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Abstract. Scheduled Service Network Design supports consolidation-
based freight carriers in setting up a transportation network by select-
ing the transportation services to operate, with their schedules, and the
itineraries of the commodities to move. We propose a new formulation
to the problem that represents time in its continuous nature, directly
over the physical graph, thus mitigating the drawbacks that a tradi-
tional formulation, relying on a time-space network, may have for large
scale instances, due to the increase in its dimensions and the consequent
intractability in solving the problem exactly. Preliminary numerical ex-
periments comparing the new and traditional formulations on a set of
randomly generated instances are performed. Results highlight that the
proposed formulation is a valuable tool to solve large scale instances with
a long schedule length.

Keywords: Scheduled Service Network Design, Freight Transportation,
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1 Introduction

Consolidation-based freight transportation carriers group and dispatch within
the same vehicle or convoy (e.g., a truck, a container ship, a freight train) mul-
tiple shipments, each potentially associated with a different customer. Consoli-
dation is crucial to the profitability of these carriers, since it increases resource
utilization and reduces transportation costs and prices as economies of scale
can be exploited. Postal and small-package transportation companies, less-than-
truckload motor carriers, railroads, maritime liner navigation companies perform
similar services for freight. Such carriers operate over a network composed of
terminals connected by an infrastructure (e.g., highways or rail tracks) or con-
ceptual links (e.g., maritime corridors). The terminals come in several designs
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and sizes, depending on the particular transportation modes. To achieve consol-
idation, the carriers operate transportation services over the network, according
to a defined route, from an origin to a destination terminal, possibly with inter-
mediate stops, and a schedule, giving timing information related to the time of
departure from and arrival at each stop. Such transportation services are used to
route shipments from their origin towards their destination terminals, through
itineraries possibly visiting intermediate terminals where consolidation is ful-
filled, and thus loading/unloading and service-to-service transfer operations are
performed.

Jointly determining the scheduled services to operate and the commodity
itineraries is a rather complex tactical-planning problem referred to as Sched-
uled Service Network Design (SSND). Its goal is to define the transportation
plan (i.e., scheduled services and commodity itineraries) with the objective of
minimizing the total transportation cost. The problem is normally addressed
for a certain period of time, called schedule period, with respect to which some
demand regularity is observed over a long period, called planning horizon. For
example, a commodity requiring transportation every week over a period of
six months gives rise to a weekly schedule period within a six month planning
horizon. The obtained transportation plan is then cyclically repeated over the
planning horizon (e.g., the weekly schedule is repeated over the six months).

Many variants of SSND have been studied in the literature [1]. Some papers
focus on adapting the SSND to specific contexts and modes of transportation
(see [2] for rail, truck and maritime transportation). Other papers, instead, ad-
dress extensions of the classical SSND including additional management issues
such as empty repositioning of resources (e.g., vehicles or containers), or re-
source management considerations [3,4,5,6]. Finally, a few contributions tackle
the SSND through stochastic methodologies explicitly accounting for the un-
certainty affecting, for instance, volume of demand [7,8] or travel time of ser-
vices [9,10].

A traditional way to formulate the SSND is resorting to a time-space net-
work, a particular graph structure that incorporates both temporal and spatial
information related to the application to deal with. In case of SSND, a time-
space network is constructed from the graph representing the physical network
over which the carriers operate, where nodes represent terminals and arcs service
legs. The schedule period is then partitioned into discrete intervals. The original
nodes of the graph are replicated for each interval, and arcs are appropriately
added to connect the timed-nodes. Although time-space networks provide a flex-
ible modeling technique, the decision on the appropriate time discretization is
crucial. A fine discretization usually gives good approximations to the contin-
uous time formulation at the expense of large, and often intractable, models.
A time-space network based on a one-minute time discretization gives a con-
tinuous time SSND [11]. As opposed, a coarse discretization, even though more
computationally amenable, may yield to a poor quality solution due to a rough
time approximation [12]. A recent branch of study for SSND is thus focusing on
methods managing time according to its continuous nature, in order to mitigate
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such a loss of quality in solutions. Specifically, [11] proposes an iterative refine-
ment algorithm, still based on time-space networks, to obtain continuous time
SSND solutions, while [13] introduces a continuous time formulation based on
the enumeration of consolidation paths of shipments, which may, however, be
computationally ineffective when the number of shipments is large.

In this paper, we propose a new continuous time formulation using directly
the physical graph of SSND (SSND-CPG, in the following), which does neither
rely on a time-space network nor on the enumeration of consolidation paths
of shipments. We also report some preliminary computational results on the
comparison between the traditional formulation of SSND relying on the time-
space network (SSND-TS, in the following) and SSND-CPG. The reported re-
sults highlight the good performance of SSND-CPG for instances characterized
by a long schedule length. The paper is organized as follows. Section 2 describes
the problem and the notation used, it contains a short recall of SSND-TS and
the presentation of the proposed formulation SSND-CPG. Section 3 describes
the computational study and the obtained results. Finally, Section 4 concludes
the paper.

2 Problem description, notation and formulations

The physical network on which the carriers operate is represented by a directed
graph G = (N ,A), with node set N representing terminals and arc set A mod-
elling service legs. Let T be the chosen schedule length, and thus [0, T ] be the
schedule period. The demand is represented by a set of commodities K, each
commodity k ∈ K requiring to transport a certain volume wk from an origin
terminal ok ∈ N to a destination terminal dk ∈ N , according to its availability
time at origin, ak ∈ [0, T ], and due date at destination, bk. We assume that each
commodity k must follow a single path from the origin to the destination, and
that its itinerary spans over T , i.e., bk ≤ ak + T . The set of potential services
the carriers may operate is specified by Σ. Each service σ ∈ Σ follows a route in
the physical network, represented by a directed path Pσ = (Nσ,Aσ), where Nσ

describes the set of terminals visited by σ, from its origin oσ to its destination
dσ, and Aσ models the service legs. Alongside with routing information, timing
information is specified: ϕ̂i,σ denotes the departure time of service σ from node

i, for any i ∈ Nσ \ {dσ}, while ψ̂i,σ denotes the arrival time of service σ to node
i, for any i ∈ Nσ \ {oσ}. As for the commodities, we assume that the route of

each service σ spans over T , i.e., ψ̂dσ,σ ≤ ϕ̂oσ,σ + T . We also assume ψ̂dσ,σ ≤ T .
Each service σ has a capacity uσ. Finally, an activation cost fσ is associated
with each service σ, a unit commodity transportation cost ck(i,j)σ, differentiated
for service, is associated with each commodity k ∈ K, service σ ∈ Σ and arc
(i, j) ∈ Aσ, and a cost cki is associated with each commodity k ∈ K and each
node i ∈ N , modelling the unit cost of holding goods of type k at terminal i.

The goal is to select, among the potential services the carriers may activate,
those services that allow to satisfy the transportation demand at the minimum
cost. As previously indicated, the selected transportation plan is then cyclically
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repeated to cover a given planning horizon. Notice, in particular, that each com-
modity in K and each service in Σ occur once within the schedule period, while
they occur within the planning horizon with periodicity T .

2.1 The time-space network formulation

For brevity, we report here a short presentation of the time-space network formu-
lation, named SSND-TS, by referring to [1] for an in-depth description. Chosen
a time discretization of the schedule period, the graph G = (N ,A) is replicated
according to it, generating the time-space network GTS = (NTS ,ATS). Each
node in NTS represents a terminal at a specific time instant, while ATS is com-
posed of the set of holding arcs, i.e., arcs between representations of the same
node in two consecutive periods, used to model idle time at terminals for freights
or services, and the set of moving arcs, i.e., arcs between representations of two
different nodes in two different periods, standing for potential service legs. Given
the cyclic nature of the schedule, the time-space network wraps-around, allowing
operations starting at the end of the schedule period to terminate at its begin-
ning through appropriate arcs. SSND-TS then takes the form of a fixed-cost,
capacitated, multi-commodity network design formulation over GTS , aiming at
minimizing the transportation cost (service activation and commodity routing
costs) under commodity flow-conservation and linking-capacity constraints. No-
tice that, depending on how time discretization is performed, SSND-TS could
provide just an approximate formulation to the problem addressed.

2.2 The continuous time physical graph based formulation

The formulation we propose considers directly the physical graph G = (N ,A).
Given the circularity of the schedule, any commodity in K, besides been po-
tentially transported by services travelling within the period [0, T ], may also be
potentially transported by a service starting from its origin before time 0, or
similarly, by a service arriving at its destination after time T . To account for
this, we partition the service set Σ into two subsets, say Σ1 and Σ2. The subset
Σ1 contains those services leaving their origin before time 0 and arriving at their
destination after time 0, while the services belonging to Σ2 travel within [0, T ],
i.e., they leave their origin at a time greater than or equal to 0 and arrive at their
destination within T . Notice that potential services leaving their origin within
[0, T ] and arriving at their destination after T are indeed translations in time
of services belonging to Σ1. In order to characterize those services which can be
used to satisfy the demand in K, we define an enlarged set Σ̃. It contains all
the services in Σ, plus two copies of each service σ1 ∈ Σ1 and one copy of each
service σ2 ∈ Σ2. Specifically, given σ1 ∈ Σ1, the two additional copies σ′

1 and σ′′
1
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are defined in such a way that:

Pσ′
1
= Pσ1

Pσ′′
1
= Pσ1

ϕ̂i,σ′
1
= ϕ̂i,σ1 + T ∀ i ∈ Nσ1 \ {dσ1} ϕ̂i,σ′′

1
= ϕ̂i,σ1 + 2T ∀ i ∈ Nσ1 \ {dσ1}

ψ̂i,σ′
1
= ψ̂i,σ1

+ T ∀ i ∈ Nσ1
\ {oσ1

} ψ̂i,σ′′
1
= ψ̂i,σ1

+ 2T ∀ i ∈ Nσ1
\ {oσ1

}
ck(i,j)σ′

1
= ck(i,j)σ1

∀ k ∈ K, ∀ (i, j) ∈ Aσ1 ck(i,j)σ′′
1
= ck(i,j)σ1

∀ k ∈ K, ∀ (i, j) ∈ Aσ1 .

Similarly, given σ2 ∈ Σ2, the additional copy σ′
2 is defined in such a way that:

Pσ′
2
= Pσ2

ϕ̂i,σ′
2
= ϕ̂i,σ2 + T ∀ i ∈ Nσ2 \ {dσ2}

ψ̂i,σ′
2
= ψ̂i,σ2

+ T ∀ i ∈ Nσ2
\ {oσ2

}
ck(i,j)σ′

2
= ck(i,j)σ2

∀ k ∈ K, ∀ (i, j) ∈ Aσ2 .

Services σ′
1 and σ′′

1 thus represent translations in time of service σ1 ∈ Σ1, whose
operations are shifted in the future after T and 2T periods, respectively, while
service σ′

2 represents the translation T periods ahead of service σ2 ∈ Σ2. We
define such services as twin-services, and denote by Γσ the set of twin-services
of service σ. By construction, Σ̃ = Σ ∪

⋃
σ∈Σ Γσ is the set of those services that

the commodities, whose availability date is in [0, T ], may potentially use to be
transported towards their destination. Due to the definition of Σ̃, we schedule
over an enlarged time period [T ′, T ′′], where

T ′ = min
σ∈Σ̃

ϕ̂oσ,σ, T ′′ = max
σ∈Σ̃

ψ̂dσ,σ.

The interval [T ′, T ′′] will be called the planning period.
Figure 1 provides an example of twin-services and planning period. Specif-

ically, in the considered schedule period [0, T ] there are three commodities to
satisfy: commodity 1, whose availability and due dates are both within [0, T ],
and commodities 2 and 3, whose availability dates fall in [0, T ] while the due
dates are after T . They are represented by gray rectangles. Two services are
available: σ1 ∈ Σ1 (black truck) and σ2 ∈ Σ2 (white truck). Therefore, Σ̃ con-
tains five services: σ1 and its two copies σ′

1 and σ′′
1 , and σ2 together with its

copy σ′
2, as shown in the figure. The planning period spans from T ′ = ϕ̂oσ1

,σ1

to T ′′ = ψ̂dσ′′
1
,σ′′

1
= ψ̂dσ1 ,σ1

+ 2T . Given the regularity in demand, the three

commodities must be transported more than once within the planning period
[T ′, T ′′], with periodicity T , sometimes with an availability date outside the
schedule period. Such a periodicity of demand with respect to T is represented
in the figure by dashed gray rectangles. The five services in Σ̃ are those that
may potentially be used by the three commodities to reach their destination.
Consider for example service σ1 and its twin-services σ′

1 and σ′′
1 . As said, they

all represent the same service, translated in time, over the planning period. Their
operations are thus performed over the same set of physical links, shifted however
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Fig. 1. Example of twin-services, schedule period and planning period.

ahead T times (considering σ′
1) and 2T times (considering σ′′

1 ) with respect to
σ1. Given the regularity in demand, in some time instants the three commodities
could simultaneously be transported over some physical links of service σ1, as the
figure shows. In order to guarantee to service σ1 enough capacity to transport
commodities 1, 2 and 3 anytime, we therefore impose, through non-conventional
capacity constraints, that the sum of the volumes of the commodities trans-
ported by σ1 and by its two twin-services, i.e., σ′

1 and σ′′
1 , does not exceed the

capacity of σ1. Similar constraints are imposed for σ2.

2.3 Mathematical formulation SSND-CPG

We define four sets of variables:

– yσ ∈ {0, 1}, σ ∈ Σ, represents whether service σ is selected (yσ = 1), or not
(yσ = 0);

– xk(i,j)σ ∈ {0, 1}, k ∈ K, σ ∈ Σ̃, (i, j) ∈ Aσ, represents whether commodity k
moves from i to j on board of service σ;

– εki ≥ 0, k ∈ K, i ∈ N \{dk}, represents the time instant at which commodity
k begins its movement from terminal i (it is 0 if k does not pass through i);

– ηki ≥ 0, k ∈ K, i ∈ N \{ok}, represents the time instant at which commodity
k ends its movement to terminal i (it is 0 if k does not pass through i).

The problem is formulated as follows:

min
∑
σ∈Σ

fσyσ +
∑
k∈K

∑
σ∈Σ̃

∑
(i,j)∈Aσ

ck(i,j)σx
k
(i,j)σ +

∑
k∈K

∑
i∈N :

i ̸=ok,dk

cki (ε
k
i − ηki )

+
∑
k∈K

ckok (ε
k
ok

− ak) +
∑
k∈K

ckdk
(bk − ηkdk

)

(1)

∑
σ∈Σ̃:

i∈Nσ\{dσ}

∑
j∈N :

(i,j)∈Aσ

xk(i,j)σ −
∑
σ∈Σ̃:

i∈Nσ\{oσ}

∑
j∈N :

(j,i)∈Aσ

xk(j,i)σ =


1 if i = ok,

−1 if i = dk,

0 otherwise,

∀ k ∈ K, ∀ i ∈ N ,

(2)
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∑
k∈K

wk xk(i,j)σ +
∑
ρ∈Γσ

∑
k∈K

wk xk(i,j)ρ ≤ uσ yσ ∀ σ ∈ Σ, ∀ (i, j) ∈ Aσ, (3)

εkok ≥ ak ∀ k ∈ K, (4)

ηkdk
≤ bk ∀ k ∈ K, (5)

εki ≥ ηki ∀ k ∈ K, ∀ i ∈ N \ {ok, dk}, (6)

εki ≥ ϕ̂i,σ − (T ′′ − T ′)
(
1− xk(i,j)σ

)
∀ k ∈ K, ∀σ ∈ Σ̃, ∀ (i, j) ∈ Aσ, (7)

εki ≤ ϕ̂i,σ + (T ′′ − T ′)
(
1− xk(i,j)σ

)
∀ k ∈ K, ∀σ ∈ Σ̃, ∀ (i, j) ∈ Aσ, (8)

ηkj ≥ ψ̂j,σ − (T ′′ − T ′)
(
1− xk(i,j)σ

)
∀ k ∈ K, ∀σ ∈ Σ̃, ∀ (i, j) ∈ Aσ, (9)

ηkj ≤ ψ̂j,σ + (T ′′ − T ′)
(
1− xk(i,j)σ

)
∀ k ∈ K, ∀σ ∈ Σ̃, ∀ (i, j) ∈ Aσ, (10)

εki ≤ bk
∑
σ∈Σ̃:

i∈Nσ\{dσ}

∑
j∈N :

(i,j)∈Aσ

xk(i,j)σ ∀ k ∈ K, ∀ i ∈ N \ {ok, dk}. (11)

The objective function (1) is the sum of the fixed costs associated with the
selected transportation services (first term), transportation costs (second term)
and holding costs at terminals (third, fourth and fifth term). Flow conservation
constraints (2) ensure that each commodity is routed from its origin to its des-
tination through a single path. Linking-capacity constraints (3) guarantee that
commodities can use selected services only, and that the total commodity flow
on any service, considering all of its copies, cannot exceed its capacity. Con-
straints (4) ensure that each commodity departs from its origin after it becomes
available, while constraints (5) guarantee that each commodity arrives at desti-
nation before its due date. Relations (6) regulate the operations of commodities
in terms of time by ensuring that the leaving time of a commodity from a termi-
nal (except for its destination) be greater than or equal to the time at which the
commodity arrived at that terminal. Constraints (7)–(8) ensure that the leaving
time of a commodity from a terminal equals the scheduled departure time of the
service on which it is loaded. Similarly, (9)–(10) ensure that the arrival time of
a commodity to a terminal equals the scheduled arrival time of the service on
which it is transported. Finally, constraints (11) force to 0 the leaving times of
commodities from terminals when not passing through them (note that arrival
times are also forced to 0 by constraints (6)).

3 Experimental plan and computational results

We compared SSND-CPG and SSND-TS computationally on 4 groups of ran-
domly generated instances, each composed of 5 instances. The number of termi-
nals is the same for all the instances and it is equal to 10. Origin and destination
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Table 1. Features of instances.

Schedule
Period SSND-CPG SSND-TS

Instance (weeks) Services Commodities |N | |A| |NTS | |ATS |

1 1 224 40 10 30 105000 105226
2 1 224 40 10 30 105000 105226
3 1 224 40 10 30 105000 105226
4 1 224 40 10 30 105000 105226
5 1 224 40 10 30 105000 105226

6 2 448 80 10 30 210000 210448
7 2 448 80 10 30 210000 210448
8 2 448 80 10 32 210000 210448
9 2 462 80 10 31 210000 210462
10 2 495 80 10 31 225000 225495

11 3 528 120 10 22 480000 480528
12 3 769 120 10 30 315000 315672
13 3 672 120 10 30 315000 315630
14 3 693 120 10 31 315000 315609
15 3 672 120 10 30 315000 315630

16 4 896 160 10 30 420000 419990
17 4 864 160 10 30 405000 405864
18 4 896 160 10 30 420000 419990
19 4 891 160 10 31 405000 405891
20 4 924 160 10 31 420000 420924

of each commodity as well as its volume have been generated starting from
two different uniform distributions. Their availability and due dates are instead
generated from normal distributions as in [11]. Origin and destination of each
service have been generated using a uniform distribution as well. The 4 groups
of instances differ in terms of schedule length, number of potential services to
activate and number of commodities to transport.

The features of the instances are reported in Table 1, whose first 4 columns
report the ID of the instance, the schedule period (in weeks), the number of po-
tential services, and the number of commodities, respectively. The last 4 columns
report the number of nodes and arcs of the physical network used in SSND-CPG,
and the number of nodes and arcs of the time-space network used in SSND-
TS, which is based on a one minute time discretization. This gives rise to a
continuous-time service network design formulation, as discussed in [11].

We solved the instances with CPLEX 12.6 and a time limit of 3 hours. The
experiments have been run on an Intel Xeon 5120 with 2.20 GHz and 32 GB
of RAM. The obtained results are reported in Table 2. The table is divided in
4 panels, each referring to a subset of instances with the same schedule period,
namely 1, 2, 3 and 4 weeks. In each panel, the time in seconds required by CPLEX
to solve each instance of the corresponding group by SSND-CPG and SSND-TS
are reported, as well as the percentage optimality gap at the end of the CPLEX
execution (i.e., when an optimal solution is found or the time limit of 3 hours
is reached). For the set of smallest instances, i.e., those with a schedule period
of 1 week, SSND-TS shows its superiority in solving SSND, since it requires on
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Table 2. Comparison between SSND-CPG and SSND-TS formulations.

1 week schedule period 2 weeks schedule period

SSND-CPG SSND-TS SSND-CPG SSND-TS
Inst. Time Gap Time Gap Inst. Time Gap Time Gap

1 34.93 0% 27.53 0% 6 10800 10.67% 10800 9.92%
2 216.76 0% 107.30 0% 7 10800 12.27% 10800 10.64%
3 533.08 0% 146.37 0% 8 10800 10.79% 10800 7.25%
4 415.38 0% 119.15 0% 9 10800 8.10% 10800 7.07%
5 529.57 0% 142.18 0% 10 10800 8.74% 10800 7.60%

Avg. 345.94 0% 108.51 0% Avg. 10800 10.11% 10800 8.50%

3 weeks schedule period 4 weeks schedule period

SSND-CPG SSND-TS SSND-CPG SSND-TS
Inst. Time Gap Time Gap Inst. Time Gap Time Gap

11 10800 9.43% - - 16 10800 12.84% - -
12 10800 9.17% - - 17 10800 12.70% - -
13 10800 11.73% - - 18 10800 12.48% - -
14 10800 10.89% - - 19 10800 13.05% - -
15 10800 9.89% - - 20 10800 15.46% - -

Avg. 10800 10.22% - - Avg. 10800 13.31% - -

average one third of the time needed by CPLEX to solve SSND-CPG. In both
cases, however, optimal solutions are always found, although, in the considered
data set, optimal solutions found by the alternative formulations do not always
share the same set of activated services. When the schedule period is 2 weeks,
CPLEX always reaches the time limit, no matter of the formulation considered.
However, CPLEX still shows a better performance in terms of optimality gap
when coupled with SSND-TS. On the other hand, when a schedule period of 3 or
4 weeks is considered, CPLEX is not able to find any solutions when SSND-TS
is used, due to the huge dimension of the corresponding time-space networks. As
opposed, when considering SSND-CPG solutions are always found within the
3 hours of time limit imposed, with an average optimality gap of about 10%
and 13%, respectively. The proposed formulation SSND-CPG, modelling time
in a continuous and compact way, appears thus to be a valuable tool for solving
SSND when a long schedule length needs to be considered.

4 Conclusions

We have proposed a continuous time formulation for the Scheduled Service Net-
work Design Problem, addressing tactical planning decisions for consolidation-
based freight carriers. Our formulation represents time according to its contin-
uous nature, directly over the physical graph, thus mitigating the drawbacks
that a traditional formulation, relying on a time-space network, may have for
large scale instances, due to the increase in its dimensions and the consequent
intractability in solving the problem exactly. We have compared the new formu-
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lation and the traditional one computationally over a set of randomly generated
instances. The preliminary experiments highlight that the proposed formulation
is a valuable tool to solve large scale instances with a long schedule length.

Future research will investigate additional features of SSND, and the design
of alternative resolution approaches for solving even larger SSND instances.
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