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A R T I C L E I N F O A B S T R A C T

Editor: G.F. Giudice We compute the baryonic screening masses of the nucleon and of its negative parity partner in thermal QCD with 
𝑁𝑓 = 3 massless quarks for a wide range of temperatures, from 𝑇 ∼ 1 GeV up to ∼ 160 GeV. The computation 
is performed by Monte Carlo simulations of lattice QCD with 𝑂(𝑎)-improved Wilson fermions by exploiting 
a recently proposed strategy to study non-perturbatively QCD at very high temperature. Very large spatial 
extensions are considered in order to have negligible finite volume effects. For each temperature we have 
simulated 3 or 4 values of the lattice spacing, so as to perform the continuum limit extrapolation with confidence 
at a few permille accuracy. The degeneracy of the positive and negative parity-state screening masses, expected 
from Ward identities associated to non-singlet axial transformations, provides further evidence for the restoration 
of chiral symmetry in the high temperature regime of QCD. In the entire range of temperatures explored, the 
baryonic masses deviate from the free theory result, 3𝜋𝑇 , by 4–8%. The contribution due to the interactions 
is clearly visible up to the highest temperature considered, and cannot be explained by the expected leading 
behavior in the QCD coupling constant 𝑔 over the entire range of temperatures explored.
1. Introduction

Quantum Chromodynamics (QCD) under extreme conditions is an 
area of intense research due to its fundamental rôle in many fields of 
physics, e.g. the cosmological evolution of the early universe or the in-

terpretation of the results in relativistic heavy ion collision experiments.

It is well known that, even at very high temperatures, the perturba-

tive approach for studying the QCD dynamics is limited by the so-called 
infrared problem [1]. On the one hand, finding analytic solutions to 
overcome this problem is by itself an interesting area of research which 
is being actively pursued, see Refs. [2–7] and references therein. On the 
other hand, thanks to the progress achieved in lattice QCD over the last 
few years, it became possible to study thermal QCD non-perturbatively 
from first principles up to very high temperatures [8,9].

Building on this progress, the calculation of the Equation of State 
(EoS) in the SU(3) gauge theory showed beyond any doubt that the con-

tributions which are computable in perturbation theory are not enough 
to explain the non-perturbative result up to temperatures of at least two 
orders of magnitude above the critical one [10,8]. More recently the 
computation of the QCD mesonic screening masses showed that the 
known perturbative result cannot explain their values up to temper-
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atures of the order of the electro-weak scale or so [9]. These results 
point straight to the fact that, for a reliable determination of the ther-

mal properties of QCD, a fully non-perturbative treatment of the theory 
is required up to temperatures of the order of the electro-weak scale or 
so.

The purpose of this study is to perform the first non-perturbative 
calculation of the baryonic screening masses with nucleon quantum 
numbers over a wide range of temperatures, from 𝑇 ∼ 1 GeV up to ∼ 160
GeV. This is achieved by extending to the nucleon sector the strategy 
proposed in Ref. [9]. Technically this is feasible because, at asymptot-

ically large temperatures, baryonic correlators do not suffer from the 
exponential depletion of the signal-to-noise ratio as they do at zero tem-

perature [11,12].

Baryonic screening masses are important properties of the quark-

gluon plasma. They characterize the behavior at large spatial distances 
of correlation functions of fields carrying baryonic quantum numbers. 
Being the inverse of the correlation lengths, they are related to the 
response of the plasma when a baryon (nucleon) is injected into the 
system. Screening masses are also ideal probes to verify the restoration 
of chiral symmetry in QCD in the high temperature regime.
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While a rich literature is available on the mesonic spectrum, very 
few studies have been performed on the baryonic one. In particular, all 
lattice calculations, both in the quenched approximation [13,14] and in 
the full theory [15], have been restricted to very low temperatures and 
no extrapolation to the continuum limit has ever been performed, see 
Refs. [16–18] for more recent efforts on the subject.

This letter is organized as follows. In Section 2 we introduce the defi-

nition of nucleon screening masses, and we discuss how these quantities 
can probe chiral symmetry restoration. In Section 3 we briefly review 
the strategy that we have used to simulate QCD up to the electro-weak 
scale, and we give the definition of the baryonic correlation functions 
and screening masses on the lattice. In Section 4 the values of the screen-

ing masses in the continuum limit at all temperatures considered are 
given. In Section 5 we discuss our final results, and present our conclu-

sions. Various technical details are discussed in several appendices.

2. Definition of baryonic screening masses

We are interested in the screening masses related to the fermion 
fields

𝑁 = 𝜖𝑎𝑏𝑐
(
𝑢𝑎𝑇 𝐶𝛾5𝑑

𝑏
)
𝑑𝑐 , 𝑁 = 𝑑

𝑒
(
𝑑
𝑓
𝐶𝛾5𝑢

𝑔𝑇
)
𝜖𝑓𝑒𝑔 , (1)

where the transposition acts on spinor indices, latin letters indicate color 
indices, and 𝐶 = 𝑖𝛾0𝛾2 is the charge-conjugation matrix. The contraction 
with the totally anti-symmetric tensor 𝜖𝑎𝑏𝑐 guarantees that the nucleon 
field is a color singlet.

The two-point correlation functions we are interested in are

𝐶𝑁± (𝑥3) = ∫ 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑒
−𝑖 𝑥0

𝐿0
𝜋 ⟨Tr

[
𝑃±𝑁(𝑥)𝑁(0)

]⟩ , (2)

where 𝑃± = (1 ± 𝛾3)∕2 are the projectors on positive (𝑁+) and negative 
(𝑁−) 𝑥3-parity states respectively, and the trace is over the free Dirac 
indices of the fermion fields in Eq. (1). The integral in Eq. (2) selects 
the component associated to the Matsubara frequency 𝜋∕𝐿0 , which is 
the lowest one due to the anti-periodic boundary conditions of fermion 
fields in the compact direction of length 𝐿0 . The screening masses are 
defined as

𝑚𝑁± = − lim
𝑥3→∞

𝑑

𝑑𝑥3
ln
[
𝐶𝑁± (𝑥3)

]
, (3)

and they characterize the exponential decay of the two-point correlation 
functions at large spatial distances.

The comparison of 𝑚𝑁+ with 𝑚𝑁− provides a quantitative test of the 
restoration of chiral symmetry in the high temperature regime. Indeed 
when chiral symmetry is not spontaneously broken, the positive and 
negative parity correlation functions are equal up to a sign in the chiral 
limit, see Eq. (A.5) in Appendix A, and therefore 𝑚𝑁+ =𝑚𝑁− . This is at 
variance of the zero temperature case, where the screening masses 𝑚𝑁+

and 𝑚𝑁− correspond to the chiral limit values of the nucleon and of the 
𝑁(1535) masses. Due to the spontaneous breaking of chiral symmetry, 
they differ by several hundreds of MeV [19].

2.1. Shifted boundary conditions

In the rest of this letter, we define the thermal theory in a moving 
frame by requiring that the fields satisfy shifted boundary conditions in 
the compact direction [20–22], while we set periodic boundary condi-

tions in the spatial directions. The former consist in shifting the fields 
by the spatial vector 𝐿0 𝝃 when crossing the boundary of the compact 
direction, with the fermions having in addition the usual sign flip. For 
the gluon and the quark fields these boundary conditions read

𝐴𝜇(𝑥0 +𝐿0,𝒙) =𝐴𝜇(𝑥0,𝒙−𝐿0𝝃) ,

𝜓(𝑥0 +𝐿0,𝒙) = −𝜓(𝑥0,𝒙−𝐿0𝝃) , (4)
2

𝜓(𝑥0 +𝐿0,𝒙) = −𝜓(𝑥0,𝒙−𝐿0𝝃) .
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In the presence of shifted boundary conditions the periodic direction is 
identified by the vector 𝐿0(1, 𝝃). As a consequence, a relativistic ther-

mal field theory in the presence of a shift 𝝃 is equivalent to the very 
same theory with usual periodic (anti-periodic for fermions) bound-

ary conditions but with a longer extension of the compact direction 

by a factor 𝛾−1 =
√

1 + 𝝃2 [22], i.e. the standard relation between the 
temperature and the extension in the compact direction is modified 

as 𝑇 −1 = 𝐿0∕𝛾 = 𝐿0

√
1 + 𝝃2. The momentum projection on the low-

est Matsubara frequency has also to be modified accordingly. Thanks to 
the rotational symmetry of the theory, we can choose one of the axes 
to be in the direction of the shift, and restrict our discussion to the case 
𝝃 = (𝜉, 0, 0). If we define (𝑥0, 𝑥1) the first two coordinates of a point in 
the system with temporal extent 𝐿0 and shifted boundary conditions, 
and (𝑥′0, 𝑥

′
1) the corresponding ones in the rotated system with tempo-

ral extent 𝐿0∕𝛾 and periodic boundary conditions, the coordinates are 
mapped into each other by a Euclidean Lorentz transformation{
𝑥′0 =

(
𝑥0 + 𝜉𝑥1

)
𝛾

𝑥′1 =
(
𝑥1 − 𝜉𝑥0

)
𝛾 .

(5)

The projection of the baryonic correlation function on the first Matsub-

ara frequency is then achieved by

𝐶𝑁± (𝑥3) = ∫ 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑒
−𝑖 𝑥0+𝜉𝑥1

𝐿0
𝛾2𝜋 ⟨Tr

[
𝑃±𝑁(𝑥)𝑁(0)

]⟩ , (6)

where at variance with Eq. (2), the expectation value is computed in the 
presence of shifted boundary conditions.1

3. Lattice strategy, correlation functions and screening masses

We compute the screening masses in QCD with 𝑁𝑓 = 3 massless 
quarks2 at the 12 temperatures 𝑇0, … , 𝑇11 given in Table 1, i.e. for 𝑇
from about 1 GeV up to approximately 160 GeV.

We adopt shifted boundary conditions in the compact direction with 
𝝃 = (1, 0, 0) and, in order to extrapolate the results to the continuum limit 
with confidence, several lattice spacings are simulated at each tempera-

ture with the extension of the compact direction being 𝐿0∕𝑎 = 4, 6, 8, 10
while the length of the spatial directions is always 𝐿∕𝑎 = 288. See Ap-

pendices A and B of Ref. [9] for the details on the lattice actions and for 
the bare parameters of the simulations.

The key idea for reaching very high temperatures on the lattice 
with a moderate computational effort is to determine lines of constant 
physics by fixing the value of a renormalized coupling defined non-

perturbatively in a finite volume [8,9]. The coupling can be computed 
precisely on the lattice for values of the renormalization scale 𝜇 which 
span several orders of magnitude [23–25]. To make a definite choice, 
we adopt the definition based on the Schrödinger functional (SF) [23]

for the temperatures 𝑇0, … , 𝑇8 and on the gradient flow (GF) [26,24,27]

for 𝑇9, 𝑇10 and 𝑇11.

Once the coupling, e.g. 𝑔̄2SF(𝜇), is known in the continuum limit for 
𝜇 ∼ 𝑇 [24,25], the theory is renormalized by fixing its value at fixed 
lattice spacing 𝑎 to be

𝑔̄2SF(𝑔
2
0 , 𝑎𝜇) = 𝑔̄2SF(𝜇) , 𝑎𝜇 ≪ 1 . (7)

This is the condition that fixes the so-called lines of constant physics, 
i.e. the dependence of the bare coupling constant 𝑔20 on the lattice spac-

ing, for values of 𝑎 at which the scale 𝜇 and therefore the temperature 𝑇
can be easily accommodated. In other words, at different temperatures 
we renormalize the theory by imposing the value of the renormalized 

1 We use the same notation for correlation functions with or without shifted 
boundary conditions since the precise meaning is clear from the context.

2 Technically it is feasible to simulate massless quarks thanks to the large spec-
tral gap 𝜋𝑇 induced by the temperature in the spectrum of the Dirac operator.
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Table 1

Temperatures considered in this letter together 
with the best results for the nucleon mass, 𝑚𝑁+ , 
and the mass difference with its parity partner, 
𝑚𝑁+ −𝑚𝑁− , in the continuum limit.

𝑇 𝑇 (GeV)
𝑚𝑁+

3𝜋𝑇
𝑚𝑁+ −𝑚𝑁−

3𝜋𝑇
𝑇0 165(6) 1.047(3) 0.0006(4)

𝑇1 82.3(2.8) 1.0544(19) -0.0001(3)

𝑇2 51.4(1.7) 1.0569(28) 0.0002(3)

𝑇3 32.8(1.0) 1.0583(27) 0.0003(4)

𝑇4 20.6(6) 1.0596(28) -0.0011(4)

𝑇5 12.8(4) 1.0662(28) 0.0001(4)

𝑇6 8.03(22) 1.068(3) 0.0001(6)

𝑇7 4.91(13) 1.075(4) 0.0004(9)

𝑇8 3.04(8) 1.077(4) 0.0003(9)

𝑇9 2.83(7) 1.076(4) 0.0009(12)

𝑇10 1.82(4) 1.089(4) 0.0007(20)

𝑇11 1.167(23) 1.078(6) 0.0016(15)

Fig. 1. Plot of the effective mass 𝑚𝑁+ (𝑥3), normalized to 3𝜋𝑇 , at the temperature 
𝑇1 for 𝐿0∕𝑎 = 6. For the explanation of the various fit curves and bands see the 
main text.

coupling constant at different scales or equivalently we impose differ-

ent renormalization conditions which, however, define the very same 
renormalized theory at all temperatures. As a consequence, at each 𝑇
the theory can be simulated efficiently at various lattice spacings with-

out suffering from large discretization errors, and the continuum limit 
of the observables can be taken with confidence. All technical details 
on how the renormalization procedure is implemented in practice are 
given in Appendices A and B of Ref. [9].

The lattice transcription of Eq. (6) for 𝝃 = (1, 0, 0), which is the rele-

vant case to this study, reads3

𝐶𝑁± (𝑥3) = 𝑎3
∑

𝑥0 ,𝑥1 ,𝑥2

𝑒
−𝑖 𝑥0+𝑥12𝐿0

𝜋 ⟨Tr
[
𝑃±𝑁(𝑥)𝑁(0)

]⟩
= 𝑎3

∑
𝑥0 ,𝑥1 ,𝑥2

𝑒
−𝑖 𝑥0+𝑥12𝐿0

𝜋 ⟨[𝑊 1
± −𝑊 2

±
]⟩ , (8)

where the two terms in the second line are the Wick contractions ob-

tained by integrating over the fermion fields. Their expressions read

𝑊 1
𝑁± = Tr

[
𝑆𝑎𝑔𝑇 (𝑥,0)𝐶𝛾5𝑆𝑏𝑓 (𝑥,0)𝐶𝛾5

]
Tr

[
𝑆𝑐𝑒(𝑥,0)𝑃±

]
𝜖𝑎𝑏𝑐𝜖𝑓𝑒𝑔 ,

𝑊 2
𝑁± = Tr

[
𝑆𝑎𝑔𝑇 (𝑥,0)𝐶𝛾5𝑆𝑏𝑒(𝑥,0)𝑃±𝑆𝑐𝑓 (𝑥,0)𝐶𝛾5

]
𝜖𝑎𝑏𝑐𝜖𝑓𝑒𝑔, (9)

3 Even if the use of shifted boundary conditions is not crucial for the calcula-

tion of the screening masses, we have chosen to use them so as to share the cost 
3

of generating the gauge configurations with other projects [28,29].
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Fig. 2. Numerical results for the tree-level improved nucleon screening mass at 
finite lattice spacing (black dots, error bars smaller than symbols). The lines in 
the panel represent the linear extrapolations in (𝑎∕𝐿0)2 to the continuum limit. 
Each temperature is analyzed independently from the others. Data correspond-

ing to 𝑇𝑖 (𝑖 = 0, … , 11) are shifted downward by 0.09 × 𝑖 for better readability.

where 𝑆(𝑥, 𝑦) is the quark propagator of the degenerate quarks.

Once the correlators have been computed, the effective screening 
masses are defined as

𝑚𝑁± (𝑥3) = −1
𝑎
ln
[
𝐶𝑁± (𝑥3 + 𝑎)
𝐶𝑁± (𝑥3)

]
. (10)

As a representative example of the data, the nucleon effective mass is 
shown in Fig. 1 for 𝑇1 and 𝐿0∕𝑎 = 6. In order to determine the value of 
the screening mass, we start by fitting the effective mass to a constant 
plus a correction deriving from the contamination of the first excited 
state (solid black line) from a minimum value up to the last point where 
we have a good signal (black dashed lines). The minimum value is cho-

sen to have a good quality of the fit and to have, at the same time, a non 
vanishing contribution from the first excited state. On one hand, for the 
ensembles where the signal is good enough at a large distance, from this 
fit we estimate the minimum value 𝑥min

3 ∕𝑎 (red dashed line) from which 
the excited state contamination is below the target statistical precision. 
The screening mass is then obtained by averaging the plateau (red band) 
from 𝑥min

3 ∕𝑎 up to the last point where we have a good signal. On the 
other hand, for the lowest temperatures and for the ensembles corre-

sponding to 𝐿0∕𝑎 = 10, where the loss of signal is more relevant at a 
large distance, the screening mass is directly estimated from the results 
of the effective mass fit (grey band).

Our best estimates of the screening masses are reported in Tables B.2

and B.3 of Appendix B for all the lattices simulated. The statistical error 
varies from a few permille to at most 5 permille for the smallest temper-

ature. In order to profit from the correlations in our data for reducing 
the statistical errors, we also compute (𝑚𝑁+ −𝑚𝑁− )∕(3𝜋𝑇 ) and report 
its values in Tables B.2 and B.3 as well. This combination is particularly 
interesting because it is a measure of the chiral symmetry restoration 
which can be computed very precisely.

We have explicitly checked that finite volume effects are negligible 
within our statistical errors: we have generated three more lattices at the 
highest and at the lowest temperatures for the smallest spatial volumes 
corresponding to 𝐿0∕𝑎 = 6, 𝐿0∕𝑎 = 10, and 𝐿0∕𝑎 = 8 for 𝑇0, 𝑇1, and 𝑇11
respectively. These lattices have the same dimensions in the compact 
and in the 𝑥3 directions as those used to extract the results in Tables B.2

and B.3 but smaller extensions in the other two spatial directions. The 
screening masses computed on them are in agreement with those cal-

culated on the larger volume, see Appendix B for details. Therefore we 
can safely assume that our results have negligible finite-volume effects 
within the statistical precision as expected by the theoretical analysis in 

Ref. [9].
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Fig. 3. Nucleon screening mass versus 𝑔̂2. The band represents the best fit to 
Eq. (14), while the dashed line is the analytically known contribution in Eq. (13).

4. Continuum limit of baryonic screening masses

The results that we have collected at finite lattice spacing have to 
be extrapolated to the continuum limit along lines of constant physics. 
For 𝑂(𝑎)-improved actions, the Symanzik effective theory predicts the 
leading behavior of the lattice artifacts to be of order 𝑎2 . We can ac-

celerate the convergence to the continuum by introducing the tree-level 
improved definitions

𝑚𝑁± ⟶𝑚𝑁± −
[
𝑚free
𝑁± − 3𝜋𝑇

]
, (11)

where 𝑚free
𝑁± is the mass in the free lattice theory. As shown in the Ap-

pendix D, where the computation is reported, the latter is the same 
for both the 𝑚𝑁+ and the 𝑚𝑁− masses. From now on we will consider 
always the tree-level improved definition of the screening masses and 
indicate them with 𝑚𝑁± .

All data for the improved nucleon screening mass are represented in 
Fig. 2 where, in order to improve the readability, data corresponding to 
𝑇𝑖 (𝑖 = 0, … , 11) are shifted downward by 0.09 × 𝑖. At each temperature, 
lattice artifacts are well described by a single correction proportional 
to (𝑎∕𝐿0)2. Indeed by fitting each data set linearly in (𝑎∕𝐿0)2, the val-

ues of 𝜒2∕dof are all around 1 with just a few outliers which, however, 
are not surprising given the large amount of data and fits. The results 
of the fits are shown in Fig. 2 as straight lines. For the mass differ-

ence (𝑚𝑁+ −𝑚𝑁− ), the coefficient of (𝑎∕𝐿0)2 is found to be compatible 
with zero at all temperatures. We take the continuum limit values from 
these fits as our best results for the nucleon screening mass and for the 
difference (𝑚𝑁+ −𝑚𝑁− ). They are reported in Table 1 for all the 12 tem-

peratures considered. As a further check of the extrapolations, we have 
fitted the data by excluding the coarsest lattice spacing, i.e. 𝐿0∕𝑎 = 4, 
for the temperatures 𝑇1, … , 𝑇8 for which we have 4 data points. The in-

tercepts are in excellent agreement with those of the previous fits, albeit 
with a slightly larger error. For the same sets of data, we have also at-

tempted to include in the fit a (𝑎∕𝐿0)2 ln(𝑎∕𝐿0) or a (𝑎∕𝐿0)3 term. The 
resulting coefficients are compatible with zero. Given the high quality 
of the fits and of the data, it is not necessary to model the temperature 
dependence of the discretization effects so as to perform a global fit of 
the data.

5. Discussion and conclusions

The main results of this paper are the baryonic screening masses 
reported in Table 1. They have been computed in a wide temperature 
range starting from 𝑇 ∼ 1 GeV up to ∼160 GeV or so with a precision of 
a few permille.

The first observation is that, as anticipated in section 3, within our 
4

rather small statistical errors we find an excellent agreement between 
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𝑚𝑁+ and 𝑚𝑁− . This is a clear manifestation of the restoration of chi-

ral symmetry occurring at high temperature in line with the analogous 
results for mesonic screening masses in Ref. [9]. For this reason in the 
following we discuss the nucleon mass 𝑚𝑁+ only.

A second observation is that the bulk of the nucleon screening mass 
is given by the free-theory value, 3𝜋𝑇 , plus 4 −8% positive contribution 
over the entire range of temperatures explored.

To scrutinize in detail the temperature dependence induced by the 
non-trivial dynamics, we introduce the function 𝑔̂2(𝑇 ) defined as

1
𝑔̂2(𝑇 )

≡ 9
8𝜋2

ln 2𝜋𝑇
ΛMS

+ 4
9𝜋2

ln
(
2 ln 2𝜋𝑇

ΛMS

)
, (12)

where ΛMS = 341 MeV is taken from Ref. [30]. It corresponds to the 
2-loop definition of the strong coupling constant in the MS scheme at 
the renormalization scale 𝜇 = 2𝜋𝑇 . For our purposes, however, this is 
just a function of the temperature 𝑇 , suggested by the effective theory, 
that we use to analyze our results, see Ref. [9] for more details.

The screening masses versus 𝑔̂2(𝑇 ) are plotted in Fig. 3. The dashed 
line in this plot is the next-to-leading contribution to the nucleon screen-

ing mass which has been computed in the effective theory only very 
recently [31,32]. For three massless quarks, the expression reads

𝑚nlo
𝑁+

3𝜋𝑇
= 1 + 0.046𝑔2 , (13)

where 𝑔 is the QCD coupling constant. It is rather clear that from 
𝑇 = 𝑇0 ∼ 160 GeV down to 𝑇 = 𝑇7 ∼ 5 GeV the perturbative expres-

sion is within half a percent or so with respect to the non-perturbative 
data. If a quick convergence of the perturbative series is assumed, this 
result would suggest that the bulk of the contribution due to the interac-

tions is given by the 𝑂(𝑔2) term. The full set of data, however, shows a 
distinct negative curvature which requires higher orders in 𝑔̂2 to be pa-

rameterized. We thus fit the values of 𝑚𝑁+ reported in the third column 
of Table 1 to a quartic polynomial in 𝑔̂ of the form

𝑚𝑁+

3𝜋𝑇
= 𝑏0 + 𝑏2 𝑔̂

2 + 𝑏3 𝑔̂
3 + 𝑏4 𝑔̂

4 . (14)

The intercept 𝑏0 turns out to be compatible with 1, as predicted by 
the free theory, within a large error. We thus enforce it to be the free-

theory value, 𝑏0 = 1, and we fit the data again. The coefficient of the 
𝑔̂2 term turns out to be compatible with the theoretical expectation in 
Eq. (13) within again a large uncertainty. We have thus fixed also this 
coefficient to its analytical value, 𝑏2 = 0.046, and we have performed 
again the quartic fit of the form in Eq. (14). As a result, we obtain 
𝑏3 = 0.026(4), 𝑏4 = −0.021(3) and cov(𝑏3, 𝑏4)∕[𝜎(𝑏3)𝜎(𝑏4)] = −0.99 with 
𝜒2∕dof = 0.64. This is indeed the best parameterization of our results 
over the entire range of temperatures explored.

For completeness, we notice that if the cubic coefficient is enforced 
to vanish, i.e. 𝑏3 = 0, the fit returns 𝑏2 = 0.062(3), 𝑏4 = −0.011(2)
and cov(𝑏2, 𝑏4)∕[𝜎(𝑏2)𝜎(𝑏4)] = −0.97 with again an excellent value of 
𝜒2∕dof = 0.68. The coefficient 𝑏2, however, turns out to be in disagree-

ment with the analytic determination. Data can also be fit to the function 
in Eq. (14) with 𝑏0 = 1 and 𝑏4 = 0 but again the coefficient 𝑏2 would be 
in disagreement with the perturbative result.

Finally we observe that it has been possible to reach a precision on 
the nucleon screening mass of a few permille because, at asymptotically 
large temperatures, baryonic correlators do not suffer from the expo-

nential depletion of the signal-to-noise ratio.
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Appendix A. Ward identity in the continuum

Under the infinitesimal axial non-singlet transformation

𝛿𝜓(𝑥) = 𝑖𝜖𝜎3𝛾5𝜓(𝑥) , 𝛿𝜓(𝑥) = 𝑖𝜖𝜓(𝑥)𝛾5𝜎3 , (A.1)

with 𝜓 = (𝑢̄, 𝑑) and analogously for 𝜓 and where 𝜎3 is the third Pauli 
matrix acting on the flavor index, the nucleon fields in Eq. (1) transform 
as

𝛿𝑁(𝑥) = −𝑖𝜖𝛾5𝑁(𝑥) , 𝛿𝑁(𝑥) = −𝑖𝜖𝑁(𝑥)𝛾5 . (A.2)

If we consider the composite field

(𝑥,0) = 𝑖Tr
[
𝛾5𝑃±𝑁(𝑥)𝑁(0)

]
, (A.3)

then

𝛿(𝑥,0) = 𝜖 Tr
[
𝑃±𝑁(𝑥)𝑁(0)

]
+ 𝜖 Tr

[
𝑃∓𝑁(𝑥)𝑁(0)

]
. (A.4)

In the chiral limit, and if the symmetry is not spontaneously broken, it 
holds ⟨𝛿(𝑥, 0)⟩ = 0 which in turn implies, see for instance [33] for a 
recent derivation,

⟨Tr
[
𝑃+𝑁(𝑥)𝑁(0)

]⟩ = − ⟨Tr
[
𝑃−𝑁(𝑥)𝑁(0)

]⟩ . (A.5)

Appendix B. Simulation details and lattice results

We have simulated three-flavor QCD as described in Appendix E of 
Ref. [9]. We have accumulated a certain number of configurations for 
5

the computation of the EoS [29]. Among those, we have selected some 
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Table B.2

Results for the nucleon screening mass, 𝑚𝑁+ , and the mass 
difference with its parity partner, (𝑚𝑁+ − 𝑚𝑁− ), normal-

ized to 3𝜋𝑇 at finite lattice spacing for the temperatures 
𝑇0, … , 𝑇8. The number of molecular dynamic units (MDUs) 
generated, 𝑛mdu, and the number of local sources per config-

uration on which the two-point correlation functions have 
been computed, 𝑛nsrc , are also reported. The latter are al-

ways calculated by skipping 𝑛skip = 10 MDUs between two 
consecutive measurements.

𝑇 𝐿0∕𝑎 𝑛mdu 𝑛nsrc
𝑚𝑁+

3𝜋𝑇
𝑚𝑁+ −𝑚𝑁−

3𝜋𝑇
𝑇0 4 300 4 0.9863(15) 0.0002(3)

6 390 4 1.0178(17) 0.00041(19)

𝑇1 4 300 4 0.9892(18) 0.0001(3)

6 310 4 1.0204(20) 0.0002(4)

8 500 4 1.0371(18) -0.00013(23)

10 500 4 1.0438(28) 0.0003(5)

𝑇2 4 300 4 0.9909(23) 0.0001(4)

6 320 4 1.0242(24) -0.00017(28)

8 490 4 1.0385(30) 0.00026(29)

10 500 4 1.048(5) 0.0005(6)

𝑇3 4 300 4 0.9945(25) 0.0006(4)

6 340 4 1.027(3) 0.0002(4)

8 490 4 1.0406(23) 0.0005(3)

10 500 4 1.048(6) 0.0003(7)

𝑇4 4 440 4 1.0040(16) 0.0007(5)

6 310 4 1.0317(26) -0.0007(4)

8 490 4 1.0430(29) -0.0001(4)

10 500 4 1.054(5) -0.0013(6)

𝑇5 4 310 4 1.004(3) -0.0007(6)

6 310 4 1.038(3) 0.0005(8)

8 500 4 1.0466(26) -0.0001(3)

10 500 4 1.059(4) -0.0001(5)

𝑇6 4 300 4 1.0089(25) -0.0006(9)

6 320 4 1.034(3) -0.0002(7)

8 500 4 1.054(4) -0.0002(5)

10 500 4 1.061(6) 0.0004(10)

𝑇7 4 320 4 1.012(4) 0.0005(12)

6 310 4 1.043(4) 0.0006(7)

8 500 4 1.059(3) -0.0001(8)

10 500 4 1.062(6) 0.0026(17)

𝑇8 4 320 8 1.016(4) 0.0023(14)

6 300 8 1.046(4) -0.0001(11)

8 500 4 1.066(4) -0.0007(8)

10 500 5 1.061(4) 0.0013(13)

Table B.3

As in Table B.2 but for 𝑇9, 𝑇10 and 𝑇11.

𝑇 𝐿0∕𝑎 𝑛mdu 𝑛nsrc
𝑚𝑁+

3𝜋𝑇
𝑚𝑁+ −𝑚𝑁−

3𝜋𝑇
𝑇9 4 400 4 1.0180(26) -0.0008(12)

6 390 4 1.0526(28) 0.0005(10)

8 390 4 1.052(5) 0.0002(10)

𝑇10 4 410 4 1.029(4) -0.0019(21)

6 400 4 1.056(3) -0.0021(14)

8 390 4 1.074(3) 0.0013(17)

𝑇11 4 400 4 1.029(4) 0.0001(21)

6 390 4 1.055(6) -0.0015(17)

8 390 4 1.063(5) 0.0016(11)

that we have used for the computation of the screening masses. In partic-

ular in Tables B.2 and B.3 we report the number of MDUs considered and 
the number of local sources per configuration on which the two-point 
correlation functions have been computed. For each configuration, the 
best estimates of 𝐶𝑁± (𝑥3) in Eq. (8) have been obtained by properly av-
eraging their values from all local sources. The screening masses have 
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Fig. C.4. Signal-to-noise ratio squared at 𝑇 = 𝑇1, 𝑇7 and 𝑇10 for 𝐿0∕𝑎 = 6.

then been extracted as described in Section 3. The results are reported 
in Tables B.2 and B.3 for the 9 highest temperatures 𝑇0, …, 𝑇8 and for 
the lowest ones, 𝑇9, 𝑇10 and 𝑇11 respectively.

To explicitly check that finite volume effects are negligible within 
our statistical errors, we have generated three more lattices at 𝑇0
(𝐿0∕𝑎 = 6), 𝑇1 (𝐿0∕𝑎 = 10) and 𝑇11 (𝐿0∕𝑎 = 8) at three smaller spa-

tial volumes, namely 6 ×1442 ×288, 10 ×1202 ×288, and 8 ×1442 ×288
(direction 3 the longest) respectively. On these lattices we have com-

puted the screening masses. They turn out to be in very good agreement 
with the analogous ones reported in Tables B.2 and B.3, and therefore 
they confirm the theoretical expectations that finite volume effects are 
negligible.

Appendix C. Signal-to-noise ratio for baryon correlation functions 
at finite temperature

The signal-to-noise ratio squared of baryonic correlation functions 
goes as

𝐶2
𝑁± (𝑥3)

𝜎2
𝐶𝑁±

(𝑥3)
∝ exp{−(2𝑚𝑁± − 3𝑚𝑃 )𝑥3} +… (C.1)

where 𝜎2
𝐶𝑁±

(𝑥3) is the variance of 𝐶𝑁± and the … stand for sub-leading 
exponential contributions. At asymptotically large temperatures, and up 
to discretization errors, 𝑚𝑁± → 3𝜋𝑇 and 𝑚𝑃 → 2𝜋𝑇 . As a consequence 
no exponential depletion of the signal-to-noise ratio with 𝑥3 is expected 
when 𝑇 →∞. This is at variance of what happens for 𝑇 → 0, where there 
is a severe exponential degradation of the signal-to-noise ratio because, 
for instance, (2𝑚𝑁+ − 3𝑚𝑃 ) → (2𝑚𝑁 − 3𝑚𝜋) with 𝑚𝑁 and 𝑚𝜋 being the 
nucleon and the pion masses.

In Fig. C.4 it is shown the signal-to-noise ratio squared for 𝐶𝑁+ as a 
function of (3𝜋𝑇𝑥3) for 3 temperatures considered in this letter. As ex-

pected the depletion of the signal-to-noise ratio with 𝑥3 becomes more 
severe when the temperature is lowered, and the estimate of the corre-

lation function becomes noisier. Similar considerations apply to 𝐶𝑁− .

Appendix D. Baryonic screening masses in the free lattice theory

In order to accelerate the extrapolation to the continuum limit, we 
have computed the baryonic screening masses in the free theory on the 
lattice. In the infinite spatial volume limit, the baryonic correlation func-

tions can be written in the form

𝐶𝑁± (𝑥3) = ±
∑
𝑝0 ,𝑞0

∫ 𝑑𝑝1𝑑𝑝2𝑑𝑞1𝑑𝑞2(𝑝, 𝑞)𝑒−2Ω(𝑝,𝑞,𝑘)𝑥3 , (D.1)
6

where for shift vectors of the form 𝝃 = (𝜉, 0, 0)
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Table D.4

Tree-level values of the 
baryonic screening mass 
on lattices with temporal 
extent 𝐿0∕𝑎, infinite spa-

tial volume and shift vec-

tor 𝝃 = (1, 0, 0).
𝐿0∕𝑎 𝑚free

𝑁± ∕3𝜋𝑇

4 0.932614077...

6 0.967811412...

8 0.981401809...

10 0.987944825...

𝑝0 = (2𝑛0 + 1) 𝜋
𝐿0

− 𝑝1𝜉 , 𝑛0 = 0,… ,𝐿0∕𝑎− 1 , (D.2)

analogously for 𝑞0, and the spatial momenta are 𝑝𝑘 ∈ [−𝜋∕𝑎, 𝜋∕𝑎). The 
function Ω(𝑝, 𝑞, 𝑘) is given by

Ω(𝑝, 𝑞, 𝑘) = 𝜔̂(𝑝) + 𝜔̂(𝑞) + 𝜔̂(𝑘) (D.3)

where 𝜔̂ encodes each quark line contribution to the screening correla-

tor as defined in Appendix F in Ref. [9], while the matrix (𝑝, 𝑞) is a 
calculable function of the momenta which does not play a rôle in the 
computation of the baryonic screening mass. For the lowest Matsubara 
frequency and for shift vectors of the form 𝝃 = (𝜉, 0, 0), the energy-

momentum conservation implies

⎧⎪⎨⎪⎩
𝑝0 + 𝑞0 + 𝑘0 = 𝜋

𝐿0
𝛾2

𝑝1 + 𝑞1 + 𝑘1 = 𝜋

𝐿0
𝜉𝛾2

𝑝2 + 𝑞2 + 𝑘2 = 0

. (D.4)

The screening mass is obtained by minimizing Ω(𝑝, 𝑞, 𝑘) with respect to 
the momenta. For the shift vector 𝝃 = (1, 0, 0), the minimum is attained 
at

𝑝 = 𝑞 = 𝜋

2𝐿0
(1,1,0) , 𝑘 = 𝜋

2𝐿0
(−1,−1,0) . (D.5)

Notice that, since 𝜔̂ is an even function of the momenta, each quark line 
gives the same contribution to Ω. In Table D.4 we list the value of the 
screening mass normalized to 3𝜋𝑇 for the temporal extents relevant to 
this work.
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