
Frontiers in Microbiology 01 frontiersin.org

Red mark syndrome: Is the 
aquaculture water microbiome a 
keystone for understanding the 
disease aetiology?
Antonia Bruno 1*†, Alessandra Cafiso 2†, Anna Sandionigi 3, 
Andrea Galimberti 1, Davide Magnani 1, Amedeo Manfrin 4, 
Giulio Petroni 5, Maurizio Casiraghi 1 and Chiara Bazzocchi 2

1 ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, 
Italy, 2 Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy, 3 Quantia 
Consulting Srl, Milan, Italy, 4 Experimental Zooprophylactic Institute of the Venezie (IZSVe), Legnaro, 
Italy, 5 Department of Biology, University of Pisa, Pisa, Italy

Aquaculture significantly contributes to the growing demand for food worldwide. 
However, diseases associated with intensive aquaculture conditions, especially 
the skin related syndromes, may have significant implications on fish health and 
industry. In farmed rainbow trout, red mark syndrome (RMS), which consists of 
multiple skin lesions, currently lacks recognized aetiological agents, and increased 
efforts are needed to elucidate the onset of these conditions. Most of the past 
studies were focused on analyzing skin lesions, but no study focused on water, a 
medium constantly interacting with fish. Indeed, water tanks are environmental 
niches colonized by microbial communities, which may be  implicated in 
the onset of the disease. Here, we  present the results of water and sediment 
microbiome analyses performed in an RMS-affected aquaculture facility, bringing 
new knowledge about the environmental microbiomes harbored under these 
conditions. On the whole, no significant differences in the bacterial community 
structure were reported in RMS-affected tanks compared to the RMS-free ones. 
However, we  highlighted significant differences in microbiome composition 
when analyzing different samples source (i.e., water and sediments). Looking at 
the finer scale, we measured significant changes in the relative abundances of 
specific taxa in RMS-affected tanks, especially when analyzing water samples. 
Our results provide worthwhile insight into a mostly uncharacterized ecological 
scenario, aiding future studies on the aquaculture built environment for disease 
prevention and monitoring.
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1. Introduction

Aquaculture currently covers a primary role in facing the growing demand for the seafood 
market worldwide, providing a more sustainable approach to global fish production and high-
quality proteins. Total fisheries and aquaculture production reached an all-time record of 214 
million tons in 2020, comprising 178 million tons of aquatic animals. Global aquaculture 
production in 2020 reached a record 122.6 million tons, with 87.5 million tons of aquatic 
animals worth USD 264.8 billion (FAO, 2022). The increasing demand in the aquaculture sector 
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is surpassing the ability of fisheries to keep up with the request for 
seafood (Rohani et al., 2022). For this reason, the introduction of new 
husbandry practices and technologies, and the intensification of well-
established ones have been significantly incremented over the years. 
However, intensive aquaculture conditions and high stocking densities 
increase the risk of stressful conditions and can lead to compromised 
fish immune defences, generating direct and indirect economic 
implications, as observed, for example, in rainbow trout Oncorhynchus 
mykiss (Walbaum) (Bailey et al., 2020; Metselaar et al., 2022).

Oncorhynchus mykiss is currently the most abundant salmonid 
species employed in aquaculture worldwide (Crawford and Muir, 
2008; Koutsikos et al., 2019), accounting for 97–98% of world trout 
production each year (EUMOFA, 2014). In the European Union, 
rainbow trout covers 64% of the value and 69% of the volume of total 
production in the freshwater segment (D’Agaro et al., 2022). In the 
context of intensive farming, reared rainbow trout can be subjected to 
several stressors and therefore be affected by several diseases (Lieke 
et al., 2020; Rohani et al., 2022), with the skin-related ones ranking 
first (Ellis et al., 2002; Oidtmann et al., 2013). Skin diseases in farmed 
rainbow trout are in continuous appearance, and many of them still 
lack an identified etiological agent (Oidtmann et al., 2013; Peeler et al., 
2014). This is the case of red mark syndrome (RMS; also known as 
‘cold water strawberry disease’ or ‘strawberry disease’ in the 
United States; Oidtmann et al., 2013; Metselaar et al., 2022), which 
consists of multiple skin lesions mostly found on the flanks of farmed, 
market-sized rainbow trout (over 100 g) and typically characterized 
by bright red, raised and non-ulcerative lesions between few 
millimeters to several centimeters in diameter (von Gersdorff 
Jørgensen et al., 2019; Metselaar et al., 2022). Despite the low mortality 
of the condition, RMS shows morbidity rates that can reach up to 90% 
of the farmed population (more frequently between 10 and 30%; 
Oidtmann et al., 2013), and the general appearance of the skin lesions 
can lead to significant product downgrading (Ferguson et al., 2006). 
Concerning the disease impact, a Danish report in 2016 reported that 
one third of the local trout farmers were dealing with the disease (von 
Gersdorff Jørgensen et al., 2019). These factors can cause significantly 
lowered incomes for farmers related to different levels of the supply 
chain, including table market (downgrade of the product) and 
restocking activities (Schmidt-Posthaus et al., 2009; von Gersdorff 
Jørgensen et al., 2019). However, currently, there are no reports on the 
actual economic impact of RMS in the fish industry (Metselaar 
et al., 2022).

In less than two decades, the disease has spread almost worldwide, 
with cases reported in several European countries, the Middle East, 
the Americas and Asia (Verner-Jeffreys et al., 2008; Kubilay et al., 
2014; Sandoval et al., 2016; Oh et al., 2019a; Galeotti et al., 2021; 
Metselaar et al., 2022).

RMS’s morphological and histological features have been 
extensively described (Oidtmann et al., 2013), leading the disease to 
be clearly recognized. However, the etiological agent of RMS is still 
unknown, yet supposed to be bacterial-related, also supported by 
transmissibility studies (Schmidt et al., 2021). The transmission of 
RMS has indeed been described among affected and healthy 
individuals through direct and indirect contact (Schmidt et al., 2021; 
Orioles et  al., 2022). For this reason, it cannot be  excluded that 
effluents released by RMS-infected farms could reach natural water 
bodies and, in turn, provide pathogens exchange with wild 
populations. To date, RMS has been mainly reported in farmed 

rainbow trout (von Gersdorff Jørgensen et al., 2019). Similar lesions, 
but lacking in-depth histological and pathological investigations, have 
been sporadically observed in other freshwater species such as brown 
trout (Salmo trutta), cutthroat trout (Oncorhynchus clarkii), as well as 
wild-caught rainbow trout (Metselaar et al., 2022). Similar cases have 
also been reported in saltwater species, as sea bream and wild-caught 
common dab (Limanda limanda; Bruno et  al., 2007; Vercauteren 
et al., 2020).

The most addressed agents associated with the disease are 
Flavobacterium psychrophilum and a Rickettsia-like organism (RLO; 
subsequently referred to as RMS-Midichloria like organism, 
RMS-MLO), a bacterium ascribed to the Midichloriaceae family 
(order Rickettsiales). However, the presence of F. psychrophilum has 
been reported in both RMS-affected and naïve fish (von Gersdorff 
Jørgensen et  al., 2019; Metselaar et  al., 2022), and no subsequent 
studies have found a clear association between this bacterium and the 
disease. On the contrary, a correlation between MLO presence in RMS 
lesions and their severity has been observed (Lloyd et  al., 2008; 
Montagna et al., 2013; Cafiso et al., 2016; Schmidt et al., 2021).

Additionally, no specific RMS outbreak patterns have been 
reported except for the typical temperature ranges described in the 
literature (Oidtmann et al., 2013; Schmidt et al., 2021). Even in a single 
trout farm, the disease dissemination is not homogeneous in fish tanks 
nor repeated throughout the years (personal communication). Thus 
far, the majority of studies concerning RMS aetiology and pathology 
have been focused on histopathological, ultrastructural, or microbial 
evaluations directly linked to the fish (e.g., 16S rRNA gene libraries on 
the skin of affected/healthy individuals; Lloyd et al., 2008) or looking 
for specific targeted agents/vectors (Ferguson et al., 2006; Lloyd et al., 
2008; Verner-Jeffreys et al., 2008; Cafiso et al., 2016; Pasqualetti et al., 
2021; Metselaar et al., 2022). Investigations on the role of the farming 
environment in RMS are almost unexplored and mainly focused on 
management practices or facilities, diet, or water conditions (Ferguson 
et al., 2006; Lloyd et al., 2008; Verner-Jeffreys et al., 2008). Aquaculture 
systems represent fully-fledged built environments, harboring peculiar 
microbial communities (Gilbert and Stephens, 2018; Minich et al., 
2021), and water is the primary compartment where pathogens should 
be controlled in aquaculture (De Schryver and Vadstein, 2014). Water 
tanks provide niches that can be colonized by different microbial taxa, 
which in turn form microbial communities that may change in 
composition, thus posing a risk to fish health conditions. In the 
aquatic environment, microorganisms and fish constantly interact, 
leading to favorable or disadvantageous effects for the vertebrate hosts 
depending on the microbial composition (Jahangiri et al., 2021). At 
the same time, the infectious ability of a single agent may be enhanced 
or diminished by the overall microbial community, thus affecting its 
virulence features (Teffer et al., 2022).

Rainbow trout are typically reared in flow-through and intensive 
aquaculture systems, which are supposed to be more prone to the 
proliferation of potential opportunistic microorganisms, as described 
for saltwater fish (Attramadal et al., 2012). So far, little is known about 
the microbial communities found in water and sediments of 
aquaculture environments in relation to healthy and diseased 
conditions in fish disorders.

Here we report, to our knowledge, the first investigation on the 
microbial communities of RMS-positive and RMS-negative rearing 
environments in a rainbow trout farm in natural conditions. RMS a 
etiology still needs to be unentangled, thus requiring any helpful hints 
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to deepen the cause of the disease onset. From this perspective, 
evaluating the variation in the environmental microbial community 
in water could represent a starting point for future studies on specific 
potential etiological agents.

2. Materials and methods

2.1. Study site and sampling

A freshwater flow-through (FT) rainbow trout aquaculture in 
Storo (TN, Trentino Alto-Adige, NE Italy) was selected as the study 
site in two consecutive years. The fish farm was subjected to recurrent 
RMS outbreaks over the years, with random, not homogeneous tanks 
affected by the disease. The fish farm system was supplied by upstream 
9°C bore well water, which is characterized by constant temperature 
and stable physico chemical characteristics, allowing comparable 
environmental conditions for both sampling years. The aquaculture 
system is organized into two main units (hereafter referred to as “Unit 
1” and “Unit 2”), each one partitioned into four independent rows, 
which were in turn composed of three tanks, each delimited by 
separating grids. The volume of tanks in Unit 1 and 2 is 165 m3 and 
225 m3, respectively. In the aquaculture units, temperature, dissolved 
oxygen levels, oxygen saturation and chemical parameters were 
constantly monitored. The general layout of the aquaculture system 
and the water flow are summarized in Figure 1.

The flow-through system is characterized by cemented tanks that 
are systematically cleaned every time a new fish batch is transferred 
inside. Fish density never exceeded 30 Kg/m3. Unit 1 was used for 
small-sized individuals (12–20 cm long), while fish up to the market 
size were reared in Unit 2. In detail, while the tanks of Unit 1 shared 
the same water, the four rows of Unit 2 (named, respectively, A, B, C, 
D) were independently supplied with the outlet water (p02) collected 
from Unit 1. The tanks of each row of Unit 2 were, respectively, 
named p03, p04, and p05, based on their distance from the inlet 
water channel.

To evaluate the possible influence of RMS outbreaks on the 
environmental microbial diversity, water and sediment of fish tanks 
were opportunistically sampled at two different sampling dates in 
concurrence with yearly RMS outbreaks (January 2019 and January 
2020, hereafter “2019” and “2020”). Samples collected in sampling 
points where RMS was detected were labeled as “RMS.” Conversely, 
we used the label word “RMS-free” to identify those sampling points 
where no RMS was detected, including the sampling points (p01 and 
p02) where no fish were present. The sampling points, the sample 
sources and the presence/absence of RMS are summarized in Table 1. 
In detail, bore well water (p01), water and sediment of p02 and of the 
three tanks of C and D rows (p03-p05) were collected for both 
sampling dates. In addition, water and sediment from a tank in Unit 
1 (p0102) were collected only in 2020 as positive for RMS. Sterile 
polypropylene sampling screw-cap bottles were used to collect 1 L of 
water. Sediment samples were collected from the bottom of tanks 

FIGURE 1

Schematic representation of the aquaculture plant examined. Sampling points (p01–p05) are represented. Sampling point p01 is bore well water which 
feeds the aquaculture system. Sampling point p02 is the water exiting Unit 1 and entering Unit 2. In p01 and p02 there are no fish. Sampling points 
where RMS was detected are indicated with gray and violet icons, considering the two sampling years (2019 and 2020, respectively). Similarly, sampling 
points where RMS was not detected (RMS-free) are indicated with red and green icons, considering the two sampling years (2019 and 2020, 
respectively). Arrows indicate the water flow.
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using a tight mesh net and then transferred in 50 ml Falcon tubes to 
collect 25 ml of sediment. Bottles and tubes were kept closed until the 
moment of sample collection. A total of 32 samples were collected. 
Samples were kept at 4°C and in the dark during transport and 
processed within 24 h.

2.2. Sample processing and DNA extraction

One liter of water for each water sample was filtered using a 
vertical filtration apparatus and a vacuum pump (ME 2 NT 
vacuubrand). Filtration occurred in series, using nitrocellulose 
membrane filters of decreasing porosity to avoid filter clogging (pore 
size: 3, 0.45, 0.22 μm; diameter = 47 mm; membrane filter, Millipore, 
Burlington, Massachusetts, United States).

Tank sediments (25 ml of volume) were centrifuged, and the pellet 
and supernatant were processed separately. The supernatant was 
filtered using nitrocellulose membrane filters of 0.22 μm. Filters were 
stored at −80°C until DNA extraction.

After the processing, a total of 81 samples (51 from water, 15 from 
sediment supernatant, and 15 from sediment pellet samples) and 4 
blanks (negative controls) were subjected to DNA extraction 
(Supplementary Table 1).

The filters were cut into smaller pieces with sterile instruments, 
and mechanical and chemical lysis were carried out as described in 
the protocol of DNeasy PowerWater Kit (Qiagen, Hilden, Germany) 
for water samples and DNeasy PowerSoil Kit (Qiagen, Hilden, 
Germany) for sediment (both pellet and supernatant) samples. One 
sediment replicate was lost during sample processing (p03D, 2019). 
To increase DNA yield, DNA was eluted in 75 μl of the elution buffer.

All the procedures were performed in a pre-amplification room 
under the flow cabinet, with sterilisation measures between samples 
using bleach and UV light.

2.3. Library preparation and 
high-throughput DNA sequencing

Bacterial DNA presence and abundance were measured by 
Quantitative Real-Time PCR (qPCR) for each of the 80 and 4 negative 
control samples, using the same primer pairs reported below for 
library preparation (without overhanging adapters). Briefly, qPCR 
assays were performed with AB7500 (Applied Biosystem) instrument. 
qPCR conditions included an initial denaturation at 95°C for 10 min, 
followed by 40 cycles of denaturation at 95°C for 15 s, and annealing-
elongation at 55°C for 1 min. A final dissociation stage was performed. 
Amplification reaction (final volume 10 μl) consisted of 5.0 μl SsoFast 
EvaGreen Supermix with Low ROX (Bio-Rad, Hercules, CA), 0.1 μl 
each 10 μmoL l-1 primer solution, 2 μl DNA sample, and 2.8 μl of 
Milli-Q water. All samples and negative controls (no template) were 
run in triplicate. Threshold Cycles (Ct) values were converted into 
DNA counts/ml. A one-way analysis of variance ANOVA in 
combination with Tukey post hoc tests was used to find significant 
differences among groups in bacterial DNA concentration. A 
probability of p < 0.05 was considered to indicate a significant  
difference.

For library preparation, in the case of water samples, DNA 
extracts from membrane filters of similar porosity (0.45 μm and 
0.22 μm) of the same sample were combined (50% volume each). All 
the remaining water samples were processed separately. In the case of 
sediment samples, DNA extracts from supernatant and pellet of the 
same sample were combined (50% volume each) and divided in to 2 
replicates. Subsequently, starting from the obtained 67 samples (34 
water and 29 sediment samples plus 4 negative controls; Table  1; 
Supplementary Table 1), the V3–V4 hypervariable regions of the 16S 
ribosomal DNA (rDNA) gene were amplified with S-D-Bact-
0341-b-S-17, 5′-CCTACGGGNGGCWGCAG-3′ and S-D-Bact-
0785-a-A-21, 5′-GACTACHVGGGTATCTAATCC-3′ primer pairs 
with overhanging adapters, according to the 16S Metagenomic 
Sequencing Library Preparation protocol (Illumina, SanDiego, CA, 
United States).

All the procedures were carried out in the laminar flow cabinet to 
avoid contamination with exogenous DNA and inter-sample 

TABLE 1 Samples list, grouped by “Condition_Souce” and detailed for 
“Sampling_point.”

Condition_Source Sampling_point Number of 
samples

Negative controls NA 4

Negative controls Total 4

RMS-free_sediment p02 4

p03_C 2

p03_D 1

RMS-free_sediment Total 7

RMS-free_water p01 4

p02 4

p03_C 2

p03_D 2

RMS-free_water Total 12

RMS_sediment p0102 2

p03_C 2

p03_D 2

p04_C 4

p04_D 4

p05_C 4

p05_D 4

RMS_sediment Total 22

RMS_water p0102 2

p03_C 2

p03_D 2

p04_C 4

p04_D 4

p05_C 4

p05_D 4

RMS_water Total 22

Sediment samples Total 29

Water samples Total 34

Grand Total 67
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contamination, and in separate rooms for the pre-and post-
amplification steps, with dedicated personal protective 
equipment (PPE).

All libraries were sequenced on a MiSeq platform (Illumina, 
SanDiego, CA, United States) in two 2 × 300 bp paired-end runs by the 
Center for Omics Sciences at the IRCCS Ospedale San Raffaele 
(COSR, Milan, Italy).

2.4. Microbial composition and community 
structure analysis

The raw paired-end FASTQ reads were imported into the 
Quantitative Insights Into Microbial Ecology 2 program (QIIME2, ver. 
2020.6; Caporaso et al., 2010; Bolyen et al., 2019) and demultiplexed 
native plugin. Raw reads were subsequently deposited into the 
European Nucleotide Archive (ENA; see Data Availability paragraph). 
The Divisive Amplicon Denoising Algorithm 2 (DADA2; Callahan 
et al., 2016) was used to quality filter, trim, denoise, and mergepairs 
the data. Chimeric sequences were removed using the consensus 
method. The taxonomic assignment of the amplicon sequence variants 
(ASVs) calculated was carried out using the feature-classifier2 plugin 
(Bokulich et al., 2018) implemented in QIIME2 against the SILVA SSU 
non-redundant database (138 release), adopting a consensus 
confidence threshold of 0.8.

Rarefaction curves were calculated to evaluate if the sequencing 
efforts generated enough data to well represent the overall microbial 
diversity in samples. The corresponding plot was generated with the 
phyloseq R package (McMurdie and Holmes, 2013).

We compared the samples considering the combination of sample 
source (water or sediment) and tank health condition (RMS-free or 
RMS), named in the manuscript as “Condition_Source” variable. In 
order to estimate the effect on alpha-diversity considering the variable 
‘Condition_Source’, the Faith phylogenetic index (Faith PD) was 
calculated (Faith, 2016). The Kruskal–Wallis H test for all pairwise 
tests was used to compare the groups. We  used Benjamini and 
Hochberg correction when multiple tests were applied, and the 
obtained q-value was reported.

Bray–Curtis dissimilarity was used to perform the community 
analyses (beta diversity), evenly sampled at 10,000 reads per 
sample, using the core-metrics-phylogenetic QIIME2 plugin. 
Samples with less than this threshold were excluded from the 
downstream analyses.

Statistical significance among groups (healthy water, healthy 
sediment, RMS water, RMS sediment) was determined by the 
ADONIS (permutation-based ANOVA, PerMANOVA) test 
(Anderson, 2005) with 999 permutations. PerMANOVA Pairwise 
contrast was performed, and the Benjamini-Hochberg FDR correction 
was used to calculate q-values. The test was performed using the beta-
group-significance QIIME2 implemented plugin based on the adonis 
function in the vegan R package (Oksanen et al., 2007).

Thus, looking at a finer scale, a differential abundance analysis was 
carried out using the DESeq2 R package based on negative binomial 
generalized linear models (Love et al., 2014) to estimate differences 
between groups considering the relative abundance of ASVs assigned 
to the taxonomic rank of Genus. This data also generated a heatmap 
to detail the relative abundances of each sample analyzed.

2.5. qPCR for RMS-MLO

The presence of RMS-MLO was molecularly evaluated in DNA 
samples extracted from both water and sediment samples (n = 67, 
Table 1). qPCR was performed to amplify a 16S rDNA gene fragment 
of RMS-MLO using primers (16SrDNA-F: 5′-GCGGTTATC 
TGGGCAGTC-3′; 16SrDNA-R: 5′-TGCGACACCGAAACCTA 
AG-3′) and protocol previously described (Cafiso et al., 2016). A 
melting curve was determined with a transition rate of 0.5°C/s from 
55°C to 95°C. Melting peaks were automatically calculated by iQ5 
Optical System software (Bio-Rad, Hercules, CA, United States).

3. Results

3.1. Water parameters

In the aquaculture units, temperature, dissolved oxygen levels and 
oxygen saturation parameters were constantly monitored, ranging 
between 10 and 11°C, 9–10 mg/L, and 80–90%, respectively. 
Additional parameters measured during the year were pH = 7.5–8; 
total suspended solids <5 mg/L; NH3 < 0.02 mg/L; NH4 = 0.65 mg/L; 
NO3 = 1.2 mg/L; NO2 = 0.008 mg/L.

3.2. Sequence analysis

About 8,560,340 reads were obtained from 59 out of 67 samples: 
4 negative controls and 4 samples (both replicas of p01 water 2019, 
p02 water 2019, and p03C water 2019) did not pass the library 
preparation or showed no reads after sequencing. After quality 
filtering, merging reads and chimaera removal of the two  
Illumina runs, we got 6,378,391 sequences, with a median frequency 
of 109,527 reads and the mean frequency of 103,392 reads per 
sample. We  obtained 4,839 ASVs (Callahan et  al., 2017; 
Supplementary Table 2).

3.3. Microbiome diversity composition and 
distribution

An exploratory analysis of bacterial 16S rDNA copies based on the 
qPCR results showed no significant differences in bacterial load 
considering different conditions (RMS vs. RMS-free) when comparing 
sediment samples. However, 16S rDNA copies resulted significantly 
lower in RMS-free water samples than in RMS water samples (p < 0.05; 
Supplementary Table 3; Supplementary Figure 1).

Rarefaction curves showed converging alpha diversity with 
increasing sequencing depth, confirming the suitability of the 
sampling effort (Supplementary Figure 2).

After rarefaction, 11 RMS-free and 44 RMS samples were obtained 
(Supplementary Table 2).

Microbiome biodiversity and composition were evaluated via 
alpha and beta diversity analyses. We  compared the samples 
considering the combination of sample source (water or sediment) 
and tank condition (RMS-free or RMS; i.e., “Condition_Source” 
variable).
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3.3.1. Alpha diversity estimation
Alpha diversity based on the Faith PD metric, which considers 

phylogenetic information, showed that water and sediment samples 
collected in tanks where RMS was detected had higher alpha diversity 
values (microbial diversity within the sample; Figure 2) than the other 
samples. The Kruskal–Wallis pairwise test was performed to compare 
alpha diversity values. Considering the different groups analyzed 
(RMS-free water, RMS-free sediment, RMS water, RMS sediment, 
considering the two sampling years), the Kruskal–Wallis H test based 
on Faith PD was significant (H = 9.3, p = 0.05). The alpha diversity 
measured by the Faith PD index changed significantly between the 
sediment where the presence of RMS was detected and the RMS-free 
sediment (H = 6.35, p = 0.01), with increasing microbial biodiversity in 
the RMS sediment. The same effect was observed between the RMS 
water and the RMS-free sediment (H = 4.1, p = 0.04). As regards the 
other combinations, no significant changes were observed 
(Supplementary Tables 4-6).

3.3.2. Microbial composition
After the taxonomy assignment, we identified 37 bacterial Phyla, 

93 Classes, 226 Orders, 362 Families, and 541 Genera 
(Supplementary Data 1).

Bar chart representation highlights the distribution of the 20 most 
abundant Phyla, Families, and Genera (Figure 3).

The relative abundance of the bacterial communities assigned at 
the taxonomic rank of Phylum showed that the samples were 
dominated by Proteobacteria, Bacteroidota, and Firmicutes, accounting 
for 93% of the total. Water samples showed a higher relative abundance 
of Proteobacteria than sediment samples. Conversely, sediment 

samples were characterized by a higher relative abundance 
of Bacteroidota.

In detail, Proteobacteria represented 26% of p02 RMS-free 
sediments, 28% of RMS-free sediments and 30% of RMS sediments. 
Conversely, they accounted for 55, 63, and 64% of p01 and p02 
RMS-free water samples, RMS-free water samples, and RMS water 
samples, respectively. Bacteroidota were distributed as follows: 38, 30, 
and 27% in p01 and p02 RMS-free, RMS-free, and RMS sediment 
samples, respectively; 35, 28, and 27% in p01 and p02 RMS-free, 
RMS-free, and RMS water samples, respectively. The third most 
abundant phylum, Firmicutes, showed higher relative abundances in 
RMS-free sediment samples, also considering RMS-free p02 sampling 
points (30% in both cases), compared to RMS sediments (13%) and 
all the water samples tested (1–3%).

Overall, the most abundant families were Prevotellaceae 
(Bacteroidota), Flavobacteriaceae (Bacteroidota), Comamonadaceae 
(Proteobacteria), Chitinibacteraceae (Proteobacteria), Oxalobacteraceae 
(Proteobacteria), Pseudomonadaceae (Proteobacteria), Moraxellaceae 
(Proteobacteria), Clostridiaceae (Firmicutes), each falling within the 
range of 17–4% of the total sequences. Interestingly, differences were 
observed in the relative abundance of some microbial taxa considering 
the sample source. Prevotellaceae dominated sediment samples, while 
Flavobacteriaceae the water ones. Indeed, Prevotellaceae were detected 
at 31, 18, and 33% in p02 RMS-free sediments, RMS-free sediments, 
and RMS sediments, respectively. On the other hand, Prevotellaceae 
never exceeded 0.4% in water samples, regardless of the RMS 
condition. In contrast, sediment samples were composed of 2–6% of 
Flavobacteriaceae, whereas p01 and p02 RMS-free water samples, 
RMS-free water samples, and RMS water samples showed 25, 24, and 
21% of Flavobacteriaceae, respectively.

Among the most abundant genera, in p01 and p02 RMS-free 
water samples (without fish) and RMS water samples, we  found 
Flavobacterium, Pseudomonas, Undibacterium, Acinetobacter, and 
Deefgea. Flavobacterium in both RMS water and RMS-free water 
samples (21 and 25%, respectively, plus the 26% recovered in RMS-free 
p01 and p02). Noteworthy, the genus Undibacterium 
(Oxalobacteraceae) showed the highest relative abundance in water 
samples collected in tanks where RMS was detected (11%). Prevotella 
(Prevotellaceae) was dominant in both RMS sediment and RMS-free 
sediment samples (33 and 18%, respectively, without considering the 
31% found in RMS-free p02).

Noteworthy, although we  retrieved four ASVs affiliated with 
Midichloriaceae, none were related to RMS-MLO. DNA sequences 
assigned to the Order Rickettsiales were generally detected at a low 
percentage (<0.01%). A closer inspection revealed that the majority of 
them were either not resolved at a family/genus level or erroneously 
assigned as being either derived from mitochondria or affiliated to 
members of Holosporales, a clade previously included within 
Rickettsiales and now considered only distantly related to this group 
(Muñoz-Gómez et al., 2019).

We also reported the presence of Candidatus Megaira 
(Rickettsiales; Rickettsiaceae) at 0.009%, in 60% of RMS samples.

3.3.3. Beta diversity analysis
To better explore the microbial differences among different sample 

sources (water and sediment) and different conditions (RMS-free and 
RMS), we  computed beta diversity metrics (Bray-Curtis) and 
generated Non-metric Multidimensional Scaling (NMDS) plots. 

FIGURE 2

Alpha diversity based on Faith PD metric. Samples are grouped by 
“Condition_Source”, representing the combination of sample source 
(sediment or water) and tank condition (RMS-free or with fish 
affected by RMS).
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Samples clustered for samples source (water vs. sediment) and not for 
the condition (RMS-free vs. RMS; Figure 4).

Global PERMANOVA test was strongly significant for Condition_
Source (p < 0.01), with the highest R2 value. All the combinations of 
Condition_Souce groups resulted in significant differences, except for 
comparing RMS-free water and RMS water. The comparison of 
RMS-free sediment vs. RMS sediment is near the value of significance 
(p = 0.089) but with a low R2 (=0.07; Supplementary Tables 7-8).

3.4. Differential abundances

In order to disentangle any contribution of RMS-free or RMS 
condition at a finer scale, a differential abundance analysis was carried 
out using the negative binomial generalized linear models. Significant 
relative abundance differences were computed considering the two 
different sample sources, sediment and water.

When looking at sediment samples, we noticed that Lactococcus 
(Streptococcaceae), Lactobacillus (Lactobacillaceae), and Clostridium 
sensu stricto 1 (Clostridiaceae) genera were significantly lower in RMS 
samples than in the RMS-free ones. Conversely, Paludibacter 
(Paludibacteraceae), Bacteriovorax (Bacteriovoraceae), Monoglobus 
(Monoglobaceae), Aquabacterium, an uncultured bacterium 
belonging to Dysgomonadaceae family, Cetobacterium, and 
Pseudomonas were significantly more abundant in sediment samples 
collected in the RMS condition than RMS-free tanks (Figure 5A).

On the other hand, considering water samples, the genera 
Undibacterium (Oxalobacteraceae), Polaromonas (Comamonadaceae), 
Yersinia (Yersiniaceae), Deinococcus (Deinococcaceae), Alkanindiges 
(Moraxellaceae), Flavobacterium (Flavobacteriaceae), Hafnia-
Obesumbacterium (Hafniaceae), an unidentified genus belonging to 

“Candidatus Hepatincola,” and an unidentified genus belonging to 
Patescibacteria were significantly more abundant in water samples 
collected in tanks where RMS was detected. No taxon was significantly 
less abundant in water samples from RMS sampling points (Figure 5B).

A heatmap was generated for both the sediment and the water 
samples to detail the taxonomic contribution for each sample 
(Figure  6). In particular, we  observed a more homogenous 

FIGURE 3

Bar chart regarding the distribution of the 20 most abundant Phyla, Families, and Genera.

FIGURE 4

NMDS based on Bray–Curtis dissimilarity metric. Samples are 
colored by “Condition_Source”, representing the combination of 
sample source (sediment or water) and tank condition (RMS-free or 
RMS-affected).

https://doi.org/10.3389/fmicb.2023.1059127
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bruno et al. 10.3389/fmicb.2023.1059127

Frontiers in Microbiology 08 frontiersin.org

distribution of abundances in water samples compared to the 
sediment ones. Indeed, when looking at the Condition (RMS-free vs. 
RMS), each water sample collected at RMS sites showed a similar 
abundance pattern for all the taxa and each taxon was found enriched 
in almost all RMS water samples. In particular, the first cluster 
composed of two taxa assigned to Hafnia-Obesumbacterium and 
Flavobacterium showed a marked enrichment of these taxa in all the 
RMS samples.

Conversely, sediment samples appeared to be  more 
inhomogeneous in terms of relative abundances of taxa considering 
the Condition. Indeed, most taxa showed positive fold change in 
relative abundances in some RMS samples but not in others, and vice 
versa in some RMS-free samples.

3.5. RMS-MLO quantitative real time PCR 
results

Since no member of the Midichloriaceae family was detected 
looking at the data obtained by 16S V3-V4 HTS, a qPCR approach was 
performed to evaluate the presence of RMS-MLO bacteria in both 
water and sediment of RMS-free and RMS conditions. The threshold 
cycles of the obtained amplifications were below the lower limit of the 
dynamic range of the reaction. For this reason, the qPCR approach 
was only used to assess the presence/absence of RMS-MLO based on 
the evaluation of melting curves of positive samples compared to 
those of positive controls used in each qPCR reaction. The results of 
the molecular analyses for RMS-MLO presence are reported in 

A B

FIGURE 5

Sediment (A) and water (B) samples, comparing the conditions RMS vs. RMS-free, assigned at the taxonomic rank of Genus. Abundances are expressed 
as log2 of fold change.

FIGURE 6

Heatmaps showing the relative abundances of ASVs, assigned at the taxonomic rank of Genus, for water and sediment samples, comparing the 
conditions RMS vs. RMS-free. Abundances are expressed as log2 of fold change. Stars indicate samples collected in p01 and p02 (no fish presence).
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Supplementary Table 9. RMS-MLO was generally detected in both 
water and sediment where RMS occurred, while water and sediments 
of RMS-free tanks resulted negative for the presence of 
RMS-MLO. However, in one water and three sediment samples of 
RMS tanks, RMS-MLO DNA was not detected.

Additionally, the sediment of p02 was positive for the presence of 
RMS-MLO in 2019.

4. Discussion

The aquaculture environment is paramount for fish health, as it 
can be the source and the vector of potential pathogens. Understanding 
the relationship between the built environment of tanks and fish 
health may be  necessary for disentangling disease aetiology and 
predicting disease outbreaks. Moreover, to date, only limited studies 
are available concerning the comparative microbial communities in 
aquaculture environments where diseases are occurring (Infante-
Villamil et al., 2021).

Red mark syndrome currently lacks recognized aetiological 
agents. In our study, we had the opportunity to collect samples of 
water and sediments from an FT aquaculture system with an RMS 
outbreak. Given the fact that a pathogen is supposed to be the cause 
of the disease and the water and aquaculture environment could serve 
as vectors, investigating water and sediment microbiomes may 
be  crucial. Our study provides the first report of the diversity of 
microbial communities harbored by a freshwater FT aquaculture 
system, in which the presence of fish affected by RMS was ascertained.

4.1. Whole microbial diversity in an 
aquaculture ecosystem where RMS is 
detected

On the whole, we measured a striking microbial diversity in water 
and sediment samples, accounting for thousands of ASVs and 
spanning among nearly 40 bacterial Phyla and about one 
hundred Classes.

This aspect is not surprising since aquatic ecosystems biodiversity 
is well documented (Tanentzap et al., 2019; Garner et al., 2020; Scolari 
et al., 2021; Mills et al., 2022), especially in groundwater and bore 
water ecosystems (Bautista-De Los Santos et al., 2016; Bruno et al., 
2017, 2018, 2021; Kaestli et al., 2019).

In addition, the beta diversity analyses revealed significant 
differences in microbial composition between sediment and water 
samples, irrespective of the condition of RMS-free or RMS tanks. 
Recent studies well documented that sample source or sample type 
can be the major driver of microbial composition (Ma et al., 2020), 
also when focusing on aquaculture plant ecosystems (Minich et al., 
2020; Minich et al., 2021; Testerman et al., 2022). Noteworthy, in our 
case-study, the substantial similarity in the microbial composition of 
samples belonging to the same sample sources was confirmed in the 
two consecutive years of samplings.

However, alpha diversity estimation showed that water and 
sediment samples collected in tanks where RMS was detected had 
higher values compared to the RMS-free samples.

If in general diversity is considered a good parameter to estimate 
ecosystem health, contrasting results in terms of alpha diversity have 

been reported in microbial communities harbored by aquatic 
ecosystems when healthy and diseased status are compared. Indeed, 
if the study of Xiong et al. (2015) in farmed shrimps found that OTU 
richness and phylogenetic diversity were higher in the healthy water 
environment, other researchers reported no changes in alpha 
diversity (Zhang et al., 2014; Li et al., 2017; Zheng et al., 2017). It is 
clear that systematic and broad analyses of aquaculture-associated 
microbiomes are lacking, impeding an exhaustive and correct 
estimation of the microbial dynamics in healthy and diseased status 
(Infante-Villamil et al., 2021).

4.2. Microbiome composition of RMS-free 
and RMS samples

When we tracked the microbiome of water samples from the 
natural source (bore water) to the outflow through the tanks, 
comparing RMS-free and RMS samples, we found that the overall 
water microbiome was similar in composition, despite the animal 
presence and/or to the RMS diagnosis. Indeed, the top 10 genera 
in water samples were almost shared, which is consistent with 
other studies investigating freshwater and aquaculture ecosystems 
(Testerman et al., 2022). The only exception was represented by 
Acidovorax, a denitrifying bacterium commonly found in water 
ecosystems (Xu et  al., 2022), retrieved mainly in bore water. 
However, some of the most abundant genera detected deserve a 
note for monitoring applications. As an example, Acinetobacter 
presence should be monitored carefully, since some species can 
be pathogens in aquaculture, transmitting antibiotic resistance 
genes. Fish mortality caused by several Acinetobacter species, 
such as A. baumannii, A. lwoffii, A. johnsonii, and A. calcoaceticus, 
has been well documented in rainbow trout (Kozińska et  al., 
2014). Similarly, Pseudomonas species are opportunistic bacteria, 
resistant to the betalactam group of antibiotics, and responsible 
for septicemic diseases among freshwater fish (De Kievit et al., 
2001; Oh et al., 2019b). However, we must consider that not all 
the species belonging to these genera are harmful, but the natural 
presence of water ecosystems.

Similar conclusions can be drawn from sediment samples, even if 
they clearly showed a shift in composition compared to their 
complementary water samples. In this case, Prevotella dominated all 
the sediment samples, probably deriving from fish gut debris. In 
general, bacteria of the genus Prevotella are known for their ability to 
degrade complex plant polysaccharides; indeed, in humans, these 
bacteria have been clearly associated with plant-based diets, which are 
rich in fibers (Chen et al., 2017).

To deepen the investigation, we  searched for the taxa that 
significantly varied, considering relative abundance, in RMS-free or 
RMS conditions. Our data showed that subtle but significant 
differences exist in RMS and RMS-free sampling points, both for 
sediment and water samples. Noteworthy, the distribution of taxa in 
water appeared to be  more homogeneous than in sediment: after 
DeSeq analysis the resulting taxa in water all showed an increase in 
RMS condition, whereas sediment samples did not. If water is mixed 
by the flow, sediment accumulates over time, probably in an uneven 
manner. Moreover, if sediment represents the “memory” of the tank, 
water spreads in real time host-associated and environment-
associated bacteria.
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The specific taxa identified were common environmental bacteria 
(such as Patescibateria, Aquabacterium, Polaromonas) and host-
associated bacteria released in the tanks (such as Lactococcus and 
Lactobacillus), and some of the genera detected included 
opportunistic pathogens (such as Pseudomonas and Clostridium 
sensu stricto I). The genus Undibacterium, significantly more 
abundant in water samples collected in tanks where RMS was 
detected, is commonly found in freshwater, soil, and fish, but its 
pathogenicity remains unclear (Kim et al., 2014; Kämpfer et al., 2016; 
Lee et al., 2019). Similarly, Flavobacteria are commonly found in 
aquatic environments and their isolation in freshwater is correlated 
with aquaculture activities (Singh et al., 2021). In the present study, 
Flavobacteria were abundant in the water compartment of both 
RMS-free and RMS tanks. The reason could be  addressed to the 
presence of fish, since this bacterial taxon is generally isolated from 
the skin and gills of the aquatic host (Singh et al., 2021; Terova et al., 
2021). Nevertheless, together with Hafnia-Obesumbacterium, the 
genus Flavobacterium showed a significant enrichment in all the RMS 
water samples. In general, both genera include pathogenic or 
innoxius species (Loch and Faisal, 2015; Nguyen et al., 2021; Foysal 
et al., 2022), impeding a direct implication with the disease. However, 
this unique and consistent distribution homogeneity can  hint at the 
development of monitoring strategies for preventing or managing 
the disease.

A significant decrease of specific taxa belonging to the phylum 
Firmicutes, typically found in aquaculture sediments (Dai et al., 
2021), was observed in RMS tanks compared to RMS-free ones: 
lactic acid bacteria (LAB), namely Lactobacillus and Lactococcus 
(Heikkinen et al., 2006; Desai et al., 2012), were significantly lower 
in sediment samples of tanks housing RMS fish compared to 
RMS-free tanks. LAB normally occur in fish gastrointestinal (GI) 
tract, and in O. mykiss they have been suggested to exert a probiotic 
effect by hindering the growth, adherence and colonization of 
potentially harmful bacteria in the digestive tract (Huong et al., 
2014; Ringø et al., 2018). We can not exclude that RMS could have 
influenced the gut microbial community in the affected fish leading 
to a decrease of LAB, resulting in a modified bacterial population 
found in the organic matter in tank sediments. No abnormalities 
are usually detected in organs other than spleen in RMS-affected 
fish (Galeotti et al., 2021; Orioles et al., 2022). However, necropsies 
performed on RMS-affected individuals in Italy have highlighted 
occasional enteritis and gross gut alterations (e.g., swollen intestine 
and intestinal muscle inflammation; A. Cafiso personal 
communication; Oidtmann et al., 2013). Disorders and stressful 
conditions can lead to altered feeding behavior and dysfunctions of 
the GI system, potentially leading to dysbiosis of the gut (Ringø 
et al., 2014; Parshukov et al., 2019). The decreased abundance of 
LAB in diseased O. mykiss is in line with previous results from 
studies focused on evaluating the differential O. mykiss gut 
microbiota based on the infection status (Parshukov et al., 2019). 
RMS might have additionally affected the presence of bacteria 
ascribed to Clostridium sensu stricto clade in the GI microbiome of 
the RMS-affected fish leading, in turn, to a reduced presence in 
sediments. Further studies focused on investigating the microbial 
community of RMS-affected and healthy O. mykiss could support 
these results. The differences observed between RMS-free and RMS 
sediment in the rearing tanks could thus reflect the GI health status 
of the fish population.

4.3. A focus on Rickettsiales and RMS-MLO

In the past 20 years, the number of endosymbionts described 
within the bacterial order Rickettsiales has constantly grown and a 
critical revision of the group has been proposed. Among the taxa 
differentially enriched in water samples where RMS was detected, 
we  found DNA sequences assigned to Candidatus Hepatincola. 
Candidatus Hepatincola was first described as a symbiont of a 
terrestrial isopod (Wang et  al., 2004) and attributed to the order 
Rickettsiales. Recent studies also documented its presence associated 
with other arthropods and, interestingly, it was never described in 
aquaculture ecosystems. The phylogeny of this candidate genus is 
discussed and it was recently proposed a new family, Candidatus 
Hepatincolaceae, referring to a new proposed order, Holosporales nov. 
ord. (Szokoli et al., 2016). Studies on terrestrial isopods suggested that 
Candidatus Hepatincola is extracellular (Wang et  al., 2004), 
horizontally transmitted (Wang et al., 2007) and may have a specific 
role in host trophic adaptation (Delhoumi et al., 2020).

Concerning Rickettsiales, only a few members could be identified 
to the genus/family.

Among them, it is worth mentioning four ASV clustering within 
Midichloriaceae, all associated with genera “Candidatus Bandiella” 
(Senra et al., 2016) / “Candidatus Aquarickettsia” (Klinges et al., 2019; 
the two genera are entangled/not properly resolved). “Candidatus 
Bandiella” has been frequently reported as an intracellular symbiont 
of freshwater ciliate protists from the genus Euplotes (Boscaro et al., 
2019) and its role in the interaction with the host has not been clarified 
yet. On the contrary, “Candidatus Aquarickettsia” has been originally 
reported in association with marine invertebrates, i.e., corals (Klinges 
et al., 2019) and its presence correlates with host susceptibility to 
diseases (Klinges et  al., 2019). In addition, this bacterium is 
horizontally transmitted (Baker et  al., 2022) and increases in 
phosphate-rich environments (Klinges et al., 2019).

The only true Rickettsiales member detected in the present study 
using HTS was Candidatus Megaira, an intracellular bacterium 
associated with a wide span of hosts in ecological contexts ranging 
from freshwater to marine systems (Lanzoni et al., 2019).

The presence of RMS-MLO DNA, assessed through qPCR 
analysis, was detected in those tanks where RMS-affected fish was 
present. This observation is in line with previous studies showing a 
correlation between RMS-MLO and skin lesions of RMS-affected fish 
(Lloyd et al., 2008; Cafiso et al., 2016; Schmidt et al., 2021; Orioles 
et  al., 2022). However, scant bacterial loads were observed in the 
analyzed matrixes, as indicated by Ct values exceeding the lower limit 
of the qPCR reaction dynamic range. This result could explain the 
absence of HTS reads ascribable to members of the Midichloriaceae 
family, although in silico PCR analyses showed complete matching of 
the primers targeting the V3–V4 hypervariable regions of the 
RMS-MLO 16S rDNA gene sequence. Nevertheless, the scarce 
bacterial load could additionally support the negative qPCR results 
obtained in one water and three sediment samples of tanks housing 
RMS-affected fish. Interestingly, RMS-MLO DNA was detected in the 
sediment of water exiting Unit 1 and entering Unit 2 (p02). Despite 
the lack of any fish presence in Unit 1, it could not be excluded that 
RMS-MLO hosted/vectored by putative vectors or temporarily free 
RMS-MLO in the extracellular environment (Castelli et al., 2019) 
could somehow have reached the water tank (Unit 1). The bacterium, 
likely hosted by a putative vector as previously hypothesized elsewhere 
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(e.g., protozoans; Pasqualetti et  al., 2021), could thus have been 
occasionally included in the organic matter deposited in between 
Unit 1 and Unit 2.

5. Conclusion

The current study has contributed new knowledge concerning the 
composition of microbial communities in flow-through aquaculture 
systems when the presence of RMS is reported. Due to the unknown 
aetiology of this emerging disease, a complete picture of the factors that 
may be involved in RMS outbreak and spread is needed. Among these 
factors, the water-associated microbiome has always been neglected.

Although risks arising from the presence of pathogens also need 
further investigation, our results lay a foundation for the design of 
aquaculture systems that can be  less prone to the emergence and 
spread of fish diseases. Water can serve as a vector and its microbial 
ecology can have a role in the modulation of disease outbreak and 
spread, and fish response.

The novel insights obtained in this study not only add relevant 
information about the context of the disease, but also they could put RMS 
under the spotlight and increase interest in research related to this disease. 
In the future, studies should be performed including host-associated 
microbial communities in healthy and RMS-affected rainbow trout, 
looking at the aquaculture built environment on the whole.
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