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ABSTRACT
Diabetes is ametabolic disorder that affectsmore than 420million of people worldwide,
and it is caused by the presence of a high level of sugar in blood for a long period.
Diabetes can have serious long-term health consequences, such as cardiovascular
diseases, strokes, chronic kidney diseases, foot ulcers, retinopathy, and others. Even
if common, this disease is uneasy to spot, because it often comes with no symptoms.
Especially for diabetes type 2, that happens mainly in the adults, knowing how long the
diabetes has been present for a patient can have a strong impact on the treatment they
can receive. This information, although pivotal, might be absent: for some patients,
in fact, the year when they received the diabetes diagnosis might be well-known, but
the year of the disease unset might be unknown. In this context, machine learning
applied to electronic health records can be an effective tool to predict the past duration
of diabetes for a patient. In this study, we applied a regression analysis based on
several computational intelligence methods to a dataset of electronic health records
of 73 patients with diabetes type 1 with 20 variables and another dataset of records
of 400 patients of diabetes type 2 with 49 variables. Among the algorithms applied,
Random Forests was able to outperform the other ones and to efficiently predict
diabetes duration for both the cohorts, with the regression performances measured
through the coefficient of determination R2. Afterwards, we applied the same method
for feature ranking, and we detected the most relevant factors of the clinical records
correlated with past diabetes duration: age, insulin intake, and body-mass index. Our
study discoveries can have profound impact on clinical practice: when the information
about the duration of diabetes of patient is missing, medical doctors can use our tool
and focus on age, insulin intake, and body-mass index to infer this important aspect.
Regarding limitations, unfortunately we were unable to find additional dataset of EHRs
of patients with diabetes having the same variables of the two analyzed here, so we could
not verify our findings on a validation cohort.
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INTRODUCTION
Diabetes mellitus is group of metabolic diseases characterized by hyperglycemia and an
epidemic affecting more than 420 million of people worldwide (Chatterjee, Khunti &
Davies, 2017). Diabetes mellitus can be classified in two main types: type 1 (T1DM) and
type 2 (T2DM). T2DM often occurs in older populations, accounting for 90% of total
diabetes cases (Sattar et al., 2019), although it is increasingly seen in younger people (Chen,
Magliano & Zimmet, 2012). T2DM appears with a gradual onset and is characterized by
an impaired insulin metabolism due to dysfunctional beta pancreatic cells, or peripheral
resistance to it, or both (DeFronzo et al., 2015). In contrast, T1DM has an acute clinical
debut in childhood, and makes the patients suffer from lack of insulin production due
to chronic autoimmune destruction of beta pancreatic cells. Latent autoimmune diabetes
of adults (LADA) is a sub-variation of diabetes mellitus type 1 (Djekic, Mouzeyan & Ipp,
2012), that develops in people over 30 years old (Naik, Brooks-Worrell & Palmer, 2009),
and differs from classical T1DM in its gradual clinical onset (Isomaa et al., 1999).

Diabetics patients are exposed to deleterious effects of hyperglycemia throughout the
years, and their risk of suffering from multiple micro and macro-vascular complications
increases overtime.Multiple randomized clinical trials have shown that an intensive control
of glycemic levels greatly reduces the risk of experiencing these complications (Control,
of Diabetes Interventions & Group, 2005). Adequate glycemic control becomes harder
to achieve as the disease advances, and increasingly complex therapies accounting for
multiple comorbidities are required in patients with long standing diabetes (Longo et al.,
2019). Diabetic duration is therefore a critical risk factor when managing these patients.
Unfortunately, this information is sometimes unknown as the disease can progress sub-
clinically for years before a diagnosis is made.

Electronic health records (EHRs) have become an integral part of medical care (Adane,
Gizachew & Kendie, 2019) providing doctors with reliable information that support
clinical decisions. Analysis of the accumulated data of EHRs and the implementation
of predictive models is pivotal for the advancement of medicine, as it could shed a light
into hidden correlations that might not be evident or clear at first sight (Štiglic et al.,
2018; Benhamou, 2011). Implementation of EHRs by medical teams have improved drug
treatment intensification, monitoring and physiologic control in diabetic patients (Reed et
al., 2012).

Regression analysis is a widely used statistical tool in health sciences, and it is employed to
illustrate the relationship between explanatory variables and a target feature (Liang & Zeger,
1993). In this context, different clinical and laboratory variables can be of use to predict past
diabetes duration. Classic linear regression is often limited by non-linearity relationships,
heterogeneity of effects and high dimensionality; fortunately, machine learning regression
techniques have been found to overcome these limitations (Steele et al., 2018; Goldstein,
Navar & Carter, 2016).

The scientific literature shows that data mining models have demonstrated to be capable
of managing different facets of diabetes mellitus, in the past. For example, Bernardini
et al. (2019) identified patients with early insulin resistance from health record data
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implementing a novel ensemble method and provided novel insights about the utilization
of non-standard clinical risk factors to screen for early presentation of the disease. Machine
learning techniques have predicted possible life-threatening hypoglycemic events during
treatment (Georga et al., 2013), providing doctors with the capacity to tailor their treatment
in this high risk population. Applied to data of EHRs of pregnant women, machine learning
algorithms predicted the development of gestational diabetes, pointing out the need of a
throughout screening regimen and early interventions in these patients (Artzi et al., 2020).

Problem statement and motivation
Duration of diabetes is often unknown particularly for those patients who did not attend
regular medical check-ups, and might have suffered from the disease for years before
a diagnosis is made. In this group of patients, it is impossible to retrospectively know
when the diabetes started. Recovering this information could be useful in foreseeing the
evolution of the disease, the response to treatment, and the selection of proper screening
methods (Bax et al., 2007; Pham-Short et al., 2015; Thomas, Harvey & Owens, 2016). In this
context, supervisedmachine learningmodels can be used to discover past diabetes duration
of the patients.

Objective and novelty
The goal of our study is to predict the past duration of diabetes and then to detect the most
predictive clinical variables. The novelty of our project lies in the usage of computational
intelligence methods, together with recursive feature elimination and the coefficient of
determination (R2) metric.

This study
Here, our approach was first to construct a regressionmodel on data from two different sets
of health records. The diabetes type 1 dataset (Takashi2019) contains 20 variables from 73
individuals, and the diabetes type 2 (AlOlaiwi2018) contains 49 variables, from 400 patients.
Our work can be described in two parts. First, we developed various regression models
to predict duration of diabetes using different machine learning algorithms, resulting
in Random Forests (Breiman, 2001) being our top predictor. Second, we extended our
analysis by generating a ranking of key features from both datasets utilizing our best
predictor (Random Forest), to unveil correlations that may be concealed from classical
statistical analysis. Our ranking concluded that age, body mass index, and insulin intake are
key predictors of duration of diabetes on both populations. To the best of our knowledge,
no study on the prediction of past diabetes duration exists in the scientific literature.

DATASETS
For our analysis, we used two datasets, both made of electronic health records and publicly
available online under the Creative Commons Attribution 4.0 International (CC BY 4.0)
license: the Takashi2019 dataset of patients with diabetes type 1 (Takashi et al., 2019) and
the AlOlaiwi2018 dataset of patients with diabetes type 2 (AlOlaiwi, AlHarbi & Tourkmani,
2018).
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Table 1 Meaning andmeasurement unit of the variables of the Takashi2019 diabetes type 1 dataset.
Ug/ml: microgram per milliliter. kg/m2

= kilogram per meter squared. pg/ml: picograms per milliliter.
ml/minutes/1.73 m2: milliliters per minute per 1.73 m squared. m/s: meters per second. ng/ml: nanogram
per milliliter.

Feature name Measurement Meaning

Added weight kg Calculated patient’s weight
Adiponectin Ug/ml Serum adiponectin
Age Years Age of the patient at the medical check-up
Basal Units of insulin Daily basal dose of insulin.
BMI kg/m2 Body mass index
Bodyfat % Bodyfat percentage
Bolus Units of insulin Daily bolus dose of insulin.
Duration of diabetes Years Duration of diabetes type 1 from onset until the medical

check-up
eGFR ml/minutes/1.73 m2 Estimated glomerular filtration rate
Free-test pg/ml Serum free testosterone concentration
Gait speed m/s Walking speed on a 5 m distance
Grip strength kg Grip strength measured using handheld dynamometers
HbA1c % Percentage of glycosylated hemoglobin
Insulin regimen binary MDI: multiple daily injections= 1; CSII: continous

subcutaneus injections= 0
Knee extension strength kg Knee extension strength measured using handheld

dynamometers
OC ng/ml Total osteocalcin
Sex Binary male= 1; female= 0
SMI kg/m2 Skeletal muscle mass index
TDD Units of insulin Total daily dose of insulin
ucOC ng/ml Undercarboxilated osteocalcin

Diabetes type 1 dataset
The Takashi2019 dataset contains data of 73 diabetic patients. Each patient profile has 20
variables, including one that indicates the past duration of diabetes in years, that we use
as target variable (Table 1). The original data curators Takashi et al. (2019) collected these
data at the Osaka University Hospital and Osaka Police Hospital in July and August 2017,
and released them publicly in May 2019.

The Takashi2019 diabetes type 1 dataset features are related to clinical characteristics
of the patients (age, weight, body-mass index, sex, skeletal muscle mass index), or to
her/his well-being activity (gait speed, knee extension), or to blood test results (serum
adiponectin, testosterone concentration, hemoglobin, ostocalcin, underrcarboxilated
osteocalcin) (Table 1).

The patients of Takashi2019 diabetes type 1 dataset have an average weight of 63.35 kg
and an average age of 34.73 years (Table 2). Almost 70% of them are women and 30% are
men (Table 3).
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Table 2 Quantitative characteristics of the numeric features of the Takashi2019 diabetes type 1
dataset.

Numeric feature Median Mean s.d. Range

Added weight 59.40 63.35 11.91 [44.40, 104.90]
Adiponectin 12.90 14.30 6.21 [3.5, 32.3]
Age 35.00 34.73 6.16 [21, 48]
Basal 14.84 16.23 8.08 [0, 60.05]
BMI 22.87 23.76 3.47 [17.584, 35,54]
Body fat 0.26 0.27 0.07 [0.13, 0.48]
Bolus 22.88 27.63 14.96 [7.37, 93.94]
Duration of diabetes type 1 [target] 26.00 25.68 7.33 [10, 41]
eGFR 92.74 92.86 14.06 [50.7, 127.01]
Free-test 1.30 4.24 5.0 [0.4, 18.1]
Gait speed 1.31 1.34 0.22 [0.81, 2.00]
Grip strength 30.20 32.08 8.77 [16.79, 54.5]
HbA1c 7.25 7.38 1.03 [5.1, 10.7]
Knee extension strength 20.00 20.59 5.85 [8.70, 39.09]
OC 14.80 16.25 7.89 [6.4, 49.6]
SMI 6.70 6.93 0.88 [5.5, 9.2]
TDD 40.00 43.87 19.85 [15.7, 154.0]
ucOC 3.25 4.17 3.26 [0.53, 19.10]

Notes.
s.d., standard deviation.

Table 3 Quantitative characteristics of the category features of the Takashi2019 diabetes type 1
dataset.

Category feature # %

Insulin regimen (0: CSII) 39 53.42
Insulin regimen (1: MDI) 34 46.58
Sex (0: female) 51 69.87
Sex (1: male) 22 30.13
Total 73 100.00

Notes.
#Number of patients at the medical check-up.
%Percentage of of patients at the medical check-up.

Diabetes type 2 dataset
The AlOlaiwi2018 diabetes type 2 dataset contains data of 400 patients from Saudi Arabia
(AlOlaiwi, AlHarbi & Tourkmani, 2018). Each patient profile has 49 clinical features,
including one indicating the past duration of diabetes type 2.

The original dataset curators AlOlaiwi, AlHarbi & Tourkmani (2018) collected these
data at the Alwazarat Health Care Center (Riyadh, Saudi Arabia) from 1st April 2017 to
20th March 2018.

The AlOlaiwi2018 diabetes type 2 dataset consists of several features related to conditions
of the patient (diabetic retinopathy, bloating, postural heart rate, vomiting, stomach
fullness, belly visibly larger, gastroparesis, hypertension), physiological traits (sex, age,
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body-mass index), treatment (metformin, insulin, sulfonylurea), variables related to
lifestyle (smoking). and laboratory test results features (eGFR, cholesterol, tryglycerides,
albumn-to-creatinine ratio, hemogloblin) (Table 4).

This diabetes type 2 dataset contains data of patients 55.25 years old on average, with
56.25% women and 43.75% men (Tables 5 and 6).

The duration of diabetes type 1 for the Takashi2019 diabetes type 1 dataset patients
is 25.68 years on average, and ranges between 10 and 41 years (Fig. 1). For the diabetes
2 patients of the AlOaiwi2018 dataset, instead, the duration of diabetes is 10.77 years on
average, with values that range between 0.1 and 30 years (Fig. 1).

The two datasets share seven common features: age, eGFR, HbA1c, insulin intake, sex,
body-mass index, and of course diabetes past duration. Additional information about the
two datasets is available in the original publications (Takashi et al., 2019; AlOlaiwi, AlHarbi
& Tourkmani, 2018).

METHODS
To predict the past diabetes duration for each dataset, we made a regression analysis
employing several machine learning methods: Random Forests (Breiman, 2001), XGBoost
(Chen & Guestrin, 2016), Linear Regression (Groß, 2012), Decision Trees (Quinlan, 1990).

We chose these data mining algorithms because they showed their strength in several
biomedical informatics studies involving electronic health records in the past (Chicco
& Jurman, 2020b; Chicco et al. 2023; Cerono, Melaiu & Chicco, 2023), including studies
of DREAM Challenges (Meyer & Saez-Rodriguez, 2021). Moreover, tree-based machine
learning algorithms are especially suitable formedical data, because they can help physicians
decision-making (Podgorelec et al., 2002).

Both datasets had missing values. We addressed this problem by using the algorithm
Multivariate Imputation by Chained Equations (MICE) (van Buuren & Groothuis-
Oudshoorn, 2010) of the known Python package scikit-learn (Buitinck et al., 2013),
under the assumptions that these values were missing at random. The MICE algorithm
imputes missing data through an iterative series of predictive models utilizing other
variables in the dataset.

We employed machine Learning regression algorithms directly from scikit-learn,
utilizing the default values from the library for the multiple parameters available. For the
regression analysis, we ran 1,000 executions with 70% randomly chosen elements for the
training set and the remaining 30% for the test set (Chicco, 2017), both for regression and
feature ranking through recursive feature elimination (RFE) (Darst, Malecki & Engelman,
2018).

For the diabetes past duration prediction, we employed all the variables and then
saved the results measured with traditional regression rates such as the coefficient of
determination (R2), root mean square error (RMSE), mean square error (MSE), mean
absolute error (MAE), and symmetric mean absolute percentage error (SMAPE). We
reported their formulas in the Supplementary Information.

For the recursive feature elimination, we repeated the tests for the numbers of features,
by eliminating one feature at each run. Here we only used Random Forests, because it is
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Table 4 Meaning andmeasurement unit of the variables of the AlOlaiwi2018 diabetes type 2 dataset.

Feature name Measurement Meaning

Age Years Age of the patient at the medical consult
Albuminuria Categories Normoalbuminaria: 0, microalbuminuria: 1,

macroalbuminuria: 2
Anti HTN Binary Taking any hipertensive drugs. 0: No 1: Yes
Bloating Binary Patient suffering from bloating: No: 0, Yes: 1
BMI kg/m*2 Body mass index
CAN Binary Patient suffering from cardiovascular autonomic

neuropathy. No: 0, Yes: 1
DBP mmHg Diastolic blood pressure
DDP-4 inhibitor Binary Prescribed DPP4 inhibitor. 0: No 1: Yes
DR Binary Diabetic retinopathy. 0: No, 1: Yes.
Duration of DM Years Duration of diabetes mellitus type 2 in years
eGFR MDRD equation ml/min Estimated glomerular filtration rate by the MDRD study

equation
Excessive fullness after meals Binary Patient suffering from excessive fullness after meals:

No: 0, Yes: 1
FBS mmol/L Fasting Blood Sugar.
GCSI category Category Gastroparesis cardinal symption index,

Classified as categories: None: 0, Mild: 1, Severe: 2.
GCSI new Point Scores Gastroparesis cardinal sympton index score.
GCSI present ? Binary Gastroparesis symptomps: absent: 0, present: 1
GCSI score Point scores Gastroparesis cardinal symptom index score.
HbA1c % Percetange of glycosylated hemoglobin
HDL mmol/L High density lipoprotein
HTN Binary Hypertension: 0: No 1: Yes
Insulin Binary Taking insulin: 0: No 1: Yes
LDL mmol/L Low-density lipoprotein
Loss of appetitie Binary Loss of appetite for the last 2 weeks. No: 0, Yes: 1
Meglitinides Binary Use of Meglitinides. 0: No 1: Yes
Metformin Binary Use of metformin. 0: No 1: Yes
Nausea Binary Feelings of nausea in the last 2 weeks. No: 0, Yes: 1
None Binary Not taking any drug at all? 0: No 1: Yes
Not able to finish a meal Binary Inability to finish a regular size meal. No: 0, Yes: 1
Orthostatic hypotension Binary Patients suffering from orthostatic hypotension: No: 0,

Yes: 1
PDBP mmHg Diastolic blood pressure after postural manoeuvres.
PHR bpm Postural heart rate
Presence of any symptom Binary Presence of any gastroparesis symptom: No: 0, Yes: 1
PSBP mmHg Systolic blood pressure after postural manoeuvres
QTc Seconds Corrected QT interval. (measured in the EKG)
QTc prolonged Category Corrected QT interval prolongation: No: 0,

Borderline: 0.5 Yes: 1

(continued on next page)
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Table 4 (continued)

Feature name Measurement Meaning

Resting tachycardia Binary Patient suffering from resting tachycardia: No: 0, Yes: 1
Retching Binary Patient suffering from retching: No: 0, Yes: 1
SBP mmHg Systolic blood pressure
Sex Binary Patient’s sex: 0: female, 1: male
Smoking Binary Patient smoking habit: 0: No, 1: Yes
Stomach fullness Binary Patient suffering from stomach fullness: No: 0, Yes: 1
Stomach or belly visibly larger Binary Patient suffering from belly visibly larger: No: 0, Yes: 1
Sulfonylurea Binary Patient using sulfonylurea: 0: No 1: Yes
TC mmol/L Total cholesterol
TG mmol/L Triglycerides
TZD Binary Patient using thiazolidinediones: 0: No 1: Yes
UACR new mg/g Urine albumin-to-creatinine ratio
Urine ACR mg/g Urine albumin to creatinine ratio 6 months before.
Vomiting Binary Patient suffering from Vomiting: No: 0, Yes: 1

Notes.
kg/m*2kilogram per meter squared.
mmHgmillimeters of Mercury.
ml/minmilliliters per minutes.
mmol/Lmillimole per liter.

bpmbeats per minutes.
mg/gurine Albumin (mg/dL) / urine creatinine (g/dL).

the method which achieved the higher R-squared in the past diabetes duration prediction.
We computed and saved the coefficient of determination for each test, and generated the
ranking of the dataset features based on the increasing value of R-squared: the lower the
R-squared when a specific feature is removed, the more important that feature is Chicco,
Warrens & Jurman (2021). We repeated these tests 1,000 times and then merged the final
rankings with the Borda’s method (Lansdowne & Woodward, 1996). The Borda’s count
method consist in adding up the ranks of each variable for each iteration, resulting in a
single fused ranking score after the 1,000 iterations.

This ensemble machine learning approach generated a standing of variables from
tests where the features interact between each other. To further verify the importance
of the datasets variables, we also produced a biostatistics ranking based on a traditional
univariate test, the Kruskal–Wallis test (Kruskal & Wallis, 1952; McKight & Najab, 2010).
The Kruskal–Wallis test applied to two numerical vectors of the same size generates
p-values in the [0,1] interval: if the two vectors are correlated, the test p-value is close to 0;
on the contrary, if there is no correlation between the two vectors, the resulting p-value is
close to 1. We performed this operation to see how each feature alone relates to the past
diabetes duration, without interference from the other clinical variables. Following the
recent biostatistics guidelines by Benjamin et al. (2018) we considered significant only the
variables that obtained a p-value lower than 0.005, differently from 0.05 as traditionally
done in the past.
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Table 5 Quantitative characteristics of the category features of the AlOlaiwi2018 diabetes type 2
dataset.

category feature # %

albuminuria: macroalbuminuria 18 4.50
albuminuria: microalbuminuria 84 21.00
albuminuria: normoalbuminuria 298 74.50
anti HTN: no 143 35.75
anti HTN: yes 257 64.25
bloating: no 225 56.25
bloating: yes 175 43.75
CAN: no 339 84.75
CAN: yes 61 15.25
DDP-4 inhibitor: no 247 61.75
DDP-4 inhibitor: yes 153 38.25
DR: no 254 63.50
DR: yes 77 36.50
excessive fullness after meals: no 265 66.25
excessive fullness after meals: yes 135 33.75
GCSI category: mild 256 64.00
GCSI category: none 143 35.75
GCSI category: severe 1 0.25
GCSI present: absent 375 93.75
GCSI present: present 25 6.25
HTN: no 239 59.75
HTN: yes 161 40.25
Insulin: no 211 52.75
Insulin: yes 189 47.25
loss of appetitie: no 305 76.25
loss of appetitie: yes 95 23.75
meglitinides: no 399 99.75
meglitinides: yes 1 0.25
metformin: no 22 5.50
metformin: yes 378 94.50
nausea: no 327 81.75
nausea: yes 73 18.25
none: no 398 99.50
none: yes 2 0.50
not able to finish a meal: no 261 75.25
not able to finish a meal: yes 139 34.75
orthostatic hypothension: no 388 97.00
orthostatic hypothension: yes 12 3.00
QTc prolonged: borderline 122 30.50
QTc prolonged: no 247 61.75
QTc prolonged: yes 31 7.75

(continued on next page)
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Table 5 (continued)

category feature # %

resting tachycardia: no 377 94.25
resting tachycardia: yes 23 5.75
retching: No 357 89.25
retching: Yes 43 10.75
sex Female 225 56.25
sex Male 175 43.75
smoking 0: no 359 89.75
smoking 1: yes 41 11.25
stomach fullness: no 273 68.25
stomach fullness: yes 127 31.75
stomach or belly visibly larger: no 286 71.25
stomach or belly visibly larger: yes 114 28.75
sulfonylurea: no 202 50.50
sulfonylurea: yes 198 49.50
TZD: no 397 99.25
TZD: yes 3 0.75
vomiting: no 383 95.75
vomiting: yes 17 4.25
total 400 100%

Notes.
#Number of patients at the medical check-up.
%Percentage of the patients at the medical check-up.

RESULTS
In this section, we first report and describe the results obtained by the regression analysis for
the prediction of the past diabetes duration (‘Prediction of the past diabetes duration’), and
then we report and describe the results obtained by regression methods and biostatistics
for feature ranking (‘Clinical feature ranking results’).

Prediction of the past diabetes duration
Among the four machine learning algorithms employed for regression, Random Forests
outperformed the other threemethods on both the datasets, achieving an average coefficient
of determination of +0.41 on the Takashi2019 diabetes type 1 dataset and an average
coefficient of determination of +0.35 on the AlOlaiwi2018 diabetes type 2 dataset (Tables 7
and 8).

On the diabetes type 1 dataset, Random Forests obtained the top R-squared, root mean
square error, and mean square error, but was outperformed by XGBoost on the mean
absolute error and on the symmetric mean absolute percentage error (Table 7). The two
regression analyses generated the same standings for the results based on R-squared:
Random Forests on first position, then XGBoost followed by Linear Regression, with
Decision Trees on the last position (Fig. 2).

The scatterplots of the top performing methods (Fig. 3) shows that the majority of
points is close to the x = y line, which corresponds to perfect prediction.
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Table 6 Quantitative characteristics of the numeric features of the AlOlaiwi2018 diabetes type 2
dataset.

Numeric feature Median Mean s.d. Range

Age 55 55.25 10.646 [28, 85]
BMI 32 32.46 5.40 [17.6, 48]
DBP 74 74.52 9.52 [42, 105]
Duration of diabetes [target] 10 10.77 6.89 [0.1, 30]
eGFR MDRD equation 100.35 102.02 25.10 [42.1, 183.1]
FBS 7.7 8.71 3.55 [3.1, 25.6]
GCSI new 0.4 0.65 0.67 [0, 3.2]
GCSI score 4 5.95 6.04 [0, 29]
HbA1c 7.7 8.07 1.59 [4.8, 15]
HDL 1.12 1.15 0.34 [0.38, 3.23]
LDL 2.41 2.55 0.78 [0.99, 6.3]
PDBP 79 79.47 9.06 [55, 110]
PHR 90 79.78 13.19 [48, 136]
PSBP 132 133.95 16.09 [99, 189]
QTc 0.43 0.43 0.03 [0.36, 0.6]
SBP 130 103.32 17.08 [11, 195]
TC 4.04 4.19 0.89 [1.81, 7.96]
TG 1.52 1.70 0.81 [0.3, 7.17]
UACR new 9.155 59.92 194.49 [1.14, 2103]
Urine ACR 1.05 6.82 22.00 [0.16, 237.9]

Notes.
s.d., standard deviation.
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Figure 1 Frequency histograms of diabetes duration.Duration of diabetes type 1 for the Takashi2019
dataset (left) and diabetes type 2 for the AlOlaiwi2018 dataset (right).

Full-size DOI: 10.7717/peerjcs.1896/fig-1

Regarding SMAPE, XGBoost obtained the top result of 0.21, corresponding to 89.5%
correctness in the [0,2] interval, on the diabetes type 1 dataset. Random Forests achieved
the top SMAPE score of 0.47 on the diabetes type 2 dataset (Table 7), which corresponds
to 76.5% correctness in the same interval (Table 8). Decision Trees obtained poor results
on both dataset: an average coefficient of determination close to zero (R2

= 0.05) in
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Table 7 Regression results for the prediction of the duration of diabetes type 1 on the Takashi2019
dataset. Performance of the learned models with the different methods evaluated with the different met-
rics, expressed in the format ‘‘average value± standard deviation’’, obtained on 1,000 executions, each
execution had 70% randomly chosen data instances for training set and the remaining 30% used for test
set. We reported in blue and with an asterisk * the top result for each rate. At the beginning of each ex-
ecution we randomly shuffled the dataset instances. RMSE: root mean square error. MAE: mean abso-
lute error. MSE: mean square error. SMAPE: symmetric mean absolute percentage error. R2: coefficient
of determination. RMSE, MAE, MSE: best value 0 and worst value+∞. R2: best value +1 and worst value
−∞. SMAPE: best value 0 and worst value 2. We listed the complete formulas of R2, RMSE, MSE, MAE,
and SMAPE in the Supplemental Information. We ranked the methods considering the results obtained
through R-squared (in bold).

Method R2 RMSE MAE MSE SMAPE

Random forests *0.41± 0.05 *5.98± 0.27 5.19± 0.26 *35.87± 03.31 0.22± 0.01
XGBoost 0.39± 0.14 6.04± 0.70 *5.00± 0.49 37.08± 08.97 *0.21± 0.02
Linear regression 0.14± 0.47 7.00± 1.83 5.52± 1.31 52.49± 29.27 0.27± 0.06
Decision trees 0.05± 0.26 7.53± 1.07 6.23± 0.88 57.98± 16.46 0.26± 0.03

Table 8 Regression results for the prediction of the duration of diabetes type 2 on the AlOlaiwi2018
dataset. These results refer to the same abbreviation meanings and execution details of Table 7 caption.

Method R2 RMSE MAE MSE SMAPE

Random forests *0.35± 0.02 *5.64± 0.11 *4.60± 0.10 *31.85± 1.30 *0.47± 0.01
XGBoost 0.25± 0.06 6.07± 0.24 4.67± 0.21 36.91± 2.98 0.49± 0.02
Linear regression 0.09± 0.07 6.67± 0.27 5.18± 0.21 44.54± 3.67 0.52± 0.02
Decision trees −0.21± 0.15 7.71± 0.47 5.98± 0.39 59.69± 7.32 0.61± 0.04
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Figure 2 Regression results on the Takashi2019 diabetes type 1 dataset (left) and on the AlOlaiwi2018
diabetes type 2 dataset (right). Representation of the Regression results reported as mean coefficient of
determination± the corresponding standard deviations for each method. We reported the complete re-
sults measured with other rates in Tables 7 and 8.

Full-size DOI: 10.7717/peerjcs.1896/fig-2

Takashi2019 diabetes type 1 dataset and a negative average coefficient of determination
(R2
=−0.21) in the AlOlaiwi2018 diabetes type 2 dataset.

Clinical feature ranking results
The feature ranking phase based on Random Forests and recursive feature elimination
(RFE) generated a standing of the datasets variables, sorted by predictive importance. On
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Takashi2019 dataset AlOlaiwi2018 dataset

Figure 3 Scatterplot of the prediction results of the topmethods on the Takashi2019 diabetes type 1
dataset (left) and on the AlOlaiwi2018 diabetes type 2 dataset (right). Representation of the regression
results reported as actual real values versus predicted values, obtained through the top methods. We re-
ported the complete results measured with other rates in Tables 7 and 8.

Full-size DOI: 10.7717/peerjcs.1896/fig-3

the Takashi2019 diabetes type 1 dataset, the key variables for the prediction of past diabetes
duration resulted being age, daily bolus dose of insulin, and gait speed (Table 9). Among
the most important variables, we also noticed estimated glomerular filtration rate (eGRF),
total daily dose of insulin, grip strength, and body-mass index (BMI) (Table 9). On the
bottom of the standing, the RFE put the weight of the patient, the insulin regimen, and the
level of undercarboxilated osteocalcin (Table 9).

On the same Takashi2019 dataset, we also computed the feature ranking by using a
traditional univariate statistics method: the Kruskal–Wallis test (McKight & Najab, 2010).
We computed this test between each variable and the target variable (duration of diabetes
type 1), and ranked the resulting p-values in increasing order. The results showed that no
clinical variable obtained a p-value lower than 0.005, so no feature resulted being significant
in relation with the past duration of diabetes type 1 (Table S1).

Regarding the diabetes type 2 dataset of AlOlaiwi2018, the ensemble machine learning
recursive feature elimination indicated diabetic retinopathy (DR), age, insulin intake,
body-mass-index, and diastolic blood pressure after postural manoeuvres (PDBP) as the
top five most predictive variables for past duration of diabetes type 2 (Table 10). The same
ranking indicated nausea, eGFR, and the inability to finish as the least predictive variables
in the dataset (Table 10).

The biostatistics feature ranking based on the univariate Kruskal–Wallis test found
nine significant variables, which obtained p-values lower than the 0.005 threshold: if the
patients takes no drug at all, age, insulin, diastolic blood pressure after postural manoeuvres
(PDBP), diastolic blood pressure (DBP), if the patient takes in thiazolidinediones (TZD),
diastolic blood pressure (PDBP), if the patient takes in metformin, and if the patient takes
in sulfonylurea (Table S2). The feature indicating if the patient takes no drugs at all (none),
in particular, obtained a p-value much lower than the other variables (2.77×10−27), which
highlights its importance in the dataset.
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Table 9 Feature ranking results obtained through Random Forests on the Takashi2019 diabetes type 1
dataset.We computed the average Borda score on 1,000 executions of Random Forests. At the beginning
of each execution we randomly shuffled the dataset instances.

Rank Feature Average borda score s.d.

1 Age 1.275 1.719
2 Bolus 6.955 5.488
3 Gait speed 7.537 5.657
4 eGFR 8.244 5.683
5 TDD 9.683 5.467
6 Grip strength 10.517 5.116
7 BMI 10.578 5.319
8 Adiponectin 10.991 5.019
9 Basal 11.025 4.959
10 HbA1c 11.063 4.906
11 Bodyfat 11.139 4.664
12 OC 11.177 4.536
13 Sex 11.178 5.174
14 Free-test 11.200 4.798
15 Knee extension strength 11.322 4.777
16 SMI 11.458 4.521
17 ucOC 11.459 4.497
18 Insulin regimen 11.564 4.809
19 Added weight 11.635 4.535

Notes.
s.d., standard deviation.

DISCUSSION
In this section, we discuss the results we obtained in our scientific analyses, report some
key take-home messages inferred in this study, and describe some limitations and potential
future development.

Prediction of past duration of diabetes
Our regression results on the two datasets proof that ensemble machine learning can
efficiently predict the past duration of diabetes from the electronic health records of
patients. The fact that our computational intelligence methods were able to obtain good
results not only on one dataset but also on a second one confirms the efficacy of our
approach, both on diabetes type 1 and on diabetes type 2. The Random Forests method, in
particular, obtained the top results measured with the coefficient of determination both on
the diabetes type 1 Takashi2019 dataset and on the diabetes type 2 AlOlaiwi2018 dataset.
The gradient boosting method XGBoost, also, achieved good prediction results on both
the datasets, while Linear Regression and Decision Trees did not.

These results confirm the effectiveness of ensemble machine learning and, in particular,
of the Random Forests method in health informatics. Random Forests, in fact, resulted
being the top performing method in multiple previous studies in this field (Chicco &
Rovelli, 2019; Chicco & Jurman, 2021; Chicco & Jurman, 2020a).
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Table 10 Feature ranking results obtained through Random Forests on the AlOlaiwi2018 diabetes
type 2 dataset.We computed the average Borda score on 1,000 executions of Random Forests. At the be-
ginning of each execution we randomly shuffled the dataset instances.

Rank Feature Average borda score s.d.

1 DR 3.907 8.451
2 Age 6.133 10.186
3 Insulin 6.843 9.626
4 BMI 17.256 14.731
5 PDBP 18.721 14.604
6 CAN 22.524 13.719
7 Sulfonylurea 23.417 14.038
8 HDL 23.645 13.851
9 FBS 23.927 13.910
10 LDL 24.437 13.546
11 Anti HTN 24.524 13.439
12 SBP 24.533 13.825
13 DDP-4 inhibitor 24.581 13.244
14 PHR 25.162 13.187
15 Urine ACR 25.177 12.435
16 DBP 25.241 13.712
17 QTc 25.412 13.239
18 TC 25.465 13.568
19 TG 25.681 13.450
20 HbA1c 25.742 12.959
21 Sex 25.959 12.897
22 GCSI present ? 26.133 12.506
23 UACR new 26.176 12.751
24 HTN 26.342 12.838
25 Metformin 26.542 12.599
26 PSBP 26.619 12.986
27 Resting tachycardia 26.623 12.656
28 GCSI score 26.641 12.466
29 Excessive fullness after meals 26.686 12.530
30 Vomiting 26.723 12.413
31 Meglitinides 26.830 12.307
32 Albuminuria 26.849 12.262
33 Loss of appetitie 26.850 12.532
34 Bloating 26.858 12.994
35 TZD 26.915 12.335
36 Retching 26.947 12.862
37 Stomach fullness 26.976 12.787
38 Orthostatic hypotension 27.144 12.411
39 GCSI new 27.215 12.696

(continued on next page)
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Table 10 (continued)

Rank Feature Average borda score s.d.

40 Stomach or belly visibly larger 27.235 12.439
41 Smoking 27.242 12.754
42 Presence of any symptom 27.304 12.328
43 None 27.317 12.805
44 QTc prolonged 27.332 12.307
45 GCSI category 27.476 13.003
46 Nausea 27.546 12.334
47 eGFR MDRD equation 27.557 12.833
48 Not able to finish a meal 27.635 12.170

Notes.
s.d., standard deviation.

Medical evidence from the scientific literature confirm the importance of diabetes
past duration. Patients with long standing diabetes type 2, in fact, might have troubles
controlling their glycemia (Hayashino et al., 2017). Additionally, patients who suffered
diabetes for a longer time often are more in need of receiving insulin treatments, for
obvious reasons (Duckworth et al., 2011).

Revealing the duration of diabetes therefore can help with the establishment of a better
therapy, since a longer duration of this disease has been linked with poor glycemic control
and with the consequent need of more complex medical treatment. Moreover, researchers
also recorded an increase in risk of ischemic stroke in correlation with a long diabetes
duration (Banerjee et al., 2012).

Feature ranking for past duration of diabetes
As mentioned earlier (‘Datasets’), the two datasets share six common variables, in addition
to past diabetes duration. Age resulted being the top most important variable in the
Takashi2019 diabetes type 1 dataset feature ranking and the second most important factor
in the AlOaiwi2018 dataset standing (‘Clinical feature ranking results’). This result comes
with no surprise: in the medical community it is known that age is proportional to the
duration of both diabetes type 1 and type 2 (Wannamethee et al., 2011; Zoungas et al.,
2014).

Expectedly, insulin obtained a high ranking position on both standings (Davies et al.,
2013). In the diabetes 1 dataset, the daily bolus dose of insulin taken by the patients was
ranked secondmost important factor, while in the diabetes 2 dataset the information about
the patient taking insulin or not was ranked top most relevant feature (‘Clinical feature
ranking results’).

An interesting aspect of both rankings came from the positions of body-mass index in
the two standings. Both the feature rankings, in fact, listed body-mass index as a top most
important factor: it is found on the 7th position of the Takashi2019 diabetes type 1 dataset
standing and on the 4th position of the AlOlaiwi2018 diabetes type 2 dataset standing.
Several studies confirm the association between body-mass index and duration of diabetes
(Bray et al., 2008; Funakoshi et al., 2008; Pencek et al., 2012).
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Both the feature rankings gave average importance to HbA1c (10th position on the
Takashi2019 diabetes type 1 dataset ranking and 20th position on the AlOlaiwi2018
diabetes type 2 dataset ranking), while they gave a discordant outcome for the eGFR (top
position on the diabetes type 1 ranking and low position for the diabetes type 2 ranking);
HbA1c is known to have an association with diabetes (Sherwani et al., 2016). Both standings
listed sex as unimportant variable (13th position on the Takashi2019 diabetes type 1 dataset
ranking and 21th position on the AlOlaiwi2018 diabetes type 2 dataset ranking).

These results confirm the importance of age, insulin intake, and body-mass index in the
prediction of diabetes past duration from electronic health records. The role of body-mass
index, especially, comes of great importance: our study results suggest that physicians and
medical doctors can focus on this clinical factor to predict the past duration of diabetes,
when this information is unavailable. Medical doctors can then take advantage of this
inferred information for clinical decision-making, that is to decide which treatment for the
patient, which screening tests, which medicines to prescribe, and all the other details.

CONCLUSIONS
Knowing the how long a patient had diabetes is a critical information for the medical
doctors to establish the correct treatment. Different durations, in fact, require different
screenings, medicines, and therapies.

Even if pivotal, this information might be unavailable for patients, especially if they have
just been diagnosed: since the diabetes type 2 can appear without symptoms, the diabetes
diagnosis sometimes can arrive years or even decades after the diabetes onset. In these
cases, a method that can calculate the past duration of diabetes in a patient from her/his
clinical records can be extremely useful.

In this study, we applied several computational intelligence methods on two datasets
of electronic health records of patients with diabetes (a dataset of T1DM and a dataset
of T2DM) for this scope. On both the datasets, our machine learning models were able
to efficiently predict the past duration of diabetes, obtaining a top average R2

= 0.41 on
the Takashi2019 diabetes type 1 dataset and a top average R2

= 0.35 on the AlOaiwi2018
dataset.

After verifying the predictive efficacy of our machine learning methods for this task, we
computed the feature rankings of these two datasets, through a traditional recursive feature
elimination procedure. The feature ranking phase indicated age, insulin, and body-mass
index as most important predictive factors on both the datasets, suggesting therefore
physicians and medical doctors to focus on these elements of clinical records to foresee the
duration of diabetes for any possible patient. To the best of our knowledge, no previous
study utilized computational intelligence to forecast past diabetes duration and to detect
the most relevant predictive variables for this scope.

Diabetic patients have increased risk of suffering from multiple and diverse diseases.
Strict screening looking for early signs of pathogenesis depending on age of patients and
duration of diabetes can be very useful for a correct diagnosis and prognosis. Regular
diabetes type 1 usually has a sudden clinical presentation, so duration of disease is often
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known, but for diabetes type 2 and LADA (Latent Autoimmune Diabetes in Adults) sub
variation of diabetes type 1 (Pieralice & Pozzilli, 2018; Isomaa et al., 1999), the presentation
is slow and often goes misdiagnosed for years. In this context, our machine learning
approach could be an effective way to retrospectively predict duration from onset.

Our computational models would allow doctors to start screening LADA patients at
the right time. For example, type 1 diabetic patients generally do not develop retinopathy
within 3–5 years from the diagnosis, we start screening for it with a fundoscopy after 3
years from diagnosis (Fong et al., 2004) A patient with LADA could be diagnosed 2 years
late from the actual start of the disease, and therefore be 2 years late for screening as we
would falsely assign a later onset.

As a limitation, we have to report that it would have been useful to have additional
diabetes datasets where to verify our findings. We found other studies about analyses on
electronic health records of patients with diabetes (Bächle et al., 2015; Al-Rubeaan et al.,
2015; Zabeen et al., 2016; Moser et al., 2018); we contacted the corresponding authors of
each of them and requested the datasets, but received no reply or our requests were rejected.

In the future, we plan to further investigate diabetes duration by analyzing data of other
sources and types, such as microarray gene expression (Choi et al., 2008), RNA-Seq gene
expression (Rubin et al., 2016), medical images (Samant & Agarwal, 2018), and others. We
also plan to investigate data of other diseases such as heart failure (Shin et al., 2021) and
amyotrophic lateral sclerosis (Kueffner et al., 2019).

Abbreviations

ACR albumin to creatinine ratio
BMI body-mass index
CAN cardiovascular autonomic neuropathy
CSII continuous subcutaneous injections
DBP diastolic blood pressure
DDP-4 dipeptidyl peptidase-4 inhibitor
T1DM diabetes mellitus type 1
T2DM diabetes mellitus type 2
DR diabetic retinopathy
eGFR estimated glomerular filtration rate
EHRs electronic health records
FBS fasting blood glucose
GCSI gastroparesis cardinal symption index
HbA1C percetange of glycosylated hemoglobin
HDL high density lipoprotein
HTN hypertension
LDL low-density lipoprotein
MAE mean absolute error
MDI multiple daily injections
MSE mean squared error
OC osteocalcin
PDBP postural diastolic blood pressure
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PHR postural heart rate
PSBP postural systolic blood pressure
QTc corrected QT interval
RFE recursive feature elimination
RMSE root mean square error
SBP systolic blood pressure
SMAPE symmetric mean absolute percentage error
SMI skeletal muscle mass index
TC total cholesterol
TG triglycerides
T1D diabetes type 1
T2D diabetes type 2
TDD total daily dose
TZD thiazolidinediones
UACR urine albumin to creatinine ratio
ucOC undercarboxylated osteocalcin
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