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ABSTRACT
Propagation effects are one of the main sources of noise in high-precision pulsar timing. For pulsars below an ecliptic latitude
of 5◦, the ionised plasma in the solar wind can introduce dispersive delays of order 100µs around solar conjunction at an
observing frequency of 300 MHz. A common approach to mitigate this assumes a spherical solar wind with a time-constant
amplitude. However, this has been shown to be insufficient to describe the solar wind. We present a linear, Gaussian-process
piecewise Bayesian approach to fit a spherical solar wind of time-variable amplitude, which has been implemented in the pulsar
software run_enterprise. Through simulations, we find that the current EPTA+InPTA data combination is not sensitive to
such variations; however, solar wind variations will become important in the near future with the addition of new InPTA data
and data collected with the low-frequency LOFAR telescope. We also compare our results for different high-precision timing
datasets (EPTA+InPTA, PPTA, and LOFAR) of three millisecond pulsars (J0030+0451, J1022+1001, J2145−0450), and find
that the solar-wind amplitudes are generally consistent for any individual pulsar, but they can vary from pulsar to pulsar. Finally,
we compare our results with those of an independent method on the same LOFAR data of the three millisecond pulsars. We find
that differences between the results of the two methods can be mainly attributed to the modelling of dispersion variations in the
interstellar medium, rather than the solar wind modelling.

Key words: (Sun:) solar wind − pulsars: general − pulsars: individual: PSR J0030+0451, PSR J1022+1001, PSR J2145−0450
− methods: data analysis
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1 INTRODUCTION

Pulsar timing consists in recording the times of arrival (ToAs) of
highly stable pulses emitted by pulsars, which are then compared
with predictions from long term models. These models take into
account the pulsar’s behaviour, as well as factors such as astrometric
effects (e.g. spin frequency and its derivatives, position, etc.), binary
companions, or the dispersive delays induced by the ionised medium
through which the pulsar signal propagates (for more details see e.g.
Edwards et al. 2006). The left-over signal after subtracting the model
from the observed ToAs is often referred to as ‘timing residuals’, or
just ‘residuals’, and is expected to be only white noise if the model
is optimal.

Due to the high stability of pulsar rotation, and particularly of
the population of recycled millisecond pulsars (MSPs; Backer et al.
1982), high-precision pulsar timing constitutes a great tool for a
large variety of scientific investigations (see e.g. Manchester 2017).
Huge efforts are currently being concentrated on gravitational wave
searches using decades of observations of a large sample of MSPs
with multiple telescopes, referred to as Pulsar Timing Arrays (PTAs;
e.g. Tiburzi 2018). PTA experiments are expected to be primarily sen-
sitive to the gravitational wave background (GWB) in the nanohertz-
frequency regime, most likely originating from supermassive black
hole binary mergers (e.g. Burke-Spolaor et al. 2019). Three major
collaborations have historically been involved in the search for the
GWB, namely the European Pulsar Timing Array (EPTA; Desvignes
et al. 2016), the Parkes Pulsar Timing Array (PPTA; Manchester et al.
2013), and the North American Nanohertz Observatory for Gravita-
tional Waves (NANOGrav; Demorest et al. 2013); these are also the
founding members of the International Pulsar Timing Array (IPTA;
Verbiest et al. 2016) collaboration, having recently been joined by the
Indian Pulsar Timing Array (InPTA; Joshi et al. 2022). Recently, the
three aforementioned collaborations (with the InPTA working along
the EPTA) all coherently reported marginal evidence for a GWB sig-
nal (EPTA Collaboration et al. 2023c; Reardon et al. 2023; Agazie
et al. 2023). While neither of these currently meet the requirements
for being defined as a clear detection, further investigations into the
analysis methods, as well as the upcoming combined IPTA dataset,
are expected to improve on these GWB measurements.

The signal induced by the GWB in pulsar data is expected to
be extremely weak, even when correlated over tens of pulsars (e.g.
Siemens et al. 2013; Janssen et al. 2015). Therefore, other effects in
pulsar timing data must be carefully considered, as they can obscure,
or even mimic, a GWB signal (Tiburzi et al. 2016). One of the
strongest sources of ‘noise’ in this context are the dispersive delays
introduced in the ToAs by the interaction between the radio waves
and the ionised medium through which the pulsar signal propagates
on its way to the observer (Lentati et al. 2016). These dispersive
delays are modelled as having an inverse-squared dependency with
the observing frequency, 𝑓obs. The dispersive delay on a ToA is
expressed as

𝑡D =
1

𝐾D 𝑓
2
obs

∫
ℓ

𝑛edℓ =
1

𝐾D 𝑓
2
obs

DM, (1)

where𝐾D ≃ 2.41×10−4 MHz−2 pc cm−3 s−1 is a dispersion constant
(Manchester & Taylor 1972), and the dispersion measure DM is
defined as the free electron number density, 𝑛e, integrated over the
line of sight to the pulsar, ℓ; the DM is usually quoted in pc cm−3. As
illustrated by Eq. 1, the dispersion delay is stronger at lower observing
frequencies. The noise due to the dispersion delay is dominated by
the effects of the turbulent and inhomogeneous ionised interstellar
medium (IISM) along the line-of-sight, which can induce fluctuations

in the DM of order 10−3 pc cm−3 over a timescale of years (e.g.
Keith et al. 2013; Jones et al. 2017; Donner et al. 2020). Several
possible mitigating strategies for the turbulent IISM contribution are
used throughout the PTAs, such as modelling it as a chromatic red-
noise Gaussian process in Fourier space (e.g. Lentati et al. 2014), or
using a time-domain piecewise binned model (e.g. the DMX model;
NANOGrav Collaboration et al. 2015).

For pulsars with a line-of-sight that passes close to the Sun, the de-
lay induced by the propagation through the solar wind (SW hereafter)
is also noticeable in the current quality of pulsar data, inducing DM
fluctuations as high as 10−3–10−4 pc cm−3. Furthermore, Tiburzi
et al. (2016) showed that, if not carefully considered, the influence
of the SW may mimic a GWB signal in PTA-like data, as the SW
can create spatial correlations among the pulsars. To account for the
influence of the SW in pulsar timing data, PTA collaborations gener-
ally use a simple ‘spherical SW’ model, based on the assumption that
the number density of ionised electrons varies under a spherically
symmetric law away from the Sun, according to the inverse square
law (Edwards et al. 2006), i.e.

𝑛e (𝒓) = 𝑁SW
e

(
1 au
|𝒓 |

)2
, (2)

where 𝒓 is the position vector from the Sun to the point of interest
affected by the SW, generally given in astronomical units (au); 𝑁SW

e
is the amplitude of the number density at 1 au, and we generally refer
to it as the ‘amplitude of the SW’ in this work. Under the spherical
SW assumption, this amplitude 𝑁SW

e is space invariant (does not
depend on the vector 𝒓); thus integrating the number density as per
Eq. 2 over the line-of-sight gives the DM contribution as (e.g. You
et al. 2007)

DMSW
sph ≃ 4.85 × 10−6

(
𝑁SW

e
cm−3

) (
𝜋 − 𝜃
sin 𝜃

)
pc cm−3, (3)

where 𝜃 is the solar elongation angle of the pulsar, i.e. the pulsar-
observer-Sun angle, which is minimum at the solar conjunction of
the pulsar. Replacing the DM given as per Eq. 3 into Eq. 1 gives the
time delay of a ToA, due to a spherical SW, which we factorise as

𝑡SW
D =

1
𝐾D 𝑓

2
obs

𝑁SW
e 𝑆𝜃 , (4)

where we have summarised some of the physical constants and geo-
metrical dependence in the variable

𝑆𝜃 ≃ 4.85 × 10−6
(
𝜋 − 𝜃
sin 𝜃

)
pc ≃

(
𝜋 − 𝜃
sin 𝜃

)
au. (5)

In the standard approach to mitigating the effect of the SW, the
amplitude 𝑁SW

e in the described spherically symmetric model is
constant in time; in e.g. the recent EPTA dataset (EPTA Collaboration
et al. 2023a), this amplitude is generally kept fixed at 7.9 cm−3, as
per Madison et al. (2019). Furthermore, data taken when the pulsar
appears< 5◦ away from the Sun in the sky are considered to be poorly
described by this simple model and commonly removed (Verbiest
et al. 2016).

No model has yet been developed that fully captures the observed
impact of the SW, especially on low-frequency pulsar data, as shown
by e.g. Tiburzi et al. (2019). You et al. (2007) proposed a model based
on the coronal magnetograms derived by the Wilcox Solar Observa-
tory, and the bi-modal nature of the SW, considering the contribu-
tions from both a slow (equatorial) and a fast (polar) solar stream
(e.g. Coles 1996). You et al. (2007) argued that this two-phase model
performed better than the spherical SW for their PPTA observations.
However, Tiburzi et al. (2019) found that the spherically symmetric
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A Gaussian-processes approach to fitting for time-variable spherical solar wind 3

SW model with time-dependent amplitude performed systematically
better than the two-phase model in removing the SW contribution
in their longer-span and lower-frequency LOFAR data. The apparent
discrepancy between these two analyses is thought to be due to either
(i) the increased DM precision of the lower observing frequency of
the data used in Tiburzi et al. (2019) as compared with that of You
et al. (2007); or (ii) a difference in performance of the two-phase
model with the heliospheric latitude of the pulsar, since the two
papers investigated data from different pulsars.

A clear improvement to current general models is to allow the
amplitude of the SW to vary each year (i.e. be time-variable) in
the spherically symmetric model. Tiburzi et al. (2021), hereafter
referred to as T21, have already shown this to be beneficial and
more adequate for low-frequency data taken with the European
interferometer LOFAR (Van Haarlem et al. 2013). T21 fit a
time-variable spherical SW to each pulsar, and a clear temporal
variation was observed in several of the analysed pulsars. Note that
previously, Madison et al. (2019) had reported little evidence for
long-term variations in the SW density using the NANOGrav 11-yr
dataset.

In this work, we present a Gaussian-process piecewise approach,
implemented as part of the pulsar analysis toolkit run_enterprise
(Keith et al. 2022), which allows for an automatic time-variable
spherical SW fitting in a Bayesian framework, simultaneously with
all the other pulsar timing parameters and noise models. Recently,
Hazboun et al. (2022) developed several comprehensive Bayesian
algorithms that allow fitting for SW across several pulsars simultane-
ously. They used a uniform-prior piecewise model that globally fits
for a spherical SW amplitude in each temporal bin (of e.g. 3 months)
of the data, also exploring variations in the exponent of the 1/𝑟2 law
of Eq. 2; further, they also explore a model based on globally fitting
for continuous Fourier-basis, time-dependent variations in the SW.
In this work, we present a different approach to SW Bayesian fitting.
We use a simple piecewise algorithm based on a Gaussian process
with a Normal-distribution prior to fit for a time-variable amplitude
spherical SW in each pulsar individually. The choice of prior allows
us to marginalise over the individual yearly amplitudes, reducing the
problem to a single additional hyperparameter in the width of the
Gaussian prior. This, together with the mathematical implementa-
tion that keeps the parameter estimation algebraically linear, makes
any additional computational cost negligible.

This article is structured as follows: in Section 2, the main prop-
erties of the datasets are summarised; in Section 3 we describe the
algorithm implemented in our pipeline and simulations; in Section 4
the results of our analysis are discussed; and in Section 5 we sum-
marise our conclusions.

2 DATASETS

For this work, we selected three millisecond pulsars which pass
in close proximity (≤ 5.31◦) to the Sun during conjunction, and
are included in the study by T21. These are PSRs J0030+0451,
J1022+1001, and J2145−0450, and they are present both in LO-
FAR and PTA observations. Here we consider data from the recent
EPTA+InPTA data combination (EPTA Collaboration et al. 2023a;
Tarafdar et al. 2022), as well as from the Second Data Release (DR2)
of PPTA (Reardon et al. 2021). Table 1 shows the ecliptic latitudes
of the three pulsars of interest, equivalent to the sky-angle between
the pulsar and the Sun at conjunction. It also shows which data were
available for each pulsar. The datasets, each with different frequency

Table 1. Ecliptic latitudes (elat) and summary of which datasets are available
for the three pulsars used in this work; a tick (✓) signifies the data are
available, whereas a cross (✗) means they are not. By EPTA availability we
refer specifically to the Data Release 2 dataset. The EPTA and InPTA data
are combined for PSR J1022+1001.

PSR elat [◦] EPTA + InPTA PPTA LOFAR
J0030+0451 1.45 ✓ ✗ ✗ ✓

J1022+1001 -0.06 ✓ ✓ ✓ ✓

J2145−0450 5.31 ✗ ✓ ✓ ✓

coverage and properties (discussed in more detail in Sections 2.1-
2.3), are used separately to construct simulations, and thus assess
their sensitivity to the SW. Further, the results of our pipeline are
compared across all the datasets, as well as with the independent
measurements in T21.

2.1 EPTA (DR2) + InPTA (DR1) combined dataset

The Second Data Release (DR2) of the EPTA collaboration is used
in this work, augmented with the First Data Release (DR1) of the
InPTA (EPTA Collaboration et al. 2023a; Tarafdar et al. 2022). Here,
we refer to this combined dataset as EPTA+InPTA.

There are five European radio telescopes which provided data
for the EPTA DR2 dataset, namely: the 100-m Effelsberg Telescope
(in Germany), Jodrell Bank Observatory’s 76-m Lovell Telescope (in
the United Kingdom), Nançay Radio Observatory’s large Radio Tele-
scope (NRT; in France), the Astronomical Observatory of Cagliari’s
64-m Sardinia Radio Telescope (SRT; in Italy), and the Westerbork
Synthesis Radio Telescope (WSRT; in the Netherlands). Moreover,
these telescopes were also used collectively, on a monthly cadence, as
the Large European Array for Pulsars (LEAP), equivalent to a 194-m
sixth interferometric telescope in the EPTA (Bassa et al. 2016). The
EPTA DR2 dataset contains observations of 25 millisecond pulsars,
up to 25 years in length. The large majority of these observations
were taken at frequencies in the ‘L-band’ (1–2 GHz) and above, with
bandwidths of up to 512 MHz, while there were a limited number
of observations centred at lower frequencies of 350 MHz. For a de-
tailed description of the properties of the EPTA DR2 telescopes and
observations, see Chen et al. (2021), and EPTA Collaboration et al.
(2023a).

The InPTA dataset includes observations taken with the upgraded
Giant Meterwave Radio Telescope (uGMRT; in India) over a period
of 3.5 years (for a detailed description see Tarafdar et al. 2022). The
uGMRT took simultaneous observations at two frequency bands,
referred to as ‘B3’ (300–500 MHz), and ‘B5’ (1260–1460 MHz),
respectively. These simultaneous observations at different frequen-
cies, as well as the wide bandwidths, make the InPTA observations
extremely valuable for measuring the DM influence in pulsar data,
including the effect of the SW.

2.2 LOFAR dataset

For PSRs J0030+0451 and J2145−0750, the same LOFAR datasets
as in T21 are used; while for PSR J1022+1001, the T21 dataset was
supplemented with the most recent ∼ 2 years of observations for this
work. These data were taken with subsets of the International LOFAR
telescope (Van Haarlem et al. 2013; Stappers et al. 2011), namely six
of the German stations, the Swedish station, and the LOFAR Core in
the Netherlands. More than 100 pulsars are regularly observed using
this setup. The extremely low observing frequency of the LOFAR
instruments, covering a range of roughly 110–190 MHz, makes this

MNRAS 000, 1–16 (2024)
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telescope incredibly well-suited for studying chromatic effects on
pulsar data such as the SW. For more details on the LOFAR datasets,
see e.g. Porayko et al. (2019), Donner et al. (2019), Tiburzi et al.
(2019).

2.3 PPTA (DR2) dataset

We also make use of the open-access PPTA DR2 timing data (Rear-
don et al. 2021) to validate and compare with the EPTA+InPTA
results. This PPTA dataset is described in detail in Kerr et al. (2020)
and was taken with the Australian 64-m Murriyang Parkes Radio
Telescope. It spans ∼14 years (2004–2018) of observations of 26
millisecond pulsars at three frequency bands, roughly centred at
700, 1400 and 3100 MHz. The observing cadence for each pulsar
was approximately two-three weeks. The ToAs are available in both
sub-banded and band-averaged form, of which we used the latter
in this work, for simplicity. In particular, the PPTA DR2 data for
PSRs J1022+1001 and J2145−0450 were used to compare SW re-
sults with those of the LOFAR and EPTA+InPTA ToAs. The data of
PSR J2145−0450 was also supplemented with archival observations
of the Parkes telescope since 1994, as published in Manchester et al.
(2013); these were however much less sensitive to the SW.

3 METHOD

3.1 Modelling

3.1.1 Timing model

In this work, we use open-source pulsar software, namely the
Bayesian fitting software enterprise (Ellis et al. 2019), which has
been integrated into the pulsar analysis toolkit run_enterprise
(Keith et al. 2022), together with the pulsar timing software tempo2
(Edwards et al. 2006).

The Bayesian method allows for simultaneous fitting of determin-
istic pulsar parameters (such as the spin frequency and its deriva-
tives, position, known binary companions, etc.), which are generally
marginalised over, unless of particular interest; and of parameters
characterising stochastic timing noise. In this framework, white noise
in timing data is described by fitting the parameters ‘EFAC’ and
‘EQUAD’ which can rescale the ToA error bars, and account for ad-
ditional white noise, respectively (Edwards et al. 2006). Red timing
noise is described using Fourier-domain Gaussian-process modelling
as described in Lentati et al. (2014). The sinusoidal Fourier-basis
components at each Fourier frequency 𝑓 are multiplied by a set of
amplitudes described by a Gaussian process; we refer to the covari-
ance of these amplitudes as the power spectral density. In our fitting,
we model the power spectral density prior as a power-law, as often
used in the pulsar community (Lentati et al. 2014; Van Haasteren
et al. 2011). However, for this study we choose to characterise this
power-law by an amplitude at a reference frequency of 0.1 yr−1,
different from the usual choice of 1 yr−1; this choice ensures the
amplitude is more robust against the yearly periodicity of the solar
wind. We therefore characterise the power spectral density model as

𝑃( 𝑓 ) = A
(

𝑓

0.1 yr−1

)−𝛾
yr3, (6)

where A and 𝛾 correspond to the Bayesian hyperparameters charac-
terising the red timing noise, while the individual Gaussian-process
amplitudes are marginalised over. This is used for both achromatic
red timing noise, and chromatic DM noise, which has an inverse-
square dependence on observing frequency, as per Eq. 1. For the

former, the power amplitude is often written as A ≡ 𝐴2
red/(12𝜋2),

and log10 (𝐴red) is chosen as the fitting hyperparameter together
with the exponent 𝛾 ≡ 𝛾red. For the DM noise, the Fourier compo-
nents are also proportional to the square-inverse of the observing
frequency 𝑓obs; the prior power amplitude is expressed as A≡ 𝐴2

DM,
and log10 (𝐴DM) and 𝛾≡𝛾DM are the fitting hyperparameters.

3.1.2 Solar wind fitting using Gaussian processes

We present an implementation of time-variable amplitude spherical
SW modelling which has been incorporated in the run_enterprise
package and can therefore be included in the simultaneous Bayesian
fitting of pulsar timing data, together with the other deterministic
pulsar parameters, and the white and red noise parameters.

An approach based on Gaussian processes is used, similar in con-
cept to that used to describe the red noise model as presented in
Lentati et al. (2014). The SW signal is expressed, in the time do-
main, as the sum of independent components, which correspond to
the unit-amplitude spherical SW for each solar conjunction, multi-
plied by a set of amplitudes equivalent to the quantity 𝑁SW

e from
Eq. 3. We choose a set of simple piecewise linear (‘triangular’) func-
tions, with centre points at the solar conjunction times of the pulsar,
to mathematically represent each yearly SW variation; this follows
the idea presented in Keith et al. (2013) for modelling DM noise in
general. In practice, the SW contribution to the vector of ToAs is
written as

𝒕sw = 𝒏V, (7)

where 𝒏 is a column vector containing the spherical SW amplitudes
equivalent to 𝑁SW

e for each of the 𝑁c solar conjunctions within the
data. V is a matrix of size (𝑁c × 𝑁t), where 𝑁t is the number of
ToAs, i.e. the size of the column vector 𝒕sw. We define an element of
the matrix V, such that

V𝑖𝑗 =
1

𝐾D 𝑓
2
obs

𝑆𝜃, 𝑗 Λ

(
𝑡𝑗 − 𝑇𝑖
1 yr

)
, (8)

where 𝑖 ∈ {1, . . . , 𝑁c} is the matrix row and 𝑗 ∈ {1, . . . , 𝑁t} the
column; 𝑆𝜃, 𝑗 is defined as per Eq. 5 for the solar elongation angle 𝜃𝑗
corresponding to the ToA 𝑡𝑗 .𝑇𝑖 is the time of the 𝑖th solar conjunction
in the data, and Λ is the triangular function, such that by definition

Λ(𝑞) =
{

1 − |𝑞 |, |𝑞 | < 1;
0, otherwise. (9)

Fig. 1 illustrates the steps in creating the SW components in this
model.

We assume the distribution of SW amplitudes to be characterised
by a Gaussian function, of mean value 𝑁0, and a standard deviation
𝜎sw. In practice, we therefore express the vector of amplitudes 𝒏 as
a sum

𝒏 = 𝑁01 + 𝜹𝒏, (10)

where 𝑁0 is the mean SW amplitude (i.e. the equivalent of the stan-
dard tempo2 parameter ‘NE_SW’), and 1 is an 𝑁c-point column
vector of ones. 𝜹𝒏 is therefore the column vector of SW amplitude
variations away from the mean. We assume the elements of 𝜹𝒏 to have
mean zero, and their variation with each solar conjunction to be char-
acterised by a Gaussian process, and therefore by a corresponding
covariance matrix. In this analysis, we use a simple constant-variance,
such that the covariance matrix of the SW amplitude variations 𝜹𝒏 is a
diagonal matrix with all diagonal elements equal to the variance 𝜎2

sw.
The quantity 𝜎sw therefore sets the prior for the amplitudes 𝜹𝒏, and is
a hyperparameter referred to as ‘SW_sigma’ in the fitting code, and in
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Figure 1. Graphical illustration of the mathematical representation in Eqs. 7–
9. The quantities in the top three plots (𝑆𝜃 ,Λ, and 𝑛) are multiplied to give the
DM (bottom plot). Note that we do not show the dependence on observing
frequency for simplicity, and DM = 𝐾D 𝑓

2
obs 𝒏V. Each colour represents a

different component, corresponding to each solar conjunction, 𝑇𝑖 . The data
points represent the ToAs 𝑡𝑗 .

the output parameter file. Note that one can also choose a different,
more complicated covariance informed by physical processes, e.g.
one that follows the 11-yr solar cycle. While this may be explored in
the future, we believe that the simple approach taken here is suited
for capturing the year-by-year variability in amplitude in the current
datasets.

Similarly to the approach taken in Fourier-basis red-noise fitting,
we marginalise over the Gaussian-process amplitudes 𝒏 and only
keep 𝜎sw as a Bayesian fitting hyperparameter. As this model keeps
the parameter estimation algebraically linear, including the additional
time-variable spherical SW model when fitting a pulsar dataset is
computationally inexpensive, as it only adds one extra hyperparam-
eter to the entire timing model. Furthermore, tempo2 can be used
after the Bayesian fit performed with the run_enterprise software
package to explicitly find the amplitudes of the spherical SW at each
solar conjunction, if of interest. This is done using the implemented
constraining of the least-squares fitting, which takes into account the
fitted 𝜎sw; for an explanation of how this works, see Appendix A in
Keith et al. (2013).

3.2 Simulations

3.2.1 General setup

To test the capabilities of the SW model presented in this work,
we created sets of simulated ToAs of both uniform and PTA-like
cadence. For all simulations, we started from a set of ‘idealised’
ToAs (characterised by zero residuals) for a chosen pulsar, and added
realistic levels of noise, informed by typical values in the observations
available. This was done using tempo2 plugins, which generate the
types of signal discussed in Section 3.1, namely:

• addGaussian to add white noise;
• addRedNoise to add achromatic red noise, characterised by a

power-law prior of user-specified amplitude and slope;
• addDmVar to add DM noise, also characterised by a power-law

prior of user-specified amplitude and slope;
• addArbitraryDM to add the DM influence from a simulated

SW (see Section 3.2.2 for more details on simulating realistic SW
DM series).

Using the above types of signals, multiple ToA sets were produced,
serving various testing purposes which we describe in Section 4.
Multiple Gaussian-process realisations were created for the same
characteristic hyperparameters, such that we were also able to check
the robustness of our pipeline with repeat measurements.

3.2.2 Simulating the solar wind

We simulate the SW influence on a pulsar as a DM time-series that
is then added to the total simulated ToAs using the tempo2 plugin
addArbitraryDM. We consider the variation with respect to the
unit-amplitude (𝑁SW

e = 1) spherical SW, i.e. the ratio of the DM
series to 𝑆𝜃 , and sample it as a Gaussian process characterised by an
exponential-squared kernel (see e.g. Rasmussen & Williams 2006),
of the form

𝑘 (𝜏) = 𝐴𝑘 exp
(
− 𝜏2

2𝜆2

)
, (11)

where 𝜏 represents the ‘distance’ between two observing times, 𝐴𝑘
is the kernel amplitude, and 𝜆 is the metric, i.e. the scale of the cor-
relation within the signal described by this kernel. The exponential-
squared kernel is a somewhat arbitrary choice, but this simple sta-
tionary kernel is widely used and well-suited for describing smooth
functions characterised by a single overall metric. In practice, we
choose 𝜆 = 400 d; the exact value of this is not strictly relevant, but
a value slightly above 1 yr ensures that the simulated signal at each
solar conjunction is roughly independent of that at the other solar
conjunctions.

The amplitude 𝐴𝑘 broadly characterises the overall variation away
from the mean of the signal. To find a realistic value of 𝐴𝑘 , we use
the SW DM series of PSR J0034−0534 as presented in Fig. 3 of
T21. We refer the reader to Tiburzi et al. (2019, 2021) for details on
how this was obtained. In short, using 5 yr of LOFAR observations,
the total DM contribution at each average epoch was estimated. The
contribution of the IISM to this DM series was then modelled by a
cubic spline with each piece corresponding to a solar conjunction; the
SW contribution was simultaneously modelled assuming a spherical
SW as in Eq. 3, while the amplitude was allowed to vary year-by-year.
In this work, the DM series after subtracting the cubic spline of the
IISM model was used, and we refer to this as DMSW

Lo . We define a time
series 𝑦0 ≡ DMSW

Lo /𝑆𝜃 , such that 𝑦0 only encompasses the estimated
variation of the SW with respect to a spherical SW of time-invariant,
unit-amplitude. Note that at a time 𝑇𝑖 of the 𝑖th solar conjunction in
the data, the value of 𝑦0 is equivalent to the SW amplitude 𝑛𝑖 . The
time series 𝑦0 is then assumed to be described by a smooth function,
characterised by an exponential-squared kernel as in Eq. 11, of metric
𝜆 = 400 d. To find the representative amplitude 𝐴𝑘 , we employ the
python library george to fit this exponential-squared kernel to the
𝑦0 series, and find a maximum-likelihood value of 𝐴𝑘 ≈ 3.7 cm−3.

With the fully parameterised exponential-squared kernel, we are
able to draw as many new samples of time-series 𝑦 (of the same type
as 𝑦0) as needed, for any pulsar with an available ephemeris. The
unit-amplitude spherical SW (i.e. 𝑆𝜃 ) of any known pulsar is easily
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Figure 2. An example of two realisations of simulated SW using an
exponential-squared kernel with amplitude informed by real data. The data
points are at uniformly sampled ToA values. The top plot represents the sim-
ulated series 𝑦, which is then multiplied by the pulsar-specific geometrical
factor 𝑆𝜃 to create a DM series, shown in the bottom plot.

obtainable from the tempo2 plugin ‘general2’ using the pulsar’s
ephemeris, such that samples of SW DM series for any known pulsar
are simulated as DMSW

sim ≡ 𝑦𝑆𝜃 . Fig. 2 shows an example of two
simulated SW DM series obtained in this way. Note that because our
method allows the spherical SW model to vary in time, the resulting
simulated DM series is not strictly symmetric with respect to the
solar conjunction peaks. The sampled series 𝑦 is not a discrete set
of amplitudes for each solar conjunction, but rather a continuous
function that varies with each observation time in a way informed by
real data.

4 RESULTS & DISCUSSION

In this section, we present and discuss the results of our tests of the
pipeline and of the sensitivity of available data to SW variations. In
all cases, we use the software package run_enterprise to simulta-
neously fit for the standard pulsar deterministic parameters, as well
as achromatic and DM red noise with power-law priors. The de-
terministic parameters are marginalised over, and recovered later if
necessary using least-squares fitting in tempo2; the hyperparameters
for the red-noise power-law priors (log10 (𝐴red), 𝛾red, log10 (𝐴DM),
𝛾DM), and the square-root of the variance in SW yearly amplitudes
(𝜎sw) are sampled using a Markov Chain Monte Carlo technique
through the python package emcee (Foreman-Mackey et al. 2013).
In this context, we refer to ‘time-invariant’ SW fitting as only fitting
for an overall mean amplitude 𝑁0 (i.e. ‘NE_SW’ in tempo2) of a
spherical SW model. This is in contrast to the model described in
Section 3.1.2, in which we fit for a ‘time-variable’ spherical SW.
In practice, this time-variable spherical SW is described by yearly
amplitude variations 𝜹𝒏 away from an overall mean amplitude 𝑁0,
and we fit for the 𝜹𝒏 elements, as well as for 𝑁0.

4.1 Testing the solar wind fitting code

To initially probe the capabilities of our pipeline, we simulate a 20-yr
long set of uniform, high-cadence (one observation every 10 days)
ToAs of PSR J0034−0534. This testing dataset includes simultaneous
observations of three common frequency bands, centred at 300 MHz,
1440 MHz and 2400 MHz, with an rms of 1µs on each ToA. While

these data are ‘optimistic’ compared with typical pulsar datasets,
they provide a useful first test to gain insight into the performance of
the SW fitting pipeline. To create the simulated dataset, we start from
idealised ToAs (of zero residuals), and ‘inject’ white noise variations
at the 1-µs level, Gaussian-process achromatic red noise and DM
noise with known power-law priors informed by typical real levels of
noise seen in the observations, as well as a realistic time-variable SW,
using the method described in Section 3.2.2. Multiple realisations of
the noise and SW Gaussian-process samples are used for robustness
and repeat-measurement checks on the results of the pipeline.

In this section, we aim to explore the proficiency of our pipeline.
Firstly, the injected signals are compared to the recovered ones us-
ing either the time-invariant or the time-variable SW method. The
comparison of the results of the two fitting methods is discussed in
Section 4.1.1. Secondly, we use the measurements of 2000 SW am-
plitudes in order to validate the size of the uncertainties produced by
our pipeline; this is described in Section 4.1.2.

4.1.1 Comparison between time-invariant and time-variable fitting

One of the benefits of using simulations is that the quantity of red
noise in the pulsar ToAs is known, and we can therefore compare the
properties of the recovered signals to those of the injected ones. Here,
we run both the time-invariant and the time-variable fitting pipelines
on the same set of simulated ToAs, which include both achromatic
and DM red noise.

In general, we expect the recovered DM power-law to be affected
by whether the SW influence is well modelled. Specifically, if only
a time-invariant mean amplitude is used to model the SW, any year-
by-year variation is likely to be absorbed by the DM noise model
instead. This leads to excess power in the measured DM noise at high
Fourier frequencies (at 1 yr−1 and further harmonics), which in turn
causes the power-law to appear flatter than the real power-law process.
Therefore, unmodelled SW influences may bias the interpretation of
the DM spectrum. Furthermore, this could also bias the estimation of
other timing parameters, and especially their uncertainties, as the DM
power-law would not accurately represent the actual noise present in
the data.

To investigate the performance of our pipeline compared to the
time-invariant fitting in this context, we inspect the low-frequency
(300 MHz) residuals after subtracting the maximum-likelihood SW
contribution and fitted achromatic noise. Fig. 3 shows these residuals,
overlaid with the injected IISM DM variations. When fitting only for
a time-invariant SW, we can see additional ‘spikes’ in the residuals
around the solar conjunction times, a result of absorbing unmodelled
SW into the DM variations, whilst the time-variable SW fitting is
fully consistent with the injected IISM contribution.

The average power spectral densities of these recovered DM influ-
ences, as well as the injected power-law prior, are shown in Fig. 4.
As expected, in the time-invariant SW fit, the absorbed SW influence
creates additional power at high frequencies, and therefore flattens
the power-law shape compared to the injected prior; while the time-
variable fit recovers the injected power-law well. The shape of the
average power spectral density in the time-invariant fit shows the
effect of the SW 1/yr-frequency and its harmonics, modulated by
subtracting a mean-amplitude SW, which creates the observed dips
of smaller width.

The injected and recovered red noise hyperparameters for 15 re-
alisations of the simulation are shown in Fig. 5, as defined in the
power-law in Eq. 6. The achromatic red noise hyperparameters are in
agreement with the injected values and equally well recovered in both
cases; this may be expected, as the SW influence is an intrinsically
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Figure 3. A single realisation of simulated residuals for the 300 MHz band,
after subtracting the fitted SW variations and achromatic red noise when using
the time-invariant (left) and the time-variable (right) SW amplitude model.
The solid black line shows the delays at 300 MHz for the injected IISM DM
variations. Solar conjunction times are shown by the vertical gray lines.
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Figure 4. The power spectral density (PSD) against Fourier frequency of
the recovered DM is shown, averaged over 15 realisations of our simulated
data, after fitting for a time-invariant (red) and time-variable (green) SW. The
grey dashed line represents the power-law prior of the injected DM Gaussian-
process signal.

chromatic effect. The time-variable SW pipeline also recovers the
DM power-law well, though this is not the case for the time-invariant
SW model. Notably the time-invariant model leads to a spectral ex-
ponent that is significantly flatter, with the recovered slope being
of order 10-sigma smaller than the ‘true’ value. This appears to be
a systematic rather than statistical effect, i.e. not dependent on the
specific Gaussian-process sample used in the simulation, but rather
due to the fitting model. The recovered SW model from each fitting
method can also be compared to the injected SW influence. Fig. 6
shows this for the DM series (top panel), as well as the spherical SW
amplitude 𝑁SW

e (bottom panel). The modelled solar-conjunction am-
plitudes estimated by our pipeline follow the injected SW well, being
within 2-sigma of all injected values. The time-invariant fit (shown
only in the bottom panel of Fig. 6) only models the SW influence
with a constant-in-time amplitude, and the uncertainty in the mean
amplitude recovered is too small to account for the yearly variation.

We also consider the timing residuals after removing all the mod-
elled signals, including the achromatic red noise and DM noise; these
are shown in Fig. 7. Ideally these fully subtracted residuals should
be as close to pure uncorrelated noise as possible. The size of this
left-over noise, which can be characterised by its root-mean-square
(rms), is also relevant in general when searching for signals in the data
—such as, for example, the search for pulsar binary companions, or
a GWB signature, for which the lower the noise the better the chance
of detection. Of the two fitting modes used in this test, the yearly
variable SW appears to be a better model, as strongly supported by
the Bayesian evidences, which yield a natural log-Bayes factor of 160
in favour of the time-variable pipeline; the Bayesian evidences are
computed using the nested-sampler dynesty (Speagle 2020). This
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Figure 5. Measurements obtained from 15 realisations of the uniform simu-
lation as described in Section 4.1.1 are shown. Specifically, these plots show
the power-law log-amplitude (log 𝐴) and slope (𝛾) for the DM (top plots) and
achromatic red noise (bottom plots). The error bars represent one standard
deviation. The vertical dashed lines show the ‘true’ values used in the simu-
lations. In each plot, 15 realisations of the simulation are shown for each of
the two fitting modes: the top red circle points represent the measurements
obtained from the time-invariant SW fit; while the bottom green squares cor-
respond to the time-variable SW fitting as described in this work.
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Figure 6. The injected and recovered SW contributions are compared. The top
plot represents the DM series, where the black points show the injected signal,
as well as illustrate the cadence of the ToAs; while the green data points are
the recovered yearly amplitudes. The bottom plot represents the above DM
divided by the geometrical pulsar factor 𝑆𝜃 . The continuous horizontal lines
show the mean SW amplitude (𝑁0) fitted in each of the time-variable (green)
and time-invariant (red) model; the shaded region around these lines represent
the area within one standard deviation.

effect can also be seen in the fully subtracted residuals (Fig. 7), where
the residuals obtained using the time-variable SW fitting qualitatively
appear more ‘white’, lacking the unmodelled SW ‘spikes’. However,
note that the reduced-𝜒2 values of the two whitened time series are
indistinguishable (∼1), likely due to the large number of data points
not at solar conjunctions. The level of white noise, quantified here
by the rms, is better by ∼ 1µs for the residuals obtained from the
time-variable fitting than those from the time-invariant fitting.

4.1.2 Recovered uncertainties

To check the robustness of our results and their uncertainties, 100
sets of ToAs are simulated, all with the same general properties as
the dataset used in Section 4.1.1. Each of these simulated datasets
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Figure 7. Post-fit residuals after subtracting the entire timing model, including
achromatic and DM red noise, are shown for both the time-invariant (left)
and time-variable (right) SW amplitude model. Only the data at the 300 MHz
observing frequency is shown for clarity, as it shows the largest difference
between the two models. The root-mean-square (rms) values for both the
300 MHz and the full data (‘all’) are also presented.

is created from different Gaussian-process realisations of the same
power-law prior achromatic red noise and DM noise, as well as
different samples of SW variations. The results of running these 100
independent datasets through our pipeline are consistent with the
findings in Section 4.1.1 with respect to the injected values.

The 2000 solar conjunctions available in total in the 100 datasets
are used to study the statistical properties of the estimated uncertain-
ties on the SW amplitudes. Each measurement of the SW amplitude
is normalised with respect to the injected value and the associated
uncertainty, such that the equivalent ‘standardised variable’ is com-
puted. The population of these standardised variables is expected to
be normally distributed, with a mean of zero and a standard deviation
of one, if the distribution of the measured variable is Gaussian. In
the case of a set of uncorrelated measurements, {𝑋𝑖}, assumed to be
Gaussian distributed, the standardised variable is simply defined as
(𝑋𝑖 − 𝜇)/𝜎 for each measurement, where 𝜇 and 𝜎 are the mean and
standard deviation of the Gaussian distribution. In this analysis, how-
ever, the measurements of SW amplitudes are correlated through the
mean 𝑁0, such that we use linear algebra to compute the standardised
variable values, as follows.

If 𝒏 is the column vector of the𝑚=2000 measured SW amplitudes,
and 𝒏inj is the equivalent column vector of injected SW amplitudes,
then we can write

𝒏 = 𝒏inj + 𝒆, (12)

where 𝒆 is a column vector representing the random variation of 𝒏
around 𝒏inj, expected to be normally distributed with mean zero and
variance according to the parameter covariance matrix C of the ele-
ments in 𝒏. If C is known, the vector 𝒆 = 𝒏 − 𝒏inj can be ‘whitened’
to disentangle the correlations between different amplitude measure-
ments, and therefore to obtain the column vector of standardised
variables 𝒛. This approach is similar to e.g. the whitening presented
in Coles et al. (2011) for general pulsar data, and we summarise
the steps below. Using the Cholesky decomposition, the parameter
covariance matrix is written as C = LL⊤, where L is a lower triangu-
lar matrix with a real and positive diagonal. The whitening process
then yields that the column vector of standardised variables can be
computed as

𝒛 = L−1𝒆 = L−1 (𝒏 − 𝒏inj). (13)

Recall that in our pipeline, we fit for the mean SW amplitude 𝑁0 and
the deviations from it at each solar conjunction, i.e. 𝜹𝒏 = 𝒏 − 𝑁01,
where in this case 1 is an𝑚-point column vector of ones. The relevant
column vector of measured SW parameters is therefore given by
the (𝑚+1)-point column vector 𝒑 = (𝑁0, 𝜹𝒏)⊤, with the associated
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Figure 8. The histogram of the standardised variable (𝑧) obtained from the
2000 recovered solar conjunction amplitude values and uncertainties. The
best-fit Gaussian distribution is also shown, with a mean of −0.05(2) and a
standard deviation of 1.09(2) .

parameter covariance matrix, C𝒑 . The parameter covariance matrix
𝑪𝒑 is a direct result of the timing analysis, and can be obtained
directly from tempo2 post-fitting. The whitening covariance matrix
C can then be computed as

C = MC𝒑M⊤, (14)

where M is the transformation matrix from the (𝑚+1)-point column
vector 𝒑 to the 𝑚-point column vector 𝒏, i.e. 𝒏 = M 𝒑, and therefore
has the shape

M =

©«
1 1 0 · · · 0
1 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 0 0 · · · 1

ª®®®®¬
, (15)

where the first column contains exclusively ‘1’s and the rest of the ma-
trix has the shape of an (𝑚 ×𝑚) identity matrix. Therefore, the stan-
dardised variable 𝒛 can be computed as per Eq. 13 using the Cholesky
decomposition of the parameter covariance matrix C, which can be
estimated from the output covariance matrix of the analysis, C𝒑 , us-
ing Eq. 14 and the shape of the transformation matrix, M, as given
in Eq. 15.

Fig. 8 shows a histogram of the (normalised) distribution of the
measurements of 𝒛 for the 2000 solar-conjunctions amplitudes fitted
with our pipeline. The distribution of this rescaled uncertainty is well
described by a Normal distribution, with an Anderson-Darling test
equivalent 𝑝-value of 0.55 (e.g. D’Agostino 1986). The Normal dis-
tribution has mean of −0.05(2) and a standard deviation of 1.09(2),
not meaningfully distinguishable from a unit-variance zero-mean
Normal distribution; we therefore conclude that our uncertainties are
well estimated within our assumptions.

4.2 Solar wind fitting in PTA-type simulations

In this section, we aim to establish whether PTA-like data are sen-
sitive to yearly variations in SW away from the mean amplitude.
For this purpose, EPTA+InPTA data of PSR J1022+1001 are used
as a basis for simulated ToAs which are then analysed through our
pipeline. We use the real cadence and uncertainties of this dataset
to simulate current observations (Section 4.2.1), as well as median
properties of relevant telescopes to approximate future observations
of the EPTA+InPTA (Section 4.2.2).
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Figure 9. Measurements obtained from 15 realisations of the (EPTA+InPTA)-
like simulation as described in Section 4.2.1 are shown. See the caption of
Fig. 5 for details.
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Figure 10. The injected and recovered SW contributions for the EPTA+InPTA
type simulations are compared. The black points show the injected signal,
as well as the cadence of the ToAs; while the green data points are the
recovered yearly amplitudes. The continuous horizontal lines show the mean
SW amplitude (𝑁0) fitted in each of the time-variable (green) and time-
invariant (red) model; the shaded region around these lines represent the area
within one standard deviation.

4.2.1 Current EPTA + InPTA observations

To simulate a set of ToAs with properties characteristic to
the EPTA+InPTA dataset, we start from the real data of PSR
J1022+1001, which shows the highest SW influence of the 25 pulsars
included in the EPTA DR2 (as this pulsar has the closest approach
to the Sun, having an ecliptic latitude of −0.06◦). Idealised ToAs (of
zero residuals) are created such that the observing cadence, frequen-
cies, and error bars of the real data are preserved into the simulated
ToAs. As before, realistic levels of noise and SW variations, based
on observations, are added to these idealised ToAs.

The comparison of the measured red-noise hyperparameters with
the injected values is presented in Fig. 9 for both the time-variable
and the time-invariant SW fitting. It can be seen that there is no
significant difference between the results of the two fitting modes
in this case, and that the best-fit values are mostly consistent with
the ‘true’ values within their uncertainties. However, the precision of
these measurements is, as one would expect, worse than in our pre-
vious simulations of uniform cadence and low-frequency, discussed
in Section 4.1.1.

Fig. 10 shows the fitted SW amplitudes through our pipeline, com-
pared to the injected Gaussian process sample. While our results are
generally consistent with the injected values, the uncertainties are
large enough that the results for this dataset are also consistent with a
constant-in-time SW. This outcome is also confirmed through an ex-
amination of the residuals after subtracting both the time-variable fit-

Table 2. The properties of the uniform-cadence simulations based on median
real-data values.

observing # freq. freq. range cadence rms
system bands [MHz] [d] [µs]
LEAP 1 1440 30 0.25

uGMRT (B3) 32 300−500 12 7
uGMRT (B5) 4 1260−1460 12 22

ting model and the time-invariant model, which reveal no significant
difference between the properties of the two: the reduced-𝜒2 ≃ 0.97
in both cases; while the rms values are 1.37µs and 1.33µs for the
time-invariant and time-variable fitting, respectively.

We therefore conclude that the current EPTA+InPTA dataset is
not sensitive enough to measure yearly changes in the SW ampli-
tude. However, we also note that there is no noticeable disadvantage
of including this additional model in the fitting, as it adds no signif-
icant time to the computational run, nor does it increase the overall
left-over white noise level. Moreover, when there is not sufficient
data around a solar conjunction to measure the variation in SW am-
plitude, the total amplitude value defaults to the mean (as can be
seen especially in the early data in Fig. 10). The lack of sensitivity to
measuring SW changes of even the more recent EPTA+InPTA data
is indicative of the small number of observations at low frequencies
(≲ 1000 MHz) —where the SW influence is larger and therefore
easier to quantify -, as well as of the relatively small fractional band-
widths of the observations. However, this is expected to change in the
future, as more uGMRT (InPTA) data, which includes high-quality
simultaneous observations at low frequencies (∼ 400 MHz), is com-
bined into the EPTA dataset. Note that the current data combination,
as used in the simulations in this section, includes some InPTA data,
particularly around the solar conjunction around MJD 58360; these
InPTA observations are indeed seen to have a plausibly beneficial ef-
fect on SW amplitude fitting for that year. Furthermore, the upcoming
inclusion of the high-cadence and very low-frequency LOFAR data
into the EPTA dataset will unlock next-level sensitivity to the SW.

4.2.2 Simulated ‘future’ EPTA+InPTA observations

With the results of the realistic (EPTA+InPTA)-like simulations in
mind (as presented in Section 4.2.1), we aim to investigate the sensi-
tivity of this dataset after 10 years of observations at the current ob-
serving setup. For this purpose, we create sets of simulations based on
the median of recent properties of the LEAP observing system (which
is the most sensitive L-band ‘observatory’ in the EPTA dataset), and
on the median of recent properties of uGMRT observations. The
properties of these simulated observations are summarised in Ta-
ble 2, showing the number of frequency sub-bands for each observing
system, the total frequency range, the (uniform) observing cadence,
and the (uniform) rms characterising the system white noise. Note
that the observations with the two uGMRT frequency bands (B3 and
B5) are simultaneous, which is particularly useful for studying chro-
matic effects. Uniform-cadence observations are used in this case for
simplicity; while the sensitivity of any pulsar data to the SW indeed
should depend on the density of observations close to its solar con-
junction, a detailed study on how this cadence affects measurements
and on determining the best observing strategy is beyond the scope
of the current work, and is left as a future investigation.

Here, we consider the improvement of the noise budget of the
observations when using the time-variable amplitude SW fitting in-
stead of the time-invariant SW fitting. Fig. 11 shows the residuals
in both cases, after subtracting all the fitted signals, including the

MNRAS 000, 1–16 (2024)



10 I. C. Niţu et al.

−100

−50

0

50

100

R
es

id
u

al
s

(µ
s)

Wrms = 8.795 us

time-invariant fit
Wrms = 7.524 us

time-variable fit

60500 61500 62500 63500
MJD

−6

−3

0

3

6

R
es

id
u

al
s

(µ
s)

Wrms = 1.153 us

60500 61500 62500 63500
MJD

Wrms = 0.997 us

postTN res, uGMRT postTN res, LEAP
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those on the right correspond to the time-variable fit. The top plots show the
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Figure 12. The data shown in the top plots is similar to the LEAP residuals
shown in the bottom plots of Fig. 11, but the residuals are plotted against
solar angle, i.e. the sky distance between the pulsar line-of-sight and the Sun.
Again, the plots on the left correspond to the time-invariant SW amplitude
fit, while the plots on the right show the results of the time-variable fit. The
top plots show the residuals for every individual data point, while the bottom
plots show the rms of these residuals in bins of 5◦ solar angle. Of particular
interest are the points at low solar angle, i.e. where the pulsar is close to solar
conjunction and the SW influence is the largest.

red noise processes. The time-variable fit generally performs better
in whitening the pulsar ToAs. Qualitatively, there are obvious sig-
natures of the SW that are not removed in the time-invariant case,
particularly near the solar conjunction close to MJD 62740, visible
both in low-frequency uGMRT data and, to a lesser extent, in L-
band LEAP observations. Quantitatively, while the reduced-𝜒2 ≃ 1
in both cases as before, the overall left-over noise level is reduced
by using our fitting compared to the time-invariant mean: for the full
simulated dataset, the rms is reduced by nearly 1.3µs; while just for
the L-band LEAP data, the rms is improved by 160 ns. The plots of
Fig. 12 show the same LEAP residuals, but as a function of the solar
angle of the pulsar, i.e. its angular distance to the Sun as projected on
the sky, for both the time-invariant and time-variable fitting. These

Table 3. Table summarising the uncertainties in the measured SW amplitudes
(𝑁SW

𝑒 ), as well as the mean values (𝑁0) from the real datasets of the three
pulsars discussed, as shown in Figs. 13, 14, and 15. The median and minimum
values of these measured uncertainties (u.) are quoted in columns 3 and 4,
respectively. The values in square brackets represent the median estimated
only using ‘newer’ data, where relevant, i.e. after 2004 for PPTA, and after
2005 for EPTA. Column 5 summarises the mean SW amplitude values, with
the values in brackets representing one standard deviation.

PSR Dataset median u. min u. 𝑁0
[cm−3] [cm−3] [cm−3]

J0030+0451 EPTA 2.1 1.0 8.8(1.0)
LOFAR 0.4 0.2 9.5(1.0)

(E+In)PTA 3.3 [2.4] 1.5 9.9(1.3)
J1022+1001 PPTA 2.0 [1.9] 0.7 11.2(1.0)

LOFAR 0.3 0.2 9.9(1.0)
PPTA 2.4 [1.5] 1.0 6.3(1.0)

J2145−0750 InPTA 1.0 0.9 5.0(0.9)
LOFAR 0.3 0.3 7.1(1.4)

plots show that the main difference between the two fitting methods
is, as expected, due mainly to those observations closest to the Sun,
although even some observations at tens of degrees of solar angle are
affected.

Overall, we conclude that in the near future, as more InPTA ob-
servations will be combined in the EPTA datasets, the sensitivity to
the SW in pulsar data will increase. Moreover, by fitting this data
for a time-variable spherical SW, the noise budget is likely to im-
prove, even for L-band observations. This is particularly interesting
in the context of e.g. detecting the GWB by PTAs, where a decrease
in noise of just a few hundred nanoseconds could be valuable in
reaching the target detection significance in light of the recent GWB
results (EPTA Collaboration et al. 2023a,b,c).

4.3 Real data

We also test our pipeline on real data, of PSRs J0030+0451,
J1022+1001, and J2145−0750, respectively. Firstly, our pipeline’s
SW amplitude estimates from independent datasets taken by the ob-
serving systems EPTA+InPTA, PPTA, and LOFAR are compared
in Section 4.3.1. Secondly, the recovered DM time-series from the
fits on LOFAR data are compared to those given in T21, which
used the same (while slightly shorter) LOFAR datasets, but a dif-
ferent method; we are therefore able to directly compare SW results
between our pipeline and another, independent method; this is dis-
cussed in Section 4.3.2.

4.3.1 Comparison between results from different datasets

Not all telescope datasets were available for each of the three pulsars
chosen for this analysis; the data used is summarised in Tables 1
and 3. All datasets are run through the same pipeline, fitting for
deterministic parameters, the SW model, white noise, achromatic
red noise, and DM noise simultaneously. We compare the yearly SW
amplitudes estimated from each separate dataset, for each pulsar. This
is shown in Figs. 13, 14, and 15, while the mean values, as well as
the median and minimum of the SW amplitude uncertainties for each
dataset are also presented in Table 3. The values of SW amplitudes
from the independent LOFAR-data analysis from Fig. 6 of T21 are
also included here for comparison, but are mostly discussed in the
following Section 4.3.2.

Firstly, the results for PSR J0030+0451 are shown in Fig. 13.
There is agreement within uncertainties between the results of the
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Figure 13. The yearly SW amplitudes for PSR J0030+0451 are shown, result-
ing from the EPTA (blue dots) and LOFAR (green squares) data, as well as
the corresponding values presented in T21 (purple diamonds). The cadences
of the observations used are also shown, where ‘E’ stands for the EPTA data,
and ‘L’ for the LOFAR data. Note that the two x-axes are the same, but pre-
sented in both MJD and Year for convenience.
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Figure 14. The yearly SW amplitudes for PSR J1022+1001 are shown, result-
ing from the EPTA+InPTA (blue dots), PPTA (orange crosses) and LOFAR
(green squares) data, as well as the corresponding values presented in T21
(purple diamonds). The cadences of the observations used are also shown,
where ‘E’ stands for the EPTA+InPTA data, with the cyan lines highlighting
the InPTA data specifically; ‘P’ stands for the PPTA data, and ‘L’ for the
LOFAR data. Note that the two x-axes are the same, but presented in both
MJD and Year for convenience.

EPTA and LOFAR datasets. As is perhaps expected, the much-lower
frequency LOFAR data performs significantly better in estimating
the SW amplitudes.

Secondly, Fig. 14 shows the results for PSR J1022+1001. In gen-
eral, the SW amplitude measurements are consistent between the
different observing systems. While the EPTA dataset is a few years
longer than the others, the early data are sparse enough that only rough
estimates of the amplitudes are possible. Broadly, the PPTA data al-
low for more precise measurements of the SW than the EPTA data,
likely owing to the additional lower-frequency and wider-bandwidth
observations in the PPTA dataset. Further, the LOFAR data are seen
to be much more sensitive to these measurements than the PPTA
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Figure 15. The yearly SW amplitudes for PSR J2145−0750 are shown, result-
ing from the InPTA (blue dots), PPTA (orange crosses) and LOFAR (green
squares) data, as well as the corresponding values presented in T21 (purple
diamonds). The cadences of the observations used are also shown, where ‘In’
stands for the InPTA data, ‘P’ for the PPTA data, and ‘L’ for the LOFAR data.
Note that the two x-axes are the same, but presented in both MJD and Year
for convenience.

data. The collection of InPTA data has started relatively recently,
and as such only two amplitude measurements are supplemented by
this in the EPTA+InPTA data combination; these are the last data
point and that near MJD 58360. The increased sensitivity of the am-
plitude measurement which included both EPTA and InPTA data for
the solar conjunction near MJD 58360 hints at the advantage of the
additional InPTA data.

Thirdly, the SW measurements for PSR J2145−0750 are shown
in Fig. 15. The early data (before 2004) from the PPTA represent
archival data with a low cadence, such that no variation away from
the mean-amplitude SW can be measured. The precision of the LO-
FAR measurements is significantly better than that of the PPTA
measurements in the case of PSR J2145−0750 as well. We also note
that the recent, roughly 4 years of InPTA data show an improved
precision compared to the PPTA dataset for this pulsar, likely due to
their high-cadence simultaneous observations.

The observed dip in SW amplitude occurring around the year 2009
(around MJD 55000) for PSR J2145−0750 is coincident with the in-
dependently observed low in solar activity (e.g. Hathaway 2015),
such that our measurements appear to track the broad behaviour of
the solar cycle. The same dip can also be seen, in fact, for one so-
lar conjunction in PSR J0030+0451; however, this is not obviously
present in the results of PSR J1022+1001. This suggests that, on
one hand, the SW signature in pulsars further away from the ecliptic
plane is likely to follow the broad 11-yr solar cycle behaviour. On
the other hand, the shape of the variation away from the mean seems
harder to predict for pulsars of very low ecliptic latitude (such as
PSR J1022+1001). This may be caused, for example, by the slow
SW contribution dominating the fast SW around the solar equator,
even during the solar cycle maxima, thus showing less of the variation
between the two solar cycle stages. The presence of persistent stream-
ers near the solar equator could also induce the kind of DM varia-
tions seen in pulsars at very low heliospheric latitudes. Furthermore,
the mean SW amplitude of observations of PSR J1022+1001, of
∼ (10±1) cm−3 is significantly larger than that of PSR J2145−0750,
of ∼ (6 ± 1) cm−3. The very similar range of observing times for
these two pulsars suggests that this divergence may be due, as before,
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to the different ecliptic latitudes, and the corresponding heliospheric
latitudes and magnetosphere areas probed. Therefore we conclude
that, in general, a global fit describing the SW properties of multiple
pulsars is likely to be advantageous only if the diverse regions of the
SW probed by pulsars at varying heliospheric latitudes are carefully
considered.

4.3.2 LOFAR results: Comparison with Tiburzi et al. (2021)

Finally, the results of our pipeline are compared with the independent
analysis in T21, using the same observational LOFAR data available
for PSRs J0030+0451, J1022+1001, and J2145−0750. For our re-
sults, the data are processed through our pipeline, as with all the
previous analyses presented in this work, and the yearly SW ampli-
tudes are estimated. The full DM series are also reconstructed from
the fitted parameters, namely as the sum between the SW model, the
chromatic red-noise power-law Gaussian process, and the determin-
istic DM model; the latter is expressed as a polynomial

DMdet (𝑡) = DM0 + DM1 × 𝑡 + DM2 × 𝑡2

2
, (16)

where 𝑡 is a ToA expressed with respect to a chosen epoch (‘DME-
POCH’ in tempo2), and the three polynomial coefficients (DM0,
DM1, and DM2) are equivalent to the ‘DM’, ‘DM1’, and ‘DM2’
fitting parameters in tempo2.

Conversely, the analysis in T21 was based on first obtaining a DM
value per observation; for more details on how this was performed,
we refer the reader to Tiburzi et al. (2019, 2021). To estimate the
SW from the DM series, a reference value (equivalent to DM0) was
subsequently subtracted from the DM series. The remaining contri-
butions of the IISM and SW were disentangled and simultaneously
modelled using a Bayesian framework, for each specific segment
of data corresponding to a solar conjunction. The IISM contribu-
tion was modelled as a cubic polynomial for each solar-conjunction
segment, and continuity between different segments was insured. In
short, the total DM series in the T21 analysis was modelled as a sum
between the reference value DM0, the IISM cubic-polynomial, and
the spherical SW of yearly variable amplitude. Note that the DM
series used here for comparison with our full reconstructed DM is
the one initially obtained from the observations by T21, prior to the
SW analysis.

Figs. 16, 17, and 18 show the results of our analyses, as well
as those of T21 for comparison, for the three PSRs J0030+0451,
J1022+1001, and J2145−0750. Note that more recent LOFAR data
were available for PSR J1022+1001 since the T21 work, which are
included in our analysis; the additional data which appears here
within one solar conjunction either side were discarded in T21 as
there were not enough ToAs to provide a robust estimate by the
criteria chosen in that work.

From these plots, we conclude that our estimates of the SW am-
plitudes are for the most part consistent with those of T21, while
using an independent Bayesian approach. We note that where there
are discrepancies in the SW amplitudes, they appear to be caused by
the difference in the estimated IISM contribution. For example, at the
solar conjunction near MJD 58000 of PSR J1022+1001 (Fig. 17), our
IISM estimate shows an overall flat behaviour, while the T21 analysis
presented a higher, cubic-varying DM estimate. This emphasises an
advantage of our pipeline with respect to the T21 method: the IISM
contribution to DM is estimated for the entire dataset, rather than
in segments, which in general ensures a smoother, and likely more
realistic behaviour. We also note that, for the specific measurement
near MJD 58000 for PSR J1022+1001, the observed difference in

IISM estimates of roughly 10−4 pc cm−3 would only correspond to a
direct difference in the SW amplitude (𝑁SW

e ) of roughly 10−2 cm−3;
the actual measured difference is, however, of order ∼ 1 cm−3. Nev-
ertheless, we believe that, since this pulsar has a very small ecliptic
latitude, the tails of the SW influence may impact the shape and peak
of the SW model to a larger extent than would be trivially expected.

Lastly, it is important to acknowledge that the spherical SW model,
even while allowing its amplitude to change each year, is not sufficient
to fully describe the observed SW influence on these data, as also
observed previously in e.g. Tiburzi et al. (2016). This is seen in our
results, as the IISM contribution to the DM clearly absorbed some
asymmetric features close to the solar conjunction, which are highly
likely due to the solar influence. Therefore, any analysis assuming
a spherically symmetric SW, which includes that presented in this
work, would not allow for an entirely robust studying of the SW
influence in pulsar data. The pipeline developed and presented here,
however, can create a basis that can be straight-forwardly adapted
in future work to improve on this, and include various additional
models, such as e.g. different piecewise components for before and
after the solar conjunctions, allowing the tails of the SW variation (i.e.
the pulsar ingress and egress from the Sun) to change independently
of each other.

5 CONCLUSIONS

We have implemented a computationally inexpensive, linear
Gaussian-process piecewise Bayesian approach to fit pulsar ToAs for
a spherical SW of yearly time-variable amplitude, simultaneously
to all the other pulsar timing and noise parameters; this is avail-
able through the pulsar analysis toolkit run_enterprise. We have
explored the functionality of this fitting pipeline using simulations,
and found that it performs as expected, and better than the currently
widely used time-invariant spherical SW, particularly in data of low
frequency and large fractional bandwidths.

Using simulations, we found that the current EPTA+InPTA dataset
is not yet sensitive enough to measure variations of the spherical
SW amplitude. However, assuming that the current observing strat-
egy of uGMRT will continue, future EPTA+InPTA data will have
increased sensitivity to the SW, such that using our time-variable
fitting could improve the rms (white-noise levels) of the residuals by
at least ∼200 ns at L-band, which may help with the noise budget for
extremely sensitive experiments such as the search for the GWB. In-
deed, recovering the SW influence in EPTA+InPTA pulsar data will
depend on the cadence of observations near the solar conjunctions,
but a study of these effects is beyond the scope of this work, and is
left as a future investigation.

We also applied our pipeline to real data of three pulsars, i.e.
J0030+0451, J1022+1001, and J2145−0450, that are known to show
the influence of the SW in their ToAs, and were also part of the previ-
ous study by T21. The SW amplitudes found from individual fitting of
pulsar data from the EPTA+InPTA and/or the PPTA were compared
with the results from LOFAR data through our pipeline, as well as
the independent results from T21. This showed that SW amplitudes
found from different datasets were mostly consistent with each other
and that, as expected, where lower-frequency and wider-bandwidth
data were present, the uncertainties were reduced. Furthermore, the
variation in the fitted SW amplitudes for the pulsar of the highest
ecliptic latitude in this study (J2145−0450; elat = 5.31◦) roughly
followed the 11-yr solar cycle; while for the pulsar of very low eclip-
tic latitude (J1022+1001; elat = −0.06◦), the amplitude variation
generally did not seem to correlate with the long-term solar cycle.
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Figure 16. The recovered DM series and yearly SW amplitudes from our analysis of the LOFAR ToAs (green) are compared with the same quantities as presented
by T21 for the same LOFAR data (purple), for PSR J0030+0451. While the top plot shows the broad picture of the DM series, the middle plot is a zoomed
in version of the same data for a clear comparison. For both our results (in green), and the T21 results (in purple), the data points represent the full estimated
DM series —which includes the polynomial terms, the Gaussian-process power-law (‘PL’), and the SW. The continuous lines represent only the estimated IISM
contribution; this was fitted as an average DM0 plus multiple consecutive cubic terms in T21, and as a quadratic plus a Gaussian process power-law in our
analysis. The bottom plot simply illustrates the SW amplitudes, as also shown in Fig. 13, but only for LOFAR data.

This hints that a global SW fit may be more beneficial if e.g. it is
performed in slices of ecliptic latitude. A larger study would clarify
if this is indeed a wide systematic effect.

The DM series, including the SW effect, were also compared for
the same LOFAR data as recovered from our pipeline and as used in
T21. We found that where there was a difference between our SW
amplitude and that in T21, this was likely due to the estimated IISM
background; we believe our simultaneous fitting of deterministic and
noise pulsar components produces a more plausible shape for this
background than the consecutive cubic fits as used in T21. However,
we conclude that even with the addition of the time-variable am-
plitude, the spherical SW model is not enough to fully account for
the SW influence in LOFAR data. The left-over SW absorbed in the

background DM series suggests that perhaps using an asymmetric
model, with different components pre- and post-solar conjunction
may be beneficial. The piecewise framework presented in this work
could be modified for this, or for an alternate way to further study
SW models.
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Figure 17. The same as in Fig. 16, but for PSR J1022+1001.
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Figure 18. The same as in Fig. 16, but for PSR J2145−0750.
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The EPTA DR2 data underlying the work in this paper are avail-
able at https://doi.org/10.5281/zenodo.8164424, as per EPTA Col-
laboration et al. (2023a). The InPTA DR1 data are available at
https://github.com/inpta/InPTA.DR1, as per Tarafdar et al. (2022).
The PPTA DR2 data are available at https://doi.org/10.25919/cx59-
a798, as per Reardon et al. (2021). The data from the LOFAR core
can be downloaded from the Long Term Archive (LTA; lta.lofar.eu).
The LOFAR data taken with the GLOW stations are accessible upon
demand by emailing any of the first three authors.
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