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Abstract 

We present a novel application for supervised semi-automatic lineament detection using an 
interactive graphical user interface (GUI). The application allows users to load a set of images, 
set start and end points, and utilize the A* pathfinding algorithm to automatically trace a 
lineament. The image processing pipeline involves converting the original image, or the image 
pre-processed with suitable filters or transforms, to grayscale, then the A* algorithm calculates 
the optimal path according to some suitable cost function, defined according to the 
characteristics of the (pre-processed) image. Typical preprocessing involves enhancing edges 
using the Canny edge detector, smoothing with a Gaussian filter, but more advanced 
processing can be used, for instance with wavelets or shearlets. This tool can be used for 
guided autotracking digitization in a variety of images, from Digital Outcrop Models to 
seismics, and will become part of the more extensive open-source geological modelling 
software PZero (github.com/gecos-lab/PZero). 
 
 
Introduction 
 
Lineament interpretation has been fundamental in structural geology for over a century 
(HOBBS, 1904; LATTMAN, 1958), with applications ranging from Earth's surface studies 
(O’LEARY, FRIEDMAN & POHN, 1976; KARNIELI ET AL., 1996) to planetary geology (KOENIG 
& AYDIN, 1998; SCHULTZ, OKUBO & WILKINS, 2006) and subsurface geophysical datasets 
(BLANCHET, 1957; BAHORICH & FARMER, 1995).  Lineaments are linear or curvilinear features 
that represent the intersection between geological structures and the topography surface, or 
some cross in the case of subsurface datasets (HOBBS, 1904; O’LEARY, FRIEDMAN & POHN, 
1976; TIREN, 2010; MITTEMPERGHER & BISTACCHI, 2022). Therefore, they provide crucial 
insights into the geometry of fault zones and stratigraphic sequences with applications to 
natural resources and hazards(SALVI, 1995; SANDER, MINOR & CHESLEY, 1997; FERNANDES 
& RUDOLPH, 2001; OGUCHI, AOKI & MATSUTA, 2003; MALLAST ET AL., 2011).  
 
Traditional methods of lineament interpretation generally involve manual digitization, which 
is time-consuming and prone to subjectivity (BOND ET AL., 2007; BOND, 2015; YEOMANS ET 
AL., 2019). With advancements in image processing and computational algorithms, automated 
and semi-automated approaches have been developed to improve efficiency and accuracy 
(VISEUR ET AL., 2007; THIELE ET AL., 2017; MITTEMPERGHER & BISTACCHI, 2022). One 
strategy involves using pathfinding algorithms, particularly the Dijkstra algorithm and its 
enhancement, the A* algorithm. Both of these algorithms work by minimizing a cost function, 

https://github.com/gecos-lab/PZero
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which assigns a value to each possible path through the data. The Dijkstra algorithm, 
developed by Edsger W. Dijkstra in 1959, is a graph search algorithm that finds the shortest 
path from a single source to all other nodes in a weighted graph (DIJKSTRA, 1959). The cost 
function in Dijkstra's algorithm is typically the sum of the weights of the edges in the path. 
While effective, Dijkstra's algorithm explores nodes in all directions, which can be 
computationally expensive for large datasets. 
 
The A* algorithm, introduced by Hart, Nilsson, and Raphael in 1968, builds upon Dijkstra's 
approach by incorporating heuristics to guide the search more efficiently towards the goal 
(HART, NILSSON & RAPHAEL, 1968). In this context, heuristics are educated guesses or rules 
of thumb that estimate the cost from any point to the goal. The cost function in A* typically 
includes both the actual cost of the path so far (as in Dijkstra's algorithm) and a heuristic 
estimate of the cost to reach the goal. This heuristic component allows A* to make informed 
decisions about which paths are most promising to explore first. For example, in a 2D grid, 
the straight-line distance to the goal might be used as a heuristic. This enhancement allows 
A* to prioritize paths that seem more promising, potentially reducing computation time in 
many scenarios (FERGUSON & STENTZ, 2006; ZENG & CHURCH, 2009). 
 
The only difference between the two pathfinding algorithms is that the A* algorithm uses 
heuristics to improve efficiency (DIJKSTRA, 1959; HART, NILSSON & RAPHAEL, 1968). 
These algorithms has since been used in computer science and robotics, with implementation 
available in various programming languages and libraries such as the Python pathfinding 
library brean/python-pathfinding: Implementation of common pathfinding algorithms 
(github.com) (FERGUSON & STENTZ, 2006; ZENG & CHURCH, 2009). In lineament detection, 
the Dijkstra pathfinding algorithm is applied to find the optimal path along the lineament, 
which is crucial for accurate identification and mapping (THIELE ET AL., 2017). This method 
is more efficient than manual digitization methods; for example, THIELE ET AL. (2017) 
reported that their improved Dijkstra pathfinding method improved by 61% compared to 
manual digitizing methods. In our approach, we utilize the A* algorithm due to its enhanced 
efficiency stemming from the use of Euclidean distance as a heuristic. As an improved version 
of Dijkstra's algorithm, A* can demonstrate promising results in lineament detection within 
both remote sensing and seismic applications. 
 
Our novel application features an interactive graphical user interface (GUI) that allows users 
to load images, digitize start and end points, and utilize the A* search algorithm to compute 
the optimal path. The A* algorithm in our application uses a cost function tailored to the image 
characteristics, building upon the basic principles introduced earlier. 
 
The preprocessing steps include edge enhancement using the Canny edge detector, Sobel edge 
detector, Shearlet filter, and/or smoothing with a Gaussian filter. These preprocessing steps 
inform the cost function, allowing the A* algorithm to find paths that align with potential 
geological features in the image. 
 
The primary objective of this work is to streamline the process of lineament detection, making 
it more accessible and efficient for geoscientists. We aim to bridge the gap between advanced 
computational methods and practical geoscientific applications by integrating sophisticated 
image processing techniques with an intuitive GUI, available on GitHub gecos-
lab/DOMStudioImage (github.com). This tool is handy for guided autotracking digitization in 
various imaging contexts, from Digital Outcrop Models to seismic data, and will be 

https://github.com/brean/python-pathfinding
https://github.com/brean/python-pathfinding
https://github.com/gecos-lab/DOMStudioImage
https://github.com/gecos-lab/DOMStudioImage
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incorporated into the open-source software PZero, available on GitHub (github.com/gecos-
lab/PZero). 
 
 
Methodology 
 
Overview 
 
This section details the methodology employed for lineament detection using our interactive 
graphical user interface (GUI) application. The process integrates image preprocessing, 
pathfinding using the A* algorithm, and user interaction for manual interpretation. The main 
steps include image loading, preprocessing (Canny, Shearlet, and Sobel filtering), and 
pathfinding with the A* algorithm (Figure 1). 
 

 
Figure 1 Workflow Overview of the Lineament Detection Tool.  

Image Loading 
 
The application provides robust functionality for loading and preprocessing image data, 

catering to both single image analysis and batch processing of large image collections: 
1. Image Loading:  

o Users can load individual RGB or grayscale images or entire collections of images. 
o Supported formats include common geospatial raster formats (e.g., GeoTIFF, 

JPEG2000 and standard image formats (e.g., PNG, JPEG). 
2. Batch Processing:  

o The system can load and preprocess multiple images simultaneously, significantly 
improving efficiency for large datasets. 
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o This batch functionality is useful for analyzing extensive aerial or satellite imagery 
collections. 

3. Format Conversion:  
o Upon loading, images are converted into a standardized internal format, i.e., PNG 

and greyscale, optimized for subsequent processing steps. 
o This conversion ensures consistency in data handling regardless of the original 

image format. 
4. Array Initialization:  

o For each loaded image, the system initializes three key arrays:  
(a) Original image array: 

1. This array stores the original image data in its standardized format 
(PNG and grayscale) 

2. It serves as the reference point for all subsequent operations 
(b) Mask Array: 

1. This array is initially empty and will be populated during the 
segmentation process. 

2. It will contain binary data (0s and 1s) representing the results of edge 
detection filters. 

3. Three separate mask arrays are created, one for each edge detection 
method: i) Canny edge filter mask, ii) Sobel edge filter mask, iii) Shear 
wavelet edge detection filter mask 

(c) Filtered Image Array:  
1. This array stores the results of various image processing steps. 
2. It starts as a copy of the original image array but will be modified by 

edge detection and other processing algorithms. 
3. The filtered image array allows for visualization of processing results 

without altering the original data. 
 

5. Georeferencing Preservation:  
o Crucially, the system maintains all georeferencing information associated with the 

input images throughout the loading and preprocessing stages. 
 
 
 

Image Preprocessing 
 
Canny Edge Detection 
 
The Canny edge detection algorithm, initially developed by John F. Canny in 1986, is a multi-
stage technique for detecting a wide range of image edges (CANNY, 1986). The Canny edge 
detection algorithm enhances edges in the image through several steps, starting with a 
Gaussian blur to reduce noise and followed by gradient calculation, non-maximum 
suppression, double thresholding, and edge tracking by hysteresis(CANNY, 1986; RONG ET AL., 
2014; WANG & JIN, 2007). Mathematically,  
1. The Gaussian blur: The first step is to reduce the noise by applying convolution using: 
 

𝐼𝐼blur(𝑥𝑥,𝑦𝑦) = 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∗ 𝐺𝐺(𝑥𝑥, 𝑦𝑦, 𝜎𝜎) 
 

where Iblur(x,y) is the blurred image, I(x, y) is the the original image, G(x,y,σ) is 
the Gaussian kernel with standard deviation σ, and * denotes the convolution 
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operation. This step is optional and can be activated and deactivated within the 
GUI. Results can be compared with or without Gaussian blur. 

2. Gradient Calculation: After blurring, The gradients are then calculated as: 
 

𝐺𝐺𝑥𝑥(𝑥𝑥,𝑦𝑦) =
𝜕𝜕𝐼𝐼blur(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥  and 𝐺𝐺𝑦𝑦(𝑥𝑥, 𝑦𝑦) =
𝜕𝜕𝐼𝐼blur(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦  

where 𝐺𝐺𝑥𝑥(𝑥𝑥, 𝑦𝑦) and 𝐺𝐺𝑦𝑦(𝑥𝑥,𝑦𝑦) are the gradients in the x and y directions, 
respectively. The gradient magnitude and direction are computed as follows: 

 

𝐺𝐺(𝑥𝑥, 𝑦𝑦) = �𝐺𝐺𝑥𝑥(𝑥𝑥,𝑦𝑦)2 + 𝐺𝐺𝑦𝑦(𝑥𝑥,𝑦𝑦)2 and 𝜃𝜃(𝑥𝑥,𝑦𝑦) = tan−1 �
𝐺𝐺𝑦𝑦(𝑥𝑥, 𝑦𝑦)
𝐺𝐺𝑥𝑥(𝑥𝑥,𝑦𝑦)� 

 
 
3. Non-maximum suppression: This step thins the edges by suppressing non-maximum 

gradient values. It compares the gradient magnitude of each pixel with its neighbors along 
the gradient direction. If the pixel is not a local maximum, it is suppressed (set to zero).  

4. Double thresholding: This process classifies pixels into strong, weak, or non-edges using 
two threshold values. Pixels above the high threshold are marked as strong edges, those 
between the high and low thresholds as weak edges, and those below the low threshold 
are suppressed.  

5. Edge tracking by hysteresis: This final step connects strong edges to weak edges connected 
to strong ones. It starts with the strong edge pixels and recursively adds weak edge pixels 
connected to any already-included edge pixel, forming the final edge-detected image. 

 
 
Sobel Filtering 
 
Sobel filter is a key edge detection method which was introduced by Irwin Sobel and Gary 
Fieldman in 1968 (SOBEL & FELDMAN, 1968). The Sobel filter uses a gradient operator to 
detect edges in the image.  
The gradients in the x and y directions, 𝑆𝑆𝑥𝑥(𝑥𝑥,𝑦𝑦) and 𝑆𝑆𝑦𝑦(𝑥𝑥,𝑦𝑦), Are computed as: 
 

𝑆𝑆𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∗ 𝐾𝐾𝑥𝑥 
𝑆𝑆𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∗ 𝐾𝐾𝑦𝑦 

 

𝐾𝐾𝑥𝑥 =  �
−1 0 1
−2 0 2
−1 0 1

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑦𝑦 =  �
−1 −2 −1
0 0 0
1 2 1

� 

 
where 𝑆𝑆𝑥𝑥(𝑥𝑥,𝑦𝑦) and 𝑆𝑆𝑦𝑦(𝑥𝑥,𝑦𝑦)are the gradients obtained by convolving the image 𝐼𝐼(𝑥𝑥,𝑦𝑦) with 
the Sobel kernels 𝐾𝐾𝑥𝑥 and 𝐾𝐾𝑦𝑦, respectively(SOBEL & FELDMAN, 1968; WENSHUO GAO ET AL., 
2010). The gradient magnitude is then calculated as: 
 

𝑆𝑆(𝑥𝑥,𝑦𝑦) = �𝑆𝑆𝑥𝑥(𝑥𝑥, 𝑦𝑦)2 + 𝑆𝑆𝑦𝑦(𝑥𝑥,𝑦𝑦)2 

 
 
A binary threshold is applied to highlight significant edges, producing the final Sobel-filtered 
image. The binary threshold is selected based on the following parameters: 
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1. Automatic Threshold Selection: 
Many implementations use automatic threshold selection methods. One common approach 
is Otsu's method (OTSU, n.d.). This algorithm: 

• Calculates the image histogram 
• Iterates through all possible threshold values 
• Computes the variance of pixel intensities on both sides of the threshold 
• Select the threshold that maximizes the between-class variance 
2. Adaptive Thresholding: 

In some cases, a single global threshold may not be suitable for the entire image, especially 
if lighting conditions vary across the image. Adaptive thresholding techniques can be used 
to calculate the threshold for smaller image regions. 

3. Hysteresis Thresholding: 
This method, also used in Canny edge detection, employs two thresholds: 

• A high threshold for firm edges 
• A low threshold for weak edges 

Pixels above the high threshold are immediately classified as edges. Pixels between the 
two thresholds are classified as edges only if connected to strong edges. 

4. Percentile-based Thresholding: 
Another approach is to set the threshold based on a percentile of the gradient magnitude 
distribution. For example, setting the threshold at the 90th percentile would retain the top 
10% of edge strengths. 

5. Manual Threshold Selection: 
In some applications, the threshold is manually selected based on empirical testing and 
domain knowledge. This can be effective when dealing with a specific type of image or 
when consistent lighting conditions are maintained. 

 Our approach automatically selects the threshold using Otsu’s method, or the user can also 
choose an adaptive method.  

 
Shearlet-based Edge Detection 
Shearlet transform is an advanced directional multi-scale framework that extends the wavelet 
transform to efficiently capture anisotropic features in images, such as edges and other 
directional elements(KUTYNIOK & LABATE, 2012). The shearlet system used in this 
application code is designed explicitly for edge detection. 
The steps in the shearlet-based edge detection process are: 

1. Shearlet System Construction: The EdgeSystem class constructs a shearlet system adapted 
to the image dimensions. This system consists of a set of filters in the frequency domain, each 
corresponding to a specific scale and direction. These filters can be conceptualized as a bank 
of multi-directional, multi-scale wavelets designed to decompose the image into various 
frequency sub-bands and orientations. 

2. Shearlet Transform: The image is transformed into the shearlet domain. Mathematically, for 
an image f(x), the shearlet transform is defined as: SH_ψ f(a,s,t) = ∫ f(x) ψ_ast(x) dx where 
ψ_ast represents the shearlet function at scale a, shear s, and translation t. This transformation 
effectively decomposes the image into a series of coefficients, each representing the image's 
features at different scales and orientations. 

𝑆𝑆𝐻𝐻𝜓𝜓𝑓𝑓(𝑎𝑎, 𝑠𝑠, 𝑡𝑡) = �𝑓𝑓(𝑥𝑥)𝜓𝜓𝑎𝑎,𝑠𝑠,𝑡𝑡(𝑥𝑥)𝑎𝑎𝑥𝑥 

3. Edge Detection: Edge detection is achieved through analysis of the shearlet coefficients 
across various scales and directions. The edge strength at each pixel (x,y) is computed using 
the following formula: E(x,y) = max_j,l |SH_ψ f(a_j, s_l, x, y)| Here, j and l index the scales 
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and directions respectively. This operation identifies the maximum response across all scales 
and directions, effectively highlighting edge features. 

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = max
𝑗𝑗,𝑙𝑙

�𝑆𝑆𝐻𝐻ψ𝑓𝑓�𝑎𝑎𝑗𝑗 , 𝑠𝑠𝑙𝑙, 𝑥𝑥, 𝑦𝑦�� 

4. Orientation Estimation: The orientation of each edge pixel is determined based on the 
direction of the shearlet that produces the maximum response. This is mathematically 
represented as: θ(x,y) = argmax_l |SH_ψ f(a_j*, s_l, x, y)| Where j* denotes the scale at which 
the edge was detected. This step provides crucial information about the directionality of 
detected edges. 

θ(𝑥𝑥,𝑦𝑦) =\𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑙𝑙�𝑆𝑆𝐻𝐻ψ𝑓𝑓�𝑎𝑎𝑗𝑗∗ , 𝑠𝑠𝑙𝑙, 𝑥𝑥,𝑦𝑦�� 
5. Thresholding: A threshold is applied to the edge strength map to produce the final edge 

detection result: edges(x,y) = { 1 if E(x,y) > T { 0 otherwise Where T represents the threshold 
value (referred to as min_contrast in the code implementation). This step helps to eliminate 
weak edges and noise, resulting in a more refined edge map. 

6. Post-processing:  
o Edge thinning: The detected edges are thinned to single-pixel width using non-

maximum suppression. 
o Curvature estimation: Local curvature is estimated from the orientation field of the 

thinned edges. 
The advantages of shearlet-based edge detection include: 
• Ability to capture edges at multiple scales and orientations 
• Robust to noise due to the multi-scale nature of the transform 
• Provides both edge strength and orientation information 
The code implemented in the GUI application is the CoShREM (Comtois-Shearlet-based 
Reflectional and rotational Edge Measure) library, which is the Python implementation of 
Complex Shearlet-based Ridge and Edge Measure Toolbox in Matlab(REISENHOFER, 
KIEFER & KING, 2016), an optimized implementation of shearlet-based edge detection. 

 
 

Pathfinding with the A* Algorithm 

The A* (A-star) algorithm, initially developed by Hart, Nilsson, and Raphael (1968), is an efficient 
pathfinding method adapted for lineament detection in our study (HART, NILSSON & RAPHAEL, 
1968). This algorithm finds the optimal path between two user-defined points, considering both the 
cost of the path traveled and an estimate of the cost to the goal. 

In the context of lineament detection, the algorithm is applied as follows: 

1. Cost Function: The cost of moving from one pixel to another is based on the pixel values of 
the preprocessed image. Edge pixels, identified in the previous edge detection step, are 
assigned lower costs to encourage the path to follow these edges. This approach is similar to 
that used by (THIELE ET AL., 2017) in their fault trace detection method. 

2. Algorithm Formulation: For each node n, the algorithm calculates a total cost f(n): f(n) = 
g(n) + h(n) Where:  

 

f(n) = g(n) + h(n) 

o g(n) is the actual cost of the path from the start node to the current node n 
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o h(n) is a heuristic estimate of the cost from n to the goal node 

3. Heuristic Function: In our implementation, we use the Euclidean distance as the heuristic 
function h(n), where (x_n, y_n) are the coordinates of the current node n and (x_goal, 
y_goal) are the coordinates of the goal node. 

h(n) = ��xn − xgoal�
2

+ �yn − ygoal�
2
 

 

4. Algorithm Execution: The A* algorithm operates iteratively: a) It starts from the user-
defined start point. b) At each step, it evaluates the f(n) value for all neighboring nodes of 
the current node. c) It selects the node with the lowest f(n) value to explore next. d) This 
process continues until the goal node is reached. 

5. Path Optimization: The algorithm maintains an open list of nodes to be evaluated and a 
closed list of nodes already evaluated. It dynamically updates the path as it discovers lower-
cost routes, ensuring that the final path is optimal given the defined cost function and 
heuristic. 

6. Lineament Tracing: In lineament detection, this process effectively traces the lineament 
from the start to the endpoint, preferentially following edge pixels (which have lower costs) 
while considering the overall path efficiency. 

 
 
Implementation Details 

The application is built using a combination of powerful Python libraries, each chosen for its 
specific strengths and how it integrates with the others: 

1. PyQt5:  

o Purpose: Provides the graphical user interface (GUI) framework. 

o Usage: Used to create the main application window, dialogs, buttons, sliders, and 
other UI elements. 

o Interconnection: The foundation for user interaction connects user inputs to the core 
functionalities provided by other libraries. 

2. Matplotlib:  

o Purpose: Offers advanced 2D plotting capabilities. 

o Usage: Integrated within PyQt5 widgets (FigureCanvas) to display images, 
histograms, and other visual data. 

o Interconnection: Works closely with PyQt5 to provide interactive visualizations of 
the images and processed results. 

3. OpenCV (cv2):  

o Purpose: Provides efficient computer vision and image processing algorithms. 
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o Usage: Used for core image operations such as loading, saving, and applying filters 
(Canny, Sobel, Shearlet). 

o Interconnection: Processes images that are then visualized using Matplotlib and 
interacted with via the PyQt5 interface. 

4. NumPy:  

o Purpose: Offers efficient array operations and numerical computing. 

o Usage: Used for underlying image representation and mathematical operations. 

o Interconnection: Provides the data structure (ndarray) used by OpenCV, Matplotlib, 
and SciPy for image manipulation and analysis. 

5. SciPy:  

o Purpose: Provides additional scientific computing tools. 

o Usage: Used for specific image processing tasks like Gaussian filtering 
(scipy.ndimage.gaussian_filter). 

o Interconnection: Complements OpenCV by providing additional specialized 
functions, operating on NumPy arrays. 

6. heapq:  

o Purpose: Implements a priority queue algorithm. 

o Usage: Used in the A* pathfinding algorithm to efficiently manage the open list of 
nodes to be explored. 

o Interconnection: Works with the custom A* implementation, which operates on the 
image data processed by OpenCV and NumPy. 

The application's workflow interconnects these libraries as follows: 

1. The user interacts with the PyQt5 GUI to load an image. 

2. The image is loaded using OpenCV and converted to a NumPy array. 

3. Image processing operations (like Canny or Sobel filtering or Shearlet) are performed using 
OpenCV functions, operating on the NumPy array. 

4. The processed images are displayed using Matplotlib, integrated into the PyQt5 GUI. 

5. When the user initiates the pathfinding:  

o SciPy's gaussian_filter is applied to the image. 

o The filtered image is processed to create a cost map using NumPy operations. 

o The A* algorithm operates on this cost map using heapq for efficient node selection. 

o The resulting path is plotted on the image using Matplotlib and displayed in the 
PyQt5 GUI. 
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Assumptions and Simplifications 

For the current implementation, the following assumptions and design choices were made: 

• Multi-method Edge Detection: The application supports multiple edge detection methods, 
including Canny, Sobel, and Shearlet-based approaches. This allows for comparison and 
selection of the most suitable method for different image types. 

• Edge-based Cost Function: The cost function for pathfinding is primarily based on edge 
detection results. This assumption simplifies the pathfinding process but may need 
adjustment for different image types or features of interest. 

• User-Adjustable Filter Parameters: The application provides interactive sliders for users to 
adjust key parameters of the Canny and Sobel filters in real time: 

1. Canny Filter Sliders:  

o Threshold 1 and Threshold 2: Adjustable from 0 to 255, with defaults of 50 and 150, 
respectively. 

2. Sobel Filter Slider:  

o Kernel Size: Adjustable from 1 to 31 (odd values only), with a default of 3. 

Shearlet-based Edge Detection: The implementation includes a shearlet-based edge detection 
method using the CoShREM (Comtois-Shearlet-based Reflectional and rotational Edge Measure) 
library. This method offers: 

• Multi-scale and multi-directional analysis, potentially capturing more complex edge 
structures. 

• Edge and edge-orientation measurement, providing additional information for lineament 
detection. 

• A fixed minimum contrast parameter (set to 40 in the current implementation) for the edge 
detection threshold. 

Manual Interpretation Filter Selection: For the manual interpretation process, users can choose 
between Canny, Sobel, and Shearlet filters. 

· Image Preprocessing: 

• Images are resized to 256x256 pixels for consistent processing, with original dimensions 
preserved for final path mapping. 

Curvature Measurement: The shearlet method includes curvature measurement on thinned 
orientations, providing additional structural information. 

 
Results 
 
The application of Canny and Sobel filters to four outcrop images from diverse geological settings 
reveals important insights into structural and stratigraphic features. Each image represents a unique 
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lithological context, contributing to a comprehensive analysis of geological formations in the 
region. The results described in this section were achieved while the gaussian filter was turned off. 

Canny and Sobel filter results: 

Outcrop 1: Limestone Bed Surface, Milna Formation, Pag Island, Croatia This outcrop captures a 
bed surface of limestone, characterized by a network of fine fractures and subtle surface textures 
(Figure 3). The Canny filter, with thresholds set at 50 and 150, produced more detailed lineaments 
compared to the Sobel filter. This is because: 

1. The Canny filter's dual threshold approach allows it to detect weak edges (threshold 50) 
while maintaining connectivity through stronger edges (threshold 150). This is particularly 
effective for the fine, interconnected fracture network visible on the limestone surface. 

2. The Sobel filter, being primarily sensitive to intensity gradients, captures the more 
prominent fractures but misses some of the finer details. This is evident in the less dense 
network of lines in the Sobel-filtered image. 

3. The light-colored, relatively homogeneous limestone background provides a good contrast 
for edge detection, enhancing the filters' ability to identify structural features. 

 
Outcrop 2: Rudist-bearing Limestone, Milna Formation This outcrop showcases rudist-bearing 
limestone intersected by numerous small veins and stylolites (Figure 3). Both Sobel and Canny 
filters perform notably well here, better than in Outcrop 1, for several reasons: 

1. Higher contrast: The homogeneous wall rock provides a sharp contrast against the veins and 
stylolites, making edge detection more effective for both filters. 

2. Distinct features: The veins and stylolites present as clear, linear features with well-defined 
boundaries, ideal for edge detection algorithms. 

3. Sobel performance: The Sobel filter performs particularly well here due to the strong 
intensity gradients at the boundaries of the veins and stylolites. 

4. Canny detail: The Canny filter captures additional fine details, particularly in areas where 
smaller fractures intersect larger ones. 

 
Outcrop 3: Late Cretaceous Gornji Formation, Pag Island This outcrop presents a more complex 
scenario for edge detection (Figure 3). While both filters struggle to delineate all features clearly, 
they still provide valuable information: 

1. Textural complexity: The outcrop's heterogeneous texture creates numerous small-scale 
intensity variations, challenging both filters. 

2. Canny filter performance: The Canny filter detects a dense network of edges, some 
corresponding to actual fractures and others to textural boundaries. This overdetection can 
help identify areas of high textural complexity. 

3. Sobel filter results: The filter produces a less cluttered image, highlighting more prominent 
features but missing finer details. 
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4. Comparison with manual interpretation: While less effective than manual interpretation, the 
filtered images provide helpful information about the outcrop's structural complexity. They 
highlight areas of increased fracturing or textural change that warrant closer examination. 

Outcrop 4: Calcareous Sandstone Cliff, Dinaric Island, Croatia 

This outcrop showcases a cliff composed of calcareous sandstones, featuring a series of turbidites 
approximately 30-50 cm thick, intersected by fractures filled with white calcite (Figure 3). The 
structural characteristics of this outcrop make it particularly well-suited for edge detection 
techniques. Both Canny and Sobel filters perform exceptionally well here, with the Canny filter 
showing superior results. Here's a detailed analysis of the filter performance: 

1. High Contrast Features:  

o The white calcite-filled fractures against the darker sandstone background create 
high-contrast edges, ideal for both Sobel and Canny filters. 

o This natural contrast enhances the filters' ability to accurately detect and highlight 
fracture patterns. 

2. Canny Filter Performance:  

o The Canny filter excels in this outcrop because it detects strong and weak edges. 

o It effectively captures the main fracture lines and the finer details of the turbidite 
layers. 

o The filter's non-maximum suppression and hysteresis thresholding help produce 
clean, well-defined lines that closely match the visible geological features. 

3. Sobel Filter Results:  

o The Sobel filter also performs well, highlighting the major fractures and the 
boundaries between turbidite layers. 

o Its sensitivity to vertical and horizontal gradients is particularly effective in 
delineating the layered structure of the turbidites. 

4. Geological Feature Enhancement:  

o Both filters effectively enhance the visibility of the turbidite layers, making their 
thickness and orientation more apparent. 

o The slight erosion of the fractures, visible in the field, is captured by the filters, 
appearing as more pronounced edges in the processed images. 

5. Comparative Performance:  

o The superior performance of both filters on this outcrop, compared to the previous 
ones, can be attributed to a) The clear, linear nature of the fractures, b) The distinct 
layering of the lineaments, c) The high contrast between the calcite-filled fractures, 
and the sandstone matrix 

6. Canny Filter Advantage:  
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o The Canny filter's particular effectiveness in this outcrop is due to its ability to 
connect edge segments. 

o This feature is especially useful in tracing the continuous paths of fractures that may 
have slight variations in contrast along their length. 

 

Shearlet Edge Detection Filter: 

The shearlet edge detection filter, applied to Outcrop 4 and Outcrop 2, demonstrates significant 
advantages over traditional edge detection methods like Canny and Sobel (Figure 2). This outcrop, 
featuring calcareous sandstones with well-defined turbidite layers and calcite-filled fractures, 
provides an ideal canvas for showcasing the strengths of the shearlet approach. 

1. Edge Detection Quality: The shearlet filter demonstrated superior edge detection capabilities 
compared to Sobel and Canny filters. In Outcrop 4, the shearlet method clearly delineated both 
the horizontal fracture layers and the vertical to sub-vertical fractures. The edges detected by 
the shearlet filter appear more continuous and less fragmented than those identified by Sobel 
and Canny filters (Figure 2).  

2. Feature Preservation: Shearlet edge detection preserved fine-scale features while 
simultaneously capturing larger structural elements. This multi-scale capability is particularly 
evident in Outcrop 2, where the method successfully highlighted the smaller-scale features 
(Figure 4). In contrast, Sobel and Canny's filters tended to either over-emphasize larger 
features at the expense of detail or produce noisy results when attempting to capture fine-scale 
edges.  

3. Noise Reduction: The shearlet method exhibited superior noise reduction compared to Sobel 
and Canny filters. This is particularly noticeable in areas of Outcrop 4, where weathering and 
erosion may have introduced noise (Figure 2). The shearlet filter effectively distinguished 
between genuine geological features and image noise, resulting in cleaner edge maps.  

4. Directional Sensitivity: A key advantage of the shearlet method is its ability to detect edges at 
multiple orientations. This is crucial for geological applications where features like bedding 
planes and fractures intersect at various angles. In Outcrop 4, the shearlet filter clearly 
distinguished between the horizontal layering of lineations and the near-vertical fractures. 
Sobel and Canny filters, being less sensitive to direction, did not provide this level of 
orientational discrimination (Figure 2).  

5. Edge Continuity: The shearlet method produced more continuous edges than Sobel and Canny 
filters. This is particularly important for tracing geological features such as lineations across 
the outcrop. In Outcrop 2, the continuity of the lineations is better preserved in the shearlet-
filtered image than in the more fragmented edges produced by Canny and Sobel filters.  

6. Adaptability to Feature Complexity: The shearlet filter demonstrated superior adaptability to 
the varying complexity of geological features. In areas of Outcrop 4 where the transition 
between lineation is gradual, the shearlet method captured these subtle changes more 
effectively than Canny's binary edge detection or Sobel's gradient-based approach (Figure 2). 
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Figure 2. Comparison of different outcrops on which shearlet edge detection filter is applied, 
modified after (MITTEMPERGHER & BISTACCHI, 2022).  
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Figure 3. Comparison of different filters applied to lineament traces obtained from four outcrop 
images, modified after (MITTEMPERGHER & BISTACCHI, 2022). 

 
Results on Seismic Sections 

Applying the A* algorithm to seismic images provides a robust pathfinding and edge detection 
method, significantly enhancing seismic interpretation. Seismic data files (SEGY format) were 
converted to NumPy arrays using the segyio library (Equinor Segyio: Fast Python Module for SEGY 
Files, 2023). The data is from Groningen, Netherlands (Figure 4). 
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Filter Application: 

1. Gaussian Filter: A Gaussian filter was applied to smooth the seismic images. This step 
reduces random noise while preserving important structural features (CHOPRA & MARFURT, 
2007). In seismic data processing, Gaussian filtering is a common technique used to:  

o Improve signal-to-noise ratio 

o Enhance the continuity of seismic reflectors 

o Prepare the data for subsequent edge detection steps 
While not always necessary, Gaussian smoothing can be particularly beneficial in datasets 
with high-frequency noise or when working with vintage seismic data (YILMAZ, 2001). 

2. Sobel Filter: Following smoothing, the Sobel filter was applied to enhance edges in the 
seismic images. In seismic interpretation, the Sobel filter is frequently used for:  

o Highlighting structural discontinuities, such as faults and fractures 

o Enhancing stratigraphic features like channel edges or reef boundaries 

o Improving the visibility of subtle structural and stratigraphic elements 
The use of Sobel filters in seismic interpretation is well-established and has been shown to 
be effective in numerous studies, e.g., (AQRAWI & BOE, 2011; CHOPRA & MARFURT, 2007). 
The GUI's kernel size adjustment option for the Sobel filter allows interpreters to fine-tune 
the edge detection process. This flexibility is valuable because:  

o Different seismic datasets may require different levels of edge enhancement 

o The scale of geological features of interest can vary, necessitating adjustable filter 
parameters 

o It enables interpreters to balance between detecting major structures and preserving 
finer details 
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Figure 4 Example of the seismic section with and without Sobel filtered assisted A* semi-
autotracking.  

 

Discussion 
The results demonstrate varying performance across the three edge detection methods: Canny, Sobel, 
and Shearlet filters.  

Canny Filter Performance: The Canny filter, with low and high thresholds set at 58 and 165, 
respectively, achieved the highest precision (0.5197) and recall (0.3176) among the three methods in 
Outcrop 4 with Gaussian filter turned off (Table 1). This superior performance aligns with findings 
from previous studies, such as (BAO, LEI ZHANG, & XIAOLIN WU, 2005), who noted Canny's 
effectiveness in detecting true edges while suppressing noise. The higher precision indicates that 
51.97% of the edges detected by Canny were true positives, while the recall suggests that it correctly 
identified 31.76% of all actual edges in the image. The performance of Canny filter detection depends 
upon the threshold set in the settings, meaning that the precision and recall can be affected by the 
detected fractures set by the threshold.  

For outcrop 2, the Canny filter (low threshold 72, high threshold 165) achieved a precision of 0.3317 
and a recall of 0.3214 (Table 1). This is lower than its performance on outcrop 4, with a precision of 
0.5197 and a recall of 0.3176. The precision decreased by 36.17%, while the recall increased slightly 
by 1.20%. This suggests that for outcrop 2, the Canny filter detected more edges overall, but a smaller 
proportion of them were true positives. 
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Sobel Filter Performance: The Sobel filter, applied with a kernel size of 1, showed slightly lower 
performance with a precision of 0.4891 and a recall of 0.2611 in Outcrop 4 (Table 1). This means that 
48.91% of detected edges were correct, and it identified 26.11% of all true edges. The smaller kernel 
size (1x1) might explain the lower recall, as it's more noise-sensitive and may miss larger-scale edges. 
This aligns with observations by (WENSHUO GAO ET AL., 2010), who found that larger Sobel kernels 
can better suppress noise but may lose fine detail. 

The Sobel filter (kernel size 3) showed improved performance on outcrop 2, with a precision of 0.4462 
and a recall of 0.2803 (Table 1). Compared to outcrop 4, this represents an 8.77% decrease in precision 
but a 7.35% increase in recall. The larger kernel size used for outcrop 2 (3x3 vs 1x1) likely contributed 
to this change, allowing the filter to capture more true edges while increasing false positives. 
Shearlet Filter Performance: With a minimum contrast of 5, the Shearlet filter showed the lowest 
precision (0.4405) and recall (0.2160) in this comparison in Outcrop 4 (Table 1). While these numbers 
are lower, it's important to note that Shearlet transforms have shown promise in specific applications, 
particularly in detecting anisotropic features (KUTYNIOK & LABATE, 2012). The lower performance 
here might be due to the specific characteristics of the image or the chosen minimum contrast 
parameter. The results can be much better compared to the other filters with better ground truth and 
detected fractures. 
 
The Shearlet filter (minimum contrast 5) performed similarly across both outcrops (Table 1). For 
outcrop 2, it achieved a precision of 0.3985 and recall of 0.2977, compared to 0.4405 and 0.2160 for 
outcrop 4. This represents a 9.53% decrease in precision but a 37.82% increase in recall. The 
consistent minimum contrast setting allowed for more edge detection in outcrop 2, improving recall 
at the cost of some precision. 

Table 1 Summary of each filter's performance using parameters like precision and recall for 
Outcrop 2 and Outcrop 4.  

Filter Type Metric Outcrop 2 Outcrop 4 
Canny Precision 0.3317 0.5197 
Canny Recall 0.3214 0.3176 
Sobel Precision 0.4462 0.4891 
Sobel Recall 0.2803 0.2611 
Shearlet Precision 0.3985 0.4405 
Shearlet Recall 0.2977 0.216 
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Figure 5. Overview of workflow through images. 

Comparative Analysis: Quantitatively, the Canny filter outperformed both Sobel and Shearlet filters 
in Outcrop 4. Its precision was 6.25% higher than Sobel and 17.98% higher than Shearlet. In terms 
of recall, Canny surpassed Sobel by 21.64% and Shearlet by 47.04%. These substantial differences 
suggest that Canny was more effective in Outcrop 4 at balancing the detection of true edges while 
minimizing false positives for this particular image and parameter settings. 
 
However, it's crucial to note that these results are specific to the image and parameter settings. 
Different images or adjusted parameters could yield different outcomes. For instance, Shearlet 
transforms have shown superior performance in detecting curved edges in some studies 
(REISENHOFER, KIEFER & KING, 2016). 
 
Unlike outcrop 4, where the Canny filter outperformed the others, the Sobel filter showed the highest 
precision for outcrop 2. The Sobel filter's precision was 34.52% higher than Canny and 11.97% higher 
than Shearlet. However, Canny maintained the highest recall, exceeding Sobel by 14.66% and 
Shearlet by 7.96%. 
 
These differences in performance between the two outcrops highlight the importance of considering 
the specific characteristics of each geological image when selecting and tuning edge detection 
methods. The variation in results suggests that the optimal filter and parameter settings may differ 
based on the unique features of each outcrop, such as rock type, fracture patterns, and image quality. 
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The overall lower precision values for outcrop 2 across all filters indicate that this image may present 
more challenging conditions for edge detection, possibly due to more complex geological structures 
or noisier image data. The improved recall for the Shearlet filter on Outcrop 2 is particularly 
noteworthy, suggesting it may be more effective at capturing the specific edge characteristics present 
in this image. 
  
 
 
Pros and Cons of A* Algorithm for Semi-Automatic Tracking:  
 
The A* algorithm, when applied to semi-automatic lineament tracking in geological images, offers 
several advantages and limitations, particularly when combined with different edge detection filters: 
Pros: 

1. Efficient Path Finding: The A* algorithm finds optimal paths between user-defined start and 
end points. As seen in the "Pathoverlay" image, it can effectively trace complex geological 
features like fractures and bedding planes (Figure 5). This efficiency can significantly reduce 
processing time compared to manual tracking, with studies reporting up to 79% time savings 
(THIELE ET AL., 2017; VASUKI ET AL., 2014). 

2. Adaptability to Different Filters: The A* algorithm can work with various edge detection 
methods, each offering unique benefits. For instance, the Canny filter (in the bottom-left 
image) provides detailed edge information, allowing A* to detect fine structures (Figure 5). 
This adaptability enables geologists to choose the most suitable filter for specific geological 
contexts (ARGIALAS & MAVRANTZA, 2004).  

3. Consistency in Complex Terrains: In images with intricate geological features, like the 
multiple layers and fractures shown, A* can maintain consistency in tracking lineaments. This 
is particularly valuable in areas where manual interpretation might vary between experts 
(BOND ET AL., 2007).  

4. Handling of Noise and Gaps: When combined with appropriate preprocessing (like the 
blurring shown in the top-right image), A* can effectively navigate through noisy data or areas 
with discontinuous features, providing more robust lineament detection than purely manual 
methods. 

Cons: 
1. Sensitivity to Edge Detection Quality: The performance of A* is highly dependent on the 

quality of edge detection. As visible in the Canny filter image, while it captures many details, 
it also includes noise that could lead A* to false paths. This necessitates careful selection and 
tuning of edge detection parameters (ARGIALAS & MAVRANTZA, 2004).  

2. Potential for Overdetection: In areas with high detail or noise, like the upper portions of the 
Canny-filtered image, A* might detect more lineaments than geologically significant. This 
could lead to overinterpreting features, requiring additional expert validation (BOND ET AL., 
2007). 

3. Challenge in Multiscale Features: The image shows geological features at different scales 
(e.g., fine fractures and larger bedding planes) (Figure 5). A* might struggle to appropriately 
prioritize these different scales without additional guidance, potentially missing important 
large-scale features while focusing on finer details. 

4. Dependency on Start and End Points: The effectiveness of A* relies heavily on the user-
defined start and end points. In complex geological settings like those shown in the image, 
choosing these points requires geological expertise, which can introduce a degree of 
subjectivity (BOND, 2015). 
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Efficacy in Complex Geological Settings: 
The application of semi-automatic tracking methods to Outcrop 3, a complex geological setting, 
revealed both the potential and limitations of automated edge detection techniques (Figure 3). The 
performance metrics of Canny, Sobel, and Shearlet filters provide valuable insights into their efficacy 
in challenging geological contexts. 
 
The Canny filter demonstrated the highest precision (0.3191) and recall (0.1306) among the three 
methods (Table 2). This suggests that approximately 31.91% of the edges detected by the Canny filter 
corresponded to actual fractures, while it successfully identified 13.06% of all true fractures in the 
outcrop. Despite being the best performer, these relatively low values underscore the challenges posed 
by the outcrop's complexity. 
 
The Sobel filter showed the lowest performance, with a precision of 0.2245 and a recall of 0.0706. 
This indicates that only 22.45% of the edges it detected were true fractures, and it identified merely 
7.06% of all actual fractures (Table 2). The lower performance of the Sobel filter in this context may 
be attributed to its sensitivity to noise in highly textured areas. 
 
While not outperforming Canny, the Shearlet filter showed promise with a precision of 0.2860 and a 
recall of 0.1042. Its ability to capture 28.60% of true edges in its detections and identify 10.42% of 
all fractures suggests that its multi-scale and multi-directional approach has merit in complex 
geological settings. 
. 
 

 

Figure 6. Performance of different filters on Outcrop 3 

Table 2 Performance of different filters on Outcrop 3 

Filter Type Metric Outcrop 3 
Canny Precision 0.3191 
Canny Recall 0.1306 
Sobel Precision 0.2245 
Sobel Recall 0.0706 
Shearlet Precision 0.2860 
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Shearlet Recall 0.1042 
 
These quantitative results highlight several key points: 

1. Even the best-performing filter (Canny) missed a significant proportion of fractures, with a 
recall of only 13.06%. This underscores the necessity of complementary manual 
interpretation. 

2. The precision values, all below 32%, indicate a high rate of false positives across all filters. 
While providing information about textural complexity, this overdetection necessitates 
expert geological interpretation to distinguish true fractures from other edge features. 

3. The relatively small differences in performance between filters (e.g., Canny's recall of 
13.06% versus Shearlet's 10.42%) suggest that combining multiple filtering approaches 
might yield more comprehensive results. 

Given these performance metrics, the value of a hybrid approach becomes evident. Even with its 
limitations, the semi-automatic method provides a starting point that is more advanced than 
beginning from zero. For instance, using the Canny filter as an initial step would correctly identify 
about 13% of fractures, allowing geologists to focus their efforts on the remaining 87%. 

Moreover, the low recall values across all filters (ranging from 7.06% to 13.06%) emphasize the 
critical role of expert interpretation. Geologists can leverage their expertise to identify the majority 
of fractures missed by automated methods, potentially using the semi-automatic tracking tool in a 
targeted manner for these newly identified features. 
 

Conclusion 

The study can be concluded into the following points 
• This study compared the performance of three edge detection methods (Canny, Sobel, and 

Shearlet) for lineament detection in geological outcrops, integrated with the A* algorithm 
for semi-automatic tracking.  

• The effectiveness of each filter varied significantly between different outcrop images, 
highlighting the importance of adaptive filter selection in geological image analysis:  

o Outcrop 4: Canny filter showed superior performance (Precision: 0.5197, Recall: 
0.3176) 

o Outcrop 2: Sobel filter demonstrated the highest precision (0.4462) 
• The Shearlet transform, while not consistently outperforming traditional methods, showed 

promise in capturing complex, curvilinear features standard in geological structures.  
• The integration of the A* algorithm with edge detection filters provides an efficient semi-

automatic approach for lineament tracking, potentially reducing processing time by up to 
60% compared to manual methods.  

• The A* algorithm's performance heavily depends on the quality of edge detection, 
emphasizing the need for careful filter selection and parameter tuning.  

• The semi-automatic approach combines the efficiency of algorithmic processing with the 
expertise of human interpreters, allowing for more consistent and rapid analysis of complex 
geological imagery.  

• Balancing the detection of fine-scale features with the identification of larger geological 
structures remains challenging, suggesting a need for multi-scale analysis approaches.  

• Future work should focus on:  
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o Developing adaptive filtering techniques that optimize edge detection for varying 
geological contexts 

o Improving the A* algorithm's ability to prioritize geologically significant features 
o Exploring ensemble methods that combine the strengths of multiple edge detection 

techniques 
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