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Abstract
Bayesian networks in the form of Directed Acyclic Graphs (DAGs) represent an

effective tool for modeling and inferring dependence relations among variables, a

process known as structural learning. In addition, when equipped with the notion of

intervention, a causal DAG model can be adopted to quantify the causal effect on a

response due to a hypothetical intervention on some variable. Observational data cannot

distinguish between DAGs encoding the same set of conditional independencies

(Markov equivalent DAGs), which however can be different from a causal perspective.
In addition, because causal effects depend on the underlying network structure,

uncertainty around the DAG generating model crucially affects the causal estimation

results. We propose a Bayesian methodology which combines structural learning of

Gaussian DAG models and inference of causal effects as arising from simultaneous

interventions on any given set of variables in the system. Our approach fully accounts

for the uncertainty around both the network structure and causal relationships through a

joint posterior distribution over DAGs, DAG parameters and then causal effects.

Keywords Graphical model � Directed acyclic graph � Structural learning � Causal
inference � Bayesian inference

1 Introduction

Graphical models based on Directed Acyclic Graphs (DAGs), also known as

Bayesian networks, are widely employed to infer dependence relations among

variables. Their application to scientific domains abounds, in particular social
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sciences and biology; see for instance Friedman (2004), Yin and Li (2011),

Markowetz and Spang (2007) and references therein. A DAG imposes a set of

conditional independencies between variables through a DAG-dependent factoriza-

tion of the joint distribution and provides an effective tool to read-off such relations

directly from the graph using graphical criteria.

Real data problems generally suggest that the set of conditional dependencies

between variables cannot be postulated in advance, which makes the DAG

generating model unknown. In many fields (e.g. genomics) DAG structural learning
also represents the very ultimate goal of the analysis since it can reveal dependence

relations which may help understanding the behavior of biological pathways; see for

instance Friedman and Koller (2003) and Sachs et al. (2005). From a statistical

viewpoint this issue can be tackled by adopting a model selection perspective and

several methodologies have been proposed accordingly. On the frequentist side, a

distinction can be made between score and constraint-based methods. The former

implement a score function which is maximised over the model space (Chickering

2002) while the latter usually provide a graph estimate by performing a sequence of

conditional independence tests; see for instance Kalish and Buhlmann (2007).

Moreover, Bayesian methodologies for DAG structural learning estimate a posterior

distribution over the space of graphs which in turn provides a coherent

quantification of the uncertainty around the data generating model; see for instance

Cooper and Herskovits (1992), Ben-David et al. (2015) and the more recent paper

Ni et al. (2017) which presents a unified framework for model selection of both

directed and undirected graphs. By contrast, Bayesian methods require prior

elicitation for each model-dependent parameter which is subject to constraints

imposed by the conditional independencies of the underlying DAG structure; see

also Geiger and Heckerman (2002).

In their standard formulation, DAGs provide information on the dependence

structure between variables in terms of association. In many contexts however one

might be interested in establishing causal relationships, whose precise quantification
would require experimental (interventional) data, e.g. produced from randomized

controlled experiments; see also Spirtes et al. (2000) and Ellis and Wong (2008).

However intervention experiments are not always available since they may be

unethical or infeasible. Because causal concepts are relationships that cannot be

defined from the (observational) DAG distribution alone (Pearl, 2003) causal

inference from non-experimental data requires further assumptions on the DAG

generating mechanism. These are encoded in the notions of intervention and post-
intervention distribution, leading to the definition of causal DAG; see also Sect. 2.2

for a more detailed discussion. Causal DAGs applied to observational data hence

Table 1 Comparison between

causal effects from single and

joint interventions

Set {6,5} {6,4}

Node 6 5 6 4

Single -1.09 -0.14 21.09 -0.51

Joint -1.09 -0.14 20.68 -0.51

123

1290 F. Castelletti, A. Mascaro



provide a quantification of the effect of a hypothetical intervention on a specific

variable w.r.t. a response of interest. This can be used for instance to predict the

effect of a single gene knockout on some other gene or phenotype of interest; see for

instance Maathuis et al. (2009). In turn, causal DAGs provide a tool for the design

of experiments, because the collection of gene-causal effects can indicate which of

them are likely to have a large effect on the response.

In many situations it is impossible to design experiments which act on one

specific variable only while keeping all the other fixed. Also, causal effects from

simultaneous interventions can significantly deviate from their single-variable

counterparts, since the contribution of a given intervened variable in a joint

intervention is ‘‘adjusted’’ by the effect of knocking out the others; see also Henckel

et al. (2019). The following example aims at illustrating it.

Example 1 Consider DAG D in Fig. 1 and the parameters associated to its edges,

which can be interpreted as the coefficients of a linear Structural Equation Model

(SEM); see also Sect. 3. Table 1 provides a comparison between the causal effect of

a given variable w.r.t. response node 1 from single and joint (simultaneous)

interventions on set of variables. Each column refers to an intervened variable,

while the two rows report the causal effect under a single intervention and the causal

effect under a joint intervention on a pair of variables. As an instance, it appears

that, while the causal effect of (an intervention on) node 6 is the same under single

and joint interventions on f6; 5g (�1:09), this increases up to �0:68 when node 6 is

intervened simultaneously with 4.

DAGs encoding the same conditional independencies are called Markov
equivalent and cannot be distinguished from observational data. However they

can be different from a causal perspective; see also Sect. 2. Accordingly, a

frequentist approach would estimate first an equivalence class of DAGs using

observational data and then a set of DAG-dependent causal effects within the class.

This is at the basis of the IDA and joint-IDA methods developed by Maathuis et al.

(2009) and Nandy et al. (2017). However, results can be highly sensitive to the input

(estimated) equivalence class, which also depends on the specific structural learning

methodology that is adopted; see also Castelletti and Consonni (2021). All of these

features suggest the adoption of a unified Bayesian method for DAG structural

learning and causal effect estimation which fully accounts for the uncertainty

around the underlying network structure. We remark that, within the Guassian

setting hereinafter considered, literature on Bayesian causal discovery is, to our

Fig. 1 A DAG with q ¼ 6
variables and randomly
generated coefficients
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knowledge, still narrow, with few recent exceptions such as Castelletti and

Consonni (2021).

In this work we present a Bayesian methodology which combines DAG structural

learning and causal effect estimation for continuous, Gaussian data. As the result,

our method returns an approximated posterior distribution over the space of DAGs

and a posterior of the causal effects as arising from simultaneous interventions on

any given set of variables. The rest of the paper is organized as follows. In Sect. 2

we introduce some theory and notation on graphical models based on DAGs, causal

diagrams and causal discovery. In Sect. 3 we introduce Gaussian DAG models in

terms of likelihood factorization and derive the post-intervention distribution and

allied causal effect in the general case of simultaneous interventions. Section 4 deals

with our Bayesian methodology for structural learning and causal discovery and

introduces prior on DAGs and Cholesky parameters. We discuss in Sect. 5

computational details leading to an MCMC scheme for posterior inference. We

apply our methodology on simulation settings and real data in Sects. 6 and 7

respectively. Finally, Sect. 8 offers a brief discussion together with possible future

developments. All codes are written in R (R Core Team 2017) and are available

upon request to the authors.

2 Graphical models, causal diagrams and causal effects

In this section we introduce basic concepts relative to graphical models based on

directed acyclic graphs and causal inference. Fur further information on these topics

the reader can refer to Pearl (2009) and Lauritzen (1996).

2.1 Graphical models

We briefly introduce the graph notation hereinafter adopted. Let G ¼ ðV ;EÞ be a

graph, where V ¼ f1; . . .; qg is a set of nodes (or vertices) and E � V � V a set of

edges. In what follows, if ðu; vÞ 2 E and ðv; uÞ 62 E, G contains a directed edge

u! v, while if both ðu; vÞ 2 E and ðv; uÞ 2 E, then G contains an undirected edge

u� v. A graph is called directed if contains only directed edges. Moreover, a

Directed Acyclic Graph (DAG) D is a directed graph which contains no loops, that

is sequences of nodes ðu1; u2; . . .; ukÞ with u1 ¼ uk, such that there exists a path

u1 ! u2 ! � � � ! uk. Moreover, if ðu; vÞ 2 E we say that u is a parent of v and

denote the set of all parents of v in D as paDðvÞ. Also, if there exists a directed path

from u to v we say that v is a descendant of u and let deDðuÞ be the set of all

descendants of u in D. Hence, the non-descendants of u are all nodes in the set

ndDðuÞ ¼ V n deDðuÞ.
Let now ðX1; . . .;XqÞ be a random vector. The connection between a graph and

probabilistic model f ðx1; . . .; xqÞ for the random vector arises as we associate each

variable Xj to a node in the graph. The latter introduces a set of conditional

independencies among X1; . . .;Xq via the so-called Markov property of the graph.

As different types of dependence patterns exist, different types of graphs are in

general equipped with different Markov properties. A DAG encodes a set of

123

1292 F. Castelletti, A. Mascaro



conditional independencies between variables which can be read-off from the DAG

using graphical criteria such as d-separation (Pearl, 2009). We then denote with

IðDÞ the set of all conditional independencies implied by D. Let D be a DAG,

ðX1; . . .;XqÞ a collection of random variables. A distribution f ðx1; . . .; xqÞ is said to

be compatible with the DAG D or Markov relative to D if it admits the factorization

f ðx1; . . .; xqÞ ¼
Yq

j¼1
f ðxj j xpaDðjÞÞ: ð1Þ

As many distributions may admit the factorization (1), it is possible to define a

family of distributions MðDÞ that are Markov relative to D. For a given

f ðx1; . . .; xqÞ � f , if we let I(f) be the set of conditional independencies in f, then

f 2 MðDÞ if and only if IðDÞ � Iðf Þ. Moreover, if IðDÞ ¼ Iðf Þ, then f is said to be

faithful to DAG D. This means that the conditional independencies in D are all and

only those embodied in the joint distribution f.
A further important property of Bayesian networks is Markov equivalence. In

particular, two DAGs D1 and D2 are Markov equivalent if and only if

IðD1Þ ¼ IðD2Þ. It follows that a given set of conditional independencies can be

described by several DAGs which are collected into an equivalence class. The latter

can be uniquely represented through a Completed Partially Directed Acyclic graph
(CPDAG) (Chickering 2002), also known as Essential Graph (EG) (Andersson

et al. 1997) which is obtained as the union (over the edge sets) of all DAGs within

the equivalence class.

2.2 Structural causal models and causal diagrams

DAGs are not necessarily carriers of causal information and their common

extension to probabilistic graphical models, namely Bayesian networks, only allow

to make conditional independence statements. Causal concepts are instead

relationships that cannot be deduced from the distribution alone (Pearl, 2009) and

accordingly require additional assumptions on the generating mechanism. One

possibility is to assume that each parent-child relationship in the network represents

a stable and autonomous physical mechanism, which means that it is possible to

change one relationship without affecting the others. This assumption leads to the

construction of Structural Causal Models (SCM) and the corresponding graphical

tools, named causal diagrams. See also Pearl (2009)[Sect. 1.3.1–1.3.2] for a deep

discussion and illustrative examples.

Traditionally, causal concepts are handled in econometrics and social sciences

through linear structural causal models, that is SCM in which the relationships

between variables are assumed to be linear. In general, an SCM can be represented

through a system of relations of the form

Xj  fjðpaDðjÞ;UjÞ j ¼ 1; . . .; q; ð2Þ

where paDðjÞ is now to be interpreted as the set of variables which directly deter-

mine the level of Xj. Moreover, Uj is an error term and the left-pointing arrow
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indicates a structural relation (as opposed to algebraic relations); see also Pearl

(2009)[Sect. 1.4].

Given a causal model in the form of (2), drawing an arrow from each variable in

paDðjÞ towards Xj results in a DAG D called causal diagram which is called

Markovian if it is acyclic and the error terms are jointly independent. It can be

proved that every Markovian structural causal model M induces a distribution

f which admits the same recursive decomposition (1) that characterizes Bayesian

networks. However, causal models in the form (2) are more powerful as the

assumptions of stability and autonomous mechanism allow to compute the effect of

hypothetical interventions from non-experimental (observational) data.

We now introduce the notion of intervention. A hard (or deterministic)
intervention on the set of variables fXj; j 2 Ig, I � V , is denoted by dofXj ¼
~xjgj2I and is defined as the action of fixing each Xj, j 2 I, to some chosen value ~xj. A

hard intervention modifies the SCM by replacing each equations Xj  fjðpaDðjÞ;UjÞ
for j 2 I with a point mass at ~xj. From a graphical perspective, the effect of a hard

intervention can be represented through the so-called intervention DAG. This is

obtained from the original DAG D by removing all edges (u, j) such that j 2 I and is

denoted by DI ; see also the example in Fig. 2.

A hard intervention dofXj ¼ ~xjgj2I leads to the definition of post-intervention

distribution which can be written using the truncated factorization

f ðx1; . . .; xq j dofXj ¼ ~xjgj2IÞ ¼
Q

i 62I f ðxi j xpaDðiÞÞ
��
fxj¼~xjgj2I

if xj ¼ ~xj 8 j 2 I;

0 otherwise:

(

ð3Þ

Importantly, the conditional densities in (3) are the same appearing in (1): this

means that the post-intervention distribution can be expressed in terms of obser-

vational densities.

Moreover, Nandy et al. (2017) define the total joint effect of an intervention

dofXj ¼ ~xjgj2I on X1 � Y as

Fig. 2 Three DAGs, D1;D2;D3,
and the corresponding
intervention DAGs of an
intervention on I ¼ 2.

Intervention graphs DI
2;DI

3 are

equal to the corresponding pre-
intervention (observational)

DAGs D2;D3, while DI
1 differs

from D1 for the missing edge
1! 2
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hIY :¼ ðhIh;YÞ
>
h2I ; ð4Þ

where for each h 2 I

hIh;Y :¼ o

oxh
EðY j dofXj ¼ ~xjgj2IÞ ð5Þ

is the causal effect on Y associated to variable Xh in the joint intervention.

2.3 Causal discovery and causal effect estimation

Causal effects can be estimated whenever a causal diagram representing the causal

structure of the problem is available. However, often this is not the case and the

causal structure must be inferred from the data. Causal discovery methods, that is

procedures whose aim is to learn causal DAGs from the data, are traditionally

divided into three main classes: constraint-based methods, which estimate

equivalence classes of DAGs by testing for conditional independencies between

variables; score-based methods, which score DAGs through penalized likelihoods;

hybrid methods which combine features of the first two approaches.

The PC algorithm (Spirtes et al. 2000) is one of the most popular algorithms for

causal discovery. It is a constraint-based method that assumes acyclicity, causal

faithfulness and causal sufficiency, where the latter refers to the absence of hidden

(latent) variables. The PC algorithm provides an estimate of the CPDAG

representing the true causal DAG. Specifically, it first estimates the CPDAG

skeleton (that is the undirected graph that would be obtained by removing all the

edge orientations from the DAG) and then orients as many edges as possible using

various orientation rules; see also Kalish and Buhlmann (2007). For a complete

review on causal discovery algorithms the reader can refer to Heinze-Deml et al.

(2018).

A slightly different approach has been adopted by Maathuis et al. (2009), who

propose a methodology for causal effect estimation from single-node hard

interventions in Gaussian models when the DAG is not available. The resulting

algorithm is called IDA (Identification when DAG is Absent). In its basic version,

IDA first estimates an equivalence class using the PC algorithm (alternatively any

other score-based method can be adopted). Next, for each DAG within the input

class, the causal effect of Xh on Y is computed using multiple linear regression

models. This basic version is slightly modified due to computational reasons. In

particular, they propose a faster alternative which only returns the distinct causal
effects compatible with the input equivalence class, thus avoiding a full

enumeration of the DAGs. Their methodology is further extended to joint
(simultaneous) hard interventions by Nandy et al. (2017), leading to their joint-
IDA method.

As in the case of single interventions, joint-IDA relies on a CPDAG which is

estimated up-front, e.g. by using the PC algorithm. Next, three alternative methods

for causal estimation from joint interventions are proposed, namely the path method,
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the recursive regression for causal effects method (RRC) and the modified Cholesky
decomposition method (MCD); see the original paper for details.

3 Causal effects in Gaussian graphical models

In this section we focus on Gaussian DAG models and provide the definition of

causal effect under the assumption that the distribution of X1; . . .;Xq is jointly

normal and Markov w.r.t. a given DAG which is known beforehand. In Sect. 4 we

will deal instead under model (DAG) uncertainty.

Let D ¼ ðV ;EÞ be a DAG and assume ðX1; . . .;XqÞ jR;D�N qð0;RÞ, where
R 2 CD, the cone of symmetric-positive-definite covariance matrices Markov w.r.t.

D. Accordingly, R reflects the conditional independencies encoded by D.
Equation (1) thus becomes

f ðx1; . . .; xq jR;DÞ ¼
Yq

j¼1
f ðxj j xpaDðjÞ;RÞ: ð6Þ

Because of the normality assumption, Equation (6) can be equivalently written as a

linear SEM. To this end, consider the decomposition of R ¼ L�>DL�1, where L is a

(q, q) matrix of coefficients with diagonal elements equal to 1 and D ¼
diagðr21; . . .;r2qÞ is a diagonal matrix collecting node-conditional variances. From

this re-parameterization, the constraints imposed by D on the model parameters

become more apparent since for each (u, v)-element of L, u 6¼ v, we have Lu;v 6¼ 0 if

and only if u 2 paDðvÞ, that is there is an edge u! v in D. Hence, for j ¼ 1; . . .; q,

Xj ¼ �L>�j 	xpaDðjÞ þ ej; ej j r2j �
iidNð0; r2j Þ; ð7Þ

where � j 	 ¼ paDðjÞ � j and LA�B denotes the sub-matrix of L with elements

belonging to rows and columns indexed by A and B respectively. Therefore,

f ðx1; . . .; xq jD;L;DÞ ¼
Yq

j¼1
dN

�
xj j � L>�j 	xpaDðjÞ; r

2
j

�
: ð8Þ

Let now I � f2; . . .; qg be an intervention target. The post-intervention distribution

of ðX1; . . .;XqÞ given dofXj ¼ ~xjgj2I becomes

f ðx j dofXj ¼ ~xjgj2I ;D;L;DÞ ¼
Q
i 62I

dN
�
xi j � L>�i 	xpaDðiÞ; r

2
i

���
fxj¼~xjgj2I

if xj ¼ ~xj 8j 2 I;

0 otherwise:

8
<

:
ð9Þ

An important implication of Equation (9) is that

X1; . . .;Xq j dofXj ¼ ~xjgj2I ;R;D � N qð0;RIÞ; ð10Þ

where
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RI ¼ ðLIÞ�>DðLIÞ�1 ð11Þ

and in particular

LI
u;v ¼

0 if v 2 I and v 6¼ u

Lu;v otherwise:

�
ð12Þ

Equation (10) corresponds to the post-intervention distribution of ðX1; . . .;XqÞ in the

Gaussian setting and depends on the covariance matrix RI . Most importantly, the

latter can be reconstructed from the observational parameters ðD;LÞ appearing in

(7). Finally, the causal effect of Xh on X1 ðh 2 IÞ in a joint intervention on fXjgj2I is
given by

hIh;1 ¼ RI
h;1

�
RI
h;h

��1
; ð13Þ

see also Nandy et al. (2017). It follows that the causal effect hIh;1 is a function of the

covariance matrix R which in turn depends on the underlying DAG D. Therefore,
inference on DAG D and its parameter R will drive inference of causal effects under

model uncertainty; see the next section for details.

4 Bayesian inference of causal effects under model uncertainty

Consider n i.i.d. observations xi ¼ ðxi;1; . . .; xi;qÞ>, i ¼ 1; . . .; n, from (8) and the

(n, q) data matrix X, row-binding of the xi’s. The likelihood function relative to

ðD;L;DÞ can be written as

f ðX jD;L;DÞ ¼
Yq

j¼1
dN n Xj j � XpaDðjÞL�j 	; r

2
j In

� �
; ð14Þ

where XA denotes the sub-matrix of X with columns indexed by A � V and In is the
(n, n) identity matrix. We now proceed by assigning a prior distribution on DAG D
and its Cholesky parameters ðD;LÞ.

4.1 Prior on DAG D

For a given DAG D ¼ ðV ;EÞ, let SD be the 0-1 adjacency matrix of its skeleton (the
underlying undirected graph obtained after removing the orientation of all of its

edges), such that for each (u, v)-element in SD, SDu;v ¼ 1 if and only if ðu; vÞ 2 E or

ðv; uÞ 2 E, 0 otherwise. Conditionally on a prior probability of inclusion p 2 ð0; 1Þ
we then assume SDu;v j p�

iid
BerðpÞ for each u[ v. Therefore,

pðSDÞ ¼ pjS
Djð1� pÞ

qðq�1Þ
2
�jSDj; ð15Þ

where jSDj is the number of edges in D (equivalently in its skeleton) and qðq� 1Þ=2
corresponds to the maximum number of edges in a DAG on q nodes. Finally we set
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pðDÞ / pðSDÞ; ð16Þ

for any D 2 Sq, where Sq is the space of all DAGs on q nodes. The resulting prior

thus depends on the DAG skeleton only and assigns equal prior weights to DAGs

having the same number of edges. Hyperparameter p can be tuned to reflect some

prior knowledge of sparsity in the DAG space, when this information is available.

Moreover, one can adopt distinct hyperparameters pu;v, to include edge-specific

prior information on the edge inclusions.

4.2 Prior on Cholesky parameters ðD,LÞ

Consider now the DAG-constrained covariance matrix R 2 CD and its modified

Cholesky decomposition R ¼ L�>DL�1; see also Sect. 3. Moreover, without loss of

generality assume a parent ordering of the nodes such that u[ v whenever u is a

parent of v. We assign a prior to R through a DAG-Wishart prior on ðD;LÞ with
hyperparameter U (a q� q s.p.d. matrix) and shape hyperparameter aD ¼
ðaD1 ; . . .; aDq Þ

>
(Ben-David et al., 2015). The DAG-Wishart distribution has been

introduced as a conjugate prior for covariance matrices Markov w.r.t. a DAG D and

therefore provides an extension of the standard Wishart distribution which can be

adopted for unconstrained covariance matrices (equivalently, complete DAG

models); see also Ben-David et al. (2015) for details.

An interesting feature of the DAG-Wishart distribution is that it induces a re-

parameterization of R in terms of node-parameters ðL�j 	; r2j Þ that are a priori

independent with distribution

r2j j D� I-Ga aDj ;
1

2
Ujjj�j


� 	
;

L�j 	 j r2j ;D� N jpaDðjÞj �U
�1
�j
U�j 	; r

2
jU
�1
�j


� �
;

ð17Þ

where Ujjj�j
 ¼ Ujj � U½ j
U
�1
�j
U�j 	, � j 	 ¼ paDðjÞ � j, ½ j
 ¼ j� paDðjÞ and

� j
 ¼ paDðjÞ � paDðjÞ. Hyperparameters aDj and U are specific to each DAG

model under consideration. However, it can be shown that the default choice aDj ¼
1
2
ðaþ jpaDðjÞj � qþ 1Þ ða[ q� 1Þ guarantees compatibility among prior distri-

butions for Markov equivalent DAGs; see also Castelletti and Consonni (2020).

Also, a standard choice for U, hereinafter adopted, is U ¼ gIq (g[ 0) which reflects

a prior belief of (marginal) independence among variables. Hyperparameter g
regulates the strength of our prior statement: lower values of g correspond to less

informative prior distributions on X. Under this choice, Equation (17) becomes

123

1298 F. Castelletti, A. Mascaro



r2j j D� I-Ga aDj ;
1

2
g

� 	
;

L�j 	 j r2j ;D� N jpaDðjÞj 0; r2j gIjpaDðjÞj
� ��1� �

:

ð18Þ

Therefore, a prior on the DAG Cholesky parameters ðD;LÞ is given by

pðD;L j DÞ ¼
Yq

j¼1
pðL�j 	 j r2j Þ pðr2j Þ: ð19Þ

Moreover, because of conjugacy of (18) with the likelihood (14), the posterior

distribution of ðD;LÞ given X is such that

r2j jX;D� I-Ga aDj þ
n

2
;
1

2
ðgþ bjÞ

� 	
;

L�j 	 j r2j X;D� N jpaDðjÞj �L̂�j 	; r
2
j gIjpaDðjÞj þ SpaDðjÞ
� ��1� �

;

ð20Þ

where

SpaDðjÞ ¼X>paDðjÞXpaDðjÞ;

L̂�j 	 ¼ gIjpaDðjÞj þ SpaDðjÞ
� ��1

X>paDðjÞXj;

bj ¼X>j Xj � X>j XpaDðjÞ gIjpaDðjÞj þ SpaDðjÞ
� ��1

X>paDðjÞXj:

5 Computational details

In this section we detail the MCMC scheme that we adopt to sample from the target

distribution

pðD;L;D jXÞ / f ðX jD;L;DÞ pðD;L j DÞ pðDÞ; ð21Þ

and therefore to approximate the posterior distribution of the causal effect in (13)

which is a function of the Cholesky parameters ðD;LÞ; see Equations (12) and (13).

An efficient sampler can be implemented by resorting to a Partial Analytic Struc-
ture (PAS) algorithm (Godsill, 2012) whereas the update of DAG D and model

parameters ðD;LÞ is performed in two steps.

5.1 Update of DAG D

In the first step, given the current DAG D, a new DAG D� is drawn from a

suitable proposal distribution qðD� jDÞ which is defined as follows. We consider

three types of operators that locally modify a DAG: insert a directed edge (InsertD

u! v for short), delete a directed edge (DeleteD u! v) and reverse a directed edge
(ReverseD u! v). For a given D 2 Sq, being Sq the set of all DAGs on q nodes, we
then construct the set of valid operators OD, that is operators whose resulting graph
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is a DAG. A DAG D� is then called a direct successor of D if it can be reached by

applying an operator in OD to D. Therefore, given the current D we propose D� by
uniformly sampling an element in OD and applying it to D. Since there is a one-to-
one correspondence between each operator and resulting DAG, the probability of

transition is qðD� jDÞ ¼ 1=jODj, for each D� direct successor of D.
Consider now two DAGs D and D� which differ by one edge ðu; vÞ 2 D, ðu; vÞ 6

2 D� and let ðDD;LDÞ and ðDD� ;LD�Þ be the corresponding Cholesky parameters.

Notice that these differ only with regard to their v-th component ððrDv Þ
2;LD�v 	Þ and

ððrD�v Þ
2;LD

�

�v 	Þ. Moreover, the remaining parameters fðrDr Þ
2;LD�r 	; r 6¼ vg and

fðrD�r Þ
2;LD

�

�r 	; r 6¼ vg are componentwise equivalent between the two graphs

because they refer to structurally equivalent conditional models. This feature is

crucial for the correct application of the PAS algorithm; see also Wang and Li

(2012)[Sect. 5.2].

Under a PAS algorithm the acceptance probability for a DAG D� (defined as

above) is given by aD� ¼ minf1; rD�g where

rD� ¼
pðX;DD� n ðrD�v Þ

2;LD
� n LD��v 	 j D�Þ

pðX;DD n ðrDv Þ
2;LD n LD�v 	 j DÞ

� pðD
�Þ

pðDÞ �
qðD jD�Þ
qðD� jDÞ ; ð22Þ

and

pðX;DD n ðrDv Þ
2;LD n LD�v 	 j DÞ ¼

Z Z
f ðX jDD;LD;DÞ pðDD;LD jDÞ dLD�v 	 dðrDv Þ

2

(similarly under D�). In addition, because of the likelihood and prior factorizations

in (14) and (19), it can be shown that (22) reduces to

rD� ¼
mðXv jXpaD� ðvÞ;D

�Þ
mðXv jXpaDðvÞ;DÞ

� pðD
�Þ

pðDÞ �
qðD jD�Þ
qðD� jDÞ ; ð23Þ

where, because of conjugacy of the Normal-Inverse-Gamma prior with the Normal

density,

mðXv jXpaDðvÞ;DÞ ¼ ð2pÞ
�n

2

��gIjpaDðvÞj
��1=2

��gIjpaDðvÞj þ SpaDðvÞ
��1=2
�
C aDv þ n

2

� �

C aDv
� �

�
g
2

�aDv
�
gþbv
2

�aDv þn=2 ;

ð24Þ

and SpaDðvÞ, bv are defined as in Sect. 4.2.

5.2 Update of Cholesky parameters ðD,LÞ

In the second step we then sample the model-dependent parameters ðD;LÞ
conditionally on the accepted DAG from their full conditional distribution in (20).

In addition, samples from the Cholesky parameters ðD;LÞ can be used to recover RI
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and then compute the causal effect for any given target of intervention nodes

I � f2; . . .; qg as in (13).

5.3 Posterior inference

Our MCMC scheme is summarized in Algorithm 1. Its output consists of a

collection of DAGs and Cholesky parameters


DðsÞ; ðDðsÞ;LðsÞÞ

�S

s¼1 sampled from

the posterior (21) and a collection of causal effect coefficients


hIðsÞh;1

�S

s¼1 for an input

intervention target I and each h 2 I.

Moreover, the posterior probability of a DAG D can be approximated from the

MCMC output as

pðD jXÞ � 1

S

XS

s¼1
1 DðsÞ ¼ D
n o

; ð25Þ

which corresponds to the DAG frequency of visits in the chain. Alternatively,

approximations of posterior model probabilities can be obtained from re-normalized

marginal likelihoods; see also Garcı́a-Donato and Martı́nez-Beneito (2013) for a

discussion.

From the same output, summaries of interest can be also obtained. In particular,

for each pair of nodes (u, v) we can compute the (estimated) posterior probability of

edge inclusion

p̂ðu! v jXÞ ¼ 1

S

XS

s¼1
1 u! v 2 DðsÞ
n o

; ð26Þ

where 1 u! v 2 DðsÞ

 �

¼ 1 if DðsÞ contains u! v, 0 otherwise. Moreover, an

overall summary of the posterior distribution of each causal effect hIh;1 can be

computed as
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ĥIh;1 ¼
1

S

XS

s¼1
hIðsÞh;1 ; ð27Þ

which corresponds to a Bayesian Model Averaging (BMA) estimate wherein pos-

terior model probabilities are approximated through their MCMC frequencies of

visits. Equation (27) naturally incorporates the uncertainty around both the under-

lying causal DAG model and the allied DAG-dependent parameters.

6 Simulation study

6.1 Settings

In this section we evaluate our methodology through simulation experiments.

Specifically, we construct different scenarios by varying the sample size

n 2 f50; 100; 200; 500g, the number of intervened nodes (size of the target) s 2
f2; 4g and the number of nodes q 2 f10; 20g. Under each simulation scenario

defined by n we generate N ¼ 30 datasets, each obtained as follows. We first

randomly sample a sparse DAG D by fixing a probability of edge inclusion equal to

0.2. We then generate the corresponding (true) Cholesky parameters ðD;LÞ by
drawing the non-zero elements of L in ½�1;�0:1	 [ ½0:1; 1	 while fixing D ¼ Iq. We

finally construct the covariance matrix R ¼ L�>DL�1 and generate n multivariate

i.i.d. observations, representing an (n, q) dataset X, from the Gaussian DAG-model

N qð0;RÞ.
Moreover, for a given s we randomly choose a target I consisting of s nodes

randomly sampled from f2; . . .; qg. We then recover the post-intervention

parameters LI and RI using (11) and (12); the true set of causal effects fhIh;1gh2I
follows from (13). For each simulated dataset we run S ¼ 15000 iterations of

Algorithm 1 to approximate the posterior distribution over DAGs, Cholesky

parameters and causal effects.

6.2 Graph selection

To assess the accuracy of our method in recovering the underlying causal structure

we compare DAG point estimates that can be retrieved from our MCMC output with

the corresponding true DAGs. Similarly, we evaluate the performance of the

frequentist PC algorithm, the structural learning method underlying the IDA

approach of Maathuis et al. (2009). Specifically, with regard to our method, we

consider both the Median Probability (DAG) Model (MPM) and the Maximum A

Posteriori (MAP) DAG estimates, where the former corresponds to the DAG

obtained by including those edges whose posterior probability of inclusion exceeds

0.5, while the latter corresponds to the DAG with highest MCMC frequency of

visits. We implement PC algorithm at significance level a 2 f0:01; 0:05; 0:10g. In
addition, because PC outputs a CPDAG, starting from each of our DAG estimates

(MPM and MAP) we construct the representative CPDAG, that is the CPDAG
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representing the equivalence class of the estimated DAG. We compare each

CPDAG estimate with the CPDAG representing the equivalence class of the true

DAG in terms of Structural Hamming Distance (SHD) and Structural Intervention

Distance (SID). SHD corresponds to the number of edge insertions, deletions or flips

needed to transform the estimated graph into the true graph. SID was instead

introduced by Peters and Bühlmann (2015) and is based on a graphical criterion

quantifying the closeness between two graphs in terms of the corresponding sets of

compatible intervention distributions; see also the original paper for details. Lower

values of SHD and SID correspond to better performances. Our results are

summarized in the box-plots of Figs. 3 and 4 which report the distribution of the two

indexes over the N ¼ 30 simulations. It appears that our MPM and MAP estimates
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Fig. 3 Simulation study. Distribution over N ¼ 30 simulated datasets of the Structural Hamming
Distance (SHD) between estimated and true CPDAGs. Methods under comparison are: our Bayesian
method with output the Median Probability Model (MPM) and Maximum A Posteriori (MAP) graph
estimates and the PC algorithm implemented at significance level a 2 f0:01; 0:05; 0:10g, respectively PC
0.01, PC 0.05, PC 0.10
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are competitive with PC for moderate sample sizes and perform slightly better than

PC as n increases both in terms of SHD and SID.

6.3 Causal effect estimation

We now evaluate the performance of our method in causal effect estimation. To this

end, under each simulation we compute the BMA estimate (27) for each intervened

node h 2 I. Each estimated causal effect ĥIh;1, h 2 I, is compared with the

corresponding true causal effect hIh;1 by computing the absolute-value distance
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Fig. 4 Simulation study. Distribution over N ¼ 30 simulated datasets of the Structural Intervention
Distance (SID) between estimated and true CPDAGs. Methods under comparison are: our Bayesian
method with output the Median Probability Model (MPM) and Maximum A Posteriori (MAP) graph
estimates and the PC algorithm implemented at significance level a 2 f0:01; 0:05; 0:10g, respectively PC
0.01, PC 0.05, PC 0.10
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dBMA
h ¼ ĥIh;1 � hIh;1

���
���: ð28Þ

We also include in our analysis the joint-IDA method of Nandy et al. (2017) (see

also Sect. 2.3). In particular, for the graph selection step we implement PC algo-

rithm at significance level a ¼ 0:01 which has also been shown to perform better in

sparse settings Kalish and Buhlmann 2007. Joint-IDA recovers for each intervened

node h 2 I the set of distinct causal effects compatible with the input CPDAG. This

is then summarized through the arithmetic mean which provides an estimate of hIh;1,
h 2 I. The joint-IDA estimate is compared with the true causal effect by computing

the absolute-value distance dIDAh following (28).

Results are summarized in the box-plots of Fig. 5 which reports the distribution

of dBMA
h and dIDAh across the 30 simulated datasets and intervened nodes, for

increasing values of the sample size n, different number of variables q and different

size of the target s 2 f2; 4g. Clearly, lower values of the distance correspond to

better performances.

It appears that both methods improve their performances as the sample size

increases. However, our BMA-based method outperforms joint-IDA under all

scenarios and in particular in the setting s ¼ 4. One possible reason is that,
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Fig. 5 Simulation study. Distribution of the absolute-value distance d between estimated and true causal
effects for size of the target s 2 f2; 4g, number of variables q 2 f10; 20g and sample size
n 2 f50; 100; 200; 500g. Methods under comparison are: our BMA-based approach (BMA) and the
Joint-IDA method (IDA)
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differently from our Bayesian method, joint-IDA relies on a given (estimated)

equivalence class of DAGs. Indeed, causal inference results strongly depend on the

input CPDAG estimate and therefore on the accuracy in the graph selection.

Anyway, results obtained under different CPDAG estimates (e.g. the PC algorithm

for different significance levels) did not lead to improvements in the causal effect

estimation. By contrast, our MCMC-based method relies on a posterior distribution

over a collection of DAGs some of which, although lying outside the true-DAG

equivalence class, might be ‘‘structurally similar’’ to the true causal DAG and still

result in a causal effect which is close to the true one. This result is also consistent

with the behavior observed in the Structural Intervention Distance (Fig. 5).

We finally investigate the computational time required by our method. Figure 6

summarizes the behaviour of the running time (averaged over 12 replicates) per
iteration, as a function of q 2 f10; . . .; 100g for n ¼ 500 (upper panel), and as a

function of n 2 f50; . . .; 1000g for q ¼ 50 (lower panel). We also highlight that the

computational burden of our method might increase with the number of variables

also because the size of the DAG space grows more than exponentially in q and

accordingly a larger number of MCMC iterations are in general required to reach

convergence. By converse, the computational burden of IDA is generally lower.
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Fig. 6 Computational time (in seconds) per iteration, as a function of the number of variables q for fixed
n ¼ 500 (upper plot) and as a function of the sample size n for fixed q ¼ 50 (lower plot), averaged over
12 simulated datasets
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However, we remark that our method provides not only a point estimate of DAGs

and causal effects, but also an approximation of the whole posterior distribution

over the joint space of DAGs and parameters.

6.4 Robustness to model misspecification

To evaluate the performance of our method under non-Gaussian data we implement

a simulation study where for a given DAG D data are generated under a Structural

Equation Model of the form

Xj ¼ �L�j	xpaDðjÞ þ ej

for j 2 f1. . .; qg. With regard to the error term distribution, we consider three

different scenarios:

1. ej�
iidNð0; 1Þ (Gaussian),

2. ej�
iid �t6 (Student-t)

3. ej�
iid
Unifð�

ffiffiffi
3
p

;
ffiffiffi
3
p
Þ (Uniform),

where �t6 denotes a scaled t distribution with 6 degrees of freedom. The specific

parameter choice in 2-3 guarantees thatVarðejÞ ¼ 1 which is therefore coherent with

setting 1. We fix q ¼ 10 and, for each sample size n 2 f50; 100; 200; 500g and

scenario 1-2-3, we perform N ¼ 30 independent simulations using the same

generating DAGs and SEMs used in our previous simulation studies. We apply our

method to evaluate the causal effect on X1 of a joint intervention on s ¼ 2 randomly

selected nodes among f2; . . .; 10g. The resulting estimates are compared with the
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Fig. 7 Simulation study. Distribution of the absolute-value distance d between estimated and true causal
effects for Gaussian and non-Gaussian distributed data (Student-t and Uniform), for size of the target
s ¼ 2, number of variables q ¼ 10 and sample size n 2 f50; 100; 200; 500g
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true causal effects in terms of the absolute-value distance d as in (28). Our results

are summarized in the box-plots of Fig. 7. Results compared across scenarios 1-2-3

are quite similar, showing that our method, when applied to causal effect estimation,

is somewhat robust with respect to different distributions of the error term in the

SEM model.

7 Real data analysis

In this section we apply our methodology and joint-IDA to the ‘‘Wine quality’’

dataset of Cortez et al. (2009); the dataset is publicly available at https://
archive.ics.uci.edu/. In our analysis we include observations of seven

continuous variables measuring physicochemical properties of a Portoguese wine

called Vinho verde, and a response variable representing a sensory score of the wine

quality (ranging in 0–10) given by n ¼ 1593 independent assessors.

This dataset has been often used for prediction tasks, i.e. to evaluate the quality

of wine on the basis of its physicochemical properties only. However, one might be

also interested in causal questions, such as whether intervening on one (or more)

physicochemical property may change the wine sensory score. As a consequence,

this can lead to identify the target of intervention which produces the largest

increase in the score.

We run Algorithm 1 to approximate the posterior distribution of DAGs, DAG-

parameters and causal effects for any variable in the system and the joint-IDA
method based on a CPDAG estimated obtained from PC algorithm. Because one can

reasonably assume that the quality score does not affect any of the physicochemical

properties (but rather the opposite is argued), we restrict the space of DAGs by

imposing that node 1 (the sensory score) cannot have descendant nodes. Such a

constraint introduces prior information on the causal structure which is suggested by

the concrete problem. In our MCMC algorithm this is achieved by limiting the set of

valid operators of type Insert involving node 1 to those of the form u! 1; see also

Sect. 5. In the PC algorithm instead, this background information is included with

the following procedure: we first estimate the skeleton between variables X1; . . .;Xq

as in the standard first step of PC. Next, we orient undirected edges between

variables Y and covariates X2; . . .;Xq as Xj ! Y , while apply Meek’s orientation

rules to orient the sub-graph of X2; . . .;Xq; see also Kalish and Buhlmann (2007) for

details.

We first assess the convergence of the MCMC algorithm by running two

independent chains of length S ¼ 30000. Figure 8 summarizes the estimated

posterior probabilities of edge inclusion (Equation 26) computed from each MCMC

chain. The two resulting heatmaps suggest a highly satisfactory agreement between

the two chains.

Starting from our MCMC output we consider both the Maximum a Posteriori

(MAP) and the Median Probability Model (MPM) as DAG estimates. However, we

stress that our final BMA estimate does not rely on a single DAG but rather on a full

posterior of DAGs and accordingly a single DAG estimate is only constructed as an

overall graph summary. The two graphs are reported in Fig. 9, together with the
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DAG estimate obtained from the modified version of PC (implemented at

significance level a ¼ 0:01). There are only few differences between the three

estimates, the most notable being the presence of an additional edge from total.SO2
to quality in the PC estimate.

We now present our results on causal effect estimation. Specifically, we first

consider single-node interventions and compute the BMA and joint-IDA estimates

of the causal effect on the response for each node (physicochemical property).

Moreover, for each pair of nodes, fh; kg we obtain the corresponding BMA and

joint-IDA causal effect estimates under a joint intervention on fXh;Xkg. Results are
summarized in the left-side heatmaps of Fig. 10. Each (h, k)-element ðh 6¼ kÞ
represents the BMA (upper panel) and joint-IDA (lower panel) causal effect

estimate of Xk on Y ¼ X1 in a joint intervention on fXh;Xkg; main diagonal-

elements correspond to the causal effects as obtained from single-node interven-

tions. It appears that an increase in variables alcohol and sulphates may result in an

increase in wine quality. By converse, a similar effect can be achieved by reducing

the level of pH and total.SO2 since the two covariates exhibit negative causal

effects.

The right-side heatmaps of Fig. 10 reports for each pair (h, k) the sum of the

corresponding two (absolute value) BMA (upper panel) and joint-IDA (lower panel)

causal effect estimates obtained under the joint intervention on fXh;Xkg, that is
jĥfh;kgh;1 j þ jĥ

fh;kg
k;1 j. Each of these terms provides an overall measure of the ‘‘strength’’

of the causal effect that a joint intervention on the two variables might produce on

the response. As a consequence, this collection of coefficients allows to identify

which pair of variables is associated to the largest potential increase in quality

sensory score. In particular, it appears that a joint intervention on variables alcohol
and sulphates has the largest effect on the response variable. This result is invariant

with respect to the method used, as it can be observed by comparing the upper and
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Fig. 8 Real data analysis. Heat maps with estimated posterior probabilities of edge inclusion obtained
under two independent MCMC chains
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lower heatmaps of Fig. 10. Substantial differences between the two methods appear,

instead, for variable total.SO2, which under joint-IDA is associated with a (negative)

causal effect on quality. In addition, joint-IDA causal effect estimates are somewhat

higher than those obtained under our BMA method. We remark that the effect of

joint interventions on more than two variables can be evaluated in a similar way.

However, for simplicity of exposition we have limited our analysis to the case of

pair-nodes interventions.

8 Discussion

In this paper we present a Bayesian methodology for structural learning of

dependence and causal relations among variables. In particular, we assume that

multivariate observational data have been generated by a Directed Acyclic Graph

(DAG) model which is unknown. Of special interest is also the causal effect of a

specific variable on a response arising from a joint intervention on several variables

in the system. The latter depends on the underlying network structure which
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Fig. 9 Real data analysis. Comparison between estimated graphs. From upper-left to bottom: maximum a
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therefore needs to be estimated. Accordingly, our method combines DAG structural

learning and causal effect estimation, leading to a posterior distribution over the

space of DAGs, DAG parameters and causal effects. Simulation results show that

our method is highly competitive with the frequentist benchmark joint-IDA and

leads to improved estimates of joint causal effects especially in scenarios

characterized by a moderate sample size. On the other hand, our (score-based)

methodology requires an approximated posterior distribution over the space of

DAGs and parameters, which might become computationally expensive as the

number of variables increases. Differently, joint-IDA has been specifically

developed for high dimensional settings and therefore can efficiently perform even

when thousands of variables are involved. However, its output relies on a single
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estimated equivalence class of DAGs whose identification may affect the causal

estimation results.

Joint interventions lead to causal effects that can significantly deviate from their

single-node counterparts. Accordingly, a desired effect on the response can be

obtained through a unique intervention involving several variables simultaneously,

rather than a sequence of single-node interventions. Since the number of possible

joint interventions grows exponentially in the number of variables, the investigation

of an optimization strategy which identifies the optimal intervention target

producing the desired level of the response could be of interest.

In general, a DAG cannot be uniquely identified from observational data and

accordingly a possibly large collection of causal effects is estimated. Randomized

intervention experiments producing interventional data can be used to improve the

identifiability of the data generating model which consequently reduces the

uncertainty around the causal effect estimate; see also Castelletti and Consonni

(2020). In principle, one could then perform sequential simultaneous intervention

leading to the identification of the true causal effect. This issue can be tackled from

an optimal design of experiment perspective implementing an objective function

whose optimization reduces the uncertainty related to each BMA causal effect

estimate of interest.

In this paper we consider causal effect estimation from joint hard interventions.

A more general framework, named soft interventions, assumes that parent-child

dependencies are ‘‘modified’’ but yet preserved after intervention. In this setting,

Correa and Bareinboim (2020) introduce a set of rules (named r-calculus) for the
identifiability of causal effects arising from soft interventions. They then show how

these rules can be applied to identify the causal effect of an interventions from a

combination of observational and interventional data, the latter arising from

exogenous perturbations of selected variables in the system. A Bayesian framework

for causal effect estimation under soft interventions is however still lacking to our

knowledge and is currently under investigation by the authors.
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