(\sigma) = k$. Since E_u is a depth one sheaf, the stalk of E_u at the node p is isomorphic to $\bigcirc_{p}^{a} \oplus \bigcirc_{q_1}^{b} \oplus \bigcirc_{q_1}^{c} \oplus \bigcirc_{q_1}^{c}$ where $a + b = \operatorname{Rk}(E_u|C_1) = r$ and $a + c = \operatorname{Rk}(E_u|C_2) = r$ (see Section 2). From the diagram 3.2, it follows that the rank of the free part of the stalk of E_u in p is k, so a = k. Hence we have $E_u|_p \approx \bigcirc_{p}^{k} \oplus \bigcirc_{q_1}^{r-k} \oplus \bigcirc_{q_2}^{r-k}$. In particular, E_u is a vector bundle if and only if k = r, i.e. exactly when σ is an isomorphism.

In order to obtain a *w*-semistable sheaf, for some polarization *w*, the following condition is necessary:

Lemma 3.3. Let $E = E_u$ be the sheaf defined by $u = (([E_1], [E_2]), [\sigma]) \in \mathbb{P}(\mathcal{F})$ and let k be the rank of σ . If E is *w*-semistable for some w, then the following conditions are satisfied:

$$\chi(E)w_1 \le \chi(E_1) \le \chi(E)w_1 + k \quad and \quad \chi(E)w_2 + r - k \le \chi(E_2) \le \chi(E)w_2 + r.$$
(3.3)

Proof. Assume that *E* is *w*-semistable for a polarization *w*. Let K_1 be the kernel of the map

$$\sigma \circ \rho_1 : j_{1*}E_1 \to \operatorname{Im} \sigma,$$

and let K_2 be the kernel of the map $\rho_2: j_{2*}E_2 \to E_{2,q_2}$ as in diagram 3.2. Since K_i is a subsheaf of E, by *w*-semistability of E we have $\mu_w(K_i) \leq \mu_w(E)$. We also have $\mu_w(K_1) = \frac{\chi(E_1) - k}{w_1 r} \leq \frac{\chi(E)}{w_1 r}$, which implies

$$\chi(E_1) \le \chi(E) w_1 + k.$$

By replacing $\chi(E_1) = \chi(E) - \chi(E_2) + r$ in the above inequality, we obtain

$$\chi(E_2) \ge \chi(E)w_2 + r - k.$$

Finally, we have $\mu_w(K_2) = \frac{\chi(K_2)}{w_2 r} = \frac{\chi(E_2) - r}{w_2 r} \le \frac{\chi(E)}{r}$, which implies

$$\chi(E_2) \le \chi(E)w_2 + r.$$

Again, by replacing $\chi(E_2) = \chi(E) - \chi(E_1) + r$ we obtain $\chi(E_1) \ge \chi(E)w_1$.

Given $u = (([E_1], [E_2]), [\sigma])$ and E_u defined by u, we wonder if there exists a polarization w such that the above Conditions 3.3 hold. The answer depends only on numerical assumptions on $(\chi(E_1), \chi(E_2))$ and Rk σ , as the following lemma shows.

Lemma 3.4. Let $r \ge 2$ and $1 \le k \le r$ be integers. There exists a non-empty subset $W_{r,k} \subset \mathbb{Z}^2$ such that for any pair $(\chi_1, \chi_2) \in W_{r,k}$ we can find a polarization w satisfying the conditions

$$\chi w_1 \le \chi_1 \le \chi w_1 + k$$
 and $\chi w_2 + r - k \le \chi_2 \le \chi w_2 + r$, where $\chi = \chi_1 + \chi_2 - r$. (3.4)

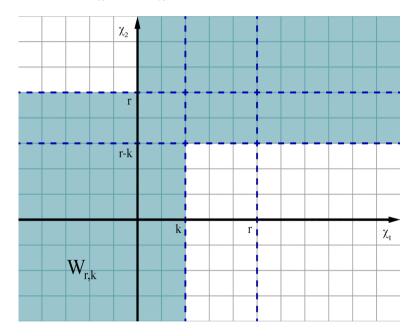
Proof. Note that if $\chi = 0$, i.e. $\chi_1 + \chi_2 = r$ and we assume that $0 \le \chi_1 \le r$, then any polarization *w* satisfies Conditions 3.4. We distinguish two cases according to the sign of χ . Assume that $\chi > 0$. Then there exists a polarization *w* satisfying Conditions 3.4, if and only if the following system has solutions:

$$\frac{\chi_1-k}{\chi} \le w_1 \le \frac{\chi_1}{\chi}, \qquad \frac{\chi_2-r}{\chi} \le w_2 \le \frac{\chi_2+k-r}{\chi}, \qquad w_1+w_2=1, \qquad 0 < w_i < 1, w_i \in \mathbb{Q}.$$

This occurs if and only if $\chi_1 > 0$ and $\chi_2 > r - k$. Likewise, if $\chi < 0$, then we have the system

$$\frac{\chi_1}{\chi} \le w_1 \le \frac{\chi_1 - k}{\chi}, \qquad \frac{\chi_2 - r + k}{\chi} \le w_2 \le \frac{\chi_2 - r}{\chi}, \qquad w_1 + w_2 = 1, \qquad 0 < w_i < 1, w_i \in \mathbb{Q},$$

which has solutions if and only if $\chi_1 < k$ and $\chi_2 < r$.



Remark 3.1. Let $W_r = \bigcap_{k=1}^r W_{r,k}$. Note that it is a non-empty subset and it is actually $W_{r,1}$. Moreover, if $(\chi_1, \chi_2) \in W_r$, then by the proof of Lemma 3.4 it follows that we can find a polarization *w* which satisfies the Conditions 3.4 for all k = 1, ..., r.

Assume that $\operatorname{Rk} \sigma = r$, i.e. *E* is a vector bundle. Then the necessary conditions of Lemma 3.3 are the same in Theorem 2.1. Hence, by the above theorem, they are also sufficient to give *w*-semistability of *E*. So we obtain the following:

Corollary 3.5. Let $E = E_u$ be the sheaf defined by $u = (([E_1], [E_2]), [\sigma]) \in \mathbb{P}(\mathcal{F})$. Assume that $\operatorname{Rk} \sigma = r$ and $(\chi(E_1), \chi(E_2)) \in W_{r,r}$. Then there exists a polarization w such that E is w-semistable. In particular, since the E_i are stable, then E is w-stable too.

Unfortunately, when E_u fails to be a vector bundle, the necessary conditions of Lemma 3.3 are not enough to ensure *w*-semistability, see [25] for an example. Nevertheless, we are able to produce an open subset of $\mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_1}(r, d_1)$ such that for every *u* over this open subset, the sheaf E_u is *w*-semistable.

We recall the following definition, see [16].

Definition 3.2. Let *G* be a vector bundle on a smooth curve. For every integer *k* we set

$$\mu_k(G) = \frac{\deg(G) + k}{\operatorname{Rk}(G)}$$

A vector bundle G is called (m, k)-semistable (respectively stable) if for any subsheaf F we have

$$\mu_m(F) \le \mu_{m-k}(G)$$
 (respectively <).

Proposition 3.6. Let $E = E_u$ be the sheaf defined by $u = (([E_1], [E_2]), [\sigma]) \in \mathbb{P}(\mathcal{F})$. Assume that $\operatorname{Rk} \sigma = k \leq r-1$. If $(\chi(E_1), \chi(E_2)) \in W_{r,k}$, E_1 is (0, k)-semistable and E_2 is (0, r)-semistable, then there exists a polarization w such that E is w-semistable. Moreover, if E_1 is (0, k)-stable or E_2 is (0, r)- stable, then E is w-stable too.

Proof. Since $(\chi(E_1), \chi(E_2)) \in W_{r,k}$, by Lemma 3.4 there exists a polarization *w* such that the necessary Conditions 3.3 hold. We claim that if E_1 is (0, k)-semistable and E_2 is (0, r)-semistable, then *E* is *w*-semistable.

Let $F \,\subset E$ be a subsheaf; it is a sheaf of depth one too. Assume that F has multirank (s_1, s_2) and that at the node p the stalk of F is $\mathcal{O}_p^s \oplus \mathcal{O}_{q_1}^a \oplus \mathcal{O}_{q_2}^b$ with $s \ge 0$, $s_1 = s + a \le r$ and $s_2 = s + b \le r$. Since $\operatorname{Rk} \sigma = k$, by construction the free part of the stalk of E at p is \mathcal{O}_p^k . This implies that $0 \le s \le k$.

By construction, there exist two vector bundles $F_1 \subseteq E_1$ and $F_2 \subseteq E_2$ such that F is the kernel of the restriction of $\tilde{\sigma}$ to the subsheaf $j_{1*}(F_1) \oplus j_{2*}(F_2)$:

$$\tilde{\sigma}_{|j_{1*}(F_1)\oplus j_{2*}(F_2)}: j_{1*}(F_1)\oplus j_{2*}(F_2) \to j_{p*}j_{p*}j_{2*}(E_2).$$

Proceeding as in the diagram 3.2, we deduce that *F* fits into an exact sequence as follows:

$$0 \to G_1 \oplus G_2 \to F \to \mathbb{C}_p^s \to 0,$$

where G_1 is the kernel of $(\sigma \circ \rho_1)|_{F_1}$ and G_2 is the kernel of $\rho_2|_{F_2}$. Hence $G_i \subseteq K_i$. Note that if s = 0, then actually $F \simeq G_1 \oplus G_2$.

For any *s*, we compute the *w*-slope of *F*:

$$\mu_w(F) = \frac{\chi(F)}{w_1 s_1 + w_2 s_2} = \frac{\chi(G_1) + \chi(G_2) + s}{w_1 s_1 + w_2 s_2} = \frac{\deg(G_1) + s_1(1 - g_1) + \deg(G_2) + s_2(1 - g_2) + s}{w_1 s_1 + w_2 s_2}$$

Since E_1 is (0, k)-semistable, we have

$$\frac{deg(G_1)}{s_1} \leq \frac{d_1 - k}{r}.$$

Since E_2 is (0, r)-semistable, $E_2(-q_2)$ is (0, r)-semistable too, so we have

$$\frac{deg(G_2)}{s_2} \leq \frac{d_2-2r}{r}.$$

By replacing we obtain:

$$\mu_{w}(F) \leq \frac{1}{w_{1}s_{1} + w_{2}s_{2}} \left[s_{1}w_{1} \left(\frac{(d_{1} - k) + r(1 - g_{1})}{w_{1}r} \right) + s_{2}w_{2} \left(\frac{(d_{2} - r) + r(1 - g_{2})}{w_{2}r} \right) + s - s_{2} \right] = \frac{s_{1}w_{1}}{w_{1}s_{1} + w_{2}s_{2}} \mu_{w}(K_{1}) + \frac{s_{2}w_{2}}{w_{1}s_{1} + w_{2}s_{2}} \mu_{w}(K_{2}) + \frac{s - s_{2}}{w_{1}s_{1} + w_{2}s_{2}}.$$
 (3.5)

By Lemma 3.3 we have $\mu_w(K_i) \le \mu_w(E)$, so we obtain:

$$\mu_w(F) \le \mu_w(E) + \frac{s - s_2}{w_1 s_1 + w_2 s_2}.$$

Since $s - s_2 \le 0$, we have $\mu_w(F) \le \mu_w(E)$.

Finally, if E_1 is (0, k)-stable or E_2 is (0, r)-stable, then the above inequality is strict.

Note that, by definition, if E_i is (0, r)-stable, then it is also (0, k)-stable for all $k \le r$.

Lemma 3.7. Let $U_{C_i}(r, d_i)$ be the moduli space of semistable vector bundles of rank r and degree d_i on a smooth curve C_i of genus g_i . If d_i and r are coprime and $g_i > r + 1$, then the locus of vector bundles of $U_{C_i}(r, d_i)$ which are (0, r)-stable is a non-empty open subset of $U_{C_i}(r, d_i)$.

Proof. We consider the locus

$$Y = \{ [E] \in \mathcal{U}_{C_i}(r, d_i) \mid E \text{ is not } (0, r) - \text{stable} \}$$

and the subset $Y_{a,s}$ of Y given by all stable vector bundles E which can be written as $0 \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0$, where F is a subbundle of E with deg(F) = a and Rk(F) = $s \le r - 1$ and

$$\mu(E) - 1 = \mu_{-r}(E) \le \mu(F) \le \mu_0(E) = \mu(E).$$

A deformation argument (see the proof of Proposition 1.4 of [21]) shows that if $Y_{a,s} \neq \emptyset$, then for a general *E* in $Y_{a,s}$ both *F* and *Q* are stable. Moreover, since *E* is stable, we have Hom(*Q*, *F*) = 0. Hence we can write

$$\dim Y_{a,s} \leq \dim \mathcal{U}_{C_i}(s, a) + \dim \mathcal{U}_{C_i}(r - s, d_i - a) + \dim H^1(C_i, \mathcal{H}om(Q, F)) - 1 = = (g_i - 1)(r^2 - rs + s^2) + 1 + (d_i s - ar).$$

Hence

$$\dim U_{C_i}(r, d_i) - \dim Y_{a,s} \ge (g_i - 1)(rs - s^2) - (d_i s - ar).$$

Since $E \in Y$, we have $\mu_0(F) \ge \mu_{-r}(E)$, i.e.

$$\frac{a}{s} \geq \frac{d_i - r}{r},$$

which implies $d_i s - ar \le rs$. Finally, if $g_i > 1 + r$, then for all $s \le r - 1$ we have

$$\dim \mathcal{U}_{C_i}(r, d_i) - \dim Y_{a,s} \ge s[(g_i - 1)(r - s) - r] > 0,$$

which concludes the proof.

4 Main results

In this section we prove our main results. We assume that the hypothesis of Lemma 3.1 is satisfied. Let $\mathbb{P}(\mathcal{F})$ be the projective bundle on $\mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$. For $1 \le k \le r - 1$ let \mathcal{B}_k be the subset of $\mathbb{P}(\mathcal{F})$ such that

 $\mathcal{B}_k \cap \pi^{-1}([E_1], [E_2]) = \{ [\sigma] \in \mathbb{P}(\operatorname{Hom}(E_{1,q_1}, E_{2,q_2})) \mid \operatorname{Rk}(\sigma) \le k \}.$

It is a proper closed subvariety of $\mathbb{P}(\mathcal{F})$.

Definition 4.1. We denote by \mathscr{U} the open subset given by the complement of \mathcal{B}_{r-1} in $\mathbb{P}(\mathcal{F})$.

Remark 4.1. Note that dim $\mathcal{U} = \dim \mathbb{P}(\mathcal{F}) = r^2(g_1 + g_2 - 1) + 1$. Denote by $\pi_{\mathcal{U}}$ the restriction of π to \mathcal{U} . By construction,

$$\pi_{\mathscr{U}}: \mathscr{U} \to \mathfrak{U}_{\mathcal{C}_1}(r, d_1) \times \mathfrak{U}_{\mathcal{C}_2}(r, d_2)$$

is a fiber bundle whose fibers are isomorphic to PGL(r). More precisely,

$$\pi_{\mathscr{U}}^{-1}([E_1], [E_2]) = \mathbb{P}(\mathrm{GL}(E_{1,q_1}, E_{2,q_2})).$$

For $\chi = d_1 + d_2 + r(1 - g_1 - g_2)$, let $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ be the irreducible component of the moduli space of depth one sheaves on *C* of rank *r* and characteristic χ corresponding to the multidegree (d_1, d_2) ; see Section 2. Let $\mathcal{V}_C(w, r, \chi)_{d_1, d_2} \subset \mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ be the subset parametrizing classes of vector bundles.

Theorem 4.1. Let *C* be a nodal curve with a single node *p* and two smooth irreducible components C_i of genus $g_i \ge 1$. Fix $r \ge 2$. For any $d_i \in \mathbb{Z}$ we set $\chi_i = d_i + r(1 - g_i)$ and $\chi = d_1 + d_2 + r(1 - g_1 - g_2)$. Assume that *r* is coprime with both d_1 and d_2 and that $(\chi_1, \chi_2) \in W_{r,r}$. Then there exists a polarization *w* such that the map

$$\rho: \mathbb{P}(\mathcal{F}) - \to \mathcal{U}_{\mathcal{C}}(w, r, \chi)_{d_1, d_2}$$

sending *u* to $[E_u]$ is birational. In particular, the restriction $\varphi|_{\mathscr{U}}$ is a an injective morphism and the image $\varphi(\mathscr{U})$ is contained in $\mathcal{V}_C(w, r, \chi)_{d_1, d_2}$.

Proof. Let $u = (([E_1], [E_2]), [\sigma]) \in \mathbb{P}(\mathcal{F})$ and consider the sheaf $E = E_u$ defined by u, as in Section 3. Since $(\chi_1, \chi_2) \in \mathcal{W}_{r,r}$, as a consequence of Lemma 3.4 and Corollary 3.5 there exists a polarization w such that E_u is w-semistable for every $u \in \mathcal{U}$. This gives a point in the moduli space $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ and it shows that φ is well defined at least on \mathcal{U} .

We prove that $\varphi_{|\mathscr{U}}$ is injective. Let $u = (([E_1], [E_2]), [\sigma])$ and $u' = (([E'_1], [E'_2]), [\sigma'])$ in \mathscr{U} with $\varphi(u) = [E]$ and $\varphi(u') = [E']$. Assume that $\varphi(u) = \varphi(u')$. Since E and E' are both w-stable and are in the same S_w equivalence class, they have to be isomorphic (see Section 2). Let $\tau : E \to E'$ be an isomorphism. This induces an isomorphism $\tau_i : E_i \to E'_i$. So we can assume that $E'_i = E_i$; thus $\sigma, \sigma' : E_{1,q_1} \to E_{2,q_2}$ and $\tau_i : E_i \to E_i$ are isomorphisms. As E_p (respectively E'_p) is obtained by glueing E_{1,q_1} with E_{2,q_2} along the isomorphism σ (respectively along σ'), the τ_i have to satisfy a compatibility condition which is summarized in the following commutative diagram:

$$\begin{array}{c|c} E_{1,q_1} & \xrightarrow{\sigma} & E_{2,q_2} \\ (\tau_1)_{q_1} & & & & \downarrow \\ (\tau_2)_{q_2} & & & \downarrow \\ E_{1,q_1} & \xrightarrow{\sigma'} & E_{2,q_2} \end{array}$$

Since E_i is stable we have $\text{Hom}(E_i, E_i) \simeq \mathbb{C} \cdot \text{id}_{E_i}$. Hence $(\tau_i)_{q_i}$ is the multiplication by some $\lambda_i \in \mathbb{C}^*$. In particular, σ' is a non-zero multiple of σ and thus $[\sigma] = [\sigma']$.

Now we prove that $\varphi_{|\mathscr{U}}$ is a morphism. It is enough to prove that φ is regular at u_0 , for any $u_0 \in \mathscr{U}$. For this, we claim that there exists a non-empty open subset $W \subseteq \mathscr{U}$ with $u_0 \in W$ and a vector bundle \mathcal{E} on $W \times C$ such that

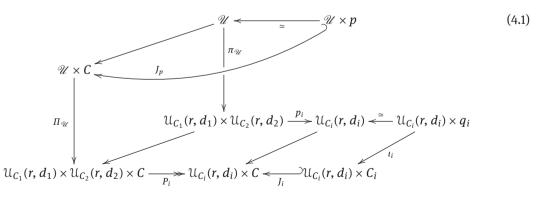
$$[\mathcal{E}|_{u \times C}] = \varphi(u)$$
 for all $u \in W$.

Step 1: There exist two sheaves Ω and \mathcal{R} on $\mathcal{U} \times C$ such that for each $u = (([E_1], [E_2], [\sigma]) \in \mathcal{U}$ we have

$$\mathfrak{Q}|_{u \times C} \simeq j_{1*}(E_1) \oplus j_{2*}(E_2), \quad \mathfrak{R}_{|u \times C} \simeq j_{p*}(j_p^*(j_{2*}(E_2))),$$

where $j_p : p \hookrightarrow C$ and $j_i : C_i \hookrightarrow C$ are the natural inclusions.

Consider the diagram



where the morphisms which appear have been defined as

$$J_{i} = \mathrm{id}_{\mathcal{U}_{C_{i}}(r,d_{i})} \times j_{i}, \qquad P_{i} = p_{i} \times \mathrm{id}_{\mathcal{C}}, \qquad \Pi_{\mathscr{U}} = \pi_{\mathscr{U}} \times \mathrm{id}_{\mathcal{C}}, \qquad J_{p} = \mathrm{id}_{\mathscr{U}} \times j_{p}.$$
(4.2)

As before, we denote with \mathcal{P}_i the Poincaré bundle on $\mathcal{U}_{C_i}(r, d_i) \times C_i$ and we set

$$\mathfrak{Q}_i = \Pi^*_{\mathscr{U}} \big(P_i^* (J_{i*}(\mathfrak{P}_i)) \big), \quad \mathfrak{Q} = \mathfrak{Q}_1 \oplus \mathfrak{Q}_2 \quad \text{and} \quad \mathfrak{R} = J_{p*} (J_p^* (Q_2)).$$

Note that $\text{Supp}(\mathfrak{R}) = \mathscr{U} \times p$. Moreover, one can verify that if we identify $\mathscr{U} \times p$ with \mathscr{U} we have

$$J_{p}^{*}(\Omega_{i}) \simeq \pi_{\mathscr{U}}^{*}(p_{i}^{*}(\iota_{i}^{*}\mathcal{P}_{i})), \qquad (4.3)$$

where ι_i : $\mathcal{U}_{C_i}(r, d_i) \times q_i \hookrightarrow \mathcal{U}_{C_i}(r, d_i) \times C_i$.

Step 2: There is an open subset $W \in \mathcal{U}$ containing u_0 and a surjective map of sheaves

$$\mathcal{Q}_1 \oplus \mathcal{Q}_2|_{W \times C} \xrightarrow{\Sigma_W} \mathcal{R}|_{W \times C}$$

whose kernel is the desired vector bundle \mathcal{E} on $W \times C$.

Let π : $\mathbb{P}(\mathcal{F}) \to \mathcal{U}_{C_1}(r, d_1) \times \mathcal{U}_{C_2}(r, d_2)$ be the projective bundle defined in Lemma 3.1. Consider on $\mathbb{P}(\mathcal{F})$ the tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{F})}(-1)$ which is, by definition, the subsheaf of $\pi^*(\mathcal{F})$ whose fiber at $u \in \mathbb{P}(\mathcal{F})$ is

$$\text{Span}(\sigma) \subset \text{Hom}(E_{1,q_1}, E_{2,q_2}),$$

where $u = (([E_1], [E_2]), [\sigma])$. We can choose W to be an open subset of \mathscr{U} containing the point u_0 and admitting a section $s \in \mathcal{O}_{\mathbb{P}(\mathcal{F})}(-1)(W)$ with $s(u) \neq 0$ for any $u \in W$.

In particular, s induces a map of sheaves

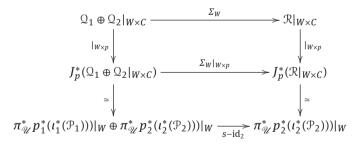
$$s: \pi_{\mathscr{U}}^* p_1^*(\iota_1^*(\mathcal{P}_1)))|_W \to \pi_{\mathscr{U}}^* p_2^*(\iota_2^*(\mathcal{P}_2)))|_W$$
(4.4)

such that $s_u: E_{1,q_1} \to E_{2,q_2}$ is an isomorphism and $[s_u] = [\sigma]$ in $\mathbb{P}(\text{Hom}(E_{1,q_1}, E_{2,q_2}))$. We can also define a morphism of sheaves

$$s - \mathrm{id}_{2} : \pi_{\mathscr{U}}^{*} p_{1}^{*}(\iota_{1}^{*}(\mathcal{P}_{1})))|_{W} \oplus \pi_{\mathscr{U}}^{*} p_{2}^{*}(\iota_{2}^{*}(\mathcal{P}_{2})))|_{W} \to \pi_{\mathscr{U}}^{*} p_{2}^{*}(\iota_{2}^{*}(\mathcal{P}_{2})))|_{W}$$
(4.5)

where id₂ is the identity of $\pi_{\mathscr{W}}^* p_2^*(\iota_2^*(\mathcal{P}_2)))|_W$.

This allows us to define the map Σ_W we are looking for. Indeed, since $\text{Supp}(\mathcal{R}|_{W \times C}) = W \times p$, it is enough to give the map on $W \times p$, which can be identified with W. Using the isomorphism 4.3, we have a diagram which defines Σ_W :



By taking the kernel \mathcal{E} of this map we conclude the second step of the proof of the claim. In particular, $\varphi_{|\mathscr{U}|}$ is a morphism.

By construction, $\varphi(\mathcal{U})$ is contained in $\mathcal{V}_C(w, r, \chi)_{d_1, d_2}$ and it coincide with the open subset of *w*-semistable vector bundles whose restrictions are semistable. Moreover, $\mathcal{V}_C(w, r, \chi)_{d_1, d_2}$ is a dense open subset of $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$, see [23]. By Remark 4.1 we have

$$\dim(\varphi(\mathscr{U})) = \dim(\mathscr{U}) = r^2(g_1 + g_2 - 1) + 1,$$

which is the dimension of $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$, see Theorem 2.1. This implies that φ is a dominant map. Hence, by a generic smoothness argument, we can conclude that $\varphi_{|\mathscr{U}|}$ is a birational morphism.

Corollary 4.2. Let *C* be a nodal curve with a single node *p* and two smooth irreducible components C_i of genus $g_i \ge 1$. Assume that the moduli space $U_C(w, r, \chi)$ has an irreducible component corresponding to the bidegree (d_1, d_2) with d_1 and d_2 coprime with *r*. Then this component is birational to a projective bundle over the smooth variety $U_{C_1}(r, d_1) \times U_{C_2}(r, d_2)$.

Note that φ provides a desingularization of the component $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$. If the genus of the curve C_i is big enough, we can be more precise about the domain of the rational map φ . If $g_i > r + 1$, then by Lemma 3.7 the locus of vector bundles of $\mathcal{U}_{C_i}(r, d_i)$ which are (0, r)-stable is a non-empty open subset of $\mathcal{U}_{C_i}(r, d_i)$; let us denote it by V_i .

Definition 4.2. We denote by \mathscr{V} the open subset $\pi^{-1}(V_1 \times V_2)$ in $\mathbb{P}(\mathscr{F})$.

By construction, \mathscr{V} is a projective bundle over $V_1 \times V_2$.

Theorem 4.3. Assume that the hypothesis of Theorem 4.1 holds. Moreover, let $g_i > r + 1$ and $(\chi_1, \chi_2) \in W_r$. Then there exists a polarization w such that the map φ sending u to $[E_u]$ is a birational map such that $\varphi|_{\mathscr{U} \cup \mathscr{V}}$ is a morphism.

Proof. Since $(\chi_1, \chi_2) \in W_r$, by Remark 3.1 there exists a polarization *w* such that the Conditions 3.4 hold for any k = 1, ..., r. In particular, as $W_r \subset W_{r,r}$, Theorem 4.1 holds: φ is a birational map which is defined on the open subset \mathscr{U} .

Assume that $u \in \mathcal{V}$ and $u \notin \mathcal{U}$. Then $u = (([E_1], [E_2]), [\sigma])$, with $([E_1], [E_2]) \in V_1 \times V_2$ and $\operatorname{Rk} \sigma \leq r - 1$. Since $[E_i] \in V_i$, Lemma 3.6 implies that E_u is *w*-semistable, hence φ is defined all over the open subset \mathcal{V} too. To prove that $\varphi|_{\mathcal{V}}$ is a morphism, we can proceed as in the proof of Theorem 4.1, just by replacing \mathcal{U} with \mathcal{V} and $\mathcal{U}_{C_i}(r, d_i)$ with V_i .

5 Fixed-determinant moduli space

Let *C* be a smooth curve of genus $g \ge 1$ and $L \in \text{Pic}^{d}(C)$. We recall that the moduli space of semistable vector bundles of rank *r* and determinant *L* on *C* is denoted by $SU_{C}(r, L)$ and it is an irreducible and projective variety. It is the fiber of the determinant map

det:
$$\mathcal{U}_C(r, d) \to \operatorname{Pic}^d(C)$$
.

In this section we investigate a similar subvariety of the moduli space $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ for a nodal reducible curve with two irreducible components C_i . Fix a pair (L_1, L_2) with $L_i \in \operatorname{Pic}^{d_i}(C_i)$. Note that there exists a unique line bundle L on the nodal curve C whose restriction to the component C_i is L_i . Recall that $\mathcal{V}_C(w, r, \chi)_{d_1, d_2} \subset \mathcal{U}_C(w, r, \chi)_{d_1, d_2}$ is the open subset parametrizing *w*-semistable classes which are represented by vector bundles.

Definition 5.1. Let *L* be the line bundle on *C* that is induced by the pair (L_1, L_2) . We define $SU_C(w, r, L)$ as the closure of

$$\{[E] \in \mathcal{V}_C(w, r, \chi)_{d_1, d_2} \mid \det E = L\}$$

in $\mathcal{U}_C(w, r, \chi)_{d_1, d_2}$.

If we assume that r and d_i are coprime, then $SU_{C_i}(r, L_i)$ is a smooth irreducible projective variety of dimension $(r^2 - 1)(g_i - 1)$. As in Lemma 3.1, we can define a vector bundle \mathcal{F}_L on $SU_{C_1}(r, L_1) \times SU_{C_2}(r, L_2)$ just by restricting \mathcal{F} . Then we can consider the associated projective bundle $\mathbb{P}(\mathcal{F}_L)$ and

$$\mathscr{U}_L = \mathscr{U} \cap \mathbb{P}(\mathscr{F}_L),$$

a PGL(r)-bundle on $SU_{C_1}(r, L_1) \times SU_{C_2}(r, L_2)$. We denote by φ_L the restriction of the morphism φ defined in Theorem 4.1 to \mathcal{U}_L . As a consequence of Theorem 4.1, we have the following:

Corollary 5.1. Under the hypothesis of Theorem 4.1, the map

$$\varphi_L \colon \mathbb{P}(\mathcal{F}_L) - - \succ \mathbb{S}U_C(w, r, L)$$

is a birational map, whose restriction $\varphi_L|_{\mathscr{U}_1}$ is an injective morphism.

Proof. $\varphi_L|_{\mathscr{U}_L}$ is a morphism and its image is the set $\operatorname{Im} \varphi_L = \{E \in \mathcal{V}_C(w, r, \chi)_{d_1, d_2} \mid [E_{|C_i}] \in \mathcal{S}U_{C_i}(r, L_i)\}$. In particular, $\operatorname{Im} \varphi_L \subseteq \mathcal{S}U_C(w, r, L)$. Consider the map

$$\psi: \mathcal{V}_{\mathcal{C}}(w, r, \chi)_{d_1, d_2} \rightarrow \operatorname{Pic}^{d_1}(\mathcal{C}_1) \times \operatorname{Pic}^{d_2}(\mathcal{C}_2),$$

sending *E* to $(\det(E|_{C_1}), \det(E|_{C_2}))$, which fits into the following commutative diagramm:

It follows immediately that ψ is a surjective morphism and that Im $\varphi_L \subset \psi^{-1}(L_1, L_2)$.

We claim that ψ has irreducible fibers of dimension $(r^2 - 1)(g_1 + g_2 - 1)$.

First we prove that any two fibers of ψ are isomorphic. If (L_1, L_2) and (L'_1, L'_2) are in $\operatorname{Pic}^{d_1}(C_1) \times \operatorname{Pic}^{d_2}(C_2)$, then there exist $\xi_i \in \operatorname{Pic}^0(C_i)$ such that $L_i \otimes \xi_i^r \simeq L'_i$. Let ξ be the unique line bundle on C such that $\xi_{|C_i} \simeq \xi_i$. The natural map

$$\psi^{-1}(L_1, L_2) \to \psi^{-1}(L'_1, L'_2)$$

sending *E* to $E \otimes \xi$ preserves *w*-semistability and gives an isomorphism of the fibers. In particular, with the fiber dimension theorem (see [13], p.95) this implies that any fiber has pure dimension $(r^2 - 1)(g_1 + g_2 - 1)$.

Finally we prove that any fiber is irreducible. Let $Y = \mathcal{V}_C(w, r, \chi)_{d_1, d_2} \setminus \varphi(\mathcal{U})$; it is a proper subvariety of $\mathcal{V}_C(w, r, \chi)_{d_1, d_2}$. Assume that the fiber of ψ over (L_1, L_2) is reducible, and let F_1 be the irreducible component containing $\varphi(\mathcal{U}_L)$. Then there exists an irreducible component $F_2 \subset Y$. So the restriction of ψ to Y is a surjective morphism whose fibers have dimension $(r^2-1)(g_1+g_2-1)$. This implies that dim $Y = \dim \mathcal{V}_C(w, r, \chi)_{d_1, d_2}$, which is impossible.

This allows us to conclude that $SU_C(w, r, L)$ is irreducible too and φ_L is a birational morphism.

Theorem 5.2. Under the hypothesis of Theorem 4.1, $SU_C(w, r, L)$ is a rational variety.

Proof. By hypothesis d_i and r are coprime, hence the moduli space $SU_{C_i}(r, L_i)$ is rational for any line bundle $L_i \in \text{Pic}^{d_i}(C_i)$, see [14], [17] and [19]. Since \mathscr{U}_L is a \mathbb{P}^{r^2-1} -bundle over the product $SU_{C_1}(r, L_1) \times SU_{C_2}(r, L_2)$, it is a rational variety too. The assertion follows from Corollary 5.1.

References

- M. F. Atiyah, Vector bundles over an elliptic curve. *Proc. London Math. Soc. (3)* 7 (1957), 414–452.
 MR0131423 Zbl 0084.17305
- P. Barik, A. Dey, B. N. Suhas, On the rationality of Nagaraj-Seshadri moduli space. Bull. Sci. Math. 140 (2016), 990–1002.
 MR3569200 Zbl 1406.14027
- [3] A. Beauville, Theta functions, old and new. In: Open problems and surveys of contemporary mathematics, volume 6 of Surv. Mod. Math., 99–132, Int. Press, Somerville, MA 2013. MR3204388 Zbl 1314.14091
- [4] U. N. Bhosle, I. Biswas, Brauer group and birational type of moduli spaces of torsionfree sheaves on a nodal curve. *Comm. Algebra* 42 (2014), 1769–1784. MR3169670 Zbl 1304.14043
- [5] M. Bolognesi, S. Brivio, Coherent systems and modular subavrieties of SU_C(r). Internat. J. Math. 23 (2012), 1250037, 23 pages. MR2903191 Zbl 1262.14037
- [6] S. Brivio, A note on theta divisors of stable bundles. *Rev. Mat. Iberoam.* **31** (2015), 601–608. MR3375864 Zbl 1327.14163
- S. Brivio, Families of vector bundles and linear systems of theta divisors. Internat. J. Math. 28 (2017), 1750039, 16 pages.
 MR3663790 Zbl 1371.14036

- [8] S. Brivio, Theta divisors and the geometry of tautological model. *Collect. Math.* 69 (2018), 131–150.
 MR3742983 Zbl 1390.14095
- S. Brivio, F. F. Favale, Genus 2 curves and generalized theta divisors. Bull. Sci. Math. 155 (2019), 112–140.
 MR3982975 Zbl 07102989
- [10] S. Brivio, F. F. Favale, On kernel bundles over reducible curves with a node. To appear in Internat. J. Math. arXiv:1907.09195
- [11] S. Brivio, A. Verra, Plücker forms and the theta map. Amer. J. Math. 134 (2012), 1247–1273. MR2975235 Zbl 1268.14034
- [12] A. Dey, B. N. Suhas, Rationality of moduli space of torsion-free sheaves over reducible curve.
 J. Geom. Phys. **128** (2018), 87–98. MR3786188 Zbl 1391.14019
- [13] R. Hartshorne, Algebraic geometry. Springer 1977. MR0463157 Zbl 0367.14001
- [14] A. King, A. Schofield, Rationality of moduli of vector bundles on curves. *Indag. Math. (N.S.)* 10 (1999), 519–535.
 MR1820549 Zbl 1043.14502
- [15] D. Mumford, Geometric invariant theory. Springer 1965. MR0214602 Zbl 0147.39304
- [16] M. S. Narasimhan, S. Ramanan, Geometry of Hecke cycles. I. In: C. P. Ramanujam—a tribute, volume 8 of Tata Inst. Fund. Res. Studies in Math., 291–345, Springer 1978. MR541029 Zbl 0427.14002
- [17] P. E. Newstead, Rationality of moduli spaces of stable bundles. *Math. Ann.* 215 (1975), 251–268.
 MR419447 Zbl 0288.14003
- [18] P. E. Newstead, Introduction to moduli problems and orbit spaces, volume 51 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Narosa Publishing House, New Delhi 1978. MR546290 Zbl 0411.14003
- [19] P. E. Newstead, Correction to "Rationality of moduli spaces of stable bundles". Math. Ann. 249 (1980), 281–282.
 MR579107 Zbl 0455.14003
- [20] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve. Math. Ann. 200 (1973), 69–84.
 MR325615 Zbl 0239.14013
- [21] B. Russo, M. Teixidor i Bigas, On a conjecture of Lange. J. Algebraic Geom. 8 (1999), 483–496. MR1689352 Zbl 0942.14013
- [22] C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface. Ann. of Math. (2) 85 (1967), 303–336.
 MR233371 Zbl 0173.23001
- [23] C. S. Seshadri, *Fibrés vectoriels sur les courbes algébriques*, volume 96 of *Astérisque*. Société Mathématique de France, Paris 1982. MR699278 Zbl 0517.14008
- [24] M. Teixidor i Bigas, Moduli spaces of vector bundles on reducible curves. Amer. J. Math. 117 (1995), 125–139.
 MR1314460 Zbl 0836.14012
- [25] M. Teixidor i Bigas, Vector bundles on reducible curves and applications. In: Grassmannians, moduli spaces and vector bundles, volume 14 of Clay Math. Proc., 169–180, Amer. Math. Soc. 2011. MR2807854 Zbl 1251.14024
- [26] L. W. Tu, Semistable bundles over an elliptic curve. Adv. Math. 98 (1993), 1–26. MR1212625 Zbl 0786.14021