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1 Introduction

There has recently been a huge leap forward in understanding the information loss paradox
of black holes [1, 2]. We can now pinpoint exactly the missing element in Hawking’s original
calculation [3, 4] of the state of the radiation emitted by the black hole. Somewhat unex-
pectedly, the missing ingredient is already contained within the semi-classical framework of
gravity. Specifically, there are additional saddle points, the replica wormholes, of the func-
tional integral for the QFT used for computing the von Neumann entropy of the radiation
in the semi-classical limit [1, 2, 5]. Hawking’s calculation is still valid when the black hole
is young and the entropy in the radiation increases monotonically, but when the black hole
is old, beyond the Page time [6, 7], a new saddle dominates in such a way that the radiation
entropy decreases subsequently and follows the Page curve in accordance with unitarity.

When calculating the von Neumann entropy of the subset of the Hawking radiation
R, the new saddles are determined by the island prescription [1, 2, 8–12] which first arose
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in the framework of the AdS/CFT correspondence [8, 13–15].1 This says that the entropy
is obtained by appending an arbitrary additional set of intervals I on a Cauchy surface
including R and then computing the extremum of the ‘generalized entropy’

SI(R) = ext
∂I

{∑
∂I

Area(∂I)
4GN

+ SQFT(R ∪ I)
}
. (1.1)

The first term here, is the contribution of the Quantum Extremal Surfaces (QES), the
boundary ∂I of the island. Finally the von Neumann entropy of the reduced state on R is
found by minimizing over all the possible saddles

S(R) = min
I
SI(R) . (1.2)

The interpretation of S(R) in the semi-classical limit of a theory of gravity is a fascinating
one. It is clearly not just the naïve von Neumann entropy of a subset of the Hawking radi-
ation. It seems to involve an implicit ensemble average, although the exact meaning of the
ensemble is not completely settled. On the one hand, the ensemble is thought of as an im-
plicit facet of the semi-classical theory of gravity that involves an average over microscopic
theories [1]. Another aspect of this idea is that replica wormholes, like other wormholes,
are associated to baby universes which have long been known to involve an implicit en-
semble [46, 47]. On the other hand, in what seems like an alternative interpretation, the
ensemble arises as in statistical mechanics as a proxy for long-time average of an ergodic
dynamical system that is equilibrating [48–51]. In this latter interpretation the appearance
of the ensemble is entirely universal and is not special to a quantum theory of gravity.

The island formula implies that there are underlying correlations in the Hawking radi-
ation that are not captured by Hawking’s “no-island” saddle S∅(R) ≡ SQFT(R). Although
the replica wormholes have been derived in the context of the near-extremal Reissner-
Nordström black holes in 3 + 1 dimensions, whose s-wave sector is captured by Jackiw-
Teitelboim gravity in 1 + 1 dimensions [52, 53], the prescription is expected to be valid for
black holes in any dimension [11, 54].

Black holes evaporate very slowly for most of their life and the adiabatic approximation
applies. In this approximation, which is central to the present work, it is meaningful to
associate an instantaneous temperature T (t) to the black hole. Specifically, the adiabatic
approximation requires that the Bekenstein-Hawking entropy satisfies,

SBH(t)− S∗ � N , (1.3)

where N is the number of flavours or species of massless fields that form the radiation
and S∗ is a possible extremal entropy of the black hole. The adiabatic approximation is an
essential input into Hawking’s calculation and means the radiation emitted is quasi-thermal
and so the QFT entropy is approximately that of a relativistic gas in 1 + 1 dimensions,2

SQFT(R) ≈ Srad(R) + UV-cut-off . (1.4)
1For related recent works on the island prescription and its implications see [16–45].
2The UV cut-off contribution to the entropy is always present but we will ignore it because it cancels

out in a physically meaningful quantity like a mutual information.
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For instance, if the fields are bosonic and we ignore any greybody factor, then

Srad(R) = πN
6

∫
R
T dt . (1.5)

The contribution of the present work is to apply the adiabatic limit to the island
formula prescription which has been established for near extremal black holes coupled
to non-gravitating radiation baths. This limit leads to a simple recipe for calculating
the entropy of any subset of the Hawking radiation, and in particular, it allows a simple
method for identifying multiple island saddles. Whilst explicit, analytical description of
island saddles for evaporating black holes has been obtained in [55, 56] (see also [57]), the
simple interpretation we present here, in the adiabatic limit, is novel.

If a saddle involves an island I then the new interpretation involves the mirror Ĩ, under
the reflection symmetry about the horizon, which is a subset of the outgoing radiation. The
mirror Ĩ are the ‘islands in the stream’. The recipe is as follows:

1 Choose a subset ∂Ĩ ⊂ ∂R, with dim(∂R) +dim(∂Ĩ) even. The elements of ∂Ĩ are the
endpoints of the ‘islands in the stream’.3

2 The von Neumann entropy of the reduced state on R is then

S(R) = min
I

{∑
∂Ĩ

SBH(∂Ĩ) + Srad(R	 Ĩ)
}
. (1.6)

The equation above involves the symmetric difference of R and Ĩ, the union minus the
intersection.4 SBH is the Bekenstein-Hawking entropy formula (arising from the area term
in (1.1)) evaluated at the boundaries of Ĩ, which get identified with QES contributions.
Note that in the ‘islands in the stream’ recipe the extremization of (1.1) is implicit (in the
adiabatic limit). However, to be completely clear we cannot rule out entirely the idea that
there are additional saddles, not of the type above, that could conceivably dominate the
ensemble.5

We illustrate the islands in the stream recipe in figure 1. The subset of the Hawking
radiation is collected in the set of intervals R near I +. In this case, the island in the stream
straddles the later pair of intervals. Note that this diagram the scales are deceptive as the
island actually lies very close to the horizon. The key to the islands in the stream recipe is
the relation between the outgoing null coordinates of I and R. The outgoing modes that
lie in the intersection R∩ Ĩ, the light blue modes, do not contribute to SQFT(R∪I) because
the islands collects the purifiers of these modes. So the modes that contribute are those
that lie in the union R ∪ Ĩ minus the intersection, i.e. precisely the symmetric difference.

3For an evaporating black hole, ∂Ĩ can include a point just before the collapse that forms the black hole.
This is the QES of the extremal black hole or the origin for the Schwarzschild black hole.

4Another way to present the result is to associate the entropy of the radiation to the set of endpoints of
the intervals, i.e. Srad(∂R). The second term in then Srad(∂R \ ∂Ĩ).

5There are additional saddles not of this type that appear in the analysis of [57], but these never dominate
the ensemble as they turn out to be maxima.
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Figure 1. An example where R consists of 3 intervals and an island with I shown as the red
interval behind the horizon (actually very close to the horizon) and its mirror ‘island in the stream’
at I +. The coloured bands represent different subsets of outgoing modes and their entangled
partner modes behind the horizon in the same colour. The light blue modes do not contribute to
SQFT(R∪ I) because both out-going modes and their entangled partners are in R∪ I. On the other
hand, the yellow and green modes do contribute because only one of the out-going modes and their
partners are in R ∪ I.

R

Ĩ

R	 Ĩ

R

Figure 2. The relation between the ‘islands in the stream’ and the ‘bridge to nowhere’ [57, 58]. As
the black hole evaporates, the bridge grows to the right and modes along the bridge are entangled
with modes in the radiation as shown by the green lines. The island in the stream Ĩ cancels out
part of the entanglement of R with the bridge but adds in additional entanglement shown as the
blue cut on the right. The contributions from the QES correspond to cutting across the ‘bridge
to nowhere’ along the red cuts. The configuration shown here will not be an extremum of the
generalized entropy.
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Another way to visualize the islands in the stream recipe is in relation to the ‘bridge
to nowhere’ of an evaporating black hole [57] as in figure 2. The intervals R, Ĩ and the
symmetric difference R 	 Ĩ line up with the bridge to nowhere as shown. The subset
R	 Ĩ is the blue cut between the bridge and the radiation whose entanglement entropy is
Srad(R 	 Ĩ). The contribution from the QES corresponds to the area of the bridge along
the red dotted lines. The configuration shown in figure 2 will not be an extremum of the
generalized entropy because the endpoints of the island in the stream Ĩ do not match up
with the endpoints of R.

The paper is organized as follows. In section 2 we review important details of evaporat-
ing black holes and the adiabatic limit, and Hawking’s calculation. We end with important
observations about the entanglement of modes across the horizon. In section 3, we mo-
tivate the ‘islands in the stream’ formalism although the detailed calculation and proof
of (1.6) is relegated to the appendix A. This work is a new interpretation of the original
analysis in [56]. In section 4, we use the formalism to describe various quantum information
properties of the radiation, including its purity (i.e. unitarity), mutual information of two
intervals and then various quantum information constraints on the mutual information,
including the Araki-Lieb inequality, subadditivity and strong subadditivity. In section 5
we summarize our findings and draw some conclusions.

2 Evaporating black holes

As a black hole radiates it loses mass, changing the spacetime geometry. Obtaining the
backreaction on the metric by the outgoing Hawking radiation and compensating ingoing
negative energy flux is complicated, requiring systematic approximations. A particularly
useful simplifying scenario emerges when restricting to the s-wave sector of the near horizon
geometry of a near-extremal charged black hole in 3 + 1 dimensions, which is captured
by the black hole in JT gravity in 1 + 1 dimensions. In this scenario, the JT gravity
metric is fixed to be AdS2 and the asymptotically flat region required to model black hole
evaporation is included by gluing on a half Minkowski space to the regularized boundary
of AdS2 [2, 10, 12]. Importantly, gravity is taken to be dynamical only in the AdS2 region.
Within this JT gravity setup, the fully back-reacted evaporating black hole can be solved
for exactly even without invoking the adiabatic limit [10, 55]. The analysis we present in
this paper is based on the generalised entropy formula (1.1) which has been derived in the
effective JT gravity setup coupled to non-gravitating Minkowski radiation baths.

In the adiabatic limit, however, as we will see below we are able to keep the discussion
fairly general where possible, although the specific computations follow from the effective
1+1 dimensional picture described above.

It is useful at this stage to briefly review some of the issues surrounding the appli-
cability of the island picture when the bath regions gravitate. For the situation with
dynamical gravity in the bath, we adopt the viewpoint advocated in the work of Marolf
and Maxfield [47] wherein replica wormholes are shown to contribute to measurements of
Rényi entropies (realized as ‘swap’ entropies) of subsets of Hawking radiation, performed
by asymptotic observers with fixed geometry at I + (while the geometry is dynamical ev-
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erywhere else). Within the semi-classical approximation, these entropies are calculated as
saddle points of the functional integral where the replicas and their conjugates are sewn
together along a Cauchy surface that asymptotes to the relevant portion of I + but avoids
regions of large curvature. This picture naturally leads to a corresponding QES/island
prescription in asymptotically flat space and demonstrates that the entropy in the semi-
classical approximation S(R) is actually an average over an ensemble associated to a Hilbert
space of baby universe states on the island.

We note that the QES/island prescription and indeed the Page curve itself when gravity
is dynamical in the bath region, has been questioned in recent works, both on general
grounds [59, 60] and within the framework of Karch-Randall braneworlds scenario [61–63].6

Our view however, is that the setup involving non-gravitating baths allows a crisp definition
of the generalized entropy which unambiguously exhibits a Page curve. When the bath is
made dynamical, suitably defined coarse-grained entropies in the (semiclassical) gravitating
effective field theory can then be expected to display the same behaviour (see e.g. [64]).

2.1 Mass and entropy in the adiabatic limit

Hawking’s calculation proceeds by calculating the occupation number of outgoing modes
of frequency ω in the asymptotically flat region far from the hole, and yields a result [3, 4]
(summarized in the textbook [65])

N̄ω = Γ(ω)
eω/T − 1

, (2.1)

where T is the temperature of the black hole when the mode leaves the vicinity of the
horizon. We will assume that the Hawking modes are associated to a large number N
of massless scalars, in order to justify the semi-classical approximation, and that most of
the evaporation occurs via the s-wave mode so the outgoing modes are effectively a 1 + 1-
dimensional relativistic bosonic gas. Adding in the higher angular momentum modes is
straightforward. In the above, Γ(ω), is the greybody factor that accounts for the tunneling
probability for modes through the effective potential around the black hole. In the follow-
ing, for simplicity, we shall ignore this effect and set Γ(ω) = 1. In that case, eq. (2.1) is the
Planck spectrum. The calculation is valid in the adiabatic limit where the evaporation is
slow enough that the back reaction of the emitted Hawking radiation is simply taken into
account by associating a slowly varying, time-dependent temperature.

The entropy of the radiation in a thin shell of width dt is then given by that of a
1-dimensional relativistic bosonic gas of volume dt:

dSrad = dtN
∫ ∞

0

dω

2π
(
(N̄ω + 1) log(N̄ω + 1)− N̄ω log N̄ω

)
= πNT

6 dt . (2.2)

Therefore the entropy of the radiation emitted between the formation of the black hole at
t = 0 and a later time t is

Srad(t) = πN
6

∫ t

0
T dt . (2.3)

6We thank Suvrat Raju for correspondence on this and related issues.
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The temperature T is determined by the energy conservation equation which equates
the rate of change of the mass with minus the outgoing flux of energy of the Hawking
radiation

Ṁ = −N
∫ ∞

0

dω

2π ·
ω

eω/T − 1
= −πNT

2

12 , (2.4)

where N are the number of massless scalar fields. In order to solve this, it is necessary
to know the relation between the mass M and the temperature T of the black hole. This
relation depends on the specific black hole solution.

For example, for the black hole in JT gravity [52, 53] which yields a good approxi-
mation to the dynamics of the near horizon AdS2 factor of a near-extremal charged black
hole, the mass

M = M∗ + πφrT
2

4GN
, (2.5)

where M∗ is the mass of the extremal black hole. Formally, within the JT gravity frame-
work, in order to describe black hole evaporation with an outgoing radiation flux, we have
to implicitly assume transparent boundary conditions at the boundary of the AdS2. Solving
equation (2.4) then gives

T (t) = T0e
−kt/2 , (2.6)

where
k = NGN3φr

, (2.7)

In the above, φr sets the boundary value of the dilaton. When the JT gravity descends from
the near extremal charged black hole in 3+1 dimensions, this is set to be φr = 8π(GNM∗)3.

On the other hand, for the Schwarzschild black hole in 3+1 dimensions, the mass is
inversely proportional to the temperature:

M = 1
8πGNT

(2.8)

and so solving (2.4), we have

T (t) = T0(1− t/tevap.)−1/3 , (2.9)

where the evaporation time is

tevap. = 28πG2
NM

3
0

N
. (2.10)

The Bekenstein-Hawking entropy of the evaporating black hole can be obtained by
integrating up the thermodynamic relation dSBH = dM/T along with (2.4),

SBH(t) = Area(horizon)
4GN

= S∗ + πN
12

∫ tevap.

t
T dt , (2.11)

where tevap. is the endpoint of the evaporation; notice that tevap. =∞ for the near-extremal
Reissner-Nordström black hole or black hole in JT gravity. S∗ is the extremal entropy which
vanishes for the Schwarzschild black hole. The Bekenstein-Hawking entropy

S ≡ SBH(t) , (2.12)
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provides a universal time coordinate to describe the decay. This coordinate decreases from
S0 ≡ SBH(0) the initial entropy of the black hole just after it has formed. It is worth
noting that in the adiabtaic limit and without greybody factors, the Bekenstein-Hawking
entropy (2.11) and entropy of the radiation (2.3) are simply related,

Srad(t) = 2(S0 − S) , (2.13)

so the radiation carries away twice the entropy decrease of the black hole.7

The adiabatic approximation is a key part of Hawking’s calculation. Intuitively, it is in
the limit of slow evaporation where the temperature is slowly changing, that the radiation
can be described by equilibrium formulae (2.2) and (2.4) that depend implicitly on time via
the temperature. The adiabatic limit is valid when (1.3) is satisfied and it breaks down near
the end of the evaporation. Note that we are also working in the semi-classical limit N � 1.
In addition, we require that any subsets of the Hawking radiation R we focus attention on,
must be sufficiently large that their von Neumann entropy in the QFT is captured by the
thermodynamic entropy (2.3) i.e. we must always work in the thermodynamic limit. This
requires that the subset endpoints ui, uj ∈ ∂R, ui < uj , are well separated so that,

Srad ([ui, uj ])� N . (2.14)

2.2 Coordinates and the generation of Hawking radiation

At its heart the generation of Hawking radiation is the tale of two coordinate frames. The
first (U, V ) are Kruskal Szekeres (KS) coordinates. These naturally cover both inside and
outside the horizon. In JT gravity this is simply the metric of AdS2,

ds2 = − dU dV

(1 + UV )2 , (2.15)

reflecting the fact that the near-horizon geometry of the near-extremal charged black hole in
3 + 1 dimensions is AdS2×S2. The temperature of the black hole and its mass are inferred
from the dilaton. The horizon is U = 0 and in its vicinity ds2 ≈ −dU dV , therefore,
in this region the frame (U, V ) is inertial. The second frame is (u, v), the Schwarzschild
coordinates, that describe a non-inertial frame at fixed r from the black hole. However,
the situation flips a long way from the black hole: there (U, V ) become non-inertial, while
the coordinates (u, v) become the inertial, the null coordinates of the asymptotically flat
region ds2 ≈ −du dv. In the JT gravity set up (u, v) are null coordinates in the Minkowski
region that is glued onto the boundary of AdS2.

We will write the coordinate transformation between the frames as

U = − exp
[
− 2π

∫ u

T dt

]
, V = exp

[
2π
∫ v

T dt

]
, (2.16)

for a function T (t). In the adiabatic limit, we will identify T (t) as the instantaneous
temperature of the black hole. This function completely determines the exact back-reacted

7This relation is changed by including a non-trivial greybody factor [6, 7].
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solution in JT gravity because the metric is fixed to be (2.15) and all the non-trivial back-
reaction effects are on the dilaton whose solution can be found exactly [55]:8

φ = φ0 + 2πφrT (v)1− UV
1 + UV

+ φr
Ṫ (v)
T (v) . (2.17)

The third term here can be ignored in the adiabatic approximation. In this limit and in
the near-horizon region, that is |UV | � 1, we can write

φ

4GN

∣∣∣
near hor.

≡ Area(S2)
4GN

= S∗ + (SBH(v)− S∗)(1− 2UV ) + · · · , (2.18)

We have identified the dilaton with the area of the S2 of the Reissner-Nordström black
hole. This expression also applies to the Schwarzschild black hole in the adiabatic limit
where the metric takes the form of the Vaidya metric.

2.3 The quantum state

A key step in the theory of Hawking radiation is the specification of the quantum state of
the QFT near the horizon.9 For an evaporating black hole, the appropriate state is the Un-
ruh state for which the outgoing modes are in the vacuum state of the KS frame associated
to the U coordinate, and the infalling modes are in the vacuum state of the Schwarzschild
coordinates associated to the v coordinate. The derivation of Hawking radiation, e.g. [65],
follows by calculating the expectation value of the occupation number N̄ω of an outgoing
positive frequency mode Zω of frequency ω in the u frame in the asymptotically flat regime.
The calculation is an example of an in-in type calculation and proceeds by tracing the mode
Zω backwards in time till it is near the horizon. This generally involve a tunneling proba-
bility, i.e. greybody factor, but we are ignoring that here. Near the horizon, the quantum
state of the outgoing modes is the U vacuum and the mode Zω becomes a mixture of a
positive and negative frequency mode in the U frame. The latter contribution means that
the U vacuum contains a non-vanishing occupation number of Zω modes. The occupation
number N̄ω in (2.1), with Γ = 1, follows from a Bogoliubov transformation.

2.4 Stress tensor

A simpler way to calculate the flux of Hawking radiation is to consider the stress tensor
of the outgoing modes [65]. In the Unruh state, i.e. U vacuum, we have TUU = 0.10 We
can find the outgoing flux by making the conformal transformation U → u. The stress
tensor picks up a contribution from the conformal anomaly that involves the Schwarzian
derivative that we can write in terms of the temperature T (u):

Tuu = − N24π{U, u} = πN
12

(
T 2 + 3

4π2

(
Ṫ

T

)2
− T̈

2π2T

)
. (2.19)

8In [55], we used the notation (w+, w−) = (V,U) and (y+, y−) = (v, u) and defined the function f̂(t) so
that w± = ±f̂(y±)±1, so that f̂(t) = exp 2π

∫ t
T dt.

9In the original calculation Hawking specified the quantum state on I− rather than near the horizon,
however, Jacobson [66] showed that it was equivalent to work in the near-horizon region.

10These expressions are renormalized expectation values in the semi-classical limit.
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We recognize the first term here as the thermodynamic energy flux of the boson gas
in (2.4). Hence, the adiabatic approximation is valid when the first term dominates:∣∣∣∣ Ṫ 2

T 4 −
2T̈
3T 3

∣∣∣∣� 1 , (2.20)

and in this case we get Tuu = πNT 2/12, which is the Stefan-Boltzmann law, i.e. the
outgoing energy flux of a relativistic bosonic gas of temperature T in (2.4).

Note that in the Unruh state, the infalling modes are in the v vacuum and so Tvv = 0.
This implies that in this case

TV V = N
24π

(
∂v

∂V

)2
{V, v} =

(
∂v

∂V

)2
Ṁ(v) < 0 (2.21)

and so there is a negative energy flux into the black hole. This is of course entirely
consistent because the energy carried by the outgoing Hawking modes must be balanced
by an infalling negative energy flux that reduces the mass of the black hole.

In the JT gravity setup, we can proceed further without invoking the adiabatic
limit [10, 55]. The mass of the black hole M = M∗ + E where

E(t) = − φr
8πGN

{V, v}
∣∣∣∣
v=t

(2.22)

is the ADM mass in JT gravity, and note that {V, v}v=t = {U, u}u=t. Hence, the energy
conservation equation

Ṁ = −Tuu
∣∣∣
u=t

, (2.23)

is simply
Ė = −kE , (2.24)

where k has been defined in (2.7). Of course, this implies an exponential decay of energy
with time,

E(t) = E0e
−kt . (2.25)

The function V (v) can then be found by solving (2.22). The solution is known exactly in
terms of Bessel functions [10, 55].

However, if we do invoke the adiabatic limit, then the energy conservation equation
can be written as a simple equation for the temperature

Ṫ = −kT2 , (2.26)

whose solution is (2.6). We can check the requirement for the adiabatic approxima-
tion (2.20) in this case,

k2ekt

8T 2
0
� 1 (2.27)

and so the adiabatic approximation is valid until the very long time scale

k−1 log(T0/k) ∼ k−1 log SBH(0)− S∗
N

. (2.28)

For the Schwarzschild black hole, a similar analysis shows that the adiabatic approximation
is valid until near the end of the evaporation up to time scale 1 − t/tevap. ∼ (GNM0)−3/2

when the black hole is Planck sized.
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2.5 QFT and thermodynamic entropies

In the adiabatic limit, the QFT entropy of the reduced state on an interval of Hawking
modes R = [u1, u2] near I + has a simple limit when the interval is large in the sense
of (2.14) which implies that the relative magnitude of the KS coordinates,

U1/U2 � 1 . (2.29)

This is roughly the limit for which ∆u� T−1. In this limit, and ignoring the cut off term,

SQFT(R) = N6 log U2 − U1√
U1U2

≈ N6 log
√
U1
U2

= Srad(R) . (2.30)

In terms of the S coordinate (2.12),

SQFT(R) ≈ 2(S1 − S2) . (2.31)

2.6 Purifiers

The outgoing modes are in the U vacuum state. This state has a non-vanishing occupa-
tion number of positive frequency modes Zω with respect to the u vacuum which is the
Minkowski vacuum far from the black hole. These modes Zω(U) have support outside the
horizon U < 0. Each has a partner mode

Z̃ω(U) = Zω(−U) , (2.32)

with support behind the horizon U > 0. The pair of modes are entangled in the U vacuum
when considered relative to the u vacuum,

|0〉U ∼
∏
ω

exp
[
e−ω/2Ta†(Zω)a†(Z̃∗ω)

]
|0〉u . (2.33)

The entropy of the outgoing Hawking radiation is precisely the entanglement entropy ob-
tained by tracing out the partner modes inside the horizon.

The modes Zω above have definite momentum and so are completely de-localized in
u. However, we can make localized wave packets by smearing with some ∆ω. Since the
characteristic frequency is ∼ T−1, according to the uncertainty principle we should able to
define localized modes with ∆u ∼ 1/∆ω ∼ T−1. This intuition is important, because it
means that an interval of Hawking modes R = [u1, u2] with ∆u � T−1 will be entangled
with a definite interval of modes behind the horizon related by the symmetry U → −U .
In order to show this quantitatively, consider the modes in an interval R at I + and an
interval I behind the horizon shown in figure 3. We are assuming that the interval I is in
the near-horizon region UV � 1. Let us suppose that,

|U1| � U4 � |U2| � U3 (2.34)

and that the differences between these coordinates is sufficiently large that the entropy of
the corresponding intervals in the U vacuum is captured by the thermodynamic entropy.
The question is what is SQFT(R ∪ I)?
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U

U
1

U
2

U
4

U
3

R

I

ho
riz
on

U
=

0

I +

Figure 3. A subset of outgoing modes in the interval R = [U1, U2] at I + and an interval I =
[U3, U4] behind the horizon (so with an order 1, 2, 3, 4 along a Cauchy slice that asymptotes to I +

from right to left).

The answer in the QFT can be computed because the theory is free. The contribution
from the infalling modes is subleading and will be ignored, hence11

SQFT(R ∪ I) = N6 log U2 − U1√
U1U2

+ N6 log U4 − U3√
U3U4

+ N6 log (U4 − U1)(U3 − U2)
(U4 − U2)(U3 − U1) . (2.35)

Now we take the limit (2.34),

SQFT(R ∪ I) ≈ N12 log −U2
U3

+ N12 log −U1
U4

= Srad([u2, ũ3]) + Srad([u1, ũ4]) .
(2.36)

Here, we have introduced a coordinate ũ behind the horizon where

U = exp
[
− 2π

∫ ũ

T dt

]
. (2.37)

(Compare this with the relation between U and u outside the horizon, in (2.16)). However,
we can also think of ũi as the outgoing null coordinate associated to the mirror of the
endpoints of I, i.e. the map U → −U which sends ũ→ u = ũ.

The simple result here is significant. The interpretation is that modes in [ũ4, u2] ⊂ R

have their purifiers inside I and so do not contribute to the entropy of R∪ I. On the other
hand the modes in the interval [u2, ũ3] add to the entropy. One can see that the end result
can be written using the symmetric difference of set theory

SQFT(R ∪ I) adiabatic= Srad(R	 Ĩ) , (2.38)
11There is a subtlety here. The Hawking radiation in interval R is in the vacuum associated to the U

frame and the conformal factors for u→ U contribute the factors
√
U1U2 below. However, for the interval

I in the near-horizon region there are no such conformal factors because the metric here is inertial in the U
frame, ds2 ≈ −dU dV . But serendipitously it turns out that the factors of

√
U3U4 arise from the infalling

mode sector because the endpoints of I will have coordinates related by U ∼ V −1.
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where Ĩ is the mirror image of the interval I at I +, under the symmetry U → −U . When
I is an island, then its mirror Ĩ at I + is the ‘island in the stream’. We can visualize the
overlapping of the sets of modes as follows:

R	 Ĩ

R

Ĩ

u1

ũ4

u2

ũ3

Note that if we take Ĩ to be R then

SQFT(R ∪ R̃) = 0 , (2.39)

to leading order in the adiabatic approximation and so the intervals R̃ and R are mutual
purifiers.

3 Islands in the stream

In this section we infer the existence of a class of extrema of the generalized entropy using
intuitive arguments. The detailed proof is relegated to appendix A.

The first assumption is that the QES lie close to the horizon. We can show that this
is self consistent by the following argument. The infalling modes are in the v vacuum and
their contribution to the QFT entropy at leading order is only via the conformal factor in
the AdS region. Hence, given (2.18), the dependence of the generalized entropy on each of
the QES coordinates Va is particularly simple

Sgen. = (SBH(va)− S∗)(1− 2UaVa) + N12 log Va + · · · . (3.1)

Then using the fact that
dSBH
dV

= 1
T
· dM
dV

= − N24V , (3.2)

the extremization of the generalized entropy respect to Va gives

UaVa = N
48(SBH(va)− S∗)

, (3.3)

and so in the adiabatic limit (1.3), UaVa � 1 and the QES is, indeed, close to the horizon.
There is a subtle point regarding (3.3). It ensures that the QES are close to the

horizon, however, it is actually a subleading effect because the leading order behaviour
cancels out in the combination UaVa. As we will see, this subleading term is responsible
for the scrambling time, while at leading order we have ũa = va. So the contribution to
the generalized entropy (3.1) can be written as the Bekenstein-Hawking entropy evaluated
at the time ũa. In particular, this is the outgoing coordinate of the mirror of the QES ∂Ĩ
under the symmetry U → −U . If we insert this into the generalized entropy and use (2.38),
then at leading order we have

Sgen. =
∑
∂Ĩ

SBH(∂Ĩ) + Srad(R	 Ĩ) . (3.4)
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The remaining task is to extremize over the outgoing coordinates of the QES, i.e. the
endpoints of the islands in the stream Ĩ with coordinates ũa.

Consider the variation of the generalized entropy as one of the endpoints of Ĩ varies
in the neighborhood of an endpoint of ∂R. There are four possible scenarios, the first two
with ũa increasing through ui from left to right, are

R	 Ĩ

R

Ĩ

ui

ũa

ũa < ui

R	 Ĩ

R

Ĩ

ũa > ui

R	 Ĩ

R

Ĩ

R	 Ĩ

R

Ĩ

The QES contributes Sa ≡ SBH(ũa) to the entropy while the contribution to SQFT(R	 Ĩ)
comes from the blue region is Srad = 2|Sa − Si|. Hence as ũa increases, we have

∂Sgen.
∂ũa

=

3Ṡa ũa < ui ,

−Ṡa ũa > ui ,
(3.5)

for either of the two scenarios. Since Ṡ < 0, the entropy has a minimum at ũa = ui.
The other two possible scenarios are

ũa < ui

R	 Ĩ

R

Ĩ

R	 Ĩ

R

Ĩ

ũa > ui

R	 Ĩ

R

Ĩ

R	 Ĩ

R

Ĩ

In these cases, as ũa increases, we have

∂Sgen.
∂ũa

=

−Ṡa ũa < ui ,

3Ṡa ũa > ui .
(3.6)

So in these cases, the entropy has a maximum at ũa = ui. In the more detailed analysis of
appendix A, we find that the generalized entropy behaves smoothly as ũa moves through
ui rather than the discontinuous naïve behaviour found here.
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Figure 4. The relationship between a point in ∂R in black and a QES ∂I in red. At leading order
in the adiabatic limit, the U coordinate of the QES is determined by reflection U → −U . The v
coordinate of the QES is equal to the u coordinate of the point in ∂R minus the scrambling time.
This is subleading in the adiabatic limit but is nevertheless significant because it means that the
QES lies close to the horizon.

So a class of extrema exist where each element of ∂Ĩ is mapped to a unique element of
∂R. As we have seen, only a subset of these extrema will actually be a minimum of the gen-
eralized entropy and so have a chance at dominating the entropy of S(R). The above argu-
ments imply that there are extrema of the generalized entropy when ũa ≈ ui. In appendix A
we prove this in detail and show the next-to-leading corrections in the adiabatic limit are

ua = ui −
1

2πT (ui)
log λa ,

va = ui −
1

2πT (ui)
log 48λa(SBH(ui)− S∗)

N
.

(3.7)

where λa = 1
3 , 3 for the for minimum/maximum cases above.

The difference

∆ts = ui − va = 1
2πT (ui)

log 48λa(SBH(ui)− S∗)
N

(3.8)

is identified with the scrambling time of the black hole which is a subleading effect in the
adiabatic limit: see figure 4. However, this subleading effect is responsible for ensuring
that the QES are close to the horizon.

4 Quantum information of the radiation

In this section, we describe some applications of our ‘islands in the stream’ formula (1.6)
for the entropy of any subset of the Hawking radiation as well as showing that some of
the fundamental constraints of quantum information theory are satisfied. We will suppose
that the black hole forms from the collapse of a shockwave at t = 0 and evaporates back
to the extremal black hole at tevap.. This is described in the JT gravity setting in [55].
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4.1 The Page curve

To derive the Page curve, we choose the interval R = [0, u] to capture all the Hawking
radiation emitted up to time u. We will take the extremal entropy S∗ to be negligible
or vanishing, as in the Schwarzschild case. There are two possible saddles. The Hawking
saddle has no island I = ∅ and entropy

S∅(R) = Srad(R) = 2(S0 − Su) . (4.1)

The second saddle has an island I = R̃, or Ĩ = R, with a QES just before the black hole is
formed by an in-going shockwave or the origin for the Schwarzschild case, and so R	 Ĩ = ∅:

R

Ĩ

R	 Ĩ

0 tevap.

Hence, the only contribution to the entropy comes from the QES in the interval [0, tevap.]

SI(R) = Su . (4.2)

The entropy of R is then a competition

S(R) = min
(
2(S0 − Su), Su

)
. (4.3)

For early times the Hawking saddle dominates but at the Page time

SuPage = 2
3S0 , (4.4)

there is a transition to the island saddle. Since we are assuming S∗ ≈ 0, the final entropy
at u = tevap. vanishes as expected on the basis of unitarity.12

4.2 A single interval

Consider a single interval R = [u1, u2], again assuming S∗ ≈ 0. It has a Hawking saddle
with entropy

S∅(R) = 2(S1 − S2) , (4.5)

and two possible island saddles:
12In the extremal case, or in JT gravity, with non-vanishing S∗, the details are more intricate. We can

choose to collect the radiation in R = [0, u] or the semi-infinite interval R = [−∞, u]. The results are
not the same even though no radiation is emitted before u = 0. In the former case, one finds S([0, u]) =
min(2(S0 − Su), S∗ + Su), where the island saddle has Ĩ = [0−, u]. In the latter case, S([−∞, u]) =
min(S∗+ 2(S0− Su), Su) and in this case the Hawking saddle has an island Ĩ = [−∞, 0−] which lies outside
the region [0, tevap.] and the island saddle has a semi-infinite island Ĩ = [−∞, u]. These two scenarios have
a different Page time.

– 16 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
7

R

Ĩ1
R	 Ĩ1

SI1(R) = S1 + S2

R

Ĩ2
R	 Ĩ2

SI2(R) = S2 + 2(S0 − S1)

The island I2 starts on a QES just before the formation of the black hole. This is the QES
of the extremal black hole (or the origin of the polar coordinates in the Schwarzschild case)
but we are assuming that S∗ ≈ 0. Hence, there is a competition between 3 saddles:

S(R) = min
(
2(S1 − S2), S1 + S2, S2 + 2(S0 − S1)

)
. (4.6)

The final saddle can only dominate if the point u1 is sufficiently close to 0, that is

S1 >
2
3S0 . (4.7)

If S1 does not satisfy this inequality then the Hawking saddle dominates when the interval
is sufficiently small, specifically

∆R ≡ 3S2 − S1 > 0 . (4.8)

4.3 Unitarity

Consider the single interval in the last section and define the complementary region A

which consists of two separate intervals:

A = [0, u1] ∪ [u2, tevap.] . (4.9)

This complementary region has various saddles. First of all, the no-island saddle,

S∅(A) = 2(S0 − S1 + S2) . (4.10)

The are 4 possible islands saddles:

A

Ĩ ′1
A	 Ĩ ′1

SI′1(A) = S2 + 2(S0 − S1)

A

Ĩ ′2
A	 Ĩ ′2

SI′2(A) = S1 + 2S2

A

Ĩ ′3
A	 Ĩ ′3

SI′3(A) = S1 + S2

A

Ĩ ′4
A	 Ĩ ′4

SI′4(A) = 2(S1 − S2)
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Since we are assuming the S∗ ≈ 0, the state of the radiation is a pure state, or
approximately so, and the no-island saddle can never dominate because S∅(A) > SI′1(A).
In addition, the I ′2 saddle can never dominate because SI′2(A) > SI′3(A).

When the state of the radiation is pure, it must be that S(A) = S(R). Indeed, we find
perfect matching of the saddles that can dominate,

S∅(R) = SI′4(A) , SI1(R) = SI′3(A) , SI2(R) = SI′1(A) , (4.11)

providing a highly non-trivial test of unitarity. What is interesting is that for all these
saddles the reflections of the islands are complementary, meaning, e.g. Ĩ1 ∩ Ĩ ′3 = ∅ and
Ĩ1 ∪ Ĩ ′3 = [0, tevap.].

4.4 Mutual information of two intervals

Consider two intervals R1 and R2. It is clear that the mutual information I(R1, R2) will
only be non-vanishing in a saddle with an island that straddles both R1 and R2:13

R

Ĩ

R	 Ĩ

In order to calculate the mutual information, we need to know whether R1 or R2 are, them-
selves, in their island saddle Ĩ1 = R1 or Ĩ2 = R2, respectively. For simplicity, let us assume
that R1 is not too close to 0, more specifically the condition (4.7) is satisfied, although the
result is not altered if we relax this condition. Assuming this is true, the condition for both
intervals to be in their Hawking saddles is determined by the condition (4.8) on ∆R1 and
∆R2 . There are 4 possible cases (denoting the interval in between R1 and R2 as P ):

1. Ĩ1 = ∅ and Ĩ2 = ∅,

I(R1, R2) = max(0,∆P −∆R1 −∆R2) . (4.12)

2. Ĩ1 = ∅ and Ĩ2 = R2,
I(R1, R2) = max(0,∆P −∆R1) . (4.13)

3. Ĩ1 = R1 and Ĩ2 = ∅,
I(R1, R2) = max(0,∆P −∆R2) . (4.14)

4. Ĩ1 = R1 and Ĩ2 = R2,
I(R1, R2) = max(0,∆P ) . (4.15)

It is remarkable that we can amalgamate all these different cases into a single expression
for the mutual information which automatically takes care of what saddles dominate for
R1 and R2 separately,

I(R1, R2) = max(0,∆P −max(∆R1 + ∆R2 ,∆R1 ,∆R2 , 0)) . (4.16)

Notice that the mutual information is manifestly positive and so subadditivity is satisfied.
13Note that the mutual information is UV safe quantity because the cut off terms cancel out.
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4.5 Araki-Lieb inequality

The Araki-Lieb or triangle inequality S(R1 ∪ R2) ≥ |S(R1) − S(R2)| [67] can be simply
rephrased as an upper bound on the mutual information

2 min(S(R1), S(R2)) ≥ I(R1, R2) . (4.17)

We will prove this inequality using the same setup of the previous section.14 Since to
compute the mutual information of (4.16) we have to take the minimum15 among several
possibilities, and assuming that I(R1, R2) 6= 0, it is enough to prove that 2S(R1,2) is bigger
than one of these quantities to prove that the Araki-Lieb inequality is satisfied.

Let us begin by considering R1. We always have that the entropy of an interval is
bigger than half of its no-island saddle: 2S(R1) ≥ S∅(R1). Using this fact, we have the
following chain of inequalities:

2S(R1) ≥ S∅(R1) ≥ ∆P −∆R1 ≥ I(R1, R2) . (4.18)

For R2 it is more convenient to consider the saddles separately. In particular, we have

2S∅(R2) ≥ ∆P −∆R2 , 2SI(R2) ≥ ∆P ⇒ 2S(R2) ≥ I(R1, R2) . (4.19)

This proves that the Araki-Lieb inequality is satisfied.

4.6 Monogamy of mutual information

The mutual information of two intervals R1, R2, given a third interval R3, is quantified by
the conditional mutual information:

I(R1, R2|R3) = S(R1 ∪R3) + S(R2 ∪R3)− S(R3)− S(R1 ∪R2 ∪R3) . (4.20)

The constraint of strong subadditivity is the condition that the conditional mutual infor-
mation is positive. We will prove a more stringent inequality, also known as monogamy of
mutual information:16

I(R1, R2|R3) ≥ I(R1, R2) . (4.21)

If such condition is verified it would suggest that the correlations among the Hawking radi-
ation are mostly quantum. Indeed the minimal I(R1, R2|R3) among all the possible choices
of R3 6= R1,2 is a measure of the entanglement between R1 and R2 [68]. On the other hand,
the mutual information is believed to be an upper bound for both classical and quantum
correlations, and therefore (4.21) is telling us that there is no room for classical correlations.

In order to prove (4.21), we can write it as a condition that is completely symmetric
in R1, R2 and R3:

S(R1)+S(R2)+S(R3)+S(R1∪R2∪R3) ≤ S(R1∪R2)+S(R1∪R3)+S(R2∪R3) . (4.22)
14In particular, we will assume that R1 is not too early in the sense of the condition (4.7). The condition

can be relaxed, complicating the analysis without changing the conclusion.
15More precisely, minus the maximum.
16The proof of strong subadditivity property of the generalised entropy was given in [73]. In the same

paper it is also argued that the generalised entropy satisfies monogamy of mutual information if the von
Neumann entropy of quantum fields does. This is the case for the entropy of thermal radiation (2.3).
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We will assume that the first interval R1 is subject to the constraint (4.7). The condition
can be relaxed at the result of a more complicated analysis with the same conclusion.

We will now divide the proof into cases depending on how S(R1 ∪R2 ∪R3) factorizes
as governed by which island dominates the entropy. There are four possible cases:

R1 R2 R3

(i)

(ii)

(iii)

(iv)

where the dashed segments can admit either a ∅ or R̃j saddle.
(i) In this case, it is clear that S(i) = S(R1)+S(R2)+S(R3) and S(Ri∪Rj) = S(Ri)+S(Rj)
and therefore (4.22) is trivially satisfied as an equality.
(ii) In this case S(ii) = S(R1) +S(R2∪R3) and if this island dominates then it follows that
S(R1 ∪ R2) = S(R1) + S(R2) and S(R1 ∪ R3) = S(R1) + S(R3), in which case (4.22) is
satisfied as an equality.
(iii) This case is argued in an identical way to (ii).
(iv) This is the most challenging case because S(iv) does not factorize and we have to go
through the sub-cases according to which of the S(Ri ∪Rj) are in their island saddle. We
denote the set of pairs that are in their island saddle as U. Of the 8 possibilities, the case
U = {12, 23} cannot occur because those two pairs would imply that S(R1 ∪R3) was also
in its island saddle. Pairs that are not in U satisfy S(Ri ∪ Rj) = S(Ri) + S(Rj). Taking
the seven remaining possibilities seriatim:

1 U = ∅. In this case (4.22) reads

S(iv)
?
≤ S(R1) + S(R2) + S(R3) ≡ S(i) , (4.23)

which is satisfied because we are assuming that S(iv) < S(i).

2 U = {12}. In this case (4.22) reads

S(iv)
?
≤ S(R1 ∪R2) + S(R3) ≡ S(iii) , (4.24)

which is satisfied because we are assuming that S(iv) < S(iii).

3 U = {23}. This case is proved in an identical way to case 2.

4 U = {13}. In this case (4.22) reads

S(iv)
?
≤ S(R2) + S(R1 ∪R3) . (4.25)
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But a useful identity is that when S(R1 ∪R3) is in its island saddle then

S(R1 ∪R3) = S(iv) + S∅(R2) (4.26)

and so (4.25) beomes

0
?
≤ S(R2) + S∅(R2) , (4.27)

which is clearly satisfied.

5 U = {12, 13}. In this case, using (4.26), (4.22) reads

S(R1)− S∅(R2)
?
≤ S(R1 ∪R2) . (4.28)

The Araki-Lieb inequality and the fact that S(R2) ≤ S∅(R2) lead to

S(R1 ∪R2) ≥ S(R1)− S(R2) ≥ S(R1)− S∅(R2) (4.29)

which implies (4.28).

6 U = {13, 23}. This case is proved in the same way as case 5 above.

7 U = {12, 13, 23}. In this case, using (4.26), (4.22) reads

0
?
≤
(
S(R1 ∪R2)− S(R1) + S(R2)

)
+
(
S(R2 ∪R3)− S(R2) + S(R3)

)
+
(
S∅(R2)− S(R2)

)
.

(4.30)

The 3 terms in brackets are positive, the first two as a consequence of the Araki-Lieb
inequality.

5 Discussion

We have shown how the fact that black holes evaporate very slowly, at least for most of
their life, can be exploited to write a very simple recipe for computing the von Neumann
entropy of any subset of the Hawking radiation with intervals that are suitably large. The
most striking feature of the result is that the entanglement effect of the island can be taken
care of in terms of its mirror image in the outgoing radiation. This is the ‘island in the
stream’. This yields a simple pictorial description (in a geometrical optics type limit) of
how correlations are encoded in the Hawking radiation in the bath whilst also providing a
simple method of identifying multiple saddle points that can potentially contribute to the
evolution of the entanglement strutcure of the radiation.

The formalism will be exploited in a companion paper to investigate the Hayden-
Preskill scenario of throwing a diary into a black hole and asking when the information is
returned in the radiation [69] and the Harlow-Hayden process of distilling the purifier of a
late portion of the Hawking radiation in the early radiation [70]. Another feature that can
be investigated is the existence of obstructions to decoding the state of the radiation and
black hole known as a python’s lunch [57].
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In this work we have avoided the complications of having a non-trivial greybody factor.
The extension of the formalism to include a non-trivial greybody factor is addressed in [71]
where we show that there is a very simple generalization of the ‘islands in the stream’
formula for the entropy (1.6). Essentially one replaces Srad(R	 Ĩ) with the thermodynamic
entropy of R 	 Ĩ with a non-trivial greybody factor Γ(ω) 6= 1, i.e. (2.2) with occupation
number (2.1).
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A Solving for the QES

In this appendix we implement the island prescription to the find a class of islands that
extremize the generalized entropy for a given set of intervals R of the Hawking radiation
defined on I + associated to null coordinates ∂R = {ui} with u1 > u2 > . . . > un. We will
not be able to claim that our set of extremal are complete but it is a reasonable hypothesis
that our set contains that ones that dominate the entropy in the adiabatic limit. Indeed,
the analysis in appendix C of [57] finds an extremum that is not in the class considered
here, however, this is a maximum of the generalized entropy.

Let us consider an island I consisting of a number of QES ∂I = {(Ua, Va), a = 1, . . . , p}.
Note that p and n are even. The points ∂I and ∂R are ordered so that

Ua � Ub , a > b , |Ui| � |Uj | , i < j , (A.1)

where Ua > 0 (i.e. inside the horizon) and Ui < 0 (i.e. outside the horizon). In addition, the
intervals are sufficiently large that the thermodynamic limit for the entropy (2.14) applies.

We now turn to the generalized entropy in (1.1). We will assume that the QES are
close to the horizon in the sense that UaVa � 1, a fact that we will prove ex post facto.
The contribution from the QES can then be written using the universal near-horizon ex-
pression (2.18), The second term in (1.1) is the QFT entropy for free bosons in the Unruh
vacuum,17

SQFT(R ∪ I) = −N6
∑
a<b

(−1)a−b log σab + N6
∑
ai

(−1)a−i log σai

− N6
∑
i<j

(−1)i−j log σij −
N
6
∑
a

log Ωa −
N
6
∑
i

log Ωi .

(A.2)

where σab = −(Ua−Ub)(va− vb), etc. The last terms in (A.2) are the conformal factors of
the endpoints. For a point in ∂R, this arises from the conformal transformation u→ U :

Ω−2
i = ∂ui

∂Ui
= 1

2πT (ui)Ui
. (A.3)

17This is proved by exploiting conformal invariance and the general results developed in [72].
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While for a point in ∂I, i.e. a QES, there is the conformal factor of the metric (2.15) and
the conformal transformation V → v:

Ω−2
a = 1

(1 + UaVa)2 ·
∂Va
∂va
≈ 2πT (va)Va , (A.4)

where we have assumed the near-horizon approximation UaVa � 1.
Let us first extremize the generalized entropy with respect to Va. It is apparent that the

log(va−vb) terms can be ignored because the contributions are subleading in the adiabatic
limit. The Va derivative of SBH(va) in (2.18) can be evaluated by using

dSBH
dV

= 1
T
· dM
dV

= − N24V , (A.5)

where we used (2.4). Hence, extremizing with respect to Va gives

2(SBH(va)− S∗)Ua + N
24Va

− N
12Va

= 0 , (A.6)

where the second term comes from (A.5) and the third from the conformal factor (A.4).
This condition is precisely (3.3) so that UaVa � 1 as anticipated in the adiabatic limit (1.3).

Now we extremize the generalized entropy with respect to Ua yielding the coupled
equations

2(SBH(va)− S∗)Va + N6
∑
b( 6=a)

(−1)a−b

Ua − Ub
− N6

∑
j

(−1)a−j

Ua − Uj
= 0 . (A.7)

In order to solve these equations we can exploit the fact that according to the con-
dition (2.14) the U coordinates of points in ∂R are well separated in the sense that
|Ui/Uj | � 1, for i < j.

We proceed to make an ansatz that at leading order in the adiabatic approximation

ũa = uα(a) + · · · , (A.8)

for a one-to-one map α of the QES to a subset of points in ∂R that preserve the order, so
α(a) > α(b), for a > b. This ansatz means that a point in ∂I, i.e. a QES, has a reflection
under U → −U , that is in the set ∂R, i.e. ∂Ĩ ⊂ ∂R. So the islands in the stream have
endpoints that lie in the set ∂R.

Let us write the next-to-leading order correction in the form

Ua = −λaUα(a) , (A.9)

and solve for λa. The key insight is to appreciate the relative magnitudes of the U coordi-
nates of the QES and ∂R:

|U1| � · · · � |Uα(a)| � · · · � |Uα(b)| � · · · � |Un|

· · · � Ua � · · · � Ub � · · · (A.10)
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for a > b, where the dotted arrows indicate terms of the same order. Let us consider (A.7),
and use the relative magnitudes above. This leads to the tractable equation,

2(SBH(va)− S∗)Va = N6

(Ua − Uα(a))−1 a+ α(a) ∈ even ,
U−1
a − (Ua − Uα(a))−1 a+ α(a) ∈ odd .

(A.11)

Using (A.9), along with (3.3), it follows that

λa =


1
3 a+ α(a) ∈ even ,
3 a+ α(a) ∈ odd .

(A.12)

So we have the solution for the QES at the next-to-leading order, precisely (3.7) with i
identified with α(a). Notice at this order we can replace va in T (va) and SBH(va) with uα(a).

With the leading order behaviour, we can compute the entropy of the island saddle.
We separate this into four contributions:

1 The contribution to SQFT(R ∪ I) which is simply Srad(R) in the adiabatic limit.

2 The contribution to SQFT(R ∪ I) from the island,

− N6
∑
a<b

(−1)a−b log(Ub − Ua) + N12
∑
a

log Va

= −N6
∑
a<b

(−1)a−b log(Uα(a) − Uα(b))−
N
12
∑
a

log(−Uα(a)) = Srad(Ĩ) ,
(A.13)

to leading order, where Ĩ is the reflection of the island under the mapping U → −U ,
the ‘island in the stream’. Notice how the infalling sector provides a contribution
that looks like a conformal factor because of the condition (3.3), i.e. Va ∼ 1/Ua at
leading order.

3 Cross terms between the island and bath

N
6
∑
aj

(−1)a−j log(Ua − Uj) = −N6
∑
aj

(−1)a−j log |Umax(α(a),j)|

= −2Srad(R ∩ Ĩ) .
(A.14)

4 Finally, there are the contributions from the QES
∑
∂Ĩ SBH(u∂Ĩ).

The sum of the QFT contributions is

Srad(R) + Srad(Ĩ)− 2Srad(R ∩ Ĩ) = Srad(R	 Ĩ) (A.15)

and so we have our result (1.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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