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Abstract. We investigate a class of Nash equilibrium problems on networks where both the utility function
and the strategy space of each player are parametrized by means of continuous functions of a vector param-
eter. We provide a variational inequality reformulation of the Nash equilibrium problem which turns out to
be much simpler than the original problem. Moreover, under additional assumptions, the continuity of the
solution with respect to the parameter is proved.
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1. INTRODUCTION

Network games are a kind of games characterized by the fact that players are represented by
nodes of a graph, and the direct relationship between any two players is represented by an arc
connecting them. Relationships can be asymmetric so the resulting graph is, in general, a directed
weighted graph. To express the fact that neighbors of a given player can influence her action, her
utility function is modeled so as to depend on her own action variable as well as on the action
variables of her neighbors, although further terms can be added to take into account global effects
in the network. Analytic properties and graph-theoretical aspects are thus intermingled in the
investigation of the Nash equilibria of these games. This model has been pioneered in the papers [3,
4], where the authors, considering quadratic utility functions, were able to obtain exact results
connecting the Nash equilibrium with spectral properties of the adjacency matrix of the graph.
We refer the interested reader to the excellent survey [10], where many extensions of the results
in [3] are presented, but the models considered are mostly quadratic and with interior solutions,
so as to obtain closed-form solutions. While the above mentioned papers focus on the key-player
identification, a different point of view has been considered in [1, 2] where a new player joins a
group of players which is interacting in a non-cooperative way through a generalized Nash game
and can face three different situations: playing together with the other players in a generalized
Nash game, playing first and waiting for the response of the opponent group, or letting the group
play first and act then as a follower.

More recently, some authors investigated games played on networks by means of the variational
inequality approach put forward long time ago in [9], based on finding Nash equilibria by solving
a variational inequality, where the operator (called the pseudogradient of the game) is made up
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with the partial gradients of the utility functions of all the players. In this respect, a relevant paper
is [17], where the properties of the operator which appears in the variational inequality formulation
have been studied in detail. Along the same lines, in [18, 19, 21], the authors focused on the case
of bounded strategy space and also of generalized Nash equilibrium problems, where no analytical
solutions are available.

In this note, we use a variational inequality reformulation of network games which does not
involve the pseudogradient of the game. This point of view has been considered in the interesting
paper [22], where the authors consider a nonlinear complementary problem formulation of a class
of games with unbounded strategy space, which was previously deeply investigated with the use of
best-response functions (see, e.g., [5]). In our contribution, we consider a class of utility functions
where the interaction matrix is parametrized by continuous functions of a vector parameter and
the strategy space is bounded and can be perturbed by means of some continuous functions of the
same parameter. Under a simple set of assumptions, we are then able to prove the continuity of the
unique Nash equilibrium with respect to the parameter.

The paper is organized as follows. In the following Section 2, we recall the basic elements
of a Nash equilibrium problem on networks and introduce the class of utility functions of our
model. Section 3 is devoted to the equivalent variational inequality formulation of the problem.
In Section 4 we first prove a general continuity result for variational inequalities which fits our
framework and also investigate the monotonicity properties of the relevant operator. Then, we sum
up all our previous results to state the continuity theorem of the unique Nash equilibrium of our
game and illustrate our findings with the help of a numerical example. In the short concluding
section we mention some further research perspectives.

2. NASH EQUILIBRIUM PROBLEMS ON NETWORKS

We consider a non-cooperative game, where the set of players is denoted by {1, . . . ,n} and
corresponds to the set of nodes of a directed graph. We denote with Ai ⊂ R the action space of
player i, while A = A1 × ·· · ×An. A vector x = (x1, . . . ,xn) ∈ A is called an action profile. We
also use the common notations x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn) and x = (xi,x−i) when we wish to
distinguish the action of player i from the action of all the other players. For any given player
i, the set N(i) denotes her neighbors in the graph, that is a player j is a neighbor of i if (i, j) is
an arc of the graph. The intensity of the relationship between and two neighbors is described by
the interaction matrix F , whose diagonal elements are zero. The off-diagonal elements fi j can be
either positive or negative, but for tractability reasons it is often assumed that they are all of the
same sign.

Each player i is endowed with a payoff function ui : A→R that she wishes to maximize. We now
recall the definition of a Nash equilibrium, which is one of the most common solution concepts in
Game Theory.

Definition 2.1. An action profile x∗ ∈ A is a Nash Equilibrium (NE) of the game iff for each
i ∈ {1, . . . ,n}:

ui(x∗i ,x
∗
−i)≥ ui(xi,x∗−i), ∀ xi ∈ Ai. (2.1)

As mentioned above, it is convenient, for tractability reasons, to consider games where the
neighbors of a player influence the player’s behavior in the same direction for all players. We
make this concept precise with the help of the marginal utility function.
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Definition 2.2. The network game has the property of strategic complements if:

∂ 2ui

∂x j∂xi
(x)> 0, ∀ (i, j) : fi j ̸= 0, ∀ x ∈ A. (2.2)

Definition 2.3. The network game has the property of strategic substitutes if:

∂ 2ui

∂x j∂xi
(x)< 0, ∀ (i, j) : fi j ̸= 0, ∀ x ∈ A. (2.3)

The standard variational inequality approach to Nash equilibrium problems is recalled in the
following theorem. For an account of variational inequalities the interested reader can refer to [7,
14, 16].

Theorem 2.1. For each i ∈ {1, . . . ,n}, let ui be a continuously differentiable function on A and
ui(·,x−i) be concave with respect to its own action xi, for each x−i ∈ A−i. Moreover, let A be
closed and convex. Then, x∗ is a Nash equilibrium if and only if it solves the variational inequality
V I(T,A): find x∗ ∈ A such that

T (x∗)⊤(x− x∗)≥ 0, ∀ x ∈ A, (2.4)

where the operator

[T (x)]⊤ :=−
(

∂u1

∂x1
(x), . . . ,

∂un

∂xn
(x)
)

(2.5)

is also called the pseudogradient of the game.

In our model, we will not use the variational inequality involving the pseudogradient but another,
simpler, variational inequality. In both cases, it is important to recall some useful monotonicity
properties of the relevant operator.

Definition 2.4. An operator T : Rn → Rn is said to be monotone on A iff:

[T (x)−T (y)]⊤(x− y)≥ 0, ∀ x,y ∈ A.

If the equality holds only when x = y, T is said to be strictly monotone on A.
T is said to be τ-strongly monotone on A iff there exists τ > 0 such that

[T (x)−T (y)]⊤(x− y)≥ τ∥x− y∥2, ∀ x,y ∈ A.

Conditions that ensure the unique solvability of a variational inequality problem are given by
the following theorem (see, e.g., [16]).

Theorem 2.2. If K ⊂ Rn is a compact convex set and T : Rn → Rn is continuous on K, then
the variational inequality problem V I(T,K) admits at least one solution. In the case that K is
unbounded, existence of a solution may be established under the following coercivity condition:

lim
∥x∥→+∞

[T (x)−T (x0)]
⊤(x− x0)

∥x− x0∥
=+∞,

for x ∈ K and some x0 ∈ K.
Furthermore, the solution is unique if T is strictly monotone on K.
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We now specify the class of parametric utility functions investigated in this paper. Consider a
vector of coefficients c ∈ Rn

++, and for a fixed α ∈ Rn, positive numbers Li(α) and let Ai(α) =
[0,Li(α)], for any i ∈ {1, . . . ,n}, and A(α) = [0,L1(α)]× . . .× [0,Ln(α)]. Moreover, in order to
model the fact that the network of relationships can change, we consider a parameter dependent
interaction matrix F (α), with elements fi j(α). The payoff function of player i is defined as
follows:

ui(α,x) = vi

xi +
n

∑
j=1
j ̸=i

fi j(α)x j

− cixi. (2.6)

The form of the function above reflects the following model: the term cixi is the cost that player i
faces when playing xi. The first term, if positive, represents her revenue and depends on her action
xi and on a weighted sum of the actions of her neighbors. The influence of neighbors on the utility
of player i can thus be both positive or negative according to the definitions (2.2) and (2.3). This
kind of utility functions (with fixed interaction matrix) has been investigated in [5], with the use
of best-response functions, to model the choice of public goods on networks (see also [8]). To
progress in the analysis of the game further hypotheses are required, as specified in the theorems
of the following section.

3. VARIATIONAL INEQUALITY FORMULATION

Theorem 3.1. Let α ∈ Rn be given. Consider the network game where, for any i ∈ {1, . . . ,n},
[0,Li(α)] is the action space of player i and the utility function ui is defined in (2.6), where the
function vi : R→ R satisfies the following assumptions:

(i) vi ∈C2(R+),
(ii) vi is strictly concave on R+,

(iii) v′i(0)> ci,
(iv) limt→∞ v′i(t)< ci.

Then, x∗(α) is a NE if and only if, for any i ∈ {1, . . . ,n}, it satisfies the following system:
x∗i (α)+∑ j ̸=i fi j(α)x∗j(α) = bi if x∗i (α) ∈]0,Li(α)[,

x∗i (α)+∑ j ̸=i fi j(α)x∗j(α)≥ bi if x∗i (α) = 0,
x∗i (α)+∑ j ̸=i fi j(α)x∗j(α)≤ bi if x∗i (α) = Li(α),

(3.1)

where bi is the unique solution of the equation

v′i(t) = ci.

Proof. By the definition of Nash equilibrium, we have that, for any i ∈ {1, . . . ,n},

x∗i (α) = arg max
xi∈[0,Li(α)]

ui(α,xi,x∗−i(α)),

which is equivalent to:

∂ui

∂xi
(α,x∗(α))


= 0 if x∗i (α) ∈]0,Li(α)[,

≤ 0 if x∗i (α) = 0,
≥ 0 if x∗i (α) = Li(α),
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which, in turn, is equivalent to:

v′i(x∗i (α)+∑
j ̸=i

fi j(α)x∗j(α))


= ci = v′i(bi) if x∗i (α) ∈]0,Li(α)[,

≤ ci = v′i(bi) if x∗i (α) = 0,
≥ ci = v′i(bi) if x∗i (α) = Li(α).

Since vi is a strictly concave function by assumptions, the function v′i is strictly decreasing, hence
the above conditions are equivalent to:

x∗i (α)+∑
j ̸=i

fi j(α)x∗j(α)


= bi if x∗i (α) ∈]0,Li(α)[,

≥ bi if x∗i (α) = 0,
≤ bi if x∗i (α) = Li(α).

□

The following theorem establishes an equivalent variational inequality formulation of (3.1).

Theorem 3.2. Let g : Rn ×Rn → Rn be defined as follows:

gi(α,x) = xi +∑
j ̸=i

fi j(α)x j −bi, ∀ i ∈ {1, . . . ,n}, (3.2)

and let A(α) = [0,L1(α)]× . . .× [0,Ln(α)], where each Li : Rn → R++ is an arbitrary positive
function. For each α ∈ Rn, consider the variational inequality problem of finding x∗(α) ∈ A(α)
such that:

n

∑
i=1

gi(α,x∗(α))(xi − x∗i (α))≥ 0, ∀ x ∈ A(α). (3.3)

We then have that x∗(α) is a solution of (3.3) if and only if it is a solution of the system (3.1) for
any i ∈ {1, . . . ,n}.

Proof. We first prove that (3.3) =⇒ (3.1). Let x∗(α) be a solution of (3.3).

(1) If x∗i (α) ∈]0,Li(α)[ we choose x in (3.3) such that x j = x∗j(α), for any j ̸= i and xi =

x∗i (α)± ε , which is feasible, for ε small enough, and yields ±εgi(α,x∗(α))≥ 0 which, in
turn, entails x∗i (α)+∑ j ̸=i fi j(α)x∗j(α)−bi = 0.

(2) If x∗i (α) = 0, by choosing x j = x∗j(α), for any j ̸= i, and xi = Li(α) we deduce that x∗i (α)+

∑ j ̸=i fi j(α)x∗j(α)−bi ≥ 0.
(3) If x∗i (α) = Li(α), by choosing x j = x∗j(α), for any j ̸= i, and xi = 0 we deduce that x∗i (α)+

∑ j ̸=i fi j(α)x∗j(α)−bi ≤ 0.

To prove that (3.1) =⇒ (3.3), assume that x∗(α) satisfies (3.1) and consider the three set of indices
defined as follows:

I0 = {i : x∗i (α) ∈]0,Li(α)[} ,
I+ = {i : x∗i (α) = 0},
I− = {i : x∗i (α) = Li(α)}.
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If we split the sum in (3.3) accordingly, then
n

∑
i=1

gi(α,x∗(α))(xi − x∗i (α))

= 0+ ∑
i∈I+

(
x∗i (α)+∑

j ̸=i
fi j(α)x∗j(α)−bi

)
xi

+ ∑
i∈I−

(
x∗i (α)+∑

j ̸=i
fi j(α)x∗j(α)−bi

)
(xi −Li(α))≥ 0

holds for any x ∈ A(α). □

We note that Theorem 3.2 allows to reformulate the Nash equilibrium problem in the game with
non-quadratic utility functions (2.6) as an equivalent affine variational inequality V I(g(α, ·),A(α)),
where the map

g(x,α) = [I +F (α)]x−b.

4. CONTINUITY RESULT

We now prove a continuity result for parametric variational inequalities which will allow us to
obtain the continuity of the Nash equilibrium. The literature on stability of solutions of variational
inequalities is vast, (see, e.g., [13] and the references therein) and the results obtained are not
always of straightforward application. The result which we present here is an adaptation from [6]
and fits very well our problem, while using a simple set of hypotheses.

We first recall the definition of set convergence in the sense of Kuratowski-Painlevé, often called
just Kuratowski-convergence. Let S be a metric space, and {Mn}n∈N a sequence of subsets of S.
Consider the sets:

limsup
n

Mn =
{

y ∈ S : ∃ n1 < n2 < ... < ni < ..., with

yni ∈ Mni and y = lim
i→∞

yni

}
,

liminf
n

Mn =
{

y ∈ S : ∃ n0 ∈ N : ∀ n > n0,∃yn ∈ Mn and y = lim
n→∞

yn

}
.

Definition 4.1. Let M a subset of S. The sequence of sets {Mn} is said to be Kuratowski-convergent
to M iff:

limsup
n

Mn = liminf
n

Mn = M, (4.1)

and we write Mn
K−−→ M.

Since liminfn Mn ⊆ limsupn Mn always holds, to verify (4.1), it is enough to check whether

limsup
n

Mn ⊆ M ⊆ liminf
n

Mn.

Thus, to check whether Mn
K−−→ M we have to check the two following conditions:

(a) for each subsequence {kn} ⊂ N such that vkn ∈ Mkn and limn vkn = v, then v ∈ M.
(b) For each v ∈ M it exists a sequence {vn} such that vn ∈ Mn, for n large enough, and limn vn = v.
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Theorem 4.1. Let S be a metric space and K ⊆ S. Consider a map G : S×Rn → Rn. Assume that
G is continuous in K ×Rn and, for each t ∈ K, let C(t) be a nonempty closed and convex subset of
Rn. For each t ∈ K consider the variational inequality problem of finding x(t) ∈C(t) such that:

n

∑
i=1

Gi(t,x(t))(yi − xi(t))≥ 0, ∀ y ∈C(t). (4.2)

Let us also assume that G(t, ·) be τ-strongly monotone on Rn, uniformly with respect to t ∈ K, that
is:

n

∑
i=1

(Gi(t,x)−Gi(t,y))(xi − yi)≥ τ ∥x− y∥2, ∀ t ∈ K, ∀ x,y ∈ Rn. (4.3)

Moreover, assume that for each {tn} ⊂ K such that limn tn = t, it follows C(tn)
K−−→C(t). Then, the

solution map t 7→ x(t) is continuous in t.

Proof. We will prove that, for an arbitrarily fixed t ∈ K and for any sequence {tn} ⊂ K such that
limn tn = t, we get limn x(tn) = x(t).

We first prove that the sequence {x(tn)} is bounded. Because of part (b) of the Kuratowski
convergence of C(tn) to C(t), it exists a sequence of elements {vn} such that vn ∈C(tn), for n large
enough, and limn vn = x(t). The continuity of G then entails limn G(tn,vn) = G(t,x(t)).

Consider now (4.2) for t = tn and, for n large enough, we can choose y = vn and get:
n

∑
i=1

Gi(tn,x(tn))((vn)i − xi(tn))≥ 0. (4.4)

From the uniform strong monotonicity of G we get:

∥x(tn)− vn∥2 ≤ 1
τ

n

∑
i=1

(Gi(tn,x(tn))−Gi(tn,vn))(xi(tn)− (vn)i)

=
1
τ

n

∑
i=1

(Gi(tn,x(tn)))(xi(tn)− (vn)i)+
1
τ

n

∑
i=1

(Gi(tn,vn))((vn)i − xi(tn))

≤ 1
τ

n

∑
i=1

(Gi(tn,vn))((vn)i − xi(tn))≤
1
τ
∥G(tn,vn)∥∥x(tn)− vn∥.

Thus, we have that:

∥x(tn)∥ ≤ ∥x(tn)− vn∥+∥vn∥ ≤
1
τ
∥G(tn,vn)∥+∥vn∥,

hence the boundedness of {x(tn)} follows from the convergence of G(tn,vn) and vn.
Let us now recall that under the monotonicity hypothesis, the Minty’s Lemma holds true, that

is, the variational inequality (4.2) is equivalent to the following variational inequality problem of
finding x(t) ∈C(t) such that:

n

∑
i=1

Gi(t,y)(yi − xi(t))≥ 0, ∀ y ∈C(t). (4.5)

Let us now denote with {w(tn)} an arbitrary subsequence of {x(tn)}. From w(tn) we can extract a
subsequence which converges to some v ∈ Rn. We thus have:

w(tkn) ∈C(tkn), lim
n

w(tkn) = v.
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The part (a) of the Kuratowski convergence of C(tn) to C(t) entails v ∈ C(t). We now prove that
v = x(t). To this end, we apply Minty’s lemma by writing (4.5) for t = tkn:

n

∑
i=1

Gi(tkn,y)(yi −wi(tkn))≥ 0, ∀ y ∈C(tkn). (4.6)

For the part (b) of the Kuratowski convergence of C(tn) to C(t), we get that for any z ∈ C(t), it
exists a sequence {zn} such that, for n large enough, zn ∈ C(tn) and limn zn = z. We can the test
(4.6) with y = zkn and obtain:

n

∑
i=1

Gi(tkn,zkn)((zkn)i −wi(tkn))≥ 0,

and passing to limit for n → ∞ we get:
n

∑
i=1

Gi(t,z)(zi − vi(t))≥ 0,

which, using Minty’s lemma again, and having arbitrarily chosen z ∈C(t), yields to
n

∑
i=1

Gi(t,v)(zi − vi)≥ 0, ∀z ∈C(t).

The uniqueness of the solution of (4.2) entails v = x(t) and, finally, from the general principle of
convergence, limn x(tn) = x(t). □

Remark 4.1. The uniform strong monotonicity hypothesis has been used only to prove the bound-
edness of the sequence {x(tn)}. It follows that, in the case where the sets C(t) are all subsets of
some bounded set, we can simply require the strict monotonicity of G(t, ·), for each t, in order to
have both the uniqueness of the solution and the applicability of Minty’s lemma.

The following theorem provides a Kuratowski-convergence result for a sequence of polyhedra
of Rn (see [6] for the proof).

Theorem 4.2. Let m be a positive integer, and {ai j(t)} and {bi(t)}, i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n},
be continuous functions defined on a subset K of a metric space S. For each t ∈ K and for each
i ∈ {1, . . . ,m}, define the vector: ai(t) = (ai1(t), . . . ,ain(t)), and denote with P(t) the polyhedron
in Rn defined by:

ai(t)⊤x ≤ bi(t), i ∈ {1, . . . ,m}.
Furthermore, let {tn} ⊆ K be a sequence such that limn tn = t, for some t ∈ K. Assume now that for
every set of different indices {i1, . . . , ik} ∈ {1, . . . ,m} the matrix functions whose rows are given by
{ai(s)}i=i1,...,ik be of constant rank in a neighborhood of t. It then follows that P(tn)

K−−→ P(t).

In order to apply Theorem 4.1 to our class of utility functions, it is then necessary to check the
monotonicity properties of the operator in the variational inequality formulation (3.3).

To this end, we first recall a general result, which can be applied to our formulation, and then
provide a condition which ensures the uniform strong monotonicity for a class of parametric inter-
action matrices.

The following lemma characterizes the monotonicity of the mapping g in (3.3).
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Lemma 4.1.

(1) Let α ∈ Rn be given and λmin

(
F (α)+F (α)⊤

2

)
denote the minimum eigenvalue of the sym-

metric part of the matrix F (α). Then, the affine map g(α, ·) is monotone on Rn if and only
if

λmin

(
F (α)+F (α)⊤

2

)
≥−1

and g(α, ·) is strongly monotone on Rn if and only if

λmin

(
F (α)+F (α)⊤

2

)
>−1.

(2) If there exists γ > 0 such that

λmin

(
F (α)+F (α)⊤

2

)
≥−1+ γ, ∀ α ∈ Rn, (4.7)

then g(α, ·) is strongly monotone on Rn uniformly with respect to α .

Proof. See, e.g., [7]. □

Proposition 4.1. Consider the game defined in (2.6) with interaction terms given by fi j(α) =
hi(α) f (αi −α j) or fi j(α) = hi(α) f (|αi −α j|), where f : R → R is non-expansive and there is
δ0 ∈ R+ such that f (δ0) = 0. Then, the map g(α, ·) is strongly monotone on Rn, uniformly with
respect to α , if there exists γ > 0 such that

nh(α)(
√

2σα +δ0)≤ 1− γ, ∀ α ∈ Rn,

where h(α) = max
i=1,...,n

|hi(α)| and σα is the standard deviation of (α1, . . . ,αn).

Proof. Since

λmin

(
F (α)+F (α)T

2

)
=−λmax

(
−F (α)−F (α)T

2

)
,

condition (4.7) is equivalent to

λmax

(
−F (α)−F (α)T

2

)
≤ 1− γ, ∀ α ∈ Rn. (4.8)

We now assume that fi j(α) = hi(α) f (αi −α j). Since f is non-expansive and f (δ0) = 0 we have:

| f (αi −α j)|= | f (αi −α j)− f (δ0)| ≤ |αi −α j −δ0|.
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If we denote with ρ(M) and ∥M∥F the spectral radius and the Frobenius norm of a matrix M, then
the following chain of equalities and inequalities holds:

λmax

(
−F (α)−F (α)T

2

)
≤ ρ

(
−F (α)−F (α)T

2

)
= ρ

(
F (α)+F (α)T

2

)
≤
∥∥∥∥F (α)+F (α)T

2

∥∥∥∥
F
≤ ∥F (α)∥F

=

√
n

∑
i=1

n

∑
j=1

[ fi j(α)]2 =

√
n

∑
i=1

n

∑
j=1

hi(α)2[ f (αi −α j)]2

≤ h(α)

√
n

∑
i=1

n

∑
j=1

[ f (αi −α j)]2

≤ h(α)

√
n

∑
i=1

n

∑
j=1

(αi −α j −δ0)2

= h(α)

√
n

∑
i=1

n

∑
j=1

(αi −α j)2 +n2δ 2
0 −2δ0

n

∑
i=1

n

∑
j=1

(αi −α j)

= h(α)

√
n

∑
i=1

n

∑
j=1

(αi −α j)2 +n2δ 2
0

≤ h(α)

[√
n

∑
i=1

n

∑
j=1

(αi −α j)2 +nδ0

]

= h(α)

[√
2n2σ2

α +nδ0

]
= nh(α)(

√
2σα +δ0).

Therefore, the assumptions imply that condition (4.8) holds, hence the uniform strong monotonic-
ity of g(α, ·) follows from Lemma 4.1.

When fi j(α) = hi(α) f (|αi −α j|), the proof is essentially the same as the previous case, but in
this case we need to use the following inequality:

h(α)

√
n

∑
i=1

n

∑
j=1

(αi −α j)2 +n2δ 2
0 −2δ0

n

∑
i=1

n

∑
j=1

|αi −α j|

≤ h(α)

√
n

∑
i=1

n

∑
j=1

(αi −α j)2 +n2δ 2
0 .

□

Taking into account the previous results we can now state the continuity theorem of the Nash
equilibrium, whose proof is thus straightforward.
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FIGURE 1. Continuity of the Nash equilibrium with respect to parameter s.

Theorem 4.3. Consider the game with utility functions defined in (2.6), where vi satisfy the set of
hypotheses in Theorem 3.1 and let fi j(α) and Li(α) be continuous functions of α . Let the map
g(α, ·) defined in (3.2) be strongly monotone on Rn, uniformly with respect to α . It then follows
that the unique Nash equilibrium of the game, x∗ : α 7→ x∗(α), is a continuous function of α .

We conclude this section with an illustrative example of Theorem 4.3.

Example 4.1. Consider a game with n = 5 players, where the utility functions are defined as
in (2.6), with ci = 0.1, vi(t) =

√
ε + t and ε = 0.01 for any i ∈ {1, . . . ,5}. We assume that the

interaction terms are given by fi j(α) = αi −α j, for any i, j ∈ {1, . . . ,5}, so that the matrix F (α)

is skew-symmetric. Lemma 4.1 guarantees that the map g(α, ·) is strongly monotone on R5 uni-
formly with respect to α . Moreover, we assume that the continuous functions Li(α) are defined as
follows: 

L1(α1) = 3α2
1

L2(α2) = 4α2 + cos(2πα2)
L3(α3) = 2α3 + sin(2πα3)
L4(α4) = 4α4
L5(α5) = 2α5

In turn, the parameters α1, . . . ,α5 are supposed to be affine functions of a scalar parameter s∈ [0,1]
as follows: 

α1(s) = 0.5+ s
α2(s) = 1.4−0.8s
α3(s) = 1.7+0.6s
α4(s) = 2.1−0.2s
α5(s) = 2.8+0.4s

Figure 1 shows the continuity of the five components of the Nash equilibrium of the game as
function of parameter s.
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5. CONCLUSIONS

In this paper we considered a class of games played on networks, where both the interaction
matrix and the strategy space could be perturbed by means of continuous functions of a vector
parameter. We provided a convenient variational inequality formulation of the game which allowed
us to prove the continuity of the unique Nash equilibrium. In future investigations we wish to
consider models where these parameters are random variables, along the same lines as in [11, 12,
20]. Moreover, we plan to extend our results to the case of generalized Nash equilibrium problems,
by using the duality theory developed in [15].
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