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A B S T R A C T

Recently, there has been an increasing interest in extracting and annotating tables on the Web. This activity
allows the transformation of textual data into machine-readable formats to enable the execution of various
artificial intelligence tasks, e.g., semantic search and dataset extension. Semantic Table Interpretation (STI) is
the process of annotating elements in a table. The paper explores Semantic Table Interpretation, addressing
the challenges of Entity Retrieval and Entity Disambiguation in the context of Knowledge Graphs (KGs). It
introduces LamAPI, an Information Retrieval system with string/type-based filtering and s-elBat, an Entity
Disambiguation technique that combines heuristic and ML-based approaches. By applying the acquired know-
how in the field and extracting algorithms, techniques and components from our previous STI approaches and
the state of the art, we have created a new platform capable of annotating any tabular data, ensuring a high
level of quality.
1. Introduction

In today’s data-driven world, organisations and researchers en-
counter both opportunities and challenges. The availability of struc-
tured and unstructured data presents incredible potential for extracting
valuable insights using Machine Learning (ML) models, which are adept
at identifying patterns and relationships within the data. However,
amidst these opportunities, it is crucial to recognise the role of data
quality in determining the success of these approaches. Therefore,
organisations need to prioritise the collection and management of data
in order to obtain accurate and reliable datasets.

The creation and use of structured data in tables are common in
many contexts [1]. For instance, in the current version of Wikipedia, it
is possible to identify 2803424 tables. This implies that tables contain
extensive data that can be utilised in data analytics or ML solutions.

In this scenario, the table-to-KG matching problem, also referred
to as STI, has recently collected much attention in the research com-
munity [2–4] and is a key step to improve data quality [5], enrich
data [6,7] and construct and extend Knowledge Graphs (KGs) from
semi-structured data [8,9] (Fig. 1).

In relation to the possibilities that STI techniques enable, this topic
is constantly evolving and gaining enthusiasm in time. The growing in-
terest is proved by the international Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching (SemTab) that has been proposed
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1 cs.ox.ac.uk/isg/challenges/sem-tab

since 20181 [2–4]. This challenge is repeated annually. Over the years,
several approaches, datasets, and related Gold Standards (GSs) have
been released.

As previously stated, STI approaches make use of KG for the an-
notation task. When information is available in unstructured or semi-
structured formats, such as tables or texts, identifying connections
between strings (or mentions) in these sources and the entities they
refer to in background KGs is crucial for integrating, enriching and
extending the data and/or KGs. This process is called Entity Linking
(EL), which may vary depending on the considered data formats but
with some shared features.

For example, because of the ample entity search space, most of the
approaches to EL include a first step where candidate entities for the
input string are collected, i.e., Entity Retrieval (ER) [10], and a second
step where the string is disambiguated by eventually selecting one or
none of the candidate entities, i.e., Entity Disambiguation (ED) [11].

In most approaches, the ER returns a ranked list of candidates,
while ED consists of re-ranking the input list. ED is at the heart of
EL, with different approaches that leverage different kinds of evidence
depending on the format and features of the input text [12]. However,
the ER step is also significant, considering that its results define an
upper bound for the performance of the end-to-end linking: if an entity
is not among the set of candidates, it cannot be selected as the target
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Fig. 1. Example of motivations and research values of STI.

for the link. Furthermore, while it is theoretically possible to scroll the
list of candidates at any depth, maintaining acceptable efficiency levels
requires cutting off the results of ER at a reasonable depth.

1.1. Entity retrieval

Approaches to entity searches can either resort to existing lookup
APIs, e.g., DBpedia SPARQL Query Editor,2 DBpedia Spotlight3 or Wiki-
data Query Service,4 or use recent approaches to dense ER [13],
when entities are searched in a pre-trained dense space, an approach
becoming especially popular in EL for textual data. The APIs mentioned
above provide access to the SPARQL endpoint since the elements are
stored in Resource Description Format (RDF) format. Such endpoints
are usually offered on local dumps of the original KGs to avoid network
latency and increase efficiency. For instance, DBpedia can be accessed
by OpenLink Virtuoso, a row-wise transaction-oriented RDBMS with a
SPARQL query engine,5 and Wikidata employs instead Blazegraph,6 a
high-performance graph database, providing RDF/SPARQL-based APIs.
An issue faced with these solutions is the time required for downloading
and setting up the datasets: Wikidata 2019 requires some days to set
up since the full dump is about 1.1TB (uncompressed).7 Moreover,
writing SPARQL queries may be an issue since specific knowledge of the
searched KG is required, besides the knowledge of the required syntax.
Some limitations related to the use of these endpoints are:

• the SPARQL endpoint response time is directly proportional to
the size of the returned data. As a consequence, sometimes it is
not even possible to get a result because the endpoint fails for
timeout;

• the number of requests per second may be severely limited for
online endpoints (to ensure feasibility) or computationally too
expensive for local endpoints (a reasonable configuration requires
at least 64 GB of RAM with tons of CPU cycles);

2 dbpedia.org/sparql
3 www.dbpedia-spotlight.org
4 query.wikidata.org
5 virtuoso.openlinksw.com
6 blazegraph.com
7 addshore.com/2019/10/your-own-wikidata-query-service-with-no-

limits-part-1
2 
• there are some intrinsic limits in the SPARQL language expres-
siveness (i.e., full-text search capability, which is required for
matching table mentions, can be obtained only with extremely
slow ‘‘contains’’ keyword or ‘‘regex’’ queries8).

Regarding the approaches to dense ER, some limitations can be
mentioned [14,15]:

• the results are strictly related to the type of representation used.
Consequently, careful and tedious feature engineering is required
when designing these systems;

• generalising the trained ER model to other KGs or domains is
challenging due to the strong dependence on the specific KG and
domain knowledge in the process of designing features;

• these systems depend excessively on external data, and the effec-
tiveness of the algorithms is directly affected by the quality of the
training data, and their utility is indispensably restricted.

Information Retrieval (IR) approaches based on search engines still
provide valuable solutions to support ER, mainly because they do not
require training. They work with any KG, and they easily adapt to
changes in the reference KG. For these reasons, IR-based entity search
has been used extensively, especially in table-to-kg matching [16–19].
The use of IR systems have been frequently left to custom optimisa-
tions and not adequately discussed or documented in scientific papers.
As a result, researchers who seek to use such solutions must create
them from the ground up, including data indexing techniques, query
formulation, and service setup.

1.2. Entity disambiguation

Most of the ED techniques proposed in literature are based on the
use of heuristics, i.e., techniques that combine matching rules and
similarity measures linearly or with different weights [20]. Simple
matching rules based on strings, for instance, utilise measures such as
Levenshtein distance or Jaccard similarity. Using these measures makes
it possible to obtain a preliminary matching based solely on the values
of the strings.

These methods are frequently adjusted manually by analysing the
outcomes or comparing them with a Gold Standard (GS) to annotate
domain-specific or case-specific data. However, this narrow focus intro-
duces biases that make the methods less applicable in broader contexts.
Identifying the optimal combination of matching and similarity features
is a challenging task that demands significant effort.

As a result, it is essential to identify the configuration parameters
which produce the highest quality semantic annotations by leveraging
datasets and their associated GSs.

In most cases, it is difficult to gauge the effectiveness and adaptabil-
ity of heuristics-based approaches since we cannot fully comprehend
how they have been modified to perform better on particular datasets
with intrinsic characteristics. On the other hand, when trained with
good-quality data, supervised approaches tend to have higher general-
isation due to the ability to implement model refresh cycles. However,
as previously stated, they require training datasets.

1.3. Our contributions

Two main challenges regarding ER and ED are being faced. To
summarise, the first challenge concerning ER is to efficiently handle
data originating from KG to search over them and identify the set of
the best candidates for a given mention. The second challenge concerns
ED, and requires an algorithm capable of automatically identifying
the features to use and determining their weights for the data to be
processed.

8 docs.openlinksw.com/virtuoso/rdfsparqlrulefulltext

https://dbpedia.org/sparql
https://www.dbpedia-spotlight.org
https://query.wikidata.org/
http://virtuoso.openlinksw.com
https://blazegraph.com
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits-part-1
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http://docs.openlinksw.com/virtuoso/rdfsparqlrulefulltext
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For this reason, in this paper, we aim to present LamAPI (Label
matching API) [21], a comprehensive tool for IR-based ER, augmented
with type-based filtering features. The tool facilitates string-based re-
trieval, a process involving searching and extracting information from a
dataset by matching strings of characters. When queries are submitted,
the retrieval task entails identifying relevant entities that match the
given query or criteria. Entity extraction from a KG goes beyond mere
string matching; it also incorporates both hard and soft filters [22]
based on the input entity type (e.g., rdf:type for DBpedia and
Property:P31 for Wikidata). Type filters specify a concept defined
in an ontology to filter out irrelevant entities. Two distinct filters are
recognised: (i) hard-type filters and (ii) soft-type filters. The former
aims to match specific types to significantly narrow down the set of
entities, posing the challenge of identifying the most suitable concept to
represent the searched entity in the ontology hierarchy. To address this,
soft filters have been introduced to broaden the types included in the
retrieval step, thereby increasing the number of extracted entities. Soft
types can be incorporated by expanding types based on the hierarchy
structure or predicting similar types based on shared features. Hard-
type filters remove non-matching results, while soft-type filters promote
or demote results when an exact match is not feasible. These filters are
helpful to support either EL in texts (e.g., by exploiting entity types
returned by a classifier [23,24]), or in tables (e.g., by exploiting a
column type (rdf:type) to filter out irrelevant entities). While the
pproach is general, the tool provides EL support for semi-structured
ata. Therefore, our study evaluates different retrieval strategies with-
without filters on EL in the table-to-KG matching settings, considering
wo different large KG such as Wikidata and DBpedia. Finally, the
ool also contains mappings among the latter two KGs and Wikipedia,
hus supporting cross-KG bridges. The tool,9 its repository10 and the
ocumentation11 are publicly available. All the resources used for
he experiments are released following the FAIR Guiding Principles.12

amAPI is released under the Apache 2.0 licence.13

Regarding ED, we propose s-elBat,14 a supervised and semi-super-
vised STI approach. s-elBat employs several techniques to consider all
of the STI challenges that will be discussed in Section 2. A detail on
how s-elBat addresses these challenges will be proposed in Section 8.
s-elBat is a new approach that inherits and improves what has been
proposed by our previous STI approaches [25–27]. The experiences
acquired with those tools (Section 3.1) and their participation in the
various editions of the SemTab challenge led to the definition of
new techniques for a feature vector-based entity disambiguation ap-
proach, which as mentioned before, combines both heuristic and ML
approaches to achieve accurate disambiguation results. The s-elBat
tool,15 its repository16 and the documentation17 are publicly available.
s-elBat is released under the GNU Affero General Public License.18

Comprehending table data can be straightforward without effec-
ively visualising the output results. A well-designed and intuitive
nterface is essential for inspecting algorithm results. For this reason,
e introduce SemTUI (Semantic Table User Interface). This framework
rovides a user interface to streamline interaction between users and
oth the LamAPI and s-elBat systems. Utilising SemTUI, users can
elve into the functionalities of LamAPI, enabling the exploration of
andidate mentions derived from a KG. Similarly, SemTUI assists in
nterfacing with s-elBat, allowing users to initiate the table annotation

9 lamapi.datai.disco.unimib.it
10 github.com/unimib-datAI/lamAPI
11 unimib-datai.github.io/lamapi-docs/
12 www.nature.com/articles/sdata201618
13 apache.org/licenses/LICENSE-2.0
14 The name comes from taBle-s and Semantic Entity Linking to BAtch Table.
15 selbat.datai.disco.unimib.it
16 github.com/unimib-datAI/s-elbat
17 unimib-datai.github.io/s-elbat-docs/
18
 www.gnu.org/licenses/agpl-3.0.en.html
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Fig. 2. Example of a well-formed relational table.

process. Upon completing this process, they can explore the results
in detail through the UI, accessing a range of information, including
names, descriptions, and types associated with each candidate. It also
presents confidence scores, providing an option to filter results ac-
cordingly. Both SemTUI repository19 and documentation20 are publicly
available.

This paper is organised as follows: Section 2 defines the STI process
formally and summarises the challenges. Section 3 proposes a detailed
examination of the ER and ED techniques used by all STI approaches
in the state of the art. Sections 4 and 5 describe LamAPI, and s-
elBat respectively. Section 4.3 introduces the GSs, the configuration
parameters, and the evaluation results. SemTUI, our User Interface (UI)
for managing LamAPI and s-elBat is described in Section 7. Eventually,
we conclude this paper and discuss the future direction in Section 8.

2. Definition and challenges of semantic table interpretation

In this Section, we formally describe the task we are going to solve
and list the key challenges related to STI tasks. The input of STI is (i)
a well-formed and normalised relational table (i.e., a table with headers
and cells filled with string values that we call mentions in this paper),
as in Fig. 2, and (ii) a reference KG that describes real-world entities
in the domain of interest (i.e., a set of concepts, datatypes, properties,
instances, and relationships among them) (Fig. 3). The output returned
is a semantically annotated table, as in the example of Fig. 4.

The STI process is typically broken down into the following four
tasks:

• Column Type Annotation (CTA): the CTA task concerns the pre-
diction of the semantic types (i.e., KG classes) for every given
table column in a table;

• Column Property Annotation (CPA): the CPA task concerns the
prediction of semantic properties (i.e., KG properties) that repre-
sent the relationship between some pair of columns;

• Cell Entity Annotation (CEA): the CEA task aims to predict the
entity (i.e., instances) that a cell in table represents;

• Cell-New Entity Annotation (CNEA): the CNEA task aims to pre-
dict which cell in the table represents an entity that does not
occur in the KG and should be therefore labelled as Not In Lexicon
(NIL).

In Appendix A, a formalisation of STI is proposed.
An excellent STI approach must consider and adequately balance

the different features of a table (or a set of tables). The annotation
involves several key challenges: (i) Heterogeneity of domains and data
distributions: the tables may cover information that refers to very dif-
ferent domains (e.g., Geography vs Sports); the specificity of the table
content may vary significantly (from a table with basic information
about most famous mountains, like Fig. 2 to a table that contains the
composition of the rocks of this mountains21).

19 github.com/I2Tunimib
20 i2tunimib.github.io/I2T-docs
21
 en.wikipedia.org/wiki/List_of_rock_formations
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https://github.com/unimib-datAI/s-elbat
https://unimib-datai.github.io/s-elbat-docs/
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Fig. 3. A sample of a Knowledge Graph.
Fig. 4. The table in Fig. 2 annotated with the KG.
(ii) Matching tabular values against the KG: matching the values in
the table to the data in the KG is a common method for collecting
evidence to interpret the table. The mention in the table is frequently
different from the label of the entity in a KG (i.e., use of acronyms,
aliases, and typos); for example, High Tauern refers to the Johannisberg
mountain (High Tauern) entity in DBpedia22; literal values, e.g., height
of the mountains, may be different, e.g., because outdated, measured
differently and so on.

(iii) Disambiguation of named entities: the KG may contain many
entities with similar or even equal names (homonyms) that may belong
to different or the same type. For example, the mention Mont_Blanc in
Fig. 2, which refers to the famous mountain located on the French-
Italian border,23 matches labels of different entities associated with
different types, including a tunnel, a poem, and a dessert24; the same
mention matches also the label of a mountain on the Moon.25

(iv) NIL-mentions: the approach must also consider the NIL-mentions,
that are strings that refer to entities for which a representation has not
yet been created within the KG;

22 dbpedia.org/page/Johannisberg_(High_Tauern)
23 dbpedia.org/page/Mont_Blanc
24 en.wikipedia.org/wiki/Mont_Blanc_(disambiguation)
25 dbpedia.org/page/Mont_Blanc_(Moon)
4 
(v) Choosing the most appropriate types and properties: the KG may
contain hundreds or thousands of types and properties to choose from
for annotating columns and column pairs; entities are classified with
multiple types, which may reflect different levels of specificity (e.g., if
we consider the subclass of the relation between types, Mont Blanc is
a mountain, a summit, a pyramidal peak, an elevation, a landform, a
geographical feature, a geographic location and more in Wikidata). The
classification may be more or less complete depending on the specific
entity; deciding which type or which set of types better describes a
set of entities in a column is not trivial. Also, several column pairs
could be potentially related, and several properties exist in KG that
have similar meanings (also, in this case, properties can be organised
into taxonomies and have different levels of specificity) [28]; selecting
column pairs for annotation and pinpointing the most suitable property
is not straightforward either.

3. Related work

This section reviews research on STI, including methodologies and
advances in understanding structured tabular data. This introduces our
innovative contributions to improve semantic comprehension of tables
in our work. Given a KG containing a set of entities 𝐸 and a collection of
named-entity mentions 𝑀 , the goal of EL is to map each entity mention
𝑚 ∈ 𝑀 to its corresponding entity 𝑒 ∈ 𝐸 in the KG. As described above,
a typical EL service consists of the following modules [12]:

http://dbpedia.org/page/Johannisberg_(High_Tauern)
http://dbpedia.org/page/Mont_Blanc
https://en.wikipedia.org/wiki/Mont_Blanc_(disambiguation)
http://dbpedia.org/page/Mont_Blanc_(Moon)
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1. Entity Retrieval (ER). In this module, for each entity mention
𝑚 ∈ 𝑀 , irrelevant entities from the KG are filtered out to return
a set 𝐸𝑚 of candidate entities that may be referred to by 𝑚. To
achieve this goal, we have applied cutting-edge techniques, such
as those relying on name dictionaries, expanding surface forms
within the document, and employing methods based on search
engines.

2. Entity Disambiguation (ED). In this module, the entities in the
set 𝐸𝑚 are more accurately ranked to select the correct entity
among the candidates. This involves re-ranking based on ad-
ditional information (e.g., contextual information) besides the
simple textual mention 𝑚 used in the ER module.

According to several experiments conducted in the latest research
[29], the main aim of the ER module (also referred to as candidate
generation or lookup) is to guarantee the inclusion of the accurate entity
within the retrieved set, facilitating its identification by the ED module.
Therefore, one of the main contributions of this work is to discuss
retrieval configurations, i.e., query and filtering strategies, for better
entity retrieval.

When a query is made, the system must generate a set of potential
candidates for each cell that might meet the query’s requirements. Can-
didates can be generated using numerous strategies, including semantic
parsing, entity recognition, and information retrieval. The system might
use ML models trained on large data corpora to identify potential
candidates based on contextual patterns.

The ER can be divided into four methods: (a) custom index [16,18,
26,27,30–45], (b) external lookup services [25,33,38,39,43,46–67], (c)
hybrid (both custom index and external lookup services) [33,38,39,43],
and (d) other [48,63].

Custom index involves creating a specialised index for specific
requirements or use cases. When building a custom index, there is flex-
ibility to define mappings, analysers, and other configurations based on
specific requirements. Elasticsearch26 is a popular search and analytics
engine that is both robust and scalable. It operates on a document-
oriented model, storing and organising data as JSON documents. Sev-
eral approaches rely on Elasticsearch for the lookup sub-task [18,26,
27,33,35–40,42,44,45]. Limaye et al. [30] introduce a method that
relies on a catalogue of types, entities and relations. Entities in the
catalogue are linked to lemmas, which are canonical strings extracted
from Wikipedia, or synset names from WordNet.27 Syed [31] develops a
hybrid KG that combines both structured and unstructured information
extracted from Wikipedia, augmented by RDF data from DBpedia and
other Linked Data. The system, named Wikitology, uses an IR index
(Lucene) to represent Wikipedia articles. The same technique is used
by Mulwad et al. [46,47,49]. Efthymiou et al. [32] employ a lookup-
based method to establish connections, using the limited entity context
available in Web tables to identify correspondences with the KG. The
approach builds a specialised search index called FactBase using Wiki-
data. This index includes entities paired with corresponding IDs and
textual descriptions.

In ColNet [34] a lookup step is performed to retrieve entities from
the KG by matching cells based on entity labels and anchors (e.g.,
Wikipedia link). This is achieved using a lexical index containing
terminology and assertions from the KG. MTab4Wikidata [41], a vari-
ant of MTab [55], focuses on annotating cells to Wikidata entities.
It begins by downloading and extracting a Wikidata dump to create
an index with hash tables. The lookup process is performed using
a fuzzy search. The result is a ranked list of entities based on edit
distance scores. In the latest version of MTab 2021 [16], a WikiGraph
index is established, combining Wikidata, Wikipedia, and DBpedia.
The lookup employs Keyword Search, Fuzzy Search, and Aggregation

26 www.elastic.co
27 wordnet.princeton.edu
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Search. GBMTab [43] distinguishes between entity extraction from
Wikidata and DBpedia to generate candidate entries. The solution is
limited to DBpedia and builds an index using hash tables. It then
calculates the Levenshtein distance to determine the string similarity
between mentions and entities.

The second method employed for candidate generation uses exter-
nal lookup services. This approach involves using a separate service
or system to retrieve specific information or data through lookup or
queries. The external lookup service usually uses entity recognition, en-
tity disambiguation, or semantic matching techniques. It may consider
factors like textual similarity, context, or other relevant information.
In the STI context, many services can be used to extract a set of
possible entities given a string as input. The service choice is based
on the specific requirements and context, including the KG used to
annotate the entities. To annotate tables cells with DBpedia entities,
most approaches use associated services, such as DBpedia API [33,55],
DBpedia Lookup Service [55,56,64] and DBpedia Spotlight [56,67].
Similarly, for Wikidata, the following services are employed: Wikidata
API [33,38,60,63,67], Wikidata Lookup Service [55,57–59,61,64,68]
and Wikidata CirrusSearch Engine [33]. Other services used for the
lookup sub-task are Wikipedia API [33,55,63,65], MediaWiki API [39,
43] and Wikibooks [63]. Instead of directly employing lookup services,
some approaches execute SPARQL queries to retrieve and manipulate
data stored in RDF format. This method is the default way to obtain in-
formation from triple stores. For approaches not explicitly mentioning
the lookup service, it is assumed that SPARQL is used. For example,
SPARQL queries are used to retrieve entities from YAGO [50], DB-
pedia [25,51–54,56,58,59,66,68], and Wikidata [58,59,62,63,66,68].
Furthermore, other sources such as SearX [63] and Probase [48] are
used, with pattern matching utilised to extract triples.

As described, ED is the process of resolving ambiguous mentions
to entities. Using the same name to refer to several entities in a
table might lead to uncertainty. Entity disambiguation in STI seeks to
recognise and clarify these entity mentions, ensuring that each mention
is correctly linked to the appropriate entity. This task employs various
techniques: (a) embedding [32,33,53,61,65,67,69], (b) similarity [18,
25–27,30,35,37,38,40,42,44,52,54,56,58,63,64], (c) contextual infor-
mation [16,18,26,27,31,32,34,36,38–42,44,45,51,55,57,60,66,69], (d)
ML techniques [38,46,65], (e) probabilistic models [35,43,47,49,50],
(f) LLMs-based [45,70–75], and (g) other [48,76].

In graphs and natural language, embedding involves representing
nodes or words as dense vectors in a continuous vector space. These em-
beddings capture semantic and structural relationships between nodes
or words, allowing ML models to perform tasks such as node classi-
fication, link prediction, document similarity, sentiment analysis, and
more [77]. Embedding techniques are used to create vector representa-
tions of entities [32,33,53,61,65,67,69]. Each solution aims to gather
context information about entities in the KG and incorporate it into
vector representation.

The entity disambiguation sub-task frequently involves calculating
similarities among textual data, which is typically employed by lookup
services to retrieve a ranked list of candidates. This process often in-
volves selecting the best candidate based on the similarity of the entity
label and mention. Various approaches use similarity, such as, Lev-
enshtein distance [18,25–27,37,38,40,42,44,54,56,63], Jaccard simi-
larity [27,30,35,44], Cosine similarity [30,64], and similarity based
on Regular Expressions (Regex) [40]. Limaye et al. [30] in addition
to Jaccard applies also the TF-IDF.28 TableMiner+ [52] measures the
similarity between the bag-of-words (bow) representation of the entity
with the bow representations of different types of cell contexts, such as
row content and column content.

28 The weight assigned to a term in a document vector is the product of its
term frequency (TF) and inverse document frequency (IDF).

https://www.elastic.co/
https://wordnet.princeton.edu/
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During the CEA task, contextual information considers the sur-
rounding context of a table cell, such as neighbouring cells, column
headers, or header rows. This contextual information provides addi-
tional clues or hints about the meaning and intent of the mention. A
system can obtain a better knowledge of the semantics of a cell by
analysing its context and making more precise annotations. Contextual
information at column and row level is usually provided by CTA and
CPA tasks. However, some approaches also consider column types and
properties to disambiguate entities, even if these tasks are not expressly
stated. Column types are used to disambiguate entities by assuming that
entities in a column share the same type. Many approaches rely on this
assumption to perform this step [31,32,34,36,38,51,55,60,66]. [31,34,
66] limit the number of candidate entities by executing a new lookup
query that includes predicted types. [32,36,38,51,55,60] refine the can-
didates list by filtering out entities that do not match the predicted type
at the column level. Similarly, some approaches also consider another
assumption: contextual information from CPA at the row level helps to
improve understanding of the data in its larger context [16,40,41,45].
For example, [40,45] consider the semantic relations between columns
by boosting the scores for each candidate entity when the relation is
found. On the other hand, [16,41] calculate context similarity between
candidate triples and table row values by ranking entities based on this
score. They then select the candidate with the highest context similarity
as the final annotation. Furthermore, most approaches adopt a hybrid
solution for the disambiguation sub-step, considering the information
provided by CPA and CTA tasks [18,26,27,39,42,44,57,69].

Other methods that can be employed are ML techniques. These
strategies typically involve training a ML model on a labelled dataset
where cells are marked with their respective entities. The model learns
patterns and relationships between the cells content and their associ-
ated entities. To predict the most appropriate entity, ML techniques
consider various cell features, such as the textual content, context,
neighbouring cells, and other relevant information. Several ML tech-
niques can be employed to perform the disambiguation task, such as
Support Vector Machine (SVM) [46], Neural Network (NN) [38], and
Random Forest [65].

Probabilistic models apply probability theory to express and rea-
son about uncertainty. These models vary in their representation of
dependencies and use diverse graphical structures. Several Probabilistic
Graphical Model (PGM) can be also used to resolve the disambiguation
task, such as Markov model [43,47,49,50] or Loopy Belief Propagation
(LBP) [35].

The advent of Large Language Models (LLMs) has led to a new
category of approaches for table annotation. Based on the architecture
structure of LLMs, these approaches can be categorised into three
groups: (i) encoder–decoder LLMs, ii) encoder-only LLMs, and (iii)
decoder-only LLMs [78]. Indeed, shortly after the first edition of
SemTab, some works [70–72] applied encoder-only LLMs to table
interpretation. Although they did not participate in or compare with
the SemTab challenge, they created a different experimental setting.
During the SemTab2022 instead, a BERT-based [79] model was com-
bined with a more traditional approach [45]. More recently, after the
release of GPT-3.5 [80] and open-source decoder-only LLMs such as
LLAMA [81] and LLAMA 2 [82], some works have begun applying
encoder-based LLMs to table interpretation [73,74]. In SemTab2023, a
new decoder-only model was presented that uses BERT [75]. Starting
from encoder-based approaches, Ditto [70] utilises Transformer-based
language models to perform a slightly different task; in fact, the goal
is entity-matching between different tables. TURL [71] leverages a
pre-trained TinyBERT [83] model to initialise a structure-aware Trans-
former encoder. Doduo [72] performs CTA using a pre-trained language
model, specifically fine-tuning BERT model on serialised tabular data.
DAGOBAH SL 2022 [45] employs an ELECTRA-based cross-encoder, a
variant of the BERT model. The Cross Encoder takes a concatenated
input, including left-side table headers, the target table header, right-

side table headers, and the entity description. TorchicTab [75] is

6 
composed of two sub-systems: TorchicTab-Heuristic and TorchicTab-
Classification. The classification model utilises Doduo [72].

Regarding decoder-based approaches, TableGPT [73] performs sev-
eral tasks, including entity linking using GPT. TableLlama [74], per-
forms CEA, along with several other tasks, creating a multi-task dataset
for tabular data, in which the entity linking sub-dataset derives from
the TURL [71] dataset, and using it to fine-tune LLama2 [82].

Other approaches cannot be categorised in one of the previous
roups. For instance, Munoz et al. [76] propose an approach to extract
DF triples from Wikitables by linking each cell to DBpedia entities.
he process involves following internal links within Wikipedia tables,
s they can be directly mapped to DBpedia. Wang [48] describes the
rocess of understanding a table using the Probase knowledge API.
ventually Kim et al. [62] remove candidates considering the content
nrelated to the annotation.

Our proposal integrates various cutting-edge techniques outlined in
he current state of the art. Initially, the ER process depends on the
tilisation of custom indexes constructed from DBpedia and Wikidata,
hich facilitate the retrieval task. The subsequent phase is executed by
-elBat, incorporating the methodologies proposed in this section. This
ystem comprises two distinct versions, each of them uniquely designed
nd implemented. The first version operates in a semi-supervised and
euristic manner, considering contextual information within the table
o execute all tasks related to STI, such as CEA, CPA, and CTA. In
ontrast, the supervised version replaces the ED step by employing ML
echniques for the final re-ranking task.

.1. From MantisTable to s-elBat

The exploration of STI has guided us to formulate and refine
set of tools, continuously enhancing them based on the insights

ained (Fig. 5). The first iteration of MantisTable [25] marked the
tart of a comprehensive pipeline for table annotation. This approach
epended mostly on external services like the Oxford English Dictio-
ary29 during table pre-processing and SPARQL queries, which are
erformed by SPARQLWrapper,30 to retrieve entities from the KG.
o assess the quality of semantic annotations for each STI task, an
utomatic evaluation tool, StilTool [84], was developed. Subsequent
ersions, starting with MantisTable SE [26], saw the refinement of
ata pre-processing by incorporating Regex rules, which were capable
f identifying various datatypes in tables. The lookup search was
lso enhanced by integrating a built-in information retrieval service
LamAPI v.1). The evolution continued with MantisTable V [27],
hich introduced a more robust CEA algorithm. The programme scored
ach extracted candidate based on string similarity and contextual
nformation. Subsequently, MammoTab [1], a dataset composed of
𝑀 Wikipedia tables extracted from over 20𝑀 Wikipedia pages and
nnotated through Wikidata, was released. Eventually LamAPI [21]
ool was consolidated, incorporating new services to support the entire
TI processes. Given the recent proliferation of STI papers in the state of
he art, a comprehensive survey was conducted, providing a conclusive
verview of each approach presented in the current state of the art.

In this paper, we have shared what we have learned by analysing
he state of the art as well as our own experiences in this subject. In
articular, by using the acquired knowledge and extracting algorithms,
echniques, and components from earlier tools, we have created a new
latform capable of annotating any tabular data while maintaining a
igh degree of quality.

29 www.oed.com/information/using-the-oed/
30 sparqlwrapper.readthedocs.io/en/latest/

https://www.oed.com/information/using-the-oed/
https://sparqlwrapper.readthedocs.io/en/latest/
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Fig. 5. Evolution of our STI systems.
4. LamAPI

When dealing with information in unstructured or semi-structured
formats, such as tables or text, a crucial process involves identifying
connections between the strings within these sources and the cor-
responding entities within KG. Additionally, types and relationships
stored as triples in a KG, if extracted, represents an excellent source
of knowledge, especially for disambiguation task.

LamAPI is an ER system developed to query and filter entities in
a KG by applying complex string matching algorithms. This task, as
described in Section 4.1 and referred as ‘‘indexing’’, is crucial for each
EL pipeline. The purpose of the system is to support EL in each phase of
its pipeline. For this reason LamAPI also provides knowledge extraction
ervices to retrieve entity triples information in different formats.

The current version of the system integrates DBpedia (v. 2016–10
nd v. 2022.03.01) and Wikidata (v. 20220708), which are the most
opular KGs adopted also in the SemTab challenge.31

.1. Knowledge Graphs indexing

DBpedia, Wikidata and the like are very large KGs that require an
normous amount of time and resources to perform ER. While turtle
ormat32 is excellent for representing relationships among entities, it
s not well-suited for ER algorithms, as the triples in turtle format,
epresented by URIs, are not designed or optimised for ER tasks. They
ight be long, cryptic, or not easily interpretable, making it challenging

or traditional entity retrieval algorithms to efficiently process and
ndex them. This issue has been tackled by devising a more condensed
ata representation by utilising MongoDB collections, which can be
ndexed for swift retrieval of the intended data.

For each indexed KG, the relative dump has been downloaded and
arsed to store all triples in a local copy. For Wikidata, a single file
amed ‘‘latest-all.json.bz2’’33 of size 71 GB has been parsed, while for
Bpedia multiple turtle files have been parsed to create a complete
ump of the KG. Subsequently, an ElasticSearch34 index has been con-
tructed, leveraging an engine designed to search and analyse extensive
ata volumes in nearly real-time swiftly. These customised local copies
f the KGs are then used to create endpoints to provide ER services. The
dvantage is that these services can work on partitions of the original
Gs to improve performance by saving time and using fewer resources.

31 www.cs.ox.ac.uk/isg/challenges/sem-tab
32 www.w3.org/TR/turtle
33 doc.wikimedia.org/Wikibase/master/php/docs_topics_json.html
34
 www.elastic.co

7 
4.2. List of services

LamAPI offers a comprehensive range of services designed to fully
support algorithms related to EL at every stage of their pipeline. This
Section focuses on services provided by LamAPI and used by s-elBat in
its entire execution process. While there are various services available,
only those directly relevant to s-elBat’s EL task are discussed. These
services include: (i) Lookup, (ii) Types, (iii) Literals, (iv) Properties,
(v) Objects, (vi) Labels, (vii) Literal Recogniser, and (viii) FastText.

(i) Lookup: given a string input, the service retrieves a set of
candidate entities from the reference KG. The request can be qualified
by setting some attributes:

• limit: an integer value that specifies the number of entities to
retrieve. The default value is 100, and it has been empirically
demonstrated how this limit allows a good level of coverage. The
experiments are presented in Section 4.3;

• kg: specifies which KG and version to use. The default is dbpe-
dia_2022_03_01, and other possible values are dbpedia_2016_10
or wikidata_latest;

• fuzzy: a boolean value. When true, it matches tokens inside a
string with an edit distance (Levenshtein distance) less than or
equal to 2. This gives a greater tolerance for spelling errors. When
false, the fuzzy operator is not applied to the input;

• ngrams: a boolean value. When true, it permits to search n-
grams. After many empirical experiments, we set ‘n’ of n-grams
equal to 3. A lower value can bring some bias in the search, while
an higher value could not be very effective in terms of spelling
errors. For instance ‘‘albert einstein’’ using n-grams equal to 3 is
split in [’alb’, ‘lbe’, ‘ber’, ‘ert’, . . . ]. Ngram value is set to false by
default;

• types: this parameter allows the specification of a list of types
(i.e., rdf:type for DBpedia and Property:P31 for Wikidata)
associated with the input string to filter out the entities to re-
trieve. The list of types must be specified by listing all concepts
separated by a single space as parameter (e.g., ‘‘Scientist Philoso-
pher’’ for searching entities of type ‘‘Scientist’’ or ‘‘Philosopher’’).
This attribute plays a key role in re-ranking the candidates,
allowing a more accurate search based on input types.

The following example discusses the difference between a SPARQL
query and the LamAPI Lookup service. Listings 1 and 2 show a search
using the mention ‘‘Albert Einstein’’. The evidence is that LamAPI syn-
tax is simpler than the one employed in SPARQL. The Lookup service
allows for managing the presence of misspelled mentions and provide
a ranking of the resulted candidates by considering a Levenshtein
distance score.

https://www.cs.ox.ac.uk/isg/challenges/sem-tab
https://www.w3.org/TR/turtle
https://doc.wikimedia.org/Wikibase/master/php/docs_topics_json.html
https://www.elastic.co/
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Listing 1: Search with SPARQL.
1 select distinct ?s where {

?s ?p ?o .
3 FILTER( ?p IN (rdfs:label)).

?o bif:contains " Albert Einstein ".
5 }

order by strlen(str(?s))
7 LIMIT 100

Listing 2: Example of LamAPI Lookup.
1 /lookup/entity-retrieval?

name= " Albert Einstein " &
3 limit=100&

token=insideslab -lamapi -2022&
5 kg=dbpedia_2022_03_01&

fuzzy=False&
7 ngrams=False

Examples of results using the input string ‘‘Albert Einstein’’ are
hown in Listing 3 and Listing 4, referred to Wikidata and DBpedia
espectively. Each candidate entity is described by the following fields:

• id: the unique identifier id provided by the KG;
• label: the string label name reporting the label of the entity;
• type: a set of types associated to the entity, where each one is

described by its unique identifier;
• description: an optional description of the entity (i.e., DBpedia

does not provide descriptions, while Wikidata does);
• score: a score represented by the edit distance measure (Leven-

shtein distance) between the input textual mention and the entity
label.

isting 3: Lookup: returned data from Wikidata for the label ‘‘Albert
instein’’.

1 {
" id " : Q937

3 " label " : Albert Einstein
" description " : German-born ...

5 " type " : Q19350898 Q16389557 ... Q5
" score " : 1.0

7 },
{

9 " id " : Q356303
" label " : Albert Einstein

1 " description " : American actor ...
" type " : Q33999 Q2526255 ... Q5

3 " score " : 1.0
}

Listing 4: Lookup: returned data from DBpedia for the label ‘‘Albert
instein’’.

{
2 " id " : Albert_Einstein

" label " : Albert Einstein
4 " description " : ...

" type " : Scientist Animal ...
6 " score " : 1.0

},
8 {

" id " : Albert_Einstein_ATV
0 " label " : Albert Einstein ATV

" description " : ...
2 " type " : SpaceMission Event ...

" score " : 0.789
4 }

The score provides a candidate ranking that can be used by the ED
odule (Section 5) for a straightforward selection of the actual link.

(ii) Types: Given a list of unique IDs of DBpedia or Wikidata
ntities, it retrieves a list of types for each entity. This service represents
he triple in which the property is always rdf:type in DBpedia and P31
n Wikidata.

(iii) Literals: Given a list of unique IDs of DBpedia or Wikidata
ntities, it retrieves all the triples associated with each entity specified,
here the object in the triple is a literal, such as strings, numbers, and
ates.

(iv) Predicates: Given a list of entity pairs, it retrieves all the
roperties that bind the entities to determine whether those entities are
8 
related or not, and if they are related, it determines which properties
are involved.

(v) Objects: Given a list of unique IDs of DBpedia or Wikidata
ntities, it retrieves a list of triples for each entity where the object
s another entity of the KG.

(vi) Labels: Given a list of unique IDs of DBpedia or Wikidata
ntities, it retrieves a list of LABELS and ALIASES for each entity.

(vii) Literal recogniser: Given a list composed of a set of strings,
he endpoint returns the types of those literals. The list of recognised
iterals is specified in Listing 5.

isting 5: Literals recognised by LamAPI.
DATES:

2 145 bc, 145.bc, 145,bc
1997-08-26, 1997.08.26, 1997/08/26

4 26/08/1997, 26.08.1997, 26-08-1997
26/08/97, 26.08.97, 26-08-97

6 august 26 1997, august.26.1997, august ,26,1997
26 august 1997, 26.august.1997, 26,august ,1997

8 1997 august 26, 1997,august ,26, 1997.august.26
1997 26 august, 1997,26,august, 1997.26.august

0 august 1997, august.1997, august ,1997
1997 august, 1997.august, 1997,august

2 1997-2022, 1997-present, 1997-now

4 NUMBERS:
2,797,800,564, 2.797.800.564

6 200,797,800, 200.797.800
1997, 1345, 26, 1

8 +/- 34, +/- 34657
25 thousand , 25 million, 25 billion, 25 trillion

0 2 km, 2 km2, 2 cm, 2 cm2, 2 mm, 2 mm2, 10 sq, 10 ft
2,8, 2.8

2 +/- 5e+/-10

4 OTHERS
https://unimib.it/

6 mario.rossi@gmail.com
12pm, 2.30 am, 12.30pm, 12:30pm

(viii) FastText: Given an array of strings as input, the endpoint
generates and returns the corresponding embedding representations
of length 300 using Fasttext 35 [85] vectors. The decision to use 300
imensions is likely a balance between capturing enough semantic
nformation to represent words effectively and keeping the compu-
ational requirements reasonable. Increasing the dimensionality may
mprove the model’s ability to capture subtle semantic relationships
etween words, but it also comes with increased computational cost
nd memory requirements [85].

isting 6: Fasttext: DBpedia vector returned for ‘‘Alan_Turing’’ entity.
1 Request:

{
3 " json " : [

" Alan Turing " ,
5 ]

}
7 Response:

{
9 " Alan Turing " : [

0.00280323950573802,
1 0.010494967922568321,

-0.00392009224742651,
3 -0.0017100191907957196,

-0.04271041601896286,
5 -0.040172189474105835,

-0.017303353175520897,
7 0.0086875194683671,

-0.007565824780613184,
9 ...

]
1 }

Listing 7: Fasttext: Wikidata vector returned for ‘‘Albert_Einstein’’
entity.
1 Request:

{
3 " json " : [

" Albert Einstein " ,
5 ]

}
7 Response:

35 github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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Table 1
Statistics of the datasets used to extract coverage data. ‘—’ indicates unknown.

GS Tables Cols
(min | max | 𝑥̄)

Rows
(min | max | 𝑥̄)

Classes Entities Pred. KG

T2Dv2 [86] 234 1,2K
(1 | 30 |

4,52)

2,8K
(1 | 5K |

84,55)

39 – 154 DBpedia

Tough Table (2T) [87] 180 194K
(1 | 8 | 4,46)

802
(6 | 15,5K |

108K)

540 667K 0 Wikidata
DBpedia

R3 2,1K 10,8K
(4 | 8 | 4,51)

153K
(6 | 207 |

71,69)

5,7K 407K 7,6K

SemTab2019 [87] R4 817 3,3K
(4 | 8 | 4,36)

51,4K
(6 | 198 |

63,73)

1,7K 107K 2,7K DBpedia

R2 1,7K 5,6K
(2 | 7 | 3,19)

29,3K
(5 | 58 |

17,73)

2,1K 47,4K 3,8K

HardTable2021 [4] R3 7,2K 17,9K
(2 | 5 | 2,48)

58,9K
(5 | 21 |

9,18)

7,2K 58,9K 10,7K Wikidata
b
t
o
s
e
m
a

𝑐

{
9 " Albert Einstein " : [

-0.03460921719670296,
1 0.01696068048477173,

0.015138840302824974,
3 0.04197229444980621,

-0.020079581066966057,
5 -0.04950999841094017,

-0.012100357562303543,
7 -0.01173518318682909,

0.01281578280031681,
9 ...

]
1 }

4.3. Evaluation

In this Section, the evaluation is reported to measure the quality
of the LamAPI output. Specifically, the distribution of correct candi-
dates is examined considering various datasets available in the SemTab
challenge (Table 1). The datasets used for the analysis are:

• T2Dv2 [86]: the T2Dv2 GS consists of manually annotated row-
to-instance, attribute-to-property, and table-to-class correspon-
dences;

• SemTab 2019 [88]: a group of benchmark datasets for each
round of the challenge without extensive human annotation. It
has been designed by developing an automated data generator
that creates tabular data given a SPARQL endpoint. The idea is to
create tabular data similar to tables found on the Web ensuring
a reasonable diversity in size and coverage of classes and prop-
erties from various domains. Specifically SemTab_R3 2019 and
SemTab_R4 2019 datasets has been used from SemTab challenge
2019;

• Tough Tables (2T) [87]: the dataset has been built with high-
quality tables, including cells that are not immediately linkable
due to factors such as ambiguous names, typos, and misspelt
entity names;

• HardTable-2021 [4]: this is a synthetic dataset with tables gen-
erated automatically using SPARQL queries. Datasets used from
HardTable-2021 are respectively HardTable_R2 2021 and
HardTable_R3 2021.

Choosing the right datasets is pivotal for testing the LamAPI ser-
vice and developing the s-elBat disambiguation algorithm through ML
techniques in subsequent sections. These datasets must accurately rep-
resent the relevant features and patterns within the problem domain.
Ensuring the datasets are extensive and diverse is essential, encompass-
ing a broad spectrum of scenarios and variations. This variety helps
the model generalise unfamiliar data effectively and handle various
9 
situations. In a real context, the data used for an ML task are not error-
free. For this reason, the 2T dataset has been employed to assess the
performance of both LamAPI and s-elBat to manage corrupted data.
An example of table extracted from T2Dv2, SemTab_R3 2019, 2T,
HardTable_R2 2021 and TURL datasets are shown in Appendix A, in
Tables C.7, C.8, C.9, C.10 and C.11.

The validation process starts with a set of mentions 𝑀 , and a num-
er 𝑘 (which by default is 100), representing the number of candidates
hat will be extracted for each mention. The Lookup service returns a set
f candidates 𝐸𝑚 that includes all the entities matched. The returned
et is then checked against the GS to verify which among the correct
ntities are present and in what position they are in the result. The
etric used to quantify the goodness of LamAPI lookup is the coverage

nd it is computed following this formula:

𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = # 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
# 𝑐𝑒𝑙𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

(1)

where # represents ‘‘number of’’.
Coverage is calculated for all cells in the dataset. The numera-

tor indicates the number of correct candidates, and the denominator
represents the number of cells for which a candidate must be generated.

It measures how well the entity retrieval system can capture a broad
range of entities that match the query. High coverage implies that the
system effectively retrieves many relevant entities, ensuring that the re-
sults are not limited to a narrow subset but encompass a broad spectrum
of entities that may be of interest. On the other hand, low coverage
suggests that the system might miss or overlook significant entities,
leading to an incomplete representation of the available information.

Fig. 6 depicts how the coverage score changes with the number of
candidates. The results reveal that for most datasets, the coverage re-
mains consistently around 0.90 when the number of candidates ranges
from 20 to 30. Nevertheless, there are exceptions, notably in the case of
SemTab_R3 2019 and HardTable_R3 2021, where the coverage reaches
approximately 0.80 with a hundred candidates. The primary factor
contributing to this score in SemTab_R3 2019 is the prevalence of name
abbreviations, making them challenging for LamAPI to be identified.
In contrast, HardTable 2021_R3 faces disambiguation challenges, as
most cells consist of only one token, providing a little context for
disambiguation and, for this reason, the default number 𝑘 chosen for
performing ER has been set to 100.

The other experiment concerns the average position of the correct
candidate across different datasets (Fig. 7). HardTable_R3 2021 obtains
the worst results because one-token mentions have a wide range of
possible candidates, so the correct candidates are often in the lower
ranking positions. SemTab_R3 2019 is critical for abbreviations of peo-
ple’s names, but when the correct candidate is found, it is detected
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Fig. 6. Coverage score obtained by changing the number of candidates extracted from
LamAPI.

Fig. 7. Average position of correct candidates, for each dataset, retrieved from
LamAPI.

around the 4th position. Also Tough Tables has a higher average po-
sition of the correct candidate (around 3) because this dataset is full
of misspelt mentions, so retrieving the correct candidate in the first
position is more complicated. However, it must be underlined that this
dataset has been widely corrupted in order to insert a large number of
typos into the mentions. It, therefore, does not represent a real scenario.
HardTable_R2 2021, T2Dv2, and SemTab_R4 2019 are more accessible
since they have fewer typos and misspelt mentions.

Other approaches perform EL through customised indexes based on
various KGs. The only service previously accessible for this purpose
was MTab [55], which is no longer operational. We have previously
computed the coverage score using the MTab system against the 2T
dataset. The system attained a coverage score of 0.93, while the current
version of LamAPI achieves a higher coverage score of 0.97 against
the 2T dataset. The KG employed for the entity resolution task is
Wikidata. This result shows that LamAPI competes well with other
systems developed in the state of the art.
10 
Fig. 8. Overall architecture of s-elBat system.

5. s-elBat

In this Section, we present s-elBat [44] system, which is an iterative
process for performing ED on tables. Given a KG containing a set of
entities 𝐸, and a collection of named-entity mentions 𝑀 , the goal of
EL is to map each entity mention 𝑚 ∈ 𝑀 to its corresponding entity
𝑒 ∈ 𝐸 in the KG. The overall architecture (depicted in Fig. 8) comprises
two primary modules: the semi-supervised module and the supervised
module, which are explained in Sections 5.1 and 5.2 respectively.

5.1. s-elBat Semi-supervised Module

The first version of s-elBat [44] (the semi-supervised module) was
developed during the international challenge SemTab 202236 and it
adopted an iterative heuristic-based algorithm. The pipeline of the pro-
cess is represented in Fig. 9 and it is composed of 7 sequential phases:
(i) Preprocessing and Data Preparation, (ii) Entity Retrieval, (iii)
CEA, (iv) CPA, (v) CTA, (vi) Revision, and (vii) Export.

The (i) Preprocessing and Data Preparation phase aims to convert
all cells in each table to lowercase, and any extra spaces and special
characters, such as underscores (_), are removed to improve the results
of the entity retrieval phase. Following this, a column classification pro-
cess is carried out, labelling each column as either L-column (containing
literals) or NE-column (containing named-entity mentions).

The column classification is executed by using LamAPI Literal Recog-
niser service, which detects the type of each mention in the column
by using a set of RegexTypes (i.e., boolean, date, email, geocoords,
integer, float, ISBN, URL, XPath, CSS). In addition, s-elBat uses spaCy37

to enhance the algorithm for assigning a data type and make it more
resilient. When column cells are labelled as ‘‘string’’, the algorithm
automatically treats them as NE-Columns.

36 sem-tab-challenge.github.io/2022
37 spacy.io

https://sem-tab-challenge.github.io/2022
https://spacy.io/
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Fig. 9. Process of semi-supervised module of s-elBat.
Fig. 10. A sample table (Fig. 2) with mentions highlighted in yellow.
1

1

1

1

For example, in Fig. 10, the columns ‘‘Release date’’, ‘‘Length in
min’’ and ‘‘Worldwide gross’’ are classified as L-columns, while ‘‘Title’’,
‘‘Director’’ and ‘‘Domestic Distributor’’ as NE-columns.

For each mention 𝑚 ∈ 𝑀 , in the (ii) Entity Retrieval phase, the
approach employs the LamAPI Lookup service to search and retrieve
a set of entities 𝐸. During the service invocation, various heuristics
are applied to handle potential misspellings. Specifically, two distinct
requests are made: (i) using only the mention itself and (ii) modifying
the mention by removing repeated letters and brackets. This adjust-
ment is crucial as it enhances the performance of the 3-gram search
implemented by ElasticSearch in LamAPI, which is sensitive to such
mistakes. Simultaneously, fuzzy matching helps in efficiently handling
potential double-character omissions. Additionally, brackets can affect
the edit distance and often contain irrelevant content. The parameters
utilised for the Entity Retrieval phase are the following: (i) name:
‘‘cell mention’’, (ii) limit: ‘‘100’’, (iii) kg: ‘‘wikidata’’, fuzzy: ‘‘true’’,
ngrams: ‘‘False’’

Once candidate entities are obtained from LamAPI, s-elBat es-
timates the (iii) CEA task by computing a feature vector for each
candidate. Each feature vector represents the goodness with which the
candidate can be linked to the cell. The entries of each vector are
computed as follows:

• Edit Distance: the score is determined using the Levenshtein dis-
tance, which measures the difference between the mention and
the label linked to the candidate entity;

• Jaccard Distance: the score is akin to string similarity, but it is
computed using Jaccard distance rather than Levenshtein. Jac-
card compares sets and is used for measuring the similarity be-
tween sets of items;

• Object : this score is assigned exclusively when a relationship
exists between two candidate entities found in the same row
 1

11 
for different columns. The algorithm iterates over candidates
extracted for two cells (associated with NE-columns) in the same
row, checking for the existence of a property that links the
two candidates. The existence of a property is verified using
LamAPI predicates service. If such property is found, the score
is incremented;

• Relation: similar to the previous object score, the relation score is
established when at least one property connects the entities under
consideration. Also, in this case, the service used by LamAPI is
the ‘‘predicates’’ one;

• Literal: this score is computed between each candidate retrieved
for each cell by LamAPI and the cell in the L-column. This
score is useful for assessing relationships between NE-columns and
L-columns.

An example of feature vector computed for the three entities re-
trieved from LamAPI referred to the mention ‘‘Jurassic World’’, in
Fig. 10, is shown in Listing 8.

Listing 8: Feature vector computed for Jurassic World entity.
1 {

" id " : " Q3512046 " , (Jurassic World)
3 " name " : " jurassic world " ,

" description " : "2015 film directed by Colin Tr." ,
5 " edit_distance " : 1, (Levenshtein distance)

" jaccard_distance " : 1, (Jaccard Distance)
7 " object " : 2.0, (Object relationship score)

" relation " : 0, (Property relation score)
9 " literal " : 1.061 (Literal matching score)

},
1 {

" id " : " Q55615459 " ,
3 " name " : " jurassic world " ,

" description " : " a ride themed to the jurassic .."
5 " edit_distance " : 1,

" jaccard_distance " : 1,
7 " object " : 0,

" relation " : 0,
9 " literal " : 0
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},
1 {

" id " : " Q18615494 " ,
3 " name " : " jurassic world " ,

" description " : "1452 strip of the webcomic xkcd "
5 " edit_distance " : 1.0,

" jaccard_distance " : 1.0,
7 " object " : 0,

" relation " : 0,
9 " literal " : 0

},

Eventually, the final score is computed for each entity by using a
eighted sum:

𝑐𝑜𝑟𝑒(𝑒) =
#𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∑

𝑖=1
𝑤𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖(𝑒) (2)

Where 𝑤𝑖 represents the weight given to each feature. Initially, a
anual qualitative analysis of a small set of annotations suggested

y s-elBat was conducted to determine the set of weights. The set is
hen used to create five ranges with the attempt to consider cases not
dentified during the initial analysis: (i) Edit Distance = [1, 5, 10], (ii)
accard Distance = [2, 4, 8], (iii) Object = [1, 3, 7], (iv) Relation = [1, 2, 4],
v) Literal = [1, 4, 7] The ranges have been chosen in such a way as to
ave an upper and lower limit. Afterwards, these ranges were refined
sing a grid search algorithm on the HardTable_R2 2021 dataset, which
as selected due to its broad and generic characteristics. Considering

he maximum value of F1-score on the dataset, the final weights are:
dit Distance 10, Jaccard Distance 8, Object 3, Relation 4, Literal 7.

The next phase involves the (iv) CPA task, where the information
athered in the preceding phase is employed to group properties based
n their frequency. This task is performed for every pair of columns.
he initial phase involves counting, for each cell in the table, the
roperties that establish relationships at the row level with another
olumn. Once the ranking for an individual cell is determined, the
esults are aggregated for the entire column, and the property with
he highest score is chosen. The final result is a dictionary for each
air of columns, containing the winning properties and their respective
requencies. The most commonly occurring property is chosen for CPA
nnotation in the subsequent phase (the Export one).

Similarly, for the (v) CTA task, the approach builds a dictionary
ontaining the frequencies of all the classes associated with the winning
ntities identified in the previous phase. The class with the highest
requency is chosen as the annotation for the analysed column.

The (vi) Revision process analyses all the information gathered
n the previous phases to reorder the candidates in the final stage. In
articular, this allows for correcting CEA entities previously selected:
very entity has to be coherent with the CTA and CPA annotation.

Lastly, during the (vii) Export phase, the goal is to export the
nnotated mentions. The system must make decisions for each mention,
etermining whether the provided annotation is accurate or not based
n confidence levels. An example of output provided by the Export
hase is shown in Listing 9.

isting 9: Example of output provided by Export phase of s-elBat
Unsup. module).

{
2 " id " : " Q3512046 " ,

" name " : " jurassic world " ,
4 " description " : "2015 film directed by Colin T."

" match " : false,
6 " score " : 24.663

},
8 {

" id " : " Q21877685 " ,
0 " name " : " jurassic world " ,

" description " : "2018 5th jurassic park film ..."
2 " match " : false,

" score " : 23.891
4 },

{
6 " id " : " Q2336369 " ,

" name " : " jurassic world " ,
8 " description " : " american media franchise "

" match " : false,
0 " score " : 21.12

}

12 
5.2. s-elBat Supervised Module

From the first version of s-elBat, new components have been added
to improve the entity disambiguation by combining heuristic and ML-
based approaches. The pipeline of the new algorithm is illustrated
in Fig. 11, outlining the execution flow and key components. The
pipeline of the process can be categorised into several phases: (i) Data
analysis and pre-processing, (ii) Lookup, (iii) Feature extraction,
(iv) Similarity Prediction, (v) CTA, (vi) CPA, (vii) Feature extraction
revision, (viii) Context-based Prediction, and (ix) Export.

The creation of additional components in this updated version of
s-elBat addresses the challenge of optimising feature weighting. The
initial iteration of s-elBat involved manually assigning weights to each
extracted feature by a domain expert (as seen in Section 5.1). These
weights were determined through the experimentation (discussed in the
following sections) until an optimal score was achieved.

However, the experimentation was limited to a subset of all possible
values, and a complete evaluation would involve testing too many
weight combinations, making the process time-consuming.

So, unlike the previous version, which employed a heuristic al-
gorithm relying on predefined rules, this iteration seeks to harness
the power of ML. While the heuristic approach depended on expert-
derived strategies and fixed rules, making it less adaptable to dynamic
environments and potentially hindering its performance with different
data inputs, ML models offer the ability to make decisions based on
learned patterns and relationships from data. They adapt and improve
with more data, making them well-suited for dynamic and evolving
scenarios and capable of excelling with new, previously unseen, data.

In the case of s-elBat, the adopted ML techniques allow to deter-
mine features weight by iterating on data and adapting them incremen-
tally. Employing ML improves generalisation and streamlines model
updates, making it a superior approach for achieving the most effective
weight assignments.

(i) Data analysis and pre-processing, (ii) Lookup, (v) CTA, (vi)
PA, and (ix) Export phases, presented before, have been used without
roviding any changes.

The (vii) Feature Extraction phase builds upon the previous ver-
ion but with some differences in how the feature vectors are con-
tructed. The goal is to enhance the vector representation by including
imilarity and contextual information for each candidate. The following
ntries are added to the vector:

• Number of tokens (ntoken): the number of tokens in the men-
tion 𝑚. This feature serves as an indicator of the mention’s am-
biguity, as empirical evidence suggests that a greater number of
tokens typically improves the accuracy of candidate disambigua-
tion;

• Popularity (popularity): the value represents the number of
links each entity has in the KG. The score has been derived for
each entity from Wikidata. The popularity of a node in a graph
refers to the measure of its significance or importance within
the network structure. It indicates the number of connections a
particular node has within the graph;

• Position score (pos_score): a positional score is calculated as fol-
lows: 1∕𝑖, where 𝑖 represents the position of the candidate entity
𝑒 in the LamAPI ranking. This feature reflects the significance of
the candidate entity’s position within the IR system’s ranking;
jurassic world
(2015 film directed by Colin Trevorrow) 1

pos_score

jurassic world
(a ride themed to the jurassic world. . . )

1
2

pos_score

jurassic world
(1452nd strip of the webcomic xkcd)

1
3

pos_score
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Fig. 11. Process of supervised module of s-elBat. The phases that differ from the semi-supervised version are highlighted in green.
name: jurassic world
description: 2015 film directed by Colin Trevorrow
es_score: 163.63

0.61
es_diff_score

name: jurassic world
description: a ride themed to the jurassic world. . .
es_score: 22.79

0.0
es_diff_score

name: jurassic world
description: 1452 nd strip of the webcomic xkcd
es_score: 22.79

N/A
es_diff_score
1

1

1

1

• Elasticsearch score (es_score): this score is internally computed
by Elasticsearch and originates from LamAPI, making it a purely
syntactic match. This feature represents the score generated by
the IR system;

• Elasticsearch difference score (es_diff_score): a score is calcu-
lated using the following formula: (𝑆𝑒𝑖 − 𝑆𝑒(𝑖+1) )∕(𝑆𝑒(𝑖+1) ), where
𝑆𝑒𝑖 represents the Elasticsearch score of the 𝑖th candidate entity,
and 𝑆𝑒(𝑖+1) denotes the Elasticsearch score of the subsequent can-
didate entity in the LamAPI ranking. This feature quantifies the
relevance gap between two candidates in the ranking produced
by LamAPI system;

• Jaccard ngram (jaccard): this metric quantifies the similarity
between two strings by calculating the ratio of matching n-grams
to the total count of unique n-grams. It assesses the resemblance
between an entity mention and its corresponding name in a KG.
Specifically, this feature evaluates the similarity between the n-
grams present in the mention 𝑚 and those found in the candidate
entity’s name, with a fixed value of 𝑛 set to 3;

• Cosine similarity score (cosine_similarity): this score is deter-
mined through the calculation of cosine similarity between the
vectors representing the mention 𝑚 and the entity’s name 𝑐, both
of which are generated using the FastText library38;

• Description score (desc): the score quantifies the likeness be-
tween the content of a table row and the description of a current
candidate in a KG. It leverages Jaccard similarity to compare
these two strings. This feature provides insight into the similarity
between the tokens present in the row’s text and the description of
the current candidate, revealing the degree of likeness or shared
information between the two text segments;

38 fasttext.cc
13 
• Description ngram score (descNgram): it quantifies the simi-
larity between the content of a table row and the description of
a current candidate in a KG. It utilises 3-grams (trigrams) and
Jaccard similarity to compare the two strings. This feature offers
detailed insights into the similarity between the trigrams in the
row’s text and the current candidate’s description. It provides
a more nuanced assessment of the degree of resemblance or
shared information between the two texts compared to traditional
token-level comparisons.

All the following features are used to build each vector associated
with each candidate entity extracted by LamAPI. An example of a
vector is represented in the following Listing 10. The example considers
the mention ‘‘Jurassic World’’, and it shows the top three feature
vectors associated with the top three candidate entities extracted by
LamAPI.

Listing 10: Candidates: returned candidates for the mention Jurrasic
World.
1 {

" id " : " Q3512046 " , (Jurassic World)
3 " name " : " jurassic world " ,

" description " : "2015 film directed by Colin Tr ."
5 " ed " : 1, (Levenshtein distance)

" jaccard " : 1, (Jaccard distance)
7 " object " : 2.0, (Object relationship score)

" literal " : 1.061, (Literal matching score)
9 " relation " : 0, (Property relation score)

" ntoken " : 2, (Number of tokens)
1 " popularity " : 61, (Popularity)

" pos_score " : 1, (Position score)
3 " es_score " : 163.73, (Elasticsearch score)

" es_diff_score " : 0.060022, (Elastic difference)
5 " jaccardNgram " : 1, (Jaccard ngram)

" cosine_similarity " : 1, (Cosine similarity score)
7 " desc " : 0.333, (Description score)
" descNgram " : 0.261 (Description ngram score)

https://fasttext.cc/
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9 },
{

1 " id " : " Q55615459 " ,
" name " : " jurassic world " ,

3 " description " : " a ride themed to the jurassic .."
" ed " : 1,

5 " jaccard " : 1,
" object " : 0,

7 " literal " : 0,
" relation " : 0,

9 " ntoken " : 2,
" popularity " : 4,

1 " pos_score " : 0.5,
" es_score " : 22.79,

3 " es_diff_score " : 0.0,
" ed " : 1.0,

5 " jaccard " : 1.0,
" jaccardNgram " : 1.0,

7 " cosine_similarity " : 1.0,
" p_subj_ne " : 0,

9 " p_subj_lit " : 0,
" p_obj_ne " : 0,

1 " desc " : 0.25,
" descNgram " : 0.348

3 },
{

5 " id " : " Q18615494 " ,
" name " : " jurassic world " ,

7 " description " : "1452 strip of the webcomic xkcd "
" ed " : 1,

9 " jaccard " : 1,
" object " : 0,

1 " literal " : 0,
" relation " : 0,

3 " ntoken " : 2,
" popularity " : 1,

5 " pos_score " : 0.33,
" es_score " : 22.79,

7 " es_diff_score " : 0.113583,
" ed " : 1.0,

9 " jaccard " : 1.0,
" jaccardNgram " : 1.0,

1 " cosine_similarity " : 1.0,
" p_subj_ne " : 0,

3 " p_subj_lit " : 0,
" p_obj_ne " : 0,

5 " desc " : 0.0,
" descNgram " : 0.0,

7 }

The success of the ML model used in subsequent phases relies heav-
ly on the quality and relevance of the features contained in the vectors.
he chosen features must capture essential and distinctive information
rom the table data; for this reason, similarities and contextual data
re included in each vector. It is important to note that the s-elBat

algorithm is an ED technique, so it is focused on disambiguation.
Therefore, if the LamAPI algorithm fails to identify the correct entity
uring the ER phase, s-elBat will produce incorrect annotations.

The (iv) Similarity Prediction is the first ED phase computed to
ave a re-ranking result of entities extracted by ER module. LamAPI
lready provides a ranking for each named entity cell, but its main
ssue is that it only considers text similarity scores. Features vectors,
nstead, incorporate additional information related to the contextual
nowledge found in the table. Specifically, they encompass scores
elated to ‘‘object’’, ‘‘relation’’ and ‘‘literal’’, which explore connections
etween candidates extracted for cells within the same row. At this
oint in the algorithm, the problem is to assess the scores obtained
ithin the vector and determine how to assign different importance to

he obtained features. In s-elBat semi-supervised module, this task has
een done empirically by trying different configurations and eventually
dopting the best one. Furthermore, s-elBat supervised incorporates
n extensive array of features, making the empirical determination of
eights impractical. For this reason s-elBat supervised module adopts
ML model to compute the reranking of the candidate entities. The

inal ML model has been accurately selected by performing a set
f tests using four ML algorithms. The selected models for the tests
re: Support Vector Machine [89], Random Forest [90], Logistic

Regression [91], and Neural Network [92]. These models have been
implemented using scikit-learn39 library with the default parameters.

In comparison to other models, the NN requires more thorough
experimentation to identify its optimal structure. For this reason, before
proceeding with the algorithm description, we provide details of the
chosen network architecture.

39 scikit-learn.org/stable/
14 
Table 2
Model Architecture of the final Neural Network.

Layer (type) Output shape Param # Connected to

dense (64,) 1344 (20,)
batch_norm (64,) 256 (64,)
dense_1 (128,) 8320 (64,)
batch_norm_1 (128,) 512 (128,)
dense_2 (256,) 33 024 (128,)
batch_norm_2 (256,) 1024 (256,)
dense_3 (128,) 32 896 (256,)
batch_norm_3 (128,) 512 (128,)
dense_4 (64,) 8256 (128,)
batch_norm_4 (64,) 256 (64,)
dense_5 (2,) 130 (64,)

NN architecture. The NN architecture adopted in s-elBat supervised
module (Table 2 and Fig. 12) was derived through multiple experi-
ments. This feed-forward architecture has been built by considering
that a model with insufficient parameters would struggle to learn ef-
fectively, while an excessive number of parameters would lead to over-
fitting. The objective was to strike a balance and create an architecture
that mitigates both issues.

The deep feed forward NN is structured as follows:

• Input Layer: The input layer serves as the NN’s starting point, re-
ceiving raw input data and acting as the gateway for information
processing. In s-elBat context, the raw input data is represented
as feature vectors, each with a size of 14.

• Hidden Layers: Hidden layers allow NNs to learn complex pat-
terns and representations in the data. There are 5 hidden layers,
respectively, with 64, 128, 256, 128, and 64 neurons, which are
able to learn and extract features from input data. For each neu-
ron, the activation function is ReLU (Rectified Linear Unit) [93],
which is used to introduce non-linearity in the model.

• Output Layer: The output layer, composed of 2 neurons, repre-
sents the final prediction and returns the probability of a candi-
date to be positive (the entity represents the correct annotation)
and negative (the entity is not the correct annotation).

his architecture enables the network to learn hierarchical representa-
ions of the data. Lower layers capture simple features, while higher
ayers build more abstract and complex representations. This hierar-
hical learning is effective for tasks that require understanding data at
ifferent levels of abstraction. Similarly, [38] leverages a 2-layer NN
odel for the task of CEA. The approach employs the NN model to

earn weights and relationships from labelled data.
The NN has been built in this way after some preliminary tests with

ifferent configurations. Previous networks, with few layers, did not fit
ell input data (there was an underfitting problem), so other layers
ave been added to increment the computational complexity of the
etwork. An evaluation of the model described above will be proposed
n Section 4.3. As described in the validation (Section 4.3), the NN was
rained using all datasets performing a k-fold cross-validation, where
= 6, which is the number of datasets.

Eventually, the model chosen to perform this phase is NN, which is
ell-suited for reranking feature vectors in various applications because

t captures complex patterns learnt from data. For this task, s-elBat
omputes reranking using a deep NN architecture as this model has
hown superior capability in modelling intricate data relationships.
t can automatically learn relevant features from raw data, thereby
educing the need for manual feature engineering, a challenge faced
n the semi-supervised module of s-elBat.

The score computed from the NN model creates a new ranking for
ach candidate extracted for each cell. This new ranking is based on
ontextual information that LamAPI cannot observe since it acts only
s an information retrieval system. An example of the output of the
anking generated by the NN is shown in Listing 11.

https://scikit-learn.org/stable/
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Fig. 12. Neural Network architecture.
Listing 11: Similarity Prediction of s-elBat (Sup. module).
1 {

" id " : " Q3512046 " ,
3 " name " : " jurassic world " ,

" description " : "2015 film directed by Colin T."
5 " match " : false,

" score " : 0.992
7 },

{
9 " id " : " Q55615459 " ,

" name " : " jurassic world " ,
1 " description " : " a ride themed to the jurassic .."

" match " : false,
3 " score " : 0.977

},
5 {

" id " : " Q18615494 " ,
7 " name " : " jurassic world " ,

" description " : "1452 strip of the webcomic xkcd "
9 " match " : false,

" score " : 0.128
1 }

The (vii) Feature extraction revision aims to extract further in-
ormation related to CPA and CTA tasks. The previous phase already
eturns a ranked list of candidate entities for each cell that can be
lready used to select the winning entity. Features vectors computed
uring the previous phase contain information related to the similarity
nd the context around the investigated cell, but they do not consider
nformation related to CTA and CPA phases. Therefore, incorporating
etails at both column and row levels can improve the ultimate rank-
ng of candidates for each cell. In this phase, additional features are
omputed to consider also types and properties information at column
nd row level. The following features are added to the previous feature
ector of the first three entities:

• Column score (cta): The score is determined by the types gath-
ered during the CEA phase. Each candidate entity possesses a
distinct set of types extracted through the KG ontology. Subse-
quently, a new score is determined by aggregating the scores
associated with these types. To accomplish this, the dictionary
generated in the CTA phase is applied. Upon completing the
summation of all candidate types, the score is normalised based
on the number of types present in the set. This feature offers
insights into how closely the types linked to the current candidate
entity align with the frequencies of types collected in the column,
indicating the level of consistency or agreement between them;

• Column score max (ctaMax): The score is determined based on
the categories compiled during the CEA phase. The same process
 ‘

15 
used for computing the ‘‘cta’’ score, as outlined previously, is em-
ployed here. However, in this instance, the maximum frequency
within the type set is taken into account. This feature measures
the alignment of types linked to the current candidate entity
by identifying the type with the highest frequency among those
collected during the CTA phase in the column;

• Property score (cpa): The score relies on the properties collected
during the CEA phase. Similarly to the ‘‘cta’’ score, but com-
puted on properties. For each gathered property, it calculates the
cumulative frequency exclusively for properties relevant to the
candidate. This feature assesses the coherence between the prop-
erties linked to the current candidate entity and those gathered
in the column during the CEA phase;

• Property score max (cpaMax): Starting from the previous score
(‘‘cpa’’), for each collected property, it extracts only the max
property that belongs to the candidate. This feature captures the
consistency of the properties associated with the current candi-
date entity by considering the property that has the maximum
occurrences among the properties collected during the CEA phase
in the column;

• Pre-linking score (ceaP): Stands for ‘‘cea pre-linking score’’,
which is a score assigned by a model before the revision phase,
without taking into account consistency with types and proper-
ties. This feature captures the score value assigned to the candi-
date entity during the initial prediction, which serves as input for
the subsequent prediction phases. It allows for the incorporation
of the score from the previous prediction when performing the
second prediction, considering its impact on the final outcome;

• Pre-linking difference score (diff): Refers to a score based on
the difference between the ceaP score and the score of the first
candidate, which is the candidate with the highest ceaP score.
This feature captures a measure of the disparity or difference
in scores between the initial prediction and the top candidate.
A lower ‘‘diff’’ score indicates a smaller difference between the
‘‘ceaP’’ score and the score of the first candidate, suggesting lower
ambiguity in the first prediction. Conversely, a higher ‘‘diff’’ score
indicates a greater disparity between the scores, suggesting higher
ambiguity in the first prediction.

An example of CTA and CPA features computed for the first three
‘Jurassic World’’ candidate entities are reported in Listing 12.
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Listing 12: CTA and CPA scores for Jurassic World candidates.
1 {

" id " : " Q3512046 " ,
3 " name " : " jurassic world " ,

" description " : "2015 film directed by Colin T."
5 " cpa " : 0.46, (Property score)

" cpaMax " : 1.0, (Property score max)
7 " cta " : 0.5, (Column score)

" ctaMax " : 0.75, (Column score max)
9 " ceaP " : 0.973, (Pre-linking score)

" diff " : 0 (Pre-linking difference score)
1 },

{
3 " id " : " Q55615459 " ,

" name " : " jurassic world " ,
5 " description " : " a ride themed to the jurassic .."

" cpa " : 0,
7 " cpaMax " : 0,

" cta " : 0,
9 " ctaMax " : 0,

" cea " : 0.93,
1 " diff " : 0.043

},
3 {

" id " : " Q18615494 " ,
5 " name " : " jurassic world " ,

" description " : "1452 strip of the webcomic xkcd "
7 " cpa " : 0,

" cpaMax " : 0,
9 " cta " : 0,

" ctaMax " : 0,
1 " cea " : 0.391,

" diff " : 0.582
3 }

The (viii) Context-based Prediction, which is the last phase of
he s-elBat supervised module, aims to produce the final ranking. The
hase has been implemented by using a second NN that takes as input
he feature vector obtained in the previous phase and produces a score
ssociated to each candidate. Also in this case, the model used is a
N with the same configuration of the previous adopted in the first
rediction phase (Table 2 and Fig. 12).

Now, the final ranking is defined and the best candidate is selected
s the final annotation to produce for each cell.

In the following listing (Listing 13) the final result given as output
y s-elBat is reported.

isting 13: Final prediction of s-elBat sup. module.
1 {

" id " : " Q3512046 " ,
3 " name " : " jurassic world " ,

" description " : "2015 film directed by Colin T."
5 " match " : false,

" score " : 0.992
7 },

{
9 " id " : " Q55615459 " ,

" name " : " jurassic world " ,
1 " description " : " a ride themed to the jurassic .."

" match " : false,
3 " score " : 0.875

},
5 {

" id " : " Q18615494 " ,
7 " name " : " jurassic world " ,

" description " : "1452 strip of the webcomic xkcd "
9 " match " : false,

" score " : 0.105
1 }

The output demonstrates the ability of the NN to predict a score for
ach entity. In this instance, s-elBat accurately identifies the correct
ntity for the mention ‘‘Jurassic World’’, corresponding to the film
irected by ‘‘Colin Trevorrow’’.

Finally, we also computed the total execution time of LamAPI and
-elBat supervised module in order to give an idea of how long each
ataset takes to be processed. The execution times are reported in
able 3 and in Fig. 13.

. Validation

This Section discusses the validation, indicating the datasets used
nd their characteristics. The Section is divided into two parts: the
irst part explains the results of the experiments carried out to choose
-elBat supervised model, and the second part validates the model
gainst other algorithms in the state of the art.
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Table 3
Execution time table of LamAPI and s-elBat supervised module on every
dataset.

Datasets Time (s)

T2Dv2 1300.53
HT_R2 2021 2993.83
HT_R3 2021 8080.27
Tough Tables 23 563.15
SemTab R3 2019 24 450.13
SemTab R4 2020 49 269.8

The datasets used are extracted from the SemTab challenges [94].
Specifically, the SemTab 2019 R1(T2Dv2)-R3-R4, SemTab 2020 R4
(Tought Tables), SemTab 2021 R2-R3, SemTab 2022 R1-R2, and SemTab
2023 R1 datasets were utilised. In addition, the dataset used for
validation by the TURL [71], and TableLlama [74] approaches have
been included.

6.1. Experiments on ML models for s-elBat supervised

The SemTab datasets have been used to select the best ML models
for s-elBat supervised module. For each ML model (i.e., SVM, Random
Forest (RF), Logistic Regression (LR) and NN), six training and valida-
tion datasets were created, one for each of the six selected datasets.
The idea was to perform a kind of k-fold cross-validation, with 𝑘 = 6,
to test the score achieved on each of the six datasets. Each training
was conducted from scratch to avoid influencing the model during the
validation phase and to obtain the cleanest possible score. A single
training is performed on five out of the six selected datasets, with
testing done on the remaining one. The combination of five datasets
provides a large amount of data for training our ML models.

In the context of a table, every cell in a NE-column is treated as
an individual training example, and the process involves selecting a
single candidate for annotating the corresponding mention in the cell.
This setup resembles a binary classification task, wherein the goal
is to designate one candidate as positive (labelled as 1), while all
other candidates generated during the candidate generation phase are
considered negatives (labelled as 0). During the training, having both
positive and negative training samples is crucial for training models,
especially in binary classification tasks. A training dataset has been
built in this scenario, where a batch of 11 training samples is generated
for each cell. One of these samples corresponds to the correct candidate
and is labelled as positive, while the remaining ten examples are
labelled as negative. The positive sample is derived from the GS of
each dataset, while the set of negatives is obtained from candidate
generation by selecting 10 incorrect results. The choice to extract 10
negative candidates from LamAPI (plus the correct candidate) derives
from the study on the position of the correct candidate for each dataset.
As shown in Fig. 7, in the worst case (SemTab 2021 R3), the correct
candidate is, on average, in position 6. For this reason, 11 appears to
be an optimal choice for the number of candidates in the batch.

In Table 4, we compare Logistic Regression, NN and Random Forest.
SVM results have not been included, as the model does not converge.

As highlighted, the NN model achieved the best results, leading to
the decision to propose a NN as the final model.

6.2. S-elBat with revision and without revision

As explained in the previous chapter, s-elBat supervised module
introduced two prediction phases to perform the CEA task. As the simi-
larity prediction currently overlooks information pertaining to CTA and
CPA tasks, context-based prediction has been introduced to incorporate
these additional features for computing a secondary classification. To
assess whether these pieces of information regarding the CTA and CPA

tasks are indeed useful for annotating the cells, an experiment was
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Fig. 13. Execution time of LamAPI and s-elBat supervised module on every dataset.
Table 4
Comparison between Logistic Regression, Neural Network and Random Forest.

Dataset Logistic regression Neural network Random forest

P R F1 P R F1 P R F1

T2Dv2 0.89 0.89 0.89 0.89 0.89 0.89 0.87 0.87 0.87
Tough Tables 0.89 0.89 0.89 0.93 0.93 0.93 0.89 0.89 0.89
SemTab_R3 2019 0.79 0.79 0.79 0.81 0.81 0.81 0.77 0.77 0.77
SemTab_R4 2019 0.95 0.94 0.94 0.95 0.94 0.95 0.92 0.92 0.92
HardTable_R2 2021 0.95 0.95 0.94 0.97 0.96 0.97 0.89 0.89 0.89
HardTable_R3 2021 0.87 0.87 0.87 0.97 0.96 0.97 0.85 0.85 0.85
Table 5
Comparison between s-elBat and state of the art approaches.

SemTab 2019 SemTab 2020 SemTab 2021 SemTab 2022 SemTab 2023 TURL

R1 (T2Dv2) R3 R4 R4 (Tough Table) R2 R3 R1 R2 R1 dataset

s-elBat
semi-supervised 0.87 0.77 0.94 0.96 0.93 0.92 – – – –

sup wo. revision 0.85 0.79 0.83 0.92 0.94 0.91 – – – –
w. revision 0.90 0.81 0.98 0.97 0.99 0.93 0.87 0.69 0.85 0.91

Mtab 1.0 [95] 0.97 [95] 0.98 [95] 0.90 [96] 0.98 [97] 0.97 [97] – – – –
DAGOBAH 0.89 [98] 0.72 [98] 0.58 [98] 0.83 [99] 0.97 [100] 0.94 [100] 0.95 [101] 0.90 [101] – –
KGCODE-Tab [102] – – – – – – 0.89 0.85 – –
TorchicTab [75] – – – – – – – – 0.83 –
TURL [71] – – – – – – 0.41 0.29 0.34 0.84
TableLlama [74] – – – – – – 0.75 0.64 0.71 0.93
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onducted to verify if the final score increases when incorporating this
econd prediction, which we refer to as ‘‘Context-based prediction’’.

The analysis of the data presented in Table 5 (last two rows)
ighlights a significant impact of using the revision, i.e., the inclusion
f types and properties, on the performance of the NN. On average, an
mprovement of 2%/3% in performance is observed. Furthermore, by
etting a confidence threshold of 0.8, it is possible to achieve a precision
xceeding 90%, indicating that errors and more ambiguous cases can
e identified with high reliability.

.3. Comparison with state of the art approaches

It is also crucial to understand how s-elBat performs compared to
ther state of the art solutions; the comparison results are shown in
able 5.

Concerning the heuristic-based approaches, the winners of the
arious editions of SemTab have been selected: MTab (winner in
019 [95] and in 2020 [96] with MTab4Wikidata), DAGOBAH (winner
n 2021 [100] and 2022 [101]), KGCODE-Tab [103] (winner 2022),
nd TorchicTab [75] (winner 2023). s-elBat has also been compared
ith other state of the art LLM-based algorithms such as TURL [71] and
ableLlama [74]; however, these approaches were developed outside
he context of the challenge.

Overall, s-elBat’s scores closely resemble the top scores in the
emTab benchmark. However, in SemTab_R3 2019, s-elBat registers
 a
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slightly lower performance, attributed to the dataset’s distinctive
eature of containing numerous abbreviations of people’s names.

Since s-elBat reports better results using the supervised module
ith revision, for the datasets of the last two SemTab editions, we

eported only the scores of the supervised module with revision. The
valuation of the MTab approach has not been reported because the
ystem is not yet available. Furthermore, the tool did not participate
n the last two SemTab challenge editions, so no score is available for
hese datasets. On the other hand, DAGOBAH achieves excellent results
n the CEA task, at the expense of execution time, which is pretty high
e.g., for a table with 6 rows and 4 columns, using 20 candidates, it
akes 2094 seconds, so respectively 34 minutes).

Each approach has unique characteristics when it comes to imple-
entation. As a result, other approaches may have employed different

raining datasets. However, the results are related to the same dataset
sed for the test set by all approaches reported.

Regarding TURL [71] and TableLlama [74], neither of these systems
as been tested against the SemTab datasets. For this reason, we have
valuated them against the latest challenge datasets: SemTab_R1 2022,
emTab_R2 2022, and SemTab_WikidataTables 2023. These datasets
ere converted into a suitable format for TURL and TableLlama, using
0 candidates retrieved from LamAPI to test them on the CEA task.
able 5 highlights how s-elBat achieves excellent results even com-
ared to LLM-based models. TableLlama, with its 7 billion parameters,
chieves very good results on SemTab challenge datasets. However, the
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Fig. 14. Splash screen of the tool.
latest model faces more challenges with disambiguation, possibly due
to the increased number of candidates at the cell. Furthermore, TURL
and TableLlama use other information such as page title, section title,
and caption if they are available, while s-elBat does not need these
information to perform the annotations.

Ultimately, s-elBat obtains excellent results in terms of F-measures
on multiple datasets, even with very different characteristics. Note,
instead, how other approaches must use ad-hoc techniques for different
datasets to obtain good values. Our proposal performs similarly to the
state of the art LLM-based approaches but requires substantially fewer
computational resources. In fact, fine-tuning an LLM for a specific task
requires great computational power and specific hardware and is an
activity characterised by high costs. Consider that TableLlama [74]
required a cluster of 48 NVIDIA A100 Tensor Core GPUs for finetuning.
Furthermore, the presence of the features allows greater control of the
technique and explainability (through the analysis of feature values).

7. SemTUI: Exploration of annotated tables

When trying to understand the errors made by the system, the
development of STI algorithms is often challenging to assess. One way
to facilitate this process is to have a UI available for result visualisation
(Fig. 14). Using a web application for tabular annotation is fundamental
to understand in which cases the algorithm fails to annotate a cell or
to comprehend the scores assigned to various candidates extracted for
each cell. s-elBat involves SemTUI [104], which is an open-source tool
that provides ways to both annotate a raw table and easily view data
of semantically annotated tables, developed using React and Typescript
(Fig. 15, Fig. 16).

Through the interface, the user makes a final decision about an-
notations (i.e., choose the correct annotations among the candidates
if the confidence is low) or definitively classifies a mention as NIL
(Fig. 17). For the unlinked mention, SemTUI shows an additional
screen (Fig. 18).

8. Conclusions and future works

This paper discussed how our STI process, supported by s-elBat and
LamAPI, can be used to efficiently and effectively annotate a set of
tables with links that refer to a reference KG.

In Section 2, we have presented the key challenges, outlining the
identified issues across all STI tasks. In this paper, most of these
challenges have been addressed:

(i) Heterogeneity of domains and data distributions: leveraging
diverse, versatile datasets for training ML models within the super-
vised module allows for fine-tuning the s-elBat deep learning model,
tailoring it to task-specific solutions.
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(ii) Matching tabular values against the KG: to address this con-
cern, LamAPI employs indexing for entity mentions, synonyms, aliases,
abbreviations, and acronyms. Furthermore, various matching strategies
are utilised to mitigate issues arising from typos and misspelt mentions.

(iii) Disambiguation of named entities: disambiguation is a crucial
challenge, particularly in situations where limited contextual informa-
tion is available. s-elBat tool addresses this challenge by incorporating
table context at both the column and row levels, ensuring a com-
prehensive assessment before selecting the most suitable entity for
annotation.

(iv) NIL-mentions: the existing method overlooks NIL-mentions as
it consistently aims to choose an annotation for every cell within a
NE-column. In future works, we will focus on the development of a
method that utilises techniques and external sources (e.g., search en-
gines) for enriched representations of mentions and entities in order to
identify NIL-mentions. We will also incorporate domain-specific expert
knowledge to enhance this identification.

(v) Choosing the most appropriate types and properties: s-elBat
tackles the selection of types and properties by analysing the contextual
information within table cells. Consequently, establishing relationships
between candidate entities at the row level enhances the likelihood
of identifying the correct property linking two distinct columns. Fur-
thermore, enriching types involves examining common types extracted
from the lookup task at the column level, ensuring the identification of
the accurate set of types characterising each column.

In addition, other transversal challenges were addressed:
(vi) Limited contextual information: contextual information is cru-

cial for executing STI tasks, with table headers and captions playing
a significant role in achieving optimal performance. In cases where
such information is absent, inferring missing context from the table
structure is feasible through a combination of heuristic and ML tech-
niques. s-elBat endeavours to identify contextual information from the
table structure, even when limited contextual cues are available. The
supervised model within s-elBat excels in capturing such information
more effectively by employing deep learning models.

(vii) Detecting the type of columns: the challenge of identifying lit-
erals within a tabular structure has been successfully addressed through
the strategic application of Regex rules and services, such as spaCy,40

for recognising string datatypes.
(viii) Collective aggregation of evidence from different tasks: s-

elBat leverages outputs from various tasks to carry out a ‘‘revision’’,
thereby improving the likelihood of achieving optimal performance
by incorporating contextual information. Both modules within the s-
elBat system (Semi-supervised and Supervised), efficiently exchange
information across sub-tasks. The key distinction lies in the heuristic

40 spacy.io

https://spacy.io/
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Fig. 15. Display list of the tables within a dataset. For each table it is possible to see some statistics like the number of columns and rows.

Fig. 16. Detail page of a table, with the annotation display. For each cell it is possible to see the associated entity, or the list of candidates.

Fig. 17. Detailed page for the analysis result of reconciling a mention.
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Fig. 18. Page for downloading annotations in different formats.
approach, which relies on expert-derived strategies, while ML tech-
niques enable the determination of feature weights through iterative
data-driven adaptation.

(ix) Amount and shape of data: various SemTab datasets have
undergone processing using the s-elBat system. These datasets com-
prise hundreds (or thousands) of tables (as shown in Table 1) that
necessitate processing through the complete s-elBat pipeline, encom-
passing both semi-supervised and supervised approaches. s-elBat excels
in parallelising the Lookup phase and extracting crucial features to
construct feature vectors, effectively addressing the challenge posed by
the abundance of data.

s-elBat tried to resolve all key-challenges explained in Section 2
except the NIL-mention one. Several challenges have been effectively
addressed, including Matching tabular values against the KG and Disam-
biguation of named entities. However, challenges like Choosing the most
appropriate types and properties persist as open issues, despite s-elBat
presenting a proposed solution. Future research will delve deeper into
the issue of features to enhance the performance of ML models, with
a specific emphasis on optimising features for literal values to improve
the accuracy of matches in such cases.

LLMs like GPT have shown incredible performance and could be
successfully used for Natural Language Processing tasks, surpassing
existing approaches in the literature. Furthermore, these models have
demonstrated remarkable robustness to noise, handling noisy inputs or
text with typographical errors. However, when presented with zero-
shot and one-shot prompts, these models have demonstrated poor
performance in STI tasks.

It is worth highlighting the potential for future advancements in
these models to enhance accessibility, thereby unlocking new possibil-
ities and applications.
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Appendix A

In the following, we propose formalising the STI approach. The
formalisation considers the definition of STI proposed in the previous
section. To understand the outputs of the approach, a formalisation of
the inputs, a table, and a KG, are proposed.

Definition 1. A rectangular array (matrix) of strings arranged in 𝑛
rows and 𝑚 columns is called a table. Every pair (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑛
and 1 ≤ 𝑗 ≤ 𝑚, unambiguously identifies a cell of the table.

Definition 2. Given an 𝑛 × 𝑚 table, let 𝑟𝑖 denote respectively the 𝑖th
row of the table, that is 𝑟𝑖 = {(𝑖, 𝑗)|1 ≤ 𝑗 ≤ 𝑚} and 𝑐𝑗 denote the 𝑗th
column of the table, that is 𝑐𝑗 = {(𝑖, 𝑗)|1 ≤ 𝑖 ≤ 𝑛}. Let 𝑅 = {𝑟𝑖|1 ≤ 𝑖 ≤ 𝑛}
and 𝐶 = {𝑐𝑗 |1 ≤ 𝑗 ≤ 𝑚} be the set of all rows and columns of the table,
respectively.

Definition 3. A function header 𝐿𝐴(𝑐𝑗 → 𝐿𝐴) that associates each
column 𝑐𝑗 of the table with a word of a language LA is called a Column
Header Function.

Definition 4. The pair 𝑇ℎ = (𝑇 , ℎ), where 𝑇 is a table and ℎ is a column
header function, we define 𝐻 = ℎ(𝐶) as the header of table 𝑇 .

See Fig. 2 as an example of the elements just described.
The second input of STI is a KG. Inside a KG, it is possible to

identify an ontology. Ontologies are structures for the organisation of
knowledge in a particular domain. They are used to classify the terms
and possible relationships and define possible constraints on using
those terms.

Definition 5. An ontology is a multigraph 𝑂 = (𝑆, 𝑃 , 𝐴), where:

• 𝑆 = 𝐶𝑂 ∪ 𝐷𝑇 , is the set of semantic elements (e.g., DBpedia
Ontology, GeoNames Ontology);

– 𝐶𝑂 is the set of concepts (e.g., dbo:Movie, dbo:Director);
– 𝐷𝑇 is the set of datatypes (e.g., xsd:date, xsd:integer);

• 𝑃 is the property label set (e.g., ‘‘director’’, ‘‘pubblicationDate’’);
• 𝐴 is a set of labelled directed edges 𝐴 ⊂ 𝑆2 × 𝑃 , where 𝑆 is a set

of semantic elements and 𝑃 is the property label set. An edge can
exist only between concepts (𝑐𝑜𝑎, 𝑐𝑜𝑏) or between a concept and a
datatype (𝑐𝑜𝑎, 𝑑𝑡𝑐 ) where 𝑐𝑜𝑎, 𝑐𝑜𝑏 ∈ 𝐶𝑂 and 𝑑𝑡𝑐 ∈ 𝐷𝑇 .

According to the definition proposed in [105] and the definition of
an ontology described above, the definition of a KG is given as follows:
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Definition 6. Given an ontology 𝑂 = (𝑆, 𝑃 , 𝐴), where 𝑆 is a set of
semantic elements, 𝑃 is the property label set, and 𝐴 is a set of labelled
directed edges, a knowledge graph is a directed multigraph defined by
the tuple 𝐾𝐺 = (𝑉 , 𝐵,𝑂,𝑚𝑎𝑝, 𝑝𝑚𝑎𝑝) where:

• 𝑉 = 𝐸 ∪ 𝐿 is the set of vertices;

– 𝐸 is a set of entities (e.g.,dbr:Jurassic_World, dbr:Colin_
Trevorrow);

– 𝐿 is a set of literals (e.g.,‘‘124’’, ‘‘1670400637’’);

• 𝐵 is a set of directed edges connecting two vertices 𝐵 ⊂ 𝑉 2, they
represent links between entities, or between entities and literals;

• map is the ontology mapping function 𝑚𝑎𝑝 ∶ 𝑉 → 𝑆, where V
is a set of vertices and S is a set of semantic elements, which
links a vertex to a concept or datatype in the ontology (e.g.,
dbr:Jurassic_World maps to dbo:Movie concept, dbr:Colin_Tre-
vorrow maps to dbo:Person concept, ‘‘4808’’ maps to xsd:integer
datatype);

• pmap is the property mapping function 𝑝𝑚𝑎𝑝 ∶ 𝐵 → 𝑃 , where B
is a set of directed edges and P is the property label set, which
maps an edge to a property (e.g., dbr:Jurassic_World dbo:director
dbr:Colin_Trevorrow, dbr:Jurassic_World dbo:runtime ‘‘124’’).

A set of knowledge graph KGs is defined as follows: 𝐾𝐺𝑠 =
{𝐾𝐺1, 𝐾𝐺2,… , 𝐾𝐺𝑥}.

Definition 7. The CTA task concerns the prediction of a set of concept
for every given table column 𝑐𝑗 in a table 𝑇 , i.e., 𝐶𝑇𝐴(𝑇 , 𝑐𝑗 , 𝐾𝐺) =
𝑐𝑜1,… , 𝑐𝑜𝑎.

Definition 8. The CPA task concerns the prediction of semantic
properties that represent the relationship between some pair of columns
𝑐𝑗 and 𝑐𝑙, i.e., 𝐶𝑃𝐴(𝑇 , 𝑐𝑗 , 𝑐𝑙 , 𝐾𝐺) = 𝑝1,… , 𝑝𝑐 .

Definition 9. The CEA task aims to predict the entity 𝑒 (i.e., instances)
that a cell (𝑖, 𝑗) ∈ 𝑇 represents, i.e., 𝐶𝐸𝐴(𝑇 , (𝑖, 𝑗), 𝐾𝐺) = 𝑒.

Definition 10. The CNEA task aims to predict which cell (𝑖, 𝑗) ∈ 𝑇
represents an entity that does not occur in the KG and should be
therefore labelled as NIL, i.e., 𝐶𝑁𝐸𝐴(𝑇 , (𝑖, 𝑗), 𝐾𝐺) = 𝑛𝑒.

Appendix B. Ablation study

In this Section, an ablation study has been proposed. In particular,
an experiment was conducted to analyse the impact of individual
features of s-elBat supervised in identifying the entity to be used for
annotation. The experiment consists of calculating the variation of
the F1 score obtained on different datasets by perturbing the vectors,
eliminating one feature at a time. This enables to evaluate the specific
impact of each feature after fine-tuning.

In Fig. 19, the trend of the F1 score for the different feature sets
is shown. For example, the red line shows the results obtained using
all the features except ‘‘popularity’’ (the same applies to the other fea-
tures). There is also a dashed blue line indicating the results obtained
using all features, serving as a reference.

As can be seen, the only feature that does not significantly enhance
the model is the ‘‘position score’’. In certain instances, the ranking
provided by LamAPI might confuse s-elBat, particularly when the
ranking is sub-optimal (for example, if the correct entity is in the third
position rather than the first). While this is not true for all datasets, it is
clearly evident in SemTab2019_R3, as shown by the trend in the graph.

The numerical results are displayed in the Table B.6. As can be
noted, removing the ‘‘Position Score’’ feature can yield a slight improve-
ment (0.1%). The remaining features appear to be more relevant for
disambiguation, especially for the textual scores (Jaccard, Description
e Description Ngram).
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Fig. 19. F1 measure performance on different features sets.

Table B.6
Ablation study on features removal.

Feature Average decrease on F1

Position Score −0.1%
Number of Tokens 17.2%
Popularity 2.38%
ElasticSearch Score 52.5%
Edit Distance Score 27.8%
Jaccard Ngram 58.4%
Object 15.3%
Description 16.2%
Description Ngram 41.6%

Appendix C

See Tables C.7–C.12.

Table C.7
Sample data from the SemTab 2019 R1 (T2Dv2) dataset.

Party Votes 2015 % votes
2015

Seats Poll standing
(16/4/15)

Conservative 8 895 066 37,3 254 34
Labour 9 199 875 38,6 291 34
Lib-Dem 2 519 729 10,6 37 8
SNP 1 004 774 4,2 42 –

Table C.8
Sample data from the SemTab 2019 R3 dataset.

col0 col1 col2 col3

V. Camuto L. Camuto 2015–01–21 1936–0–0
N. D. Reed J. A. Reed 1991–09–08 1889–03–06
Irene F. R. Jones 1962–11–15 1900–12–08
G. W. Ford E. Ford 2008–08–24 1924–10–02

Table C.9
Example table from SemTab 2020 R4 (Tough Table) dataset
illustrating name variations.

col0 col1 col2

Zooey Deschanel Los Angeles United States
Zooey Dechanel Los Angeles United States
Alanis Maurissette Ottawa Canada
Alanis Morisa Ottawa Canada
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Table C.10
Sample data from the SemTab 2021 R2 dataset.

col0 col1 col2 col3 col4

I Cainae 62,566 874 157,503 663 854 757 46 −4,695 3 51,290 4
42 Persel 10,782 491 8 57,730 546 066 606 14 −12,437 2 90,181
Deneb 2,312 31 311,909 769 651 765 −4,944 1 38,844
HD 3326 6,654 879 77,557 372 240 138 75 −4,391 2 15,075
Table C.11
Sample data from TURL test set dataset.

Team Location Stadium Capacity

Johor FA Larkin, Johor Bahru Tan Sri Dato Hj Hassan Yunos Stadium 30,000
Johor FC Pasir Gudang, Johor Bahru Pasir Gudang Corporation Stadium 15,000
Kedah FA Alor Setar Darul Aman Stadium 32,387
Kelantan FA Kota Bharu Sultan Mohammad IV Stadium 20,000
Table C.12
Sample data from the SemTab 2021 R3
dataset.

col0 col1 col2

tantalum-190 117 tungsten-190
tantalum-189 116 tungsten-189
tantalum-188 115 tungsten-188
tantalum-187 114 tungsten-187
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