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Accurate quantification of copy-number
aberrations and whole-genome duplications
in multi-sample tumor sequencing data
Simone Zaccaria 1 & Benjamin J. Raphael 1✉

Copy-number aberrations (CNAs) and whole-genome duplications (WGDs) are frequent

somatic mutations in cancer but their quantification from DNA sequencing of bulk tumor

samples is challenging. Standard methods for CNA inference analyze tumor samples indi-

vidually; however, DNA sequencing of multiple samples from a cancer patient has recently

become more common. We introduce HATCHet (Holistic Allele-specific Tumor Copy-

number Heterogeneity), an algorithm that infers allele- and clone-specific CNAs and WGDs

jointly across multiple tumor samples from the same patient. We show that HATCHet

outperforms current state-of-the-art methods on multi-sample DNA sequencing data that we

simulate using MASCoTE (Multiple Allele-specific Simulation of Copy-number Tumor Evo-

lution). Applying HATCHet to 84 tumor samples from 14 prostate and pancreas cancer

patients, we identify subclonal CNAs and WGDs that are more plausible than previously

published analyses and more consistent with somatic single-nucleotide variants (SNVs) and

small indels in the same samples.
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Cancer results from the accumulation of somatic mutations
in cells, yielding a heterogeneous tumor composed of
distinct subpopulations of cells, or clones, with different

complements of mutations1. Quantifying this intratumor het-
erogeneity and inferring past tumor evolution have been shown
to be crucial in cancer treatment and prognosis2–4. CNAs are
frequent somatic mutations in cancer that amplify or delete one
or both the alleles of genomic segments, chromosome arms, or
even entire chromosomes5. In addition, WGD, a doubling of all
chromosomes, is a frequent event in cancer with an estimated
frequency higher than 30% in recent pan-cancer studies5–8.
Accurate inference of CNAs and WGDs is crucial for quantifying
intratumor heterogeneity and reconstructing tumor evolution,
even when analyzing only SNVs9–13.

In principle, CNAs can be detected in DNA sequencing data by
examining two signals: (1) the difference between the observed
and expected counts of sequencing reads that align to a locus,
quantified by the read-depth ratio (RDR), and (2) the proportion
of reads belonging to the two distinct alleles of the locus, quan-
tified by the B-allele frequency (BAF) of heterozygous germline
single-nucleotide polymorphisms (SNPs). In practice, the infer-
ence of CNAs and WGDs from DNA sequencing data is chal-
lenging, particularly for bulk tumor samples that are mixtures of
thousands-millions of cells. In such mixtures the signal from the
observed reads is a superposition of the signals from normal cells
and distinct tumor clones, which share the same clonal CNAs but
are distinguished by different subclonal CNAs. One thus needs to
deconvolve, or separate, this mixed signal into the individual
components arising from each of these clones. This deconvolu-
tion is complicated as both the CNAs and the proportion of cells
originating from each clone in the mixture are unknown; in
general the deconvolution problem is underdetermined with
multiple equivalent solutions. In the past few years, over a dozen
methods have been developed to solve different versions of this
copy-number deconvolution problem6,9,14–27. These methods
rely on various simplifying assumptions, such as: only one tumor
clone is present in the sample, no WGDs, etc. While these
assumptions remove ambiguity in copy-number deconvolution, it
is not clear that the resulting solutions are accurate, particularly
in cases of highly aneuploid tumors.

Single-cell DNA sequencing28 obviates the need for copy-
number deconvolution, but remains a specialized technique with
various technical and financial challenges, and thus is not yet
widely used in sequencing of cancer patients, particularly in
clinical settings. A valuable intermediate between DNA sequen-
cing of single cells and DNA sequencing of a single bulk tumor
sample is DNA sequencing of multiple bulk tumor samples from
the same patient; these samples may be obtained from multiple
regions of a primary tumor, matched primary and metastases, or
longitudinal samples11,12,26,29–31. A number of approaches have
demonstrated that simultaneous analysis of SNVs from multiple
tumor samples helps to resolve uncertainties in clustering SNVs
into clones32,33 and to reduce ambiguities in inferring phyloge-
netic trees11,29,34–36. However, available methods for inferring
CNAs analyze individual samples, losing the important infor-
mation that multiple samples from the same patient share many
CNAs that occurred during tumor evolution.

To slice through the thicket of ambiguity in copy-number
deconvolution, we introduce HATCHet, an algorithm to infer
allele- and clone-specific CNAs as well as the proportions of
distinct tumor clones jointly across one or more samples from the
same patient. HATCHet provides a fresh perspective on CNA
inference and includes two main algorithmic innovations that
address limitations of existing methods. First, HATCHet jointly
analyzes multiple samples by globally clustering RDRs and BAFs
along the entire genome and across all samples, and by solving a

matrix factorization problem to infer allele- and clone-specific
copy numbers from all samples. In contrast, existing
methods6,9,14–22,25–27 infer allele-specific copy numbers on each
sample independently (with one exception25) and locally cluster
RDRs and BAFs for neighboring regions in each sample sepa-
rately. Second, HATCHet separates two distinct sources of
ambiguity in the copy-number deconvolution problem, the pre-
sence of subclonal CNAs and the occurrence of WGDs, and uses
a model-selection criterion to distinguish these sources. In con-
trast, existing methods attempt to fit a unique value for the
variables tumor ploidy and purity (or equivalent variables) to the
observed RDRs and BAFs, conflating different sources of ambi-
guity in the data.

In this paper, we evaluate HATCHet on both simulated and
cancer data. We show that HATCHet outperforms six current
state-of-the-art methods9,15,17,21,22,25,27,37 on 256 samples from
64 patients simulated by MASCoTE, a framework that we develop
to generate DNA sequencing data from multiple mixed samples
with appropriate corrections for the differences in genome
lengths between normal and tumor clones. Next, we apply
HATCHet on whole-genome multi-sample DNA sequencing data
from 49 samples from 10 metastatic prostate cancer patients11

and 35 samples from four metastatic pancreas cancer patients30.
We show that HATCHet’s inferred subclonal CNAs and WGDs
are more plausible than reported in published analyses and more
consistent with somatic SNVs and small indels measured in the
same samples, resulting in alternative reconstructions of tumor
evolution and metastatic seeding patterns.

Results
HATCHet algorithm. We introduce HATCHet, an algorithm to
infer allele- and clone-specific copy numbers and clone propor-
tions for several tumor clones jointly across multiple bulk tumor
samples from the same patient (Fig. 1a). The inputs to HATCHet
are RDRs and BAFs for short genomic bins across k tumor
samples from the same patient. We assume that each sample is a
mixture of at most n clones, including the normal diploid clone
and one or more tumor clones with different CNAs. The goal is to
infer these clones and their proportions in each sample, where we
model the effects of CNAs as m segments, or clusters of genomic
bins. The two outputs of HATCHet are: (1) copy-number states
(as,i, bs,i) that indicate the allele-specific copy numbers as,i and bs,i
for each segment s in each clone i, and that form two m × n
matrices A= [as,i] and B= [bs,i]; and (2) clone proportions ui,p
that indicate the fraction of cells in sample p belonging to clone i,
and that form an n × k matrix U= [ui,p].

HATCHet separates the inference of A, B, and U into two
modules. The first module infers the allele-specific fractional copy
numbers f As;p ¼

P
ias;iui;p and f Bs;p ¼

P
ibs;iui;p of each segment s

in each sample p, which form two m × k matrices FA and FB.
Specifically, this module has three steps. First, HATCHet
computes RDRs and BAFs in short genomic bins (with a user
adjustable size set to 50 kb in our analysis) along the genome
(Fig. 1b). Second, HATCHet clusters RDRs and BAFs globally
along the entire genome and jointly across all samples using a
Bayesian non-parametric clustering algorithm38 (Fig. 1c). This
clustering leverages the fact that samples from the same patient
have a shared evolutionary history. Finally, HATCHet aims to
infer the fractional copy numbers FA and FB. Importantly, FA and
FB are not measured directly and must be inferred from the
observed RDRs and BAFs. However, FA and FB are not
identifiable from DNA sequencing data of bulk tumor samples
and typically have multiple equally plausible values (Supplemen-
tary Fig. 1). We show in Methods that if one knows whether or
not a WGD has occurred, then FA and FB are determined under

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17967-y

2 NATURE COMMUNICATIONS |         (2020) 11:4301 | https://doi.org/10.1038/s41467-020-17967-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


few reasonable assumptions. Thus, in the third step HATCHet
estimates two values of FA and FB, assuming the presence or
absence of a WGD, and defers the selection between these
alternatives until after the inference of A, B, and U, i.e., the clonal
composition (Fig. 1d).

The second module of HATCHet computes A, B, and U from
the inferred values of FA and FB by solving a matrix factorization
problem. Since FA= AU and FB= BU, the copy-number
deconvolution problem corresponds to the problem of simulta-
neously factoring FA into the factors A, U and FB into the
factors B, U. In general, multiple factorizations may exist
and thus HATCHet enforces additional constraints on the
allowed factorizations, including a maximum copy number
(as;i þ bs;i ≤ cmax), a minimum clone proportion (either
ui;p ≥ umin or ui,p= 0), and evolutionary relationships among the
tumor clones. HATCHet solves the resulting optimization
problem using a coordinate-descent algorithm (Fig. 1e). Finally,
HATCHet uses a model-selection criterion to select the number n
of clones and the occurrence of WGD, as these values are
unknown a priori and must be selected carefully to avoid
overfitting the data. Specifically, HATCHet infers A, B, and U for
every value of n and for the two values of FA and FB estimated in
the first module. Then, HATCHet considers the trade-off between
the inference of subclonal CNAs (resulting in higher n and more
clones present in a sample) and WGD to select the solution
(Fig. 1f, g).

HATCHet differs from existing methods for copy-number
deconvolution in a number of ways, which are summarized in
Supplementary Table 1 and further detailed in Methods.

Importantly, HATCHet addresses the challenges of nonidentifia-
bility and model selection using a different strategy than existing
methods. Recognizing that the estimation of FA, FB and their
deconvolution into A, B, and U are two different sources of
ambiguity in the data, HATCHet defers the selection of FA and FB

until after the deconvolution. This allows HATCHet to consider
the trade-off between solutions with many subclonal CNAs vs.
solutions with WGD (Supplementary Fig. 1). In contrast, existing
methods6,9,14–20,23–27 attempt to fit values for the variables tumor
ploidy and purity (or equivalent variables) that best model the
observed RDRs and BAFs. However, tumor ploidy and purity are
composite variables that sum the contributions of the unknown
copy numbers and proportions of multiple clones. Thus, tumor
ploidy and purity are not ideal coordinates to evaluate tumor
mixtures as many different clonal compositions may be equally
plausible in these coordinates, particularly when more than one
tumor clone is present or a WGD occurs (Supplementary Figs. 2
and 3).

HATCHet outperforms existing methods for copy-number
deconvolution. We compared HATCHet with six current state-
of-the-art methods for copy-number deconvolution, i.e., Batten-
berg9, TITAN17, THetA21,22, cloneHD25, Canopy37 (with frac-
tional copy numbers from FALCON15), and ReMixT27, on
simulated data. Most current studies that simulate DNA sequen-
cing data from mixed samples containing CNAs do not account
for the different genome lengths of distinct clones15–17,25,39–44;
this oversight leads to incorrect simulation of read counts (Sup-
plementary Figs. 4 and 5). Therefore, we introduce MASCoTE, a
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simulation framework to correctly generate DNA sequencing
reads from multiple bulk tumor samples, with each sample con-
taining one or more clones that share the same evolutionary
history during which CNAs and/or WGD occur (Supplementary
Fig. 6 and further details in Methods). We simulated DNA
sequencing reads from 256 tumor samples (1–3 tumor clones) for
64 patients (3–5 samples per patient), half with a WGD and half
without a WGD (Supplementary Fig. 7).

We separated the comparison of methods into two parts in
order to assess both the inference of CNAs and proportions, as
well as the prediction of WGDs. First, we provided the true values
of the main parameters inferred by each method to assess the
ability to retrieve the correct solution without the difficulty of
model selection. Second, we ran each method in default mode. In
both cases, we applied HATCHet jointly on all samples as well as
separately on each sample (single-sample HATCHet) to quantify
the contribution of the global clustering and the factorization
model which capture the dependency across samples. Further
details are in Supplementary Notes 1 and 2.

We first ran all methods on the 128 samples from 32 patients
without a WGD and also providing the true value of the main
parameters required for each method (e.g., tumor ploidy and
number of clones). We found that HATCHet outperformed all
other methods (Fig. 2a and Supplementary Figs. 8–12),
demonstrating the advantages of HATCHet’s joint analysis of
multiple samples. While single-sample HATCHet has slightly
worse performance, it also outperformed all other methods,
suggesting that the additional features of HATCHet, such as the
clustering of RDRs and BAFs along the entire genome, play an
important role. Further discussions of these results are in
Supplementary Note 3.

To assess the simultaneous prediction of WGD and
inference of CNAs and proportions, we next ran the methods

on all 256 samples from all 64 patients, requiring that each
method infers all relevant parameters, including tumor ploidy
and number of clones. Note that we excluded THetA from this
comparison as it does not automatically infer presence/absence
of WGDs. Not surprisingly, in this more challenging setting, all
methods have lower performance, but HATCHet and single-
sample HATCHet continue to outperform the other methods
(Fig. 2b and Supplementary Figs. 13–17), even when assessing
the prediction of amplified/deleted segments independently
from the presence of a WGD (Supplementary Fig. 18).
HATCHet is the only method with high (>75%) precision
and recall in the inference of both presence and absence of
WGD, while other methods tend to be biased towards presence
or absence (Fig. 2c and Supplementary Fig. 19). We observed
the same bias even when taking the consensus of the other
methods, a procedure used in the recent PCAWG analysis of
>2500 whole-cancer genomes7 (Fig. 2c). The higher perfor-
mance of HATCHet illustrates the advantage of performing
model selection using the natural variables of the problem, i.e.,
the copy numbers A, B and the clone proportions U, rather
than selecting a unique solution based on tumor ploidy and
purity as done by existing methods (Supplementary Fig. 20).
Further discussions of these results are in Supplementary
Note 4.

Finally, we further assessed the performance of HATCHet by
comparing the copy-number profiles derived by HATCHet on
whole-exome sequencing of bulk tumor samples with the copy-
number profiles from DOP-PCR single-cell DNA sequencing
from the same tumors. On 21 bulk tumor samples from 8 breast
cancer patients45,46, we observed a reasonable consistency
between HATCHet’s profiles and those from single cells
(Supplementary Figs. 21 and 22). Additional details of this
analysis are reported in Supplementary Note 5.
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HATCHet identifies well-supported subclonal CNAs. We used
HATCHet to analyze two whole-genome DNA sequencing
datasets with multiple tumor samples from individual patients
(Supplementary Note 6): 49 primary and metastatic tumor
samples from 10 prostate cancer patients11 (Supplementary Fig.
23) and 35 primary and metastatic tumor samples from four
pancreas cancer patients30 (Supplementary Fig. 24). While both
datasets contain multiple tumor samples from individual patients,
the previously published analyses inferred CNAs in each sample
independently. Moreover, these studies reached opposite con-
clusions regarding the landscape of CNAs in these tumors:
Gundem et al.11 reported subclonal CNAs in all prostate samples,
while Makohon-Moore et al.30 reported no subclonal CNAs in
the pancreas samples. An important question is whether this
difference is due to cancer-type specific or patient-specific dif-
ferences in CNA evolution of these tumors, or a consequence of
differences in the bioinformatic analyses. We investigated whe-
ther the HATCHet’s analysis would confirm or refute the dis-
cordance between these studies.

On the prostate cancer dataset, HATCHet identified subclonal
CNAs in 29/49 samples. In contrast, the published analysis11 of
these samples used Battenberg for CNA inference and identified
subclonal CNAs in all 49 samples (Fig. 3a). On the 29 samples
where both methods reported subclonal CNAs, we found that the
two methods identified a similar fraction of the genome with
subclonal CNAs (Fig. 3b). Moreover, on these samples, there are
clear sample-subclonal clusters of genomic bins (i.e., with
different copy-number states in the same sample, cf. Fig. 1g
and Supplementary Fig. 25) with RDRs and BAFs that are clearly

distinct and intermediate between those of sample-clonal clusters
(Fig. 3c). These sample-subclonal clusters correspond to sub-
clonal CNAs affecting large genomic regions (Fig. 3d). In
contrast, on the 20 samples where only Battenberg reported
subclonal CNAs, the sample-subclonal clusters only identified by
Battenberg do not have RDRs and BAFs that are clearly
distinguishable from the sample-clonal clusters (Fig. 3e, f and
Supplementary Figs. 26 and 27).

While it is possible that Battenberg has higher sensitivity in
detecting subclonal CNAs than HATCHet, the extensive
subclonal CNAs reported by Battenberg in all samples is
concerning. This is because the inference of subclonal CNAs will
always produce a better fit to the observed RDRs and BAFs, but
with a cost of increasing the number of parameters required to
describe the copy-number states (model complexity). Battenberg
models the clonal composition of each segment independently
(Supplementary Fig. 28), and thus has 6× more parameters than
HATCHet on this dataset (Supplementary Fig. 29). To avoid
overfitting, it is important to evaluate the trade-off between
model fit and model complexity. Battenberg does not include a
model-selection criterion to evaluate this trade-off, and it
consequently infers a high fraction of subclonal CNAs in every
sample (Supplementary Note 7) without fitting the observed
RDRs and BAFs better than HATCHet (Supplementary Note 8).
In contrast, HATCHet uses a model-selection criterion to identify
the number of clones; consequently in 20/49 samples HATCHet
infers that all the subclonal CNAs identified by Battenberg are
instead clonal (Supplementary Fig. 30). Since HATCHet fits the
observed RDRs and BAFs as well as Battenberg (Supplementary
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sample-clonal clusters (black clusters with corresponding copy-number states) with clonal CNAs (dashed black lines). d The sample-subclonal clusters in
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Fig. 31) but without subclonal CNAs, the extensive subclonal
CNAs reported by Battenberg in these samples are equally well-
explained as clonal CNAs.

Finally, we found that ReMixT’s inference of subclonal CNAs
from the same dataset was more similar to HATCHet than
Battenberg (Supplementary Fig. 32). Since both HATCHet and
ReMixT outperformed Battenberg on the simulated data, the
similarity between HATCHet and ReMixT on this dataset
suggests that Battenberg’s results are less accurate. Further details
of this analysis are in Supplementary Note 9.

On the pancreas cancer dataset, HATCHet identified subclonal
CNAs in 15/35 samples (Fig. 4a). In contrast, the published
analysis30 of these samples used Control-FREEC for CNA
inference, which assumes that all CNAs are clonal and contained
in all tumor cells in a sample (Supplementary Fig. 33). Overall,
HATCHet reported a greater fraction of the genome with CNAs
(Supplementary Fig. 34) and better fit the observed RDRs and
BAFs (Supplementary Fig. 35) using less than 1/3 of the
parameters used by Control-FREEC (Supplementary Fig. 36).
The identification of subclonal CNAs is supported by the
presence of sample-subclonal clusters which have RDRs and
BAFs that are clearly distinct from those of sample-clonal clusters
(Fig. 4b–d); moreover, many of these clusters correspond to large
subclonal CNAs spanning chromosomal arms (Fig. 4e) and have
different copy-number states across different samples (i.e., tumor-
subclonal clusters, cf. Fig. 1g and Supplementary Fig. 25).
HATCHet’s joint analysis across multiple samples also aids in

the CNA inference in low-purity samples: the liver metastasis
sample Pam01_LiM1 has an inferred tumor purity of 28%
causing clusters of genomic bins with distinct copy-number states
to have similar values of RDR and BAF (Fig. 4d). The distinct
clusters are identified by leveraging the signal from a higher
purity sample (Pam01_LiM2 in Fig. 4c).

HATCHet’s joint analysis of multiple tumor samples from the
same patient enables the direct identification of clones that are
shared across multiple samples. Overall, HATCHet infers that 14/
49 samples from the prostate cancer patients and 13/35 samples
from the pancreas cancer patients have evidence of subclones
shared between multiple samples, compared to 46/49 and 0/35 in
the published copy-number analyses, respectively (Supplementary
Note 10 and Supplementary Figs. 37–39). For example,
HATCHet reports that the lymph node sample of pancreas
cancer patient Pam01 (Fig. 4b) is a mixture of two clones with
each of these clones present in exactly one of the two distinct liver
metastases from the same patient (Fig. 4c, d). We found that the
shared subclones identified by HATCHet are more consistent
with previous SNV analyses11,30. Moreover, we found that the
resulting metastatic seeding patterns agree with previous reports
of limited heterogeneity across metastases11,30 (Supplementary
Note 11 and Supplementary Figs. 40–42) and provide evidence
for polyclonal migrations in pancreas cancer patients (Supple-
mentary Fig. 43), consistent with the reports of polyclonal
migrations in mouse models of pancreatic tumors47. Finally,
additional analyses of RDRs and BAFs further support the
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Fig. 4 HATCHet identifies well-supported subclonal CNAs in metastatic pancreas cancer patients. a HATCHet identifies subclonal CNAs in 15 of
35 samples, while published analysis used Control-FREEC and excluded subclonal CNAs. b In the lymph node metastasis sample Pam01_NoM1, HATCHet
infers two distinct tumor clones (ellipses in lower right of plot with corresponding proportions) and a tumor purity of 69%. Five sample-subclonal clusters
(arrows) of 50kb genomic bins occupy intermediate positions between the other sample-clonal clusters (dashed black lines) in the scaled BAF-RDR plot,
and thus have distinct copy-number states in the two clones, corresponding to subclonal CNAs. Control-FREEC copy numbers are shown on the right y-axis
labels. c In a second liver metastasis sample Pam01_LiM2 from the same patient, HATCHet infers two distinct tumor clones, one (red) shared with the
lymph node sample Pam01_NoM1. A large sample-subclonal cluster (brown, starred) occupies an intermediate position in the scaled BAF-RDR plot and has
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Pam01_NoM1 (arrows) correspond to large genomic regions with values of RDR that are clearly distinct from the other sample-clonal clusters (dashed
black lines). Genomic regions that are part of small clusters or have out-of-scale values are reported in gray. Ranges of fractional copy numbers
corresponding to the total copy numbers inferred by Control-FREEC in the previously published analysis are shown on the right y-axis labels.
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subclonal CNAs identified by HATCHet (Supplementary Note 12
and Supplementary Figs. 44 and 45).

HATCHet reliably identifies WGDs. We next examined the
prediction of WGDs on the prostate and pancreas cancer data-
sets. The previously published analyses of these datasets reached
opposite conclusions regarding the landscape of WGDs in these
tumors: Gundem et al.11 reported WGDs in 12 samples of 4
prostate cancer patients (A12, A29, A31, and A32), while
Makohon-Moore et al.30 did not evaluate the presence of WGDs
in the pancreas cancer samples, despite reports of high prevalence
of WGD in pancreas cancer48. We investigated whether
HATCHet analysis would confirm or refute the different pre-
valence of WGDs reported in the previous studies.

On the prostate cancer dataset, there is strong agreement
between WGD predictions from Battenberg and HATCHet, with
discordance on only 2/49 samples (Supplementary Fig. 46a, b).
Note that Battenberg does not explicitly state whether a WGD is
present in a sample, and thus we used the criterion from previous
pan-cancer analysis5–8,12 that a tumor sample with ploidy >3
corresponds to WGD. Since Battenberg’s solutions were manually
chosen from different alternatives in the published analysis, the
strong agreement between these predictions is a positive indicator
for HATCHet’s automated model selection. The two discordant
samples, A12-C and A29-C, are single samples from patients A12
and A29, respectively. Battenberg predicted a WGD only in A12-
C and no WGD in the other samples from A12. Conversely,
Battenberg predicted no WGD in A29-C but a WGD in the other
sample from A29. However, the divergent predictions of WGD
are likely due to the Battenberg’s independent analysis of each
sample and is not well supported by the data. In contrast,
HATCHet jointly analyzes multiple samples and predicts the
absence/presence of a WGD consistently across all samples from
the same patient (no WGD in A12 and a WGD in A29),
providing simpler solutions with an equally good fit of the
observed data (Supplementary Note 13 and Supplementary Figs.
46–47).

On the pancreas dataset, the published analysis excluded the
possibility of WGDs and assumed that tumor ploidy is always
equal to 2. Instead, HATCHet predicted a WGD in all 31 samples
from three of the four patients (Fig. 5a). These results are
consistent with recent reports of the high frequency of WGD
(~45%) and massive rearrangements in pancreatic cancer26,48,
and also supported by additional analyses (Supplementary Fig.

48). All 31 samples from the three patients with a WGD display
several large clusters of genomic regions with clearly distinct
values of RDR and BAF. When jointly considering all samples
from the same patient, these clusters are clearly better explained
by the occurrence of a WGD (Fig. 5b) than by the presence of
many subclonal CNAs, as the latter would result in the unlikely
presence of distinct tumor clones with the same proportions in all
samples (Supplementary Fig. 49). By directly evaluating the trade-
off between subclonal CNAs and WGDs in the model selection,
HATCHet makes more reasonable predictions of the occurrence
of WGDs.

HATCHet’s CNAs better explain somatic SNVs and small
indels. We evaluated how well the copy numbers and proportions
inferred by each method explain the observed read counts of
somatic SNVs and small indels—two classes of mutations that
were not used in the identification of CNAs. Specifically, we
compared the observed variant-allele frequency (VAF) of each
mutation with the best predicted VAF obtainable from the
inferred copy-number states and proportions at the genomic
locus (see details in Supplementary Note 14). We classified a
mutation as explained when the predicted VAF is within a 95%
confidence interval (CI) (according to a binomial model with beta
prior34,35) of the observed VAF (Fig. 6a). When counting the
number of explained mutations, we excluded mutations that have
low frequency (VAF < 0.2) as well as mutations that are not
explained by the copy numbers and proportions inferred by any
of the methods. These excluded mutations are more likely to have
occurred after CNAs and to be present in smaller subpopulations
of cells.

We identified ≈10,600 mutations per prostate cancer sample
and ≈9,000 mutations per pancreas cancer sample (Supplemen-
tary Fig. 50). We found that for 13/14 patients the copy numbers
and proportions inferred by HATCHet yield substantially fewer
unexplained mutations (Fig. 6b, c) and lower errors (Supplemen-
tary Figs. 51 and 52) than the copy numbers inferred by
Battenberg and Control-FREEC, respectively, with the difference
on the remaining patient being small. On the prostate cancer
dataset, HATCHet explains most of the mutations with high
VAF, while the unexplained mutations mostly have lower VAFs
(Supplementary Figs. 53 and 54), suggesting that these mutations
occurred after the CNAs at the locus, as reported in the published
analysis11. On the pancreas cancer dataset, we observed that
nearly all mutations have low VAFs (Supplementary Fig. 55),
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Fig. 5 HATCHet identifies WGDs in three of four pancreas cancer patients. a HATCHet predicts a WGD in all 31 samples from three patients (Pam02,
Pam03, and Pam04). In contrast, published analysis used Control-FREEC and excluded WGDs. b In four samples of patient Pam02, HATCHet predicts a
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bin) across samples and their fractional copy numbers correspond to sample-clonal clusters in each sample (dashed black lines), supporting the inference
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consistent with low tumor purity as well as the presence of WGDs
and/or higher ploidy in these samples. Indeed, SNVs/indels
that occur after WGDs alter only one copy of the locus, and
thus have low VAF. As lower VAFs are also observed in samples
with higher purity (e.g., Pam01_LiM2, Pam01_NoM1, and
Pam02_PT18), WGDs and high ploidy are the more likely
explanation for the low VAFs, consistent with HATCHet’s
prediction of WGD in 3/4 patients (Supplementary Fig. 56).

Finally, for each mutation in the prostate cancer patients, we
computed the cancer cell fraction (CCF), or fraction of tumor
cells that harbor a copy of the mutation, using the method
described in Dentro et al.49 and the copy numbers and
proportions inferred by either Battenberg or HATCHet. Across
all patients, we found that ≈11% (i.e., ≈200 mutations per patient)
of the unexplained mutations that were classified as subclonal
(i.e., CCF≪ 1 and present in a subset of cells) in the published
results using Battenberg’s copy numbers11 were explained and
classified as clonal (i.e., CCF ≈ 1 and present in all tumor cells)
using HATCHet’s copy numbers (Fig. 7). For example, in sample
A10-E of patient A10 and sample A17-F of patient A17,
HATCHet infers clonal CNAs on chromosomes 1p and 8q,
respectively, that explain all SNVs at these loci, while Battenberg
inferred subclonal CNAs at these loci that result in unexplained
SNVs (Fig. 7a, b).

We found a particularly interesting case in two samples A22-J
and A22-H of patient A22, where HATCHet explains a large
cluster of mutations on chromosome 8p and classifies them as
clonal (CCF ≈ 1) while Battenberg does not explain these

mutations and classifies them as subclonal (CCF ≈ 0.4 and
CCF ≈ 0.6 in the two samples) (Fig. 7c). This difference is due
in part to different copy numbers inferred by the two methods:
HATCHet assigned copy-number state (2, 0) to chromosome 8p
in both samples A22-H and A22-J, while Battenberg inferred
(2, 0) in sample A22-H and (1, 0) in sample A22-J. This
demonstrates the advantage of HATCHet’s leveraging of
information across samples from the same patient. Notably, this
cluster of mutations on chromosome 8p was highlighted as a
main evidence of polyclonal migration between samples A22-J
and A22-H (corresponding to purple cluster in Figure 1 of
Gundem et al.11), since the unexplained mutations are classified
as subclonal in both samples based on Battenberg’s results. Based
on HATCHet’s inferred copy numbers, these mutations are
classified as clonal and are not evidence of polyclonal migration.

Discussion
The increasing availability of DNA sequencing data from multiple
tumor samples from the same cancer patient provides the
opportunity to improve the copy-number deconvolution of bulk
samples into normal and tumor clones. Joint analysis of multiple
tumor samples has proved to be of substantial benefit in the
analysis of SNVs11,29,32–36. However, the advantages of joint
analysis have not been exploited in the analysis of CNAs, with all
analyses of the prominent multi-sample sequencing
datasets11,12,29,30 relying on CNA methods that analyze individual
samples, and in some cases assuming that copy numbers are the
same in all tumor cells in a sample.
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In this paper, we introduced HATCHet, an algorithm to infer
allele-specific CNAs and clone proportions jointly across multiple
tumor samples from the same patient. HATCHet includes two
major enhancements that improve performance over existing
methods for copy-number deconvolution. First, we showed that
with multiple samples, global clustering of read counts along the
genome and across samples becomes an effective strategy, ana-
logous to the clustering of SNVs across samples32,33,36 but dif-
ferent from the current focus in CNA inference of local
segmentation of read counts along the genome. Second, we
showed the advantage of separating the two sources of ambiguity
in copy-number deconvolution: ambiguity in fractional copy
numbers vs. ambiguity in the factorization of fractional copy
numbers into integer-valued copy-number states. HATCHet
defers the selection of fractional copy numbers, performing model
selection in the natural coordinates of copy-number states and
clone proportions. We also introduced MASCoTE, a simulator
for multi-sample tumor sequencing data that correctly accounts
for different genome lengths of tumor clones and WGD. Finally,
we showed that HATCHet outperforms existing methods for
CNA inference on simulated bulk tumor samples and produces
more plausible inferences of subclonal CNAs and WGDs on two
cancer datasets.

There are several areas for future improvements. First, while we
have shown that HATCHet accurately recovers the major tumor
clones distinguished by larger CNAs, HATCHet may miss small

CNAs or CNAs at low proportions. One interesting future
direction is to perform a second stage of CNA inference using a
local segmentation algorithm (e.g., a HMM17) informed by the
clonal composition inferred by HATCHet. Second, HATCHet’s
model of RDR and BAF could be improved by modeling addi-
tional sources of variation in the data, including replication
timing50 or variable coverage across samples, by considering
different generative models for RDR and BAF, and by incor-
porating additional signals in DNA sequencing reads, such as
phasing of germline SNPs9,27. Third, HATCHet’s modeling of
WGD could be further generalized. While recent pan-cancer
studies5–8,12 show that the current assumptions used in
HATCHet (namely that a WGD occurs at most once as a clonal
event and that additional clonal CNAs also occur) are reasonable
for most tumors, HATCHet’s model could be extended to allow
for multiple WGDs (e.g. hexaploid or higher ploidy), subclonal
WGDs, or WGDs occurring without any other clonal CNAs.
Fourth, HATCHet’s model-selection criterion could be further
improved by including additional information such as a more
refined model of copy-number evolution23,24,51–53, and tem-
poral54 or spatial13 relationships between clones. Fifth, further
improvements integrating CNAs and SNVs are an important
future direction. For example, phasing somatic mutations to
nearby germline SNPs might provide additional information to
identify explained mutations, although in the present study, only
a small fraction of the mutations (<0.2% in the prostate and
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Fig. 7 HATCHet copy numbers improve estimates of CCFs of somatic mutations in prostate cancer patients. a CCFs of somatic SNVs and small indels in
samples A10-C and A10-E of patient A10 computed from allele-specific copy numbers and proportions inferred by HATCHet (top) and Battenberg
(bottom). HATCHet explains a substantial number of mutations that are unexplained by Battenberg; for example, HATCHet infers a clonal CNA on
chromosome 1p in A10-E and determines that the mutations at this locus (purple circle) are clonal (i.e., CCF≈ 1). In contrast, Battenberg infers subclonal
CNAs at the same locus, and determines that the same mutations are subclonal (CCF≈ 0.3). b CCFs of somatic SNVs and small indels in samples A17-A
and A17-F of patient A17 show groups of mutations that are explained by HATCHet and unexplained by Battenberg (only this subset of mutations is shown
here for simplicity). For example, HATCHet infers a clonal CNA on chromosome 8q in A17-F and suggests that mutations in that region (green circle) are
clonal (CCF≈ 1), while Battenberg infers subclonal CNAs and suggests that the same mutations are subclonal (CCF≈ 0.5). c CCFs of somatic SNVs and
small indels in samples A22-J and A22-H of patient A22 show a large group of shared mutations on chromosome 8p (cyan circle with CCF > 0 in both
samples). HATCHet infers the same copy-number state (2, 0) in both samples, explains these mutations, and suggests that they are clonal. Battenberg
infers distinct copy-number states (1, 0) and (2, 0) in the two samples, leaves these mutations unexplained, and suggests that the mutations are subclonal
in both samples.
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<0.17% in pancreas cancer patients) are on the same sequencing
read as a heterozygous germline SNP. Finally, some of the algo-
rithmic advances in HATCHet can be leveraged in the design of
better methods for inferring CNAs and WGDs in single-cell
sequencing data.

The increasing availability of DNA sequencing data from
multiple bulk tumor samples from the same patient provides the
substrate for deeper analyses of tumor evolution over time, across
space, and in response to treatment. Algorithms that maximally
leverage this data to quantify the genomic aberrations and their
differences across samples will be essential in translating this data
into actionable insights for cancer patients.

Methods
HATCHet algorithm. We introduce HATCHet, an algorithm to infer allele- and
clone-specific CNAs and clone proportions for several tumor clones jointly across
multiple bulk tumor samples. We represent the accumulation of all CNAs in all
clones by partitioning the L genomic positions of the reference genome into m
segments, or clusters, with each segment s consisting of ℓs genomic positions with
the same copy numbers in every clone. Thus, a clone i is represented by a pair of
integer vectors ai and bi whose entries indicate the number of copies of each of the
two alleles for each segment. Specifically, we define the copy-number state (as,i, bs,i)
of segment s in clone i as the pair of the two integer allele-specific copy numbers as,i
and bs,i, whose sum determines the total copy-number cs,i= as,i+ bs,i. In addition,
we define clone 1 to be the normal (non-cancerous) diploid clone, and thus
(as,1, bs,1)= (1, 1) and cs,1= 2 for every segment s of the normal clone. We
represent the allele-specific copy numbers of all clones as two m × n matrices A=
[as,i] and B= [bs,i]. Similarly, we represent the total copy numbers of all clones as
the m × n matrix C= [cs,i]= A+ B. Due to the effects of CNAs, the genome length
Li ¼

Pm
s¼1 cs;i‘s of every tumor clone i is generally different from the genome

length L1= 2L of the normal clone.
We obtain DNA sequencing data from k samples of a cancer patient and we

assume that each tumor sample p is a mixture of at most n clones, with clone
proportion ui,p indicating the fraction of cells in p that belong to clone i. Note that
0 ≤ ui,p ≤ 1 and the sum of clone proportions is equal to 1 in every sample p. We say
that i is present in p if ui,p > 0. The tumor purity μp ¼

Pn
i¼2 ui;p of sample p is the

sum of the proportions of all tumor clones present in p. We represent the clone
proportions as the n × k matrix U= [ui,p].

HATCHet starts from the DNA sequencing data obtained from the k samples
(Fig. 1a) and infers allele- and clone-specific CNAs in two separate modules. The
first module of HATCHet infers the allele-specific fractional copy numbers f As;p ¼P

ias;iui;p and f Bs;p ¼
P

ibs;iui;p whose sum defines the fractional copy-number

f s;p ¼ f As;p þ f Bs;p (Fig. 1b–d). We represent the allele-specific fractional copy

numbers using two m × k matrices FA ¼ ½f As;p� and FB ¼ ½f Bs;p�. The second module
of HATCHet infers allele- and clone-specific copy numbers A, B and clone
proportions U by simultaneously factoring FA= AU and FB= BU (Fig. 1e, f).
Importantly, HATCHet infers two values of FA, FB according to absence/presence
of a WGD, and uses a model-selection criterion to simultaneously choose the
number n of clones and the presence/absence of a WGD while performing the
copy-number deconvolution (Fig. 1g). We describe the details of these two modules
in the next two sections.

Inference of allele-specific fractional copy numbers. The first module of
HATCHet aims to infer the allele-specific fractional copy numbers FA and FB from
the DNA sequencing data of k samples. This module has three steps.

The first step of the first module is the computation of RDRs and BAFs
(Fig. 1b), which are derived from the DNA sequencing data for every genomic
region in each sample. The RDR rs,p of a segment s in sample p is directly
proportional to the fractional copy-number fs,p. The BAF βs,p measures the
proportion of the two allele-specific fractional copy numbers f As;p; f

B
s;p in FA and FB,

respectively. HATCHet computes RDRs and BAFs by partitioning the reference
genome into short genomic bins (50 kb in this work) and using the same approach
of existing methods6,9,14–27 to compute appropriate normalizations of sequencing
read counts with a matched-normal sample—accounting for GC bias and other
biases. Further details are in Supplementary Methods 1 and 2.

The second step of the first module is the inference of the genomic segments
that have undergone CNAs directly from the measured RDRs and BAFs. The
standard approach to derive such segments is to assume that neighboring genomic
loci with similar values of RDR and BAF are likely to have the same copy-number
state in a sample. All current methods for CNA identification rely on such local
information, and use segmentation approaches, such as Hidden Markov Models
(HMMs) or change-point detection, to cluster RDRs and BAFs for neighboring
genomic regions9,14,15,17–19,55–57. With multiple sequenced samples from the same
patient, one can instead take a different approach of identifying segments with the
same copy-number state by globally clustering RDRs and BAFs along the entire

genome and simultaneously across multiple samples (Supplementary Fig. 57). Two
previous methods, FACETS18 and CELLULOID26, clustered segments obtained
from a local segmentation algorithm into a small number of distinct copy-number
states. HATCHet introduces a global clustering which extends this previous
approach in two ways: first, HATCHet jointly analyzes multiple samples from the
same patient and, second, HATCHet does not rely on local segmentation.

HATCHet uses a non-parametric Bayesian clustering algorithm38 to globally
cluster the RDRs and BAFs of all genomic bins jointly across all samples (Fig. 1c).
Further details are in Supplementary Method 2. Each cluster corresponds to a
collection of segments with the same copy-number state in each tumor clone.
These clusters are used to define the entries of FA and FB, playing the role of the
segments described above. Although we do not require that clusters contain
neighboring genomic loci, we find in practice that our clusters exhibit such locality
(see results on cancer datasets). By clustering globally we preserve local
information, but the converse does not necessarily hold. The joint clustering across
multiple samples is particularly useful in the analysis of samples with low tumor
purity. While variations in the values of RDR and BAF cannot be easily
distinguished from noise in a single sample with low tumor purity, jointly
clustering across samples leverages information from higher purity samples to
assist in clustering of lower purity samples (see results on the pancreas cancer
dataset).

The last step of the first module is the explicit inference of the allele-specific
fractional copy numbers FA and FB from the RDRs and BAFs of the previously
inferred segments (Fig. 1d). Existing methods6,9,14–22,25–27—including widely used
methods such as ABSOLUTE6, ASCAT14, Battenberg9, TITAN17, cloneHD25—do
not attempt to directly infer fractional copy numbers, but rather attempt to fit other
variables, specifically the tumor ploidy and tumor purity (or equivalent variables as
the haploid coverage, Supplementary Method 1). However, the values of these
variables are difficult to infer21,22,25,27 and often require manual selection6,7,12,27.
Further details regarding tumor purity and tumor ploidy are reported below in the
comparison of HATCHet and existing methods.

We introduce an approach to estimate FA and FB with rigorous and clearly-
stated assumptions. First, in the case without a WGD, we assume there is a
reasonable number of genomic positions in segments whose total copy number is 2
in all clones; this is generally true if a reasonable proportion of the genome is not
affected by CNAs and hence diploid. Second, in the case where a WGD occurs, we
assume there are two groups of segments whose total copy numbers are distinct
and the same in all clones; this is also reasonable if some segments are affected only
by WGD and tumor clones accumulate clonal CNAs during tumor evolution. More
specifically, we scale the RDR rs,p of each segment s in every sample p into the
fractional copy number fs,p and separate fs,p into the allele-specific fractional copy
numbers f As;p; f

B
s;p using the BAF βs,p. The following theorem states that the

assumptions above are sufficient for scaling RDRs to fractional copy numbers.
Theorem 1: The fractional copy number fs,p of each segment s in each sample p

can be derived uniquely from the RDR rs,p and either (1) a diploid clonal segment s0
with total copy number cs0 ;i ¼ 2 in every clone i or (2) two clonal segments s0 and z0

with total copy numbers cs0 ;i ¼ ωs0 and cz0 ;i ¼ ωz0 for all tumor clones i, and such
that rs0 ;pðωz0 � 2Þ≠rz0 ;pðωs0 � 2Þ for all samples p.

Notably, this theorem states that the scaling is independent of other copy
numbers in A, B, and C as well as the clone proportions in U.

To apply this theorem, HATCHet employs a heuristic to identify the required
segments and their total copy numbers; this heuristic leverages the RDRs and BAFs
jointly across all samples. First, in the case of no WGD, we aim to identify diploid
segments with a copy-number state (1, 1). These segments are straightforward to
identify: first, diploid segments will have βs,p ≈ 0.5 in all samples p; and second we
assume that a reasonable proportion of the genome in all samples will be unaffected
by CNAs and thus have state (1, 1). As such, we identify the largest cluster of
segments with βs,p ≈ 0.5 in all samples p, and apply Theorem 1. Second, in the case
of a WGD, we assume that at most one WGD occurs and that the WGD affects all
tumor clones. These assumptions are consistent with previous pan-cancer studies
of WGDs5–8,12. Under these assumptions, the segments s with βs,p ≈ 0.5 have copy-
number state (2, 2), as a WGD doubles all copy numbers. Thus, we use the second
condition of Theorem 1 and aim to find another group of segments with the same
state in all tumor clones. More specifically, HATCHet finds segments whose RDRs
and BAFs in all samples indicate copy-number states that result from single-copy
amplifications or deletions occurring before or after a WGD5; for example, copy-
number state (2, 0) is associated to a deletion occurring before a WGD while copy-
number state (2, 1) is associated to a deletion occurring after a WGD. Moreover, we
select only those groups of segments whose RDRs and BAFs relative to other
segments are preserved in all samples; such preservation indicates that the copy-
number state is fixed in all tumor clones (Fig. 1f). Further descriptions of Theorem
1 and this heuristic are in Supplementary Method 3.

Inferring allele- and clone-specific copy numbers and clone proportions. The
second module of HATCHet aims to derive allele- and clone-specific copy numbers
A, B and clone proportions U from the two values of allele-specific fractional copy
numbers FA and FB that were estimated in the first module. The second module has
two steps.

The first step of the second module is the inference of A, B, and U from each
estimated value of FA and FB (Fig. 1e). Since the samples from the same patient are
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related by the same evolutionary process, we model the fractional copy numbers
jointly across the k samples such that FA=AU and FB= BU. As such, the problem
that we face is to simultaneously factorize FA and FB into the corresponding allele-
specific copy numbers A, B and clone proportions U for some number n of clones.
Formally, we have the following problem.

Problem 1: (Allele-specific Copy-number Factorization (ACF) problem) Given
the allele-specific fractional copy numbers FA and FB and the number n of clones,
find allele-specific copy numbers A= [as,i], B= [bs,i] and clone proportions U=
[ui,p] such that FA= AU and FB= BU.

While the ACF problem is a mathematically elegant description of the copy-
number deconvolution problem, there are two main practical issues: first,
measurement errors in FA and FB may result in the ACF problem having no
solution, and second the ACF problem is an underdetermined problem and
multiple factorizations of a given FA and FB may exist. To address the first issue, we
do not solve the simultaneous factorization FA=AU and FB= BU exactly, but
rather minimize the distance between the estimated fractional copy numbers FA

and FB and the factorizations AU and BU, respectively, weighted by the
corresponding size of the clusters. In particular, we define the distance
k FA � AU k¼ Pm

s¼1

Pk
p¼1 ‘sjf As;p �

P
1≤ i≤ nas;iui;pj, where ℓs is the genomic

length of the cluster s. We also define the corresponding distance for FB, B, and U.
To address the second issue of an underdetermined system, we impose three

additional and reasonable constraints. All of these constraints are optional and user-
selectable. First, since we do not expect copy numbers to be arbitrarily high—
especially for large genomic regions—we assume that the total copy numbers are at
most a value cmax. Second, to avoid overfitting errors in fractional copy numbers by
clones with low proportions, we require a minimum clone proportion umin for every
tumor clone present in any sample. Third, we impose an evolutionary relationship
between the tumor clones requiring that each allele of every segment s cannot be
simultaneously amplified and deleted in distinct clones; i.e., either as,i ≥ θ or as,i ≤ θ
for all clones i, where θ= 1 when there is no WGD and θ= 2 when there is a WGD.
The same constraint also holds for bs,i. These constraints improve the solutions to
the copy-number deconvolution problem23,24 and are less restrictive than the ones
usually applied in current methods which, for example, assume that: tumor clones
have at most two copy-number states (as,i, bs,i), (as,j, bs,j) per segment and the
difference between allele-specific copy numbers is at most 19,19, i.e., ∣as,i− as,j∣ ≤ 1
and ∣bs,i− bs,j∣ ≤ 1; or all clones have either a diploid copy-number state (1, 1) or a
unique aberrant state (a, b) ≠ (1, 1) in every cluster s17,18; or every tumor clone i has
either cs,i ≥ 2 or cs,i ≤ 2 for every cluster s21,22; or there always exist segments with
total copy number equal to 218,25. We thus have the following problem.

Problem 2: (Distance-based Constrained Allele-specific Copy-number
Factorization (D-CACF) problem) Given the allele-specific fractional copy
numbers FA and FB, a number n of clones, a maximum total copy number cmax, a
minimum clone proportion umin, and a constant value θ ∈ {1, 2}, find allele-specific
copy numbers A= [as,i], B= [bs,i] and clone proportions U= [ui,p] such that: the
distance D= ∥FA− AU∥+ ∥FB− BU∥ is minimum; as;i þ bs;i ≤ cmax for every
cluster s and clone i; either ui;p ≥ umin or ui,p = 0 for every clone i and sample p; for
every cluster s, either as,i ≥ θ or as,i ≤ θ for all clones i; for every cluster s, either bs,i ≥
θ or bs,i ≤ θ for all clones i.

We design a coordinate-descent algorithm23,24 to solve this problem by
separating the inference of A, B from the inference of U and iterating these two
steps until convergence for multiple random restarts. We also derive an ILP
formulation that gives exact solutions for small instances. HATCHet uses one of
these two algorithms to infer A, B, U from FA, FB. Further details of this problem
and methods are in Supplementary Method 4.

Finally, the last step of the second module uses a model-selection criterion to
joint select the number n of clones and the occurrence of a WGD (Fig. 1f). Model
selection is essential because variations in the fractional copy numbers FA and FB

can be fit by increasing the total number n of clones, increasing the number of
clones present in a sample, or introducing additional copy-number states in a
sample by inferring subclonal CNAs or WGD. There is a trade-off between these
options. For example, a collection of clusters that exhibit many different copy-
number states may be explained in different ways: e.g., one could increase n and
mark some clusters as subclonal, or one could infer the presence of a WGD which
will increase the number of clonal copy-number states (Supplementary Fig. 1).
Existing methods either: do not perform model selection and assume that the
number n of clones is known21,22,26,27; consider segments independently6,9,17–19

(Supplementary Fig. 28), perhaps increasing the sensitivity to detect small
subclonal CNAs, but with a danger of overfitting the data and overestimating n and
the presence of subclonal CNAs; ignore the trade-off between subclonal CNAs
(related to a higher number of clones) and WGD (related to a higher value of
tumor ploidy) by not evaluating the presence or absence of WGD in the model
selection. Following the factorizations of the two values of FA and FB

(corresponding to the cases of WGD and no WGD), HATCHet chooses the
simplest solution that minimizes the total number n of clones across all samples.
Further details on the model-selection procedure are in Supplementary Method 5.

Comparison of HATCHet and existing methods for copy-number deconvolu-
tion. We summarize some of the main differences between HATCHet and existing
methods for copy-number deconvolution (see also Supplementary Table 1). First,
HATCHet models allele-specific copy numbers, while many methods do not20–24.

Second, HATCHet models dependencies between segments as clones, while most
of the widely used methods6,9,14–19 analyze each segment independently and dis-
card the global dependency between segments (Supplementary Fig. 28). Third,
HATCHet models dependencies between samples and uses a global clustering
approach to infer segments jointly across samples. In contrast, existing
methods6,9,14–22,26,27 analyze samples independently and do not preserve clonal
structure across samples; there is one exception which is cloneHD25, but cloneHD
infers segments from each sample independently, and also assumes that every
sample comprises the same set of few (2–3) clones and is thus not suitable to
analyze samples comprising distinct clones25.

Finally, HATCHet introduces an explicit model-selection criterion to select
among different allele- and clone-specific copy numbers and clone proportions that
explain the observed DNA sequencing data. There are often multiple possible
mixtures of allele-specific copy numbers that explain the measured RDRs and
BAFs: for example, segments with distinct values of RDR and BAF could be
explained as either subclonal CNAs or clonal CNAs with high copy numbers, e.g.,
due to a WGD. It is difficult to distinguish these cases because the total length of
the genome of each tumor clone is unknown. HATCHet introduces a model-
selection criterion which separates two distinct sources of this ambiguity: (1) the
inference of allele-specific fractional copy numbers FA and FB, which are not
uniquely determined by the measured RDRs and BAFs; (2) the inference of the
allele- and clone-specific copy numbers A, B and the clone proportions U.
Importantly, HATCHet evaluates two possible values of FA, FB—corresponding to
the occurrence of WGD or not—and defers the selection of a solution until after
the copy-number deconvolution. Thus, HATCHet performs model selection in the
natural coordinates of the problem, i.e., A, B, and U, and evaluates the trade-off
between inferring subclonal CNAs (and thus more clones present in a sample) or a
WGD (Supplementary Fig. 1), when modeling a large number of distinct copy-
number states. Supplementary Table 2 lists the parameters used in HATCHet’s
model-selection criterion and Supplementary Table 3 provides the default values of
these parameters.

In contrast, existing methods6,9,14–22,25–27 for copy-number deconvolution do
not distinguish different solutions using the variables A, B, and U, but rather use

the variables tumor purity μp= 1− u1,p and tumor ploidy ρp ¼ 1
μp

Pn

i¼2

ui;pLi

L (or

equivalent variables such as the haploid coverage, Supplementary Method 1).
However, tumor purity μp and tumor ploidy ρp are composite variables that sum
the contributions of the unknown integer copy numbers A, B and the proportions
U of multiple clones in a sample. Because of their composite nature, tumor purity
and tumor ploidy are both difficult to infer21,22,25,27 and not ideal coordinates to
evaluate tumor mixtures. This is because multiple values of tumor purity μp and
tumor ploidy ρp may be equally plausible for the same values of RDR and BAF,
particularly when more than one tumor clone is present or when a WGD occurs
(Supplementary Figs. 2 and 3). Not surprisingly, existing methods that rely on
tumor purity and ploidy typically require manual inspection of the output to
evaluate the presence of WGD6,7,12,27; the few methods that automate the
prediction of WGD are based on biased criteria or unstated, restrictive
assumptions9,17,25.

We note that HATCHet does not directly reconstruct a tumor phylogenetic
tree. However, the copy numbers inferred by HATCHet can be used as input to
methods for phylogenetic reconstruction. For example, the integer copy numbers
inferred by HATCHet can be input to MEDICC51 or CNT52,53, and the fractional
copy numbers can be input to CNT-MD23,24 or Canopy37.

Simulating bulk tumor sequencing data with MASCoTE. We introduce MAS-
CoTE, a method to simulate DNA sequencing data from multiple bulk tumor
samples that correctly accounts for tumor clones with varying genome lengths. The
simulation of DNA sequencing data from bulk tumor samples that contain large-
scale CNAs is not straightforward, and subtle mistakes are common in previous
studies. Suppose R sequencing reads are obtained from a sample consisting of n
clones with clone proportions u1, …, un. Assuming that reads are uniformly
sequenced along the genome and across all cells, what is the expected proportion vi
of reads that originated from clone i? Most current studies15–17,25,39–44 that
simulate sequencing reads from mixed samples compute vi as a function of ui
without taking into account the corresponding genome length Li. For example, Ha
et al.17 and Adalsteinsson et al.39 artificially form a mixed sample of two clones by
mixing reads from two other given samples in proportions vi ¼ ui

~ui
where ~ui is the

clone proportion of the single tumor clone i uniquely present in a given sample.
Another example is Salcedo et al.42 that simulates the reads for each segment s
separately by setting vs;i ¼ ‘s

cs;iui
M for every clone i where M ¼ max

s
f s is the max-

imum fractional copy number. However, such values of vi are the correct pro-
portions only when the genome lengths of all clones are equal, e.g., Li= 2L for
every clone i. Using an incorrect proportion vi leads to incorrect simulations of
read counts, particularly in samples containing WGDs or multiple large-scale
CNAs in different clones (Supplementary Figs. 4 and 5). In fact, read counts
depend on the genome lengths of all clones in the sample58 and the correct pro-
portion vi ¼ uiLi

Pn

j¼1

ujLj

is equal to the fraction of genome content in a sample
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belonging to the cells of clone i. Moreover, the expected proportion vs,i of reads in
segment s that originate from clone i is equal to vs;i ¼ ‘s

cs;iui
Pn

j¼1

ujLj

, the fraction of the

genome content from segment s belonging to the cells of clone i (Supplementary
Method 1).

To address these issues, we develop MASCoTE to correctly simulate DNA
sequencing reads of multiple mixed samples obtained from the same patient
(Supplementary Fig. 6). MASCoTE simulates the genomes of a normal clone and n
− 1 tumor clones, which accumulate CNAs and WGDs during tumor evolution;
these clones are related via a phylogenetic tree. As such, every sample comprises a
subset of these clones and the corresponding sequencing reads are simulated
according to the genome lengths and proportions of the clones. More specifically,
MASCoTE is composed of four steps: (1) MASCoTE simulates a diploid haplotype-
specific germline genome (Supplementary Fig. 6a); (2) MASCoTE simulates the
genomes of n− 1 tumor clones that acquire different kinds of CNAs and WGDs—
according to the distributions in size and quantity reported in previous pan-cancer
studies5—in random order through a random phylogenetic tree (Supplementary
Fig. 6b); (3) MASCoTE simulates the sequencing reads from the genome of each
clone through standard methods59 (Supplementary Fig. 6c); (4) MASCoTE
simulates each sample p by considering an arbitrary subset of the clones (always
containing the normal clone) with random clone proportions and by mixing the

corresponding reads using the read proportion vi;p ¼
ui;pLiP

1≤ j≤ n
uj;pLj

(Supplementary

Fig. 6d). Further details about this procedure are in Supplementary Method 6.

Bioinformatics analysis. We applied MASCoTE with default values of all para-
meters to simulate DNA sequencing reads for 64 patients, half with a WGD and
half without a WGD. For each patient, we simulated 3–5 bulk tumor samples, with
a total of 256 samples across all 64 patients. For each patient, we simulated 2–4
clones (including the normal clone) with CNAs of varying size using the relative
frequencies reported in pan-cancer analysis5 and including: focal CNAs < 1Mb,
small CNAs between 3 and 5Mb, medium CNAs between 10 and 20Mb, and
chromosome arm and whole chromosome CNAs. We provided the human
reference genome hg19 and the database dbSNP of known SNPs60 to MASCoTE
for generating a haplotype-specific genome for each normal clone. We ran every
method on the simulated samples by using the default available pipelines. Details
about the experimental setting of every method are described in Supplementary
Note 1.

We applied HATCHet to analyze 49 samples from 10 prostate cancer patients
in Gundem et al.11 and 35 samples from four pancreas cancer patients in Makohon
et al.30 using the published BAM files. In addition to one or more BAM files from
the same patient, HATCHet requires two other sources of information: a matched-
normal sample and the reference genome used to align the sequencing reads. We
used the available matched-normal sample for every patient and the reference
genome corresponding to the alignments in the BAM files, i.e., GRCh37 for the
prostate cancer patients and hg19 for the pancreas cancer patients. HATCHet used
BCFtools (v1.7)61 to identify germline heterozygous SNPs with the provided
matched-normal sample and reference genome. For each patient, we applied
HATCHet on all the corresponding samples using the default values of all
parameters: genomic bin size of 50 kb, maximum total copy-number cmax ¼ 12,
and minimum clone proportion umin ¼ 0:03 (for patients A22, A21, Pam03, and
Pam04, we used umin ¼ 0:15 since these patients exhibited high variance in RDRs
and BAFs). Further details are in Supplementary Note 6. Lastly, we used Varscan 2
(v2.3.9)62 with default parameters and filters to identify somatic SNVs and
small indels.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Whole-genome DNA sequencing data for the prostate and pancreas cancer datasets
analyzed in this study are available from the European Genome-phenome Archive (EGA)
under accession numbers EGAS00001000262 and EGAS00001002186, respectively.
Whole-exome DNA sequencing data for breast cancer patients in Kim et al.45 and
Casasent et al.46 are available from the NCBI Sequence Read Archive (SRA) under
accession numbers SRP114962 and SRP116771. All the processed simulated data, the
results of all methods on simulated data, and the results of HATCHet on the prostate and
pancreas cancer datasets are available on GitHub from https://github.com/raphael-
group/hatchet-paper and on Zenodo from https://doi.org/10.5281/zenodo.3830088.

Code availability
HATCHet is available on GitHub at https://github.com/raphael-group/hatchet.
MASCoTE is available on GitHub at https://github.com/raphael-group/mascote.
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