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Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome 
and the consequent BCR::ABL1 oncoprotein. In the era before the introduction of tyrosine kinase inhibitors (TKIs), the 
only potentially curative treatment was allogeneic hematopoietic stem cell transplantation (HSCT). Here, we present the 
case of a patient affected by CML who experienced a relapse 20 years after allogeneic HSCT. Following relapse, the patient 
was treated with imatinib and bosutinib, resulting in a deep molecular response and successfully discontinued treatment. 
Additional analysis including whole-exome sequencing and RNA sequencing provided some insights on the molecular 
mechanisms of the relapse: the identification of the fusion transcript KANSL1::ARL17A (KANSARL), a cancer predisposition 
fusion gene, could justify a condition of genomic instability which may be associated with the onset and/or probably the 
late relapse of his CML.
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Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) 
represented the only potentially curative therapy for chronic 
myeloid leukemia (CML) until 2000. Its application to 
CML patients showed a continuous decrease since the 
introduction of tyrosine kinase inhibitors (TKIs), which 
have transformed CML from a once fatal to a manageable 
disease for the vast majority of patients [1]. Indeed, in the 
pre-TKI era, allogeneic HSCT was the standard first-line 
therapy for CML patients, while now [2], it is reserved 

for patients who do not achieve a sustained cytogenetic 
remission or have progressive disease [3–6]. Large number 
of patients have undergone allogeneic HSCT since the 
early 1980s, and although most of the risk of death occurs 
within the first 2 years after transplantation, patients have 
an increased risk of mortality compared to the general 
population for at least 10 years post-transplant [7, 8]. The 
increased mortality is related to complications of chronic 
graft versus host disease (GVHD), infectious, second 
malignancies, organ dysfunction, and in some cases, relapse 
[9]. Usually, relapse after allogeneic HSCT occurs within 
the first years after transplant, but later relapses have also 
been described [9–12].

Here, we present the case of an Italian CML patient 
with Caucasian ethnicity, who experienced a relapse 
20 years after allogeneic HSCT, performed in first chronic 
phase (CP). NGS analysis, including whole-exome 
sequencing (WES) performed on both the diagnosis and 
the relapse samples, and RNA sequencing of diagnosis 
sample, offer an intriguing insight into the pathogenesis 
of his relapse.
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Case presentation

The patient was a previously healthy 36-year-old man, who 
had been diagnosed with CML in CP in November 1996. 
Cytogenetics revealed 46,XY,t(9;22)(q34;q11) in 20 out 
of 20 metaphases. After treatment with hydroxyurea and 
interferon, in January 1997, he achieved complete hemato-
logical remission and he underwent allogeneic HSCT from 
a human leukocyte antigen (HLA)-identical sibling donor 
(sister). Conditioning regimen consisted in cyclophos-
phamide and total body irradiation (TBI), which caused 
hypothyroidism and sterility. Post-transplant follow-up 
was always negative for disease recurrence, and in 2001, 
it was interrupted due to the patient’s request.

In October 2016, he was admitted with symptoms of 
dyspnea, fatigue, dizziness, and weight loss. The peripheral 
blood examination revealed a severe anemia (Hb 79 g/L), a 
platelet count of 81 ×  109/L and a white blood cell (WBC) 
count of 3.8 ×  109/L, with 1.7 ×  109/L neutrophils (44.7%), 
0.02 ×  109/L basophils (0.5%), some immature myeloid cells 
(1.8% myelocytes), 0.9% blasts and some pseudo-Pelger 
elements, thus fulfilling criteria for an accelerate phase 
CML. The physical exam was normal. Bone marrow (BM) 
aspiration and biopsy revealed a hypercellular marrow at 
90% with myeloid hyperplasia and a shift toward immaturity, 
increased atypical megakaryocytes, and increased blasts 
(12%). Cytogenetics revealed 46,XX in 1 of 20 metaphases 
and 46,XY, + 8,t(9;22)(q34;q11),-17,der(18)t(17;18)
(q11;p11) or -18,der(17),t(17;18)(p11;q11) in the remaining 
19 metaphases. The presence of the BCR::ABL1 transcript 
was confirmed by reverse transcriptase polymerase chain 
reaction (RT-PCR). In November 2016, imatinib treatment 
was started at a dose of 600 mg daily. After 6 months (in May 
2017), the patient achieved a complete cytogenetic response 
(CCyR), with standard cytogenetic demonstrating 46,XX in 
all 20 metaphases, and a BCR::ABL1/ABL1 RT-PCR ratio 
of 0.016% IS (International Scale), corresponding to a 
major molecular response (MMR, or MR3 = %IS ≤ 0.1). At 
9 months (in August 2017), he achieved a deep molecular 
response (DMR) of MR5 (%IS ≤ 0.001). Subsequently, owing 
to intolerance to imatinib (particularly because of anemia-
related symptoms, as well as lower limbs arthromyalgia and 
muscle cramps), the drug was firstly reduced to 400 mg daily 
for a brief period and then, in February 2018, the treatment 
was switched to bosutinib, at a starting dose of 300 mg 
daily, then lowered to 200 mg. The patient kept maintaining 
an optimal molecular response on subsequent monitoring, 
with an undetectable transcript level (MR5 = %IS ≤ 0.001) 
on RT-PCR since July 2018. Similar to imatinib, treatment 
with bosutinib was not well tolerated, owing to severe 
asthenia and lower limbs arthralgias. Therefore, TKI 
treatment was discontinued at patient’s request in October 

2019, after 26 months of stable DMR, 14 months of stably 
undetectable transcript levels, and after 35 months of total 
TKI treatment duration. In March 2020, 5 months after 
bosutinib discontinuation, the RT-PCR analysis turned 
positive (BCR::ABL1/ABL1 RT-PCR ratio of 0.004% IS; 
corresponding to MR4 = %IS ≤ 0.01), but the patient never 
lost MMR, with subsequent assessments ranging between 
MR3 and MR4 until the most recent follow-up, 43 months 
later (on May 2023).

Materials and methods

Patient’s samples

The patient provided written informed consent; this study 
was conducted in accordance with the Declaration of Hel-
sinki. BM samples were collected at diagnosis and relapse, 
and leukemic cells were obtained by separation on a Ficoll-
Paque Plus gradient (GE Healthcare). Surface markers were 
evaluated by fluorescence-activated cell sorting (FACS) 
analysis, and myeloid cells (positive for CD33, CD13, or 
CD117 staining) made up > 80% of the total cells.

Whole‑exome sequencing

WES was performed on paired bone marrow samples 
obtained at diagnosis and at relapse. Genomic DNA (gDNA) 
was extracted from 10 million WBC with PureLink Genomic 
DNA kit (Thermo-Fisher-Scientific) according to manu-
facturer’s instructions. Then, 1 μg of gDNA was used to 
generate exome libraries (Galseq). The Illumina Nextera® 
Rapid Capture Exome Kit (Illumina Inc.) was used to enrich 
the genomic libraries for the exonic regions. WES was per-
formed with a mean coverage of 80X. Image processing 
and basecall were performed using the Illumina Real Time 
Analysis Software. Paired Fastq files were aligned to the 
human reference genome (GRCh38/hg38) using the BWA-
MEM algorithm [13]. Duplicates were annotated using 
Samblaster. Quality of the aligned reads, duplicate removal, 
somatic variants calling, annotation, and copy number anal-
ysis were performed using CEQer2 [14], a graphical tool 
for copy number alteration (CNA) detection in the context 
of exome-sequencing experiments. Variants were anno-
tated using ClinVar, dbSNP, ExAC, OncoScore, Polyphen2 
HVAR, LRT, MutationTaster, MutationAssessor, FATHMM, 
PROVEAN, VEST3, CADD, DANN, MetaSVM, MetaLR, 
Integrated fitCons, GERP +  + , PhyloP7way Vertebrate, 
PhyloP20way Mammalian, PhastCons7way Vertebrate, and 
PhastCons20way Mammalian. Splicing variants were ana-
lyzed using SpliceFinder [15].



Annals of Hematology 

RNA sequencing

Ten million cells were lysed in TRIzol (Thermo Fisher Sci-
entific) and RNA was extracted according to manufacturer’s 
instructions. Then, 2 μg of RNA (concentration 400 ng/μl) 
were used for library preparation (Galseq); the average per-
sample read count was 35 M. The library was sequenced on 
an Illumina HiSeq 2500 with 76 bp paired-end reads. FastQ 
sequences were aligned to the human genome (GRCh38/
hg38) using Star [16] and processed with Samtools [17]. 
Bam files were analyzed using CEQer2, an evolution and 
integration of FusionAnalyser [18] and CEQer [14].

Results

Whole‑exome sequencing analysis

Whole-exome sequencing analyses performed on diagnosis 
and relapse samples showed great matchability and 
superimposition between them. This evidence has led us to 
exclude the possibility of a new leukemia, independent of the 

first, originating from the transplanted cell (sister’s female 
genome), and thus confirming that it is in all respects a relapse.

Changes in copy number alterations/chromosomal 
alterations between diagnosis and relapse

Our patient showed several changes in the pattern of CNAs 
from diagnosis to relapse (Fig. 1A). The paired diagnostic/
relapse samples highlighted the presence of chromosome 
8 trisomy (Fig. 1B) thus confirming cytogenetic results, 
isochromosome 17q, with loss of p53 (Fig.  1C), and a 
further deletion of a small portion of chromosome 18p 
(Fig. 1D). While + 8 and i(17q) copy number abnormalities 
are frequently found in CML patients [19] and, according to 
the WHO 2016 criteria, are “major route” abnormalities that 
define accelerated phase (AP) if found in BCR::ABL1+ cells 
at diagnosis [20], del(18p) is rarely detected.

A known cause of CML relapse after HSCT, especially in 
case of haploidentical transplantation, is loss of heterozygosity 
of class 1 HLA, located on chromosome 6. This is due to the 
loss of the immune control effect exerted by donor T lympho-
cytes on the leukemic cells possibly surviving the conditioning 

Fig. 1  A Copy number plot (relapse vs. diagnosis). The black arrow 
points to an amplification of the whole chromosome 8; the red arrows 
point to deletions occurring in chromosomes 17 and 18. B Individual 
view of chromosome 8 (relapse vs diagnosis). Thick red horizontal 

bar identifies copy gain region. C Individual view of chromosome 17 
(relapse vs. diagnosis). Thick green horizontal bar identifies copy loss 
region. D Individual view of chromosome 18 (relapse vs. diagnosis). 
Thick green horizontal bar identifies copy loss region
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regimen (the so-called graft versus leukemia (GVL) effect) [21]. 
Although at time of relapse our patient presented important copy 
number variations, particularly of genes on chromosome 8, 17, 
and 18, we did not find copy number variations involving genes 
on chromosome 6, where genes encoding HLA complex are 
located (Fig. 2). This fact confirms the known concept that in 
allografted patients from a highly compatible donor, such as a 
matched sibling donor (MSD)—like the one of our patient—or 
a matched unrelated donor (MUD), post-transplant relapse is 
rarely attributable to loss of heterozygosity of class 1 HLA [21].

Somatic mutations present at relapse

WES analysis of matched diagnosis and relapse samples 
revealed the presence of mutations occurring on ZNF81 
(ChrX:47916366–47916367; G > A; p.R574I; variant allele 
frequency (VAF) 44.23), CTSC (Chr11:88294204–88294205; 
T  > C;  p .N398S;  VAF 41.82) ,  and  ZGLP1 
(Chr19:10305443–10305444; G > A; p.P215L; VAF 36.51) 
genes (Table  1). ZNF81 is a member of the zinc finger 
gene family and encodes a protein that likely functions as a 
transcription factor, and germline mutations in this gene cause an 
X-linked form of intellectual disability (MRX45). CTSC encodes 
a member of the peptidase C1 family and lysosomal cysteine 
proteinase that appears to be a central coordinator for activation 
of many serine proteinases in cells of the immune system. 
Defects in the encoded protein have been shown to be a cause 
of the autosomal recessive disorder Papillon-Lefevre syndrome. 
ZGLP1 encodes a transcriptional regulator that plays a key role 
in germ cell development. However, as further explained in the 
discussion section, none of these mutated genes show a potential 
role in oncogenesis.

Fusion genes

RNA sequencing analysis performed on the diagnosis sam-
ple showed the presence of two fusion genes: BCR::ABL1 
and KANSL1::ARL17A (KANSARL) (Fig. 3 and Table 2). 
BCR::ABL1 is the pathognomonic fusion gene found in 
CML, while KANSL1::ARL17A is a chimeric gene resulted 
from the fusion between the KANSL1 and ARL17A genes 
[22]. Unfortunately, we were not able to perform the same 
analysis on the relapse sample, due to bad quality of sample.

Discussion

CML relapses after allogeneic HSCT performed in CP occur 
after a median time of 9–15 months, even though a precise 
cut-off time to define a relapse as “late” does not exist [23, 24]. 
Few cases of CML relapses occurring many years after HSCT 
are described, and, to our knowledge, only 3 are documented at 
or after 20 years (precisely 20, 24, and 25 years). However, in 
none of these reports, the possible cause of leukemia recurrence 
has been investigated [9, 11, 25]. This fact may be due to the 
unavailability of the sample at diagnosis, which must have been 
kept in very good condition of viability for many years.

The patient presented in this report underwent alloge-
neic HSCT before the introduction of TKI and his CML 
relapsed many years later. A comparison of WES between 
relapse and diagnoses revealed a small number of somatic 
mutations appearing at relapse, involving 3 genes: ZNF81, 
CTSC, and ZGLP1. Using the OncoScore instrument [26], a 
novel, Internet-based tool to assess the oncogenic potential 
of genes, it is unlikely that these 3 somatic mutations are 

Fig. 2  Individual view of 
chromosome 6 (relapse vs. 
diagnosis). No copy number 
alterations in genes encoding 
HLA complex are found
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involved in the causation of relapse. Indeed, only Oncoscore 
values of at least 21.09 are considered indicative of a poten-
tial role in oncogenesis and none of these 3 mutations has 
such a value, amounting respectively to 5.267, 15.841, and 0.

The presence of such a little number of somatic mutations 
is in line with the hypothesis that CML relapses could be 
determined by a subpopulation of quiescent leukemic stem 
cells (LSC), which remain silent for many years and, thanks 
to their slow metabolism, are able to avoid the proapoptotic 
effect of different therapeutic agents, including traditional 
chemotherapy and radiotherapy, like the ones used in the patient 
for the conditioning regimen before transplantation [27]. These 
LSC show a very limited tendency towards the accumulation 
of somatic mutations and for this reason the mutational burden 
of BCR::ABL1-positive cells at the time of relapse can be very 
similar to that of diagnosis and rarely present drug resistance or 
tendency to disease progression [28]. In addition, this patient 
was never exposed to TKI, and therefore, the selective pressure 
operating during the 20 years post-transplant was aimed at 
circumventing GVL or other cellular processes, but not kinase 
inhibitors. This hypothesis is also coherent with the rapid and 
optimal response to TKI treatment, which let him achieve an 
MMR 6 months and a DMR 9 months after imatinib initiation.

Another interesting observation is the identification of the 
fusion transcript KANSL1::ARL17A. This is the first cancer 
predisposition fusion gene, familiarly inherited, specific 
to populations of European ancestry origin, identified in 
30–52% of the samples from North Americans cancer patients 
affected by glioblastomas, prostate, breast, lung cancer, 
and lymphomas. This fusion gene was found, as a germline 
alteration, in 28.9% of the population of European ancestry 
origin, differently from the individuals from Asia or Africa, 
where it is rare or absent [22]. Both ARL1 and KANSL1 genes 
are located on the reverse strand of the chromosome 17q21.31. 
KANSL1 encodes an evolutionarily conserved nuclear protein, 
a subunit of MLL1 and NSL1 complexes that is involved in 
histone H4 acetylation and p53 Lys120 acetylation [29]. 
KANSL1 is a microtubule-associated protein that localizes 
to the spindle poles and in the pericentriolar region during 
mitosis, contributing to microtubule assembly and stabilization, 
ensuring faithful chromosome segregation during mitosis. It 
is also known that knockdown of KANSL proteins leads to 
marked and terminal mitotic defects, associated with cancer or 
microdeletion syndrome [30]. ARL17A gene encodes a protein 
of the ARF family that is involved in multiple regulatory 
pathways relevant to human carcinogenesis [31]. The fusion 
peptide encoded by the KANSL1::ARL17A fusion transcript 
lacks some functional domains, and therefore, cancer patients 
expressing KANSL1::ARL17A display reduced activities of 
the histone acetyltransferase KAT8 and p53 [32–34]. Zhou 
et al. hypothesized that the reduction of these 2 proteins’ 
activities results in hypermutations in certain chromosomal 
regions of cancer cells and/or epigenetic changes that generate Ta
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new read-through fusion transcripts [22]. Unfortunately, in 
our case, we were not able to demonstrate if the presence of 
KANSL1::ARL17A fusion gene was present only in somatic 
cells or also as a germline alteration. Moreover, we were 
not able to check whether the fusion gene was present in 
the donor. However, this finding could justify a condition of 
genomic instability which may be associated with the onset 
and possibly to the late relapse of his CML. Moreover, to our 
knowledge, this is the first case documenting the presence of the 
KANSL1::ARL17A fusion gene in a patient affected by CML.

Finally, this case is a rare example of a patient who suc-
cessfully underwent a TKI discontinuation attempt after a 
post-HSCT relapse. According to the last US National Com-
prehensive Cancer Network (NCCN) guidelines, treatment-
free remission (TFR) should be attempted in patients who 

have been on approved TKI therapy for at least 3 years and 
who have been in at least MR4 for at least 2 years [35]. Actu-
ally, our patient, whose TKI discontinuation was motivated 
by drug intolerance, stopped bosutinib after 35 months of 
total TKI treatment duration and after 26 months of stable 
DMR. Trials on TFR have usually excluded patients who had 
previously received an allogeneic HSCT. However, the pos-
sibility of a successful TKI discontinuation after achieving 
a new sustained DMR following a relapse occurring many 
years after transplantation should not be ruled out. Indeed, 
nowadays, we know that, in another clinical setting, a second 
successful discontinuation attempt can take place after the 
failure of a first attempt [36]. A possible biological explana-
tion resides in the progressive exhaustion of quiescent LSC 
[37, 38]. Making a parallelism with the clinical history of 

Fig. 3  Fusion genes present at 
diagnosis. The red line indicates 
BCR::ABL1 fusion gene, while 
the lavender line indicates 
KANSL1::ARL17A fusion gene

Table 2  The fusion genes present at diagnosis are listed. The human genome GRCh38/hg38 was used as reference

Chr1 Chr2 Gene1 Gene2 Position1 Position2 Mutation type Coverage

Chr17 Chr17 KANSL ARL17A 46094559–46094701 46352464–46352930 Fusion gene 13
Chr9 Chr22 ABL1 BCR 130713880–130714455 23292540–23292638 Fusion gene 39
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our patient, we could speculate that, if his quiescent LSCs 
were the reason of his CML relapse almost 20 years after 
allogeneic HSCT, their eventual exhaustion after the time of 
a subsequent course of TKI therapy (never received before), 
leading to a sustained DMR (and even to stable undetectable 
transcript levels for 14 months before discontinuation) could 
support a subsequent stable TFR state. Actually, 5 months 
after bosutinib discontinuation, RT-PCR analysis in our 
patient turned positive, but he never experienced a molecu-
lar relapse (i.e., a loss of MMR) until the last follow-up, 
43 months after TKI discontinuation.

These results confirm, as previously published by us and 
others [39–43], that residual BCR::ABL1+ cells persist, 
even after bone marrow transplantation and PCR negativity. 
Long-term monitoring of the patient is therefore necessary.

In summary, we presented here the case of a CML patient 
experiencing a relapse 20 years after allogeneic HSCT, 
emphasizing the need for long-term follow-up for allo-
transplanted CML patients. Moreover, we provided some 
insights on the molecular mechanisms of his relapse, with 
a particular attention to the possible role of a new fusion 
gene, KANSL1::ARL17A, documented for the first time in 
this disease. Finally, this is a rare example of a successful 
TKI discontinuation attempt in a CML patient who previ-
ously underwent HSCT, had a late relapse, and re-achieved 
a sustained DMR thanks to TKI treatment.
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