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Abstract

Cities are constantly evolving due to the changes and interactions with their citizens. They are complex systems
made up of individuals, vehicles, and infrastructures that form the heart of modern life and social development.
A key factor driving this growth is the advancement of mobility towards a more intelligent and technological
scenario, also known as Smart Mobility. This concept involves moving from a traditional transportation system
to a more advanced one, where an intelligent infrastructure fabric connects stakeholders and entities to provide
efficient, smart, and sustainable solutions. Researchers in this field place a strong emphasis on understanding
and identifying individuals’ displacement patterns, in order to enhance the services and, more in general,
the livability of cities. The advent of Data Science has revealed the importance of developing and applying
Artificial Intelligence techniques in the creation of automated and intelligent city systems. Although AI is
increasingly used in Smart Mobility, there are still many challenges to be addressed. For this reason, in this
thesis, AI and Transportation Science are combined to develop solutions to mobility-related problems by
extracting knowledge from mobility data and developing sophisticated algorithms. We show, through extensive
experimentation, that the proposed solutions effectively improve the understanding and application of Artificial
Intelligence in mobility problems. In particular, we initially focus on data processing and knowledge extraction.
In order to explain the adoption of shared mobility vehicles, we propose the use of geographic (distance from
center, walkability, concentration of places) and demographic features (education index). Additionally, we
present a multi-objective optimization algorithm to identify behavioral communities, taking into account shared
mobility usage patterns, distance between areas, and structural information (via Map Embeddings). We also
explore the theoretical and architectural definition of Deep Learning techniques for solving real-world mobility
problems. We propose two Deep Learning architectures, 3D-CLoST and STREED-Net, which use innovative
solutions to better extract spatio-temporal patterns from mobility data, and enable us to improve the state of
the art in the short-term flow prediction problem. Furthermore, to extend the applicability of spectral-based
Graph Convolutional Networks (GCNs) to mobility problems defined by means of directed weighted graphs,
we introduce SigMaNet, which can handle both undirected and directed graphs with weights of any sign or
magnitude. The cornerstone of SigMaNet is the new Sign-Magnetic Laplacian matrix. Finally, we address
on-street parking prediction by assessing the performance of various methods, including statistical models,
GCNs, and Convolutional Neural Networks (CNNs), on two indicators, the average parking time and the
average number of vehicles parked simultaneously.
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1
Introduction

1.1 Smart City

Nowadays, almost 55% of the world’s population lives in urban areas, and the number is expected to increase
to 66% by 2030 [189]. As the city grows, new problems arise (e.g., traffic congestion, waste management,
pollution, parking allocation) and resources are limited. Therefore, working on adapting the city to current (and
future) needs is a priority for all of us, and researchers are no exception. The urgency to make the city a more
suitable place for quality living is giving rise to many initiatives around the world [186], from city councils to
companies to research laboratories. People from different disciplines, cultures, backgrounds and interests are
finding common ground: creating Smart City (SC).

The smart city transition has a significant positive impact on three different areas: Economic, Environmental,
and Social. In particular:

• Economic Impact. i) Overall economic growth of 5% per year, nearly 20 trillion Dollar in a decade [95],and
ii) cooperation between the public and private systems to make the services made available to citizens
more efficient [49]. For example, the use of carsharing results in average savings of $154 to $435 per
month for a household, compared to the cost of using a private vehicle [163].

• Environmental Impact. i) 10-15% reduction in GHG emissions per year [95], and ii) 27-43% decrease
in annual VMT (Vehicle Miles Traveled) of households [163].

• Social Impact. Reduction in travel time by up to 40% resulting in saving billions of hours lost due to
commuting and congestion [25].

The concept of SC emerged in recent years as a way to improve the functioning of cities through the use
of information and communication technologies. The idea of a smart city has been described using various
metaphors, but it is often seen as a large organic system [133]. This term is becoming more widespread (more
cities are being labeled as smart every day), but it is still considered a work-in-progress concept and there is no
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universally accepted definition [40, 126]. However, a common one describes it as the "Effective integration of
physical, digital and human systems in the built environment to deliver a sustainable, prosperous and inclusive
future for its citizen" [139]. Moreover, multiple expressions have been created to refer to the same concept,
but with slightly different perspectives, e.g. digital city [87] or intelligent city [101]. Even worse, the concept
of Smart Cities has limited research and understanding of its implications, making it difficult to assess if
advancements are being made or if important opportunities for improvement are being missed [64].

When discussing the Smart City, it is important to take into consideration a multitude of components.
However, there are certain fundamental characteristics that are consistently present. These include:

• Technology. These can be sensors, networks, and other types of technology used to collect data and
monitor city operations.

• Infrastructure. It may include items such as transportation systems, energy systems and other types of
infrastructure used to support city operations.

• Governance. It may include policies, regulations, and other types of governance mechanisms used to
manage city operations.

• Sustainability. It can include items such as renewable energy, green buildings and other sustainable
practices used to make the city more environmentally friendly.

• Quality of Life. It can include aspects such as public safety, education and other factors that contribute
to the overall quality of life of city residents.

The concept of Smart City incorporates the use of Information and Communication Technologies (ICT) and
network-connected physical devices to enable city officials to interact directly with infrastructure, monitoring
what is happening in the urban environment, understanding its evolution and defining effective policies. In
particular, ICTs are used to analyze urban services in order to optimize mobility and safety solutions, reducing
their costs and consumption of resources, targeting sustainability and ecological measures directed toward
energy conservation. Data in smart cities are collected from various sources, including sensors placed in
buildings, inside transport vehicles, in the streets, or from technological devices used by citizens, such as
smartphones and tablets.

1.1.1 Implementing Data-Driven Smart Cities

Modern cities are experiencing significant technological and operational changes, and Data Science is driving
the changes in the Fourth Industrial Revolution (Industry 4.0) [155]. The combination of these two entities
gives rise to the Data-Driven Smart City [156], also known as Urban Computing. It refers to the complex
process of gathering, processing, and analyzing large amounts of heterogeneous data from multiple sources, in
order to address the challenges that cities present, such as air pollution, consumption of energy sources, and
traffic congestion [228].

Urban computing is an interdisciplinary field that intersects several disciplines, including computer science,
civil engineering, economics, and sociology. Its goal, as shown in Figure 1.1, is to create innovative solutions
with significant positive impacts on three different factors: environment, citizens’ quality of life, and city
management.
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Figure 1.1 Life cycle and motivation of the urban computing [228]

Challenges

As previously stated, urban computing is a multifaceted subject that encompasses various facets. The principal
challenges encountered in each one are outlined below [228]:

• Urban sensing and data acquisition. Firstly, one must be able to collect the necessary data in a
continuous, non-intrusive and city-scale manner. Meeting all these requirements turns out to be a
daunting task, as many problems can arise during the data acquisition phase. For example, if the data
comes from personal mobile devices, such as smartphones, the aspects of saving or managing battery
consumption and regulations related to privacy are not to be underestimated. An additional challenge
related to this type of data is the lack of control over the frequency at which individuals share information.
This makes data management more complex compared to working with data generated by sensors, where
the sampling interval can be set. Additionally, personal data often appear unevenly distributed on the
urban scale, with some areas being highly active and others being relatively inactive. Finally, these data
are unstructured, meaning they are not conformed to a standard format, and are typically noisy.

• Management of heterogeneous data. Managing heterogeneous data is essential for finding solutions
to city challenges. For example, to monitor air pollution, one might want to simultaneously take into
account traffic flow, meteorology, and land use (presence of roads, factories, etc.). However, traditional
data mining and Machine Learning algorithms usually work with only one type of data. Therefore, it
is necessary to develop more elastic models suitable for the case addressed. Additionally, information
learning must be both efficient and effective; in some cases, it may even be necessary to have answers in
real time. Another key aspect concerns data visualization: being able to represent the key information
encapsulated in the collected data is not easy, but it is essential for devising possible solutions.

• Hybrid systems. Integrating data from both the digital and physical worlds is crucial for the successful
implementation of urban computing systems. This can be achieved by combining data from real-world
sources, such as GPS, with that from a social network, creating so-called hybrid systems. However,
designing and implementing these types of systems is significantly more complex compared to traditional
systems.

Applications

Urban Computing has multiple applications in the city environment, including public safety, transportation,
environment and urban planning. Some of the scenarios typically associated with this field are:
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• Urban computing for the environment. Urbanization can have negative effects on the environment,
specifically through increased pollution levels. Air, noise, and waste pollution are some of the main
concerns. To address these issues, urban computing is used to develop sustainable and resilient urban
planning strategies, with the ultimate goal of protecting the environment and improving people’s lives.
This includes efforts to reduce pollution and to contain the spread of pollution-related diseases.

• Urban computing for saving energy resources. Urbanization leads to a rise in energy consumption,
creating a need for technology to track usage, improve infrastructure, and promote conservation. This
includes not only monitoring the consumption of gasoline and electricity for transportation and gas for
heating, but also researching ways to optimize resources.

• Urban computing for public safety. Data from various sources in urban contexts can greatly impact
public safety. Advanced algorithms can aid in responding to environmental disasters or terrorist attacks,
and even in preventing them. Research in this area includes planning measures to manage natural disasters
such as earthquakes, landslides, and floods.

• Urban computing for transportation/Smart Mobility. The analysis of people’s movements within
the city plays a key role in urban computing. The study of mobility can have real-world benefits such as
providing real-time optimal routes for drivers, reducing congestion, and predicting traffic using historical
data. Research in this field could be highly beneficial also for taxi and vehicle-sharing services, as it
could help pinpoint areas with the greatest need for transportation.

Since the focus of this thesis is on smart mobility, we are going to explore this topic more in detail below.

1.1.2 Smart Mobility

Smart Mobility (SM) is a widely studied embodiment of urban computing and is a key driver for transforming
urban transportation and changing the way our cities move. It encompasses not only the physical movement of
people and goods, but also the digital dissemination of information. The purpose of Smart Mobility is to connect
all the resources of the city, including people, goods, and information. This objective is vital for enhancing a
city’s competitiveness and development, particularly as the need to move around increasingly sprawling urban
areas becomes a growing concern [137]. For this reason, in recent years, there have been numerous global
initiatives to ensure improvement in mobility for citizens. One notable project within this area is Big IoT [53].
This is a project under the IoT-European Platforms Initiative that aims to address interoperability issues by
developing a generic, unified Web API for smart object platforms. This pilot project is implementing services
and applications in several European cities:

• In Barcelona, traffic detectors are used to measure speed and count cars for a smart parking application
and green route planning. Other sensors such as magnetometer roadside monitoring stations and
Bluetooth/Wi-Fi antennas are also installed to monitor urban mobility and air quality.

• Wolfsburg has incorporated a citywide WLAN network to monitor public buses and bike share stations,
and implemented real-time crowd management using security cameras. Human crowd detection was
tested through mobile applications.

• In Berlin, real-time data on traffic volumes and speed are integrated with data on parking, bike sharing,
charging stations, and public transport information.
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• In Piedmont, traffic and environmental conditions are being monitored through the implementation of a
dense network of sensors. Various services and applications are being developed for bicycle navigation,
real-time traffic monitoring, and route planning that take into account air pollution in different areas of
the city.

1.2 Data Science and Artificial Intelligence

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to
extract knowledge and insights from structured and unstructured data [48]. One of its key components is
Aritficial Intelligence (AI), as it enables the development of advanced algorithms and models that can analyze
and process vast amounts of data. Since AI is crucial to create an automated and intelligent city system [156]
and it is a major component of this thesis, we will delve deeper into its knowledge and understanding. The
study of human cognition has contributed to the emergence of several scientific disciplines, including AI. The
goal of AI is to create algorithms that can mimic certain behaviors of the human brain, such as word or image
recognition, logical reasoning, and problem-solving. As such, it acts as a bridge between the human mind and
computer science.

The advancement of this discipline has brought significant economic benefits to humanity and has impacted
all aspects of life. It has also greatly promoted social development and moved society into a new era [124]. In
the early days of AI, the field focused on solving problems that were intellectually challenging for humans
but relatively simple for computers, which could be described using formal mathematical rules. However,
the true challenge for AI has been to solve tasks that are easy for humans to perform but difficult to formally
describe, such as recognizing spoken words or faces in pictures, which we solve intuitively and automatically.
There are two different types of AI: weak AI and strong AI [161]. Weak AI, also known as basic AI or level
1 AI, is designed to perform specific and limited tasks efficiently. For example, it can be programmed to
recognize objects in an image or to solve computational problems. In contrast, strong AI, also known as
Level 2 AI or generalized AI, refers to a form of AI that can perform a wide range of tasks and is able to
adapt to new situations and environments. It is flexible and able to learn autonomously, without the need to
be explicitly programmed for each task. J. Mark Bishop summarizes these two concepts by defining ”weak
AI focuses on epistemic issues relating to engineering a simulation of human intelligent behavior, whereas
strong AI, in seeking to engineer a computational system with all the causal power of a mind, focuses on the
ontological" [22].

Artificial Intelligence has a wide range of applications in various fields such as medicine, transportation,
finance, and education. It can be used to automate processes, make decisions, and provide personalized services.
AI is a critical component in research and development within computer science. However, the use of AI also
raises important ethical and safety concerns, such as the potential for massive unemployment due to automation
and the risk of making decisions based on inaccurate or biased data. It is crucial for AI developers to consider
these issues and take steps to address them responsibly.

1.2.1 Machine Learning, Artificial Neural Network and Deep Learning

Machine Learning and Artificial Neural Network, with Deep Learning at its core, are two major areas of
research encompassed within the AI. Machine Learning (ML) is a method of automating the task of building
analytical models to perform cognitive tasks such as object detection or natural language translation [94]. It uses
algorithms that iteratively learn from problem-specific training data, allowing computers to discover hidden
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insights and patterns without explicit programming. ML is particularly useful in high-dimensional data tasks
such as classification, regression, and clustering. It can produce reliable and repeatable decisions by learning
from previous calculations and extracting patterns from large databases. The ML field offers different classes
of algorithms, each with multiple specifications and variants, including regression models, instance-based
algorithms, decision trees, Bayesian methods and Artifical Neural Network (ANN). Moreover, depending on
the given problem and available data, we can distinguish three types of Machine Learning training techniques
(although many different subtypes have been proposed in the past few years): supervised learning, unsupervised
learning and reinforcement learning.

Algorithms in the Artificial Neural Network family are highly valued due to their versatile structure, which
allows them to be adapted for a wide range of applications. Inspired by the principle of information processing
in biological systems, ANNs consist of mathematical representations of interconnected processing units called
artificial neurons. Each connection between neurons, similar to synapses in a brain, transmits signals. whose
strength can be adjusted during the training process by a weight that is continuously learned. The signals are
processed by subsequent neurons only if a certain threshold, determined by an activation function, is exceeded.
ANNs are typically organized into networks with multiple layers, including an input layer for receiving input
data and one or more hidden layers for learning a nonlinear mapping between input and output [67]. To define
the algorithm, the number of layers, neurons, and other properties such as the learning rate and activation
function must be set. These elements are known as hyperparameters of the model and can be set manually or
determined by an optimization routine, such as Bayesian Optimization [167].

Deep Neural Networks are composed of multiple hidden layers, organized into deeply nested network
architectures, and they can use advanced operations (e.g., convolutions) or multiple activations in a neuron.
These features allow deep neural networks to be fed with raw input data and automatically discover a rep-
resentation needed for the corresponding learning task. As a result, Deep Neural Networks can use labeled
datasets in supervised learning to train the algorithm, but can also handle unstructured data, such as text, images,
and audio, and extract the relevant features for different categories of data. This reduces the need for human
intervention and enables the use of larger datasets. In contrast, traditional machine learning, also known as
"shallow" learning, relies more on human intervention to determine the feature set and typically requires more
structured data for learning [108].

Deep Learning has become increasingly popular in recent years due to its successes in various research
areas such as Computer Vision [69], Neural Language Processing [190] and Reinforcement Learning [131].
However, there are still many challenges that Deep Learning models are unable to overcome, such as the ability
of relational and causal reasoning, conceptual abstraction, many other human skills, and generalization of new
and unseen situations during the learning process. Additionally, these models are difficult to interpret and
explain, as their decisions are based on a number of internal weights and biases that are not easily accessible
or understandable to humans, making them appear as a "black box". Despite these challenges, Artificial
Intelligence and Deep Learning are making significant progress in computer science and will continue to be a
crucial part of research and development in the future.

1.3 Scope and Research Questions

This thesis aspires to bring together Artificial Intelligence and Transportation Science. The aim is to investigate
innovative solutions to solve mobility-related problems by understanding and identifying individuals’ movement
patterns. This approach is expected to lead to a deeper understanding of the complex challenges in mobility and
to the development of more effective and efficient solutions. In the thesis, we first examine the application of
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regression and clustering techniques in the world of mobility, with a focus on data processing and knowledge
creation. We then explore the theoretical and architectural definition of new Deep Learning solutions applied to
solving real problems related to Smart Mobility, such as predicting travel flows. In particular, great attention is
given to how extracting relevant information from data can improve the performance of predictions.
The research in this thesis has been guided by several research questions:

Research Question 1. Can we predict the level of adoption of shared vehicles in a city, by analyzing and
identifying the factors that drive their usage?

To answer this question, in Chapter 2 and in Fiorini et al. [61], we devise and examine three features concerning
the geographic characteristics (distance from center, walkability, concentration of places) and one about the
population (education index). Our findings demonstrate that these features can serve as indicators/drivers for
predicting the adoption of shared vehicles in urban areas.

Research Question 2: Can we create an algorithm that can efficiently identify urban communities, by consider-
ing a set of factors?

In order to address this question, we develop a multi-objective greedy optimization algorithm that is able to
identify communities in cities by taking into account three different factors: i) patterns of shared mobility usage,
ii) distance between areas, and iii) structural informationIn Chapter 3 and in Fiorini et al. [60], we demonstrate
the effectiveness of our solution through a qualitative analysis of the results obtained in a real-world scenario
(the city of Milan, Italy).

Research Question 3: Can we develop and efficiently implement novel Deep Learning architectures that
enhance the ability to extract information from spatio-temporal mobility data?

To address this research question, we propose two novel architectural solutions, 3D Convolution LSTM on
Spatio - Temporal (3D-CLoST) and Spatio Temporal REsidual Encoder-Decoder Network (STREED-Net), that
incorporate innovative approaches to capture spatial and temporal dependencies within data. We present these
models in Chapter 4 and in Fiorini et al. [59, 62], and we demonstrate that they have significant advantages
over state-of-the-art methods in terms of predictive accuracy for the short-term flow forecasting.

Research Question 4: Can spectral Graph Convolutional Networks solve mobility problems that involve the
management of directed graphs with both positive and negative weights of arbitrary magnitude?

In Chapter 5 and in Fiorini et al. [63], we introduce a new solution for spectral-based Graph Convolutional
Network (GCN) using a new positive semidefinite Hermitian matrix called Sign-Magnetic Laplacian. This ex-
tends the use of spectral-based graph convolutional networks to directed graphs with non-restricted edge weights.

Research Question 5: Can Deep Neural Networks and Statistical Models accurately predict the indices that
describe the pattern of city parking?

In Chapter 6, we conduct a study on parking patterns in the city of Rome. The work begins by identifying
appropriate indexes for the analysis of parking. Then, through extensive experimentation, we compare
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different prediction methods, among statistical models, graph convolutional networks, and Convolutional
Neural Network (CNN)s, to evaluate the performance differences between various models.



2
Explaining Adoption Patterns

Recent years have witnessed the emerging of novel shared mobility solutions that provide diffused
on-demand access to transportation. The widespread adoption of these solutions, particularly electric
mopeds (e-mopeds), is expected to bring important benefits such as the reduction of noise and
atmospheric pollution, and road congestion, with extensive repercussions on liveability and quality
of life in urban areas. Currently, almost no effort has been devoted to exploring the adoption patterns
of e-moped sharing services, therefore, optimal management and allocation of vehicles appears to be
a problem for service managers. In this study, we tried to demonstrate the validity of the hypothesis
that the adoption of electric mopeds depends on the built environment and demographic aspects
of each neighbourhood. In detail, we singled out three features concerning the area characteristics
(distance from centre, walkability, concentration of places) and one about the population (education
index). The results obtained on a real world case study show the strong impact these factors have
in determining the adoption of e-moped sharing services. Finally, an analysis was conducted on
the possible role that the electric moped sharing can play in social equalization by studying the
interactions between rich and poor neighbourhoods. The results of the analyses conducted indicate
that communities within a city tend to aggregate by wealth and isolate themselves from one another
(social isolation): very few interactions, in terms of trajectories, have been observed between the
richest and poorest areas of the city under study. Research reported in this chapter has been published
in [61].

2.1 Introduction

Understanding urban mobility patterns is becoming increasingly important for planners, administrators, and
transport providers. Indeed, the growing concern for the environment, demographic changes, citizen lifestyle,
and economic issues are constantly redefining urban mobility. Urban transport has a significant impact on the
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quality of life of most people, and this is especially true today, as more than 50% of the world population lives in
urban areas, with Europe reaching 75% [205]. Furthermore, by 2050, almost 68% [189] of the world population
is predicted to live in urbanized areas, exacerbating human mobility and freight transport problems, which
are crucial drivers for economic development and livability in the city [18]. As pointed out in [68], another
important issue concerns air pollution, which entails great environmental risks for citizens. To overcome these
challenges, institutions are enacting air quality plans and mobility strategies, in which transport alternatives to
traditional mobility play a key role. In this sense, electric shared mobility can represent an opportunity for local
administrations to rethink urban transport in terms of sustainability by disincentivizing bulky private motor
vehicles, which often cruise the city with only the driver. The resulting reduction in traffic and air pollution
would result in health benefits and cost savings for the citizens and a reduction in environmental impact on the
community [138, 162].

In the field of shared vehicles, e-moped sharing is increasingly assuming a prominent position in Europe
cities [84]: currently, 15 of the 22 countries, that have introduced the use of mopeds, are located in Europe and
represent 54% of the total fleet deployed (in 2019 it was 58%). Germany (26), Poland (23), the Netherlands (19)
and Spain (9) have the highest number of cities with moped-sharing services, with the Netherlands experiencing
very strong growth over the past year. In the current situation, where many governments have signed the
Paris Agreement [188] on climate change, electric mopeds can be a valid instrument to mitigate the pollution
problem: on the one hand, city pollution can be directly reduced by the adoption of electric vehicles, and on the
other, compact conveyances have a positive effect on the problem of road congestion, which is also a cause of
pollution. In this sense, the authors of [206] show that the introduction of an adequate fleet of shared e-mopeds
can replace a relevant percentage (up to 23%) of car trips. Therefore, e-mopeds represent a major enabler to
build up a sustainable urban transport system and to improve city livability. Nonetheless, although several
research contributions can be found in the field of shared mobility, mainly addressing car, bike, and e-scooter
sharing services, almost no effort has been dedicated to studying the adoption of shared electric mopeds, despite
its significant growth in recent years.

This chapter is organized as follows. After this introductory section, in Section 2.2 we present the variables
used in the study with the related analysis methodology, while the relevant literature is reviewed in Section 2.3.
In Section 2.4 we describe the case study and in Section 2.5 we present and discuss the main results of the
study. Finally, Section 2.6 concludes the chapter and outlines future research.

2.2 Problem Statement and Methodology

Given a tessellation of the area of interest (i.e., the city) in regularly-shaped squares, called regions (equivalently,
markers), the problem of adopting e-moped sharing, defined as the problem of predicting the shared use of
e-mopeds and studying users’ behavior within each region, has been little explored in literature. The few studies
published on this subject contemplate the use of simulation [206], information directly linked to users (surveys)
and mobility data [2, 3], but this knowledge is not always available and easy to access.

Our primary goal is to study the adoption of e-moped sharing services within the urban context by correlating
utilization patterns to socio-economic and structural factors. Secondly, the study aims at finding evidence of
the social isolation phenomenon by identifying meaningful social categories based on the economic status and
calculating the rate of interaction among them. In what follows, the methodology implemented is outlined.

The study began with the definition of the target variables, which act as proxies for the adoption of e-moped
sharing services. Once this first part was completed, we identified the dependent variables trying to meet two
driving requirements: i) they must be easily accessible, and ii) they must show a close relationship with the
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built environment and demographic aspects of the city. Finally, after applying a feature selection method, a
linear regression was performed with the selected covariates. The results obtained were evaluated both in terms
of the adjusted R-square and the importance of the independent variables.

It is worth pointing out that while mobility is characterized by well-known temporal dependencies (e-
mopeds data presents trends and seasonality which depend on the day of the week and the time of day [59, 62]),
the socio-economic and structural characteristics of the city are represented by covariates that can be considered
almost constant in the medium term. Correlating those factors temporally is therefore impossible. To overcome
this issue, we have identified in the literature some mobility indicators that are also measures of a central
tendency [197]. A detailed description of the dependent and independent variables used in this study is given
below.

2.2.1 Dependent and Independent Variables

In this work, the adoption of shared e-moped is evaluated through two different variables: the travel radius,
which provides a sensible proxy for how much the service is being used, and the average daily flow, which
focuses on how it is being used.

Travel radius (rrrggg). It is the average distance (in meters) travelled by the e-mopeds of the region under study
i towards all the other markers to which the e-mopeds are directed [197]. The radius is calculated using
Equation (2.1):

Ri =
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(2.1)

where n is the total number of regions reached by e-mopeds starting from i, t identify a marker visited by
e-mopeds starting from i, φt (φi) is the latitude, ϕt (ϕi) is the longitude of the marker t (i, respectively) and g is
the radius of the earth in meters.

Average daily flow (aaa fff ). It is the total e-moped flow measured in a region divided by the number of considered
days, as shown in Equation (2.2):

AFi =

N

∑
n=1

(ιn,i +ωn,i)

N
(2.2)

where N is the total number of analyzed days, ιn,i is the total flow of day n entered marker i and ωn,i is the total
flow of day n leaving marker i.

As mentioned before, three independent variables were selected that carry information about the characteris-
tics of the region (distance from center, walkability and concentration of places), and one feature to characterize
the population (education index).

Distance from center (xxxddd). It is the distance in meters between the center of a marker and the point considered
the geographic center of the city (it accounts for decentralization). It is measured by applying the Haversine
formula [150], which determines the shortest distance between two points on the surface of a sphere (in this
case the earth).
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Education index (xxxggg). It is the indicator that measures the share of graduates, i.e., the ratio between the number
of graduates and the total number of residents, in each region of the city. It is used as a proxy for the average
socio-economic status of an area, as in [15, 27, 144] it was highlighted how higher education is related to higher
wages and greater economic and social well-being. Specifically, in [144], the authors point out that higher
education includes higher lifetime earnings, a more satisfying work environment, better health, longer life,
more informed shopping, and a lower likelihood of unemployment.

The choice of selecting this indicator was made due to the lack of detailed salary information (for the
case study presented in Section 2.4) for privacy reasons. The education index is calculated considering the
population group aged between 25 and 70. The choice of this demographic cohort should shield the analysis
from possible bias due to the tendency of off-site students to live near universities and colleges; nonetheless,
any information about young people domiciled but not residing in the city analyzed in this study was removed.

Walkability (xxxsss). It was proposed in [24] and is the index that measures the city’s street network orientation
distribution. In particular, streets’ orientation is the angle that the vector, joining its start to end coordinates,
makes with North. In other words, the streets’ orientation entropy measures the variability in their respective
azimuths. It is calculated as shown in Equation (2.3):

Hi =−
n

∑
k=1

P(ok) logP(ok) (2.3)

where n represents the total number of bins, k indexes the bins, and P(ok) represents the proportion of ori-
entations that fall in the kth bin. In more detail, Boeing [24] proposes a measure for disorder in city street
orientation (Hi), whereas, two follow-up studies [41, 42] have used the measure Hi to link it to walkability
and physical activity. Specifically, [42] operationalized the measure from [24] using the entropy to capture
city imageability/legibility, and [41] used the same entropy measure to show that street entropy is strongly
associated with physical activity. Based on these studies, a high value of Hi corresponds to a disordered region
in terms of the road graph, which encourages walking. On the other hand, a low value of Hi indicates that
the region has more orderly road networks, which are less conducive to walking and require more driving or
transportation.

Concentration of places (xxxppp). It measures the diversification of Points of Interest (POIs), Pi, through the
calculation of entropy with respect to the different classes of POIs present in the macro-categories of services and
buildings, such as entertainment, commercial, transport and healthcare. Concentration of places is calculated
following Equation (2.4):

Pi =
−∑u pu,i log(pu,i)

log(|Pi|)
(2.4)

where pu,i is the proportion of the POI category u in zone i and Pi is the set of POI categories in i. The
numerator in this expression is the Shannon entropy [118] associated with the different categories of POI in i,
normalized by the log of the number of categories of POIs present in i.

Regions that have an elevated diversification of POIs with equal propensity have high entropy, while areas
that tend to have numerous POIs of few categories are considered to have low entropy.
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2.2.2 Linear Regression Model

To predict the adoption of electric mopeds and measure the effect of the different covariates, inspired by the
approach presented in [184], a regression model was used as it is a reliable method to quantify the impact of
each variable on a topic of interest [51]. Therefore, given the feature vectors xd ∈ Rn and the target value yd ∈ R,
we aimed at predicting ŷd using an Ordinary Least Squares regression model of the form:

ŷd = wo +w1x1
d + ...+wnxn

d d = 1, ...,N (2.5)

where the coefficients w j are learned by the model, n is the number of predictors and N is the total number
of observations.

The results of the regression model were evaluated with the Adjusted R-squared, which is a modified
version of R-squared that is adjusted for the number of predictors in the model. It is used to determine how
reliable the correlation is and how much it is determined by adding independent variables. In terms of values, it
increases when a new term improves the model more than would be expected by chance, while it decreases
when a predictor improves the model less than expected [128].

Finally, a feature selection was applied to remove non-informative or redundant predictors from the
model [105]. In detail, the best combination of independent variables was identified in terms of Adjusted
R-squared.

2.2.3 Well-off Groups and Interaction Ratio

In order to divide the different markers into well-off bands, we used the education index as a proxy for a
socio-economic indicator. More in detail, we calculated the quartiles of the education index distribution and
split the markers into four different groups, viz., very deprecated (V D), deprecated (D), well-off (W ) and very
well-off (VW ). Let C = {V D,D,W,VW} be the set of the four classes, the interaction ratio IrCC′ between two
classes C,C′ can be calculated following Equation (2.6):

IrCC′ =
∑w∈C ∑d∈C′ xwd

∑P∈C ∑w∈C ∑d∈P xwd
∀(C,C′) ∈ C 2 (2.6)

where xwd is the number of interactions (trips) observed between marker w and marker d. Therefore, the
interaction ratio represents the percentage of observed interactions between markers belonging to two socio-
economic classes and approximates the probability of a trip beginning in the markers of one class and ending in
those of the other.

2.3 Related Prior Work

Over the past few years, the attention towards shared mobility services has grown steadily, generating worldwide
interest. This has led to considering shared mobility as one of the three revolutions of urban transport along
with electrification and automation of vehicles [65]. The meaning of the phrase shared mobility is twofold; on
the one hand, it refers to a service that provides vehicles to be shared between different users with a pay-per-use
billing model. Examples of those services are: car sharing, bike sharing, or scooter sharing (both mopeds and
kick-style). On the other hand, it may refer as well to scenarios in which a single ride is shared [170]. In this
study, we consider the first characterization, where the user is provided with as-a-service short-term access to a
mean of transport.
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Shared mobility has a strong impact on urban areas, as it is often considered a valid instrument to address
the problems of traffic congestion and air pollution. Among the benefits of shared-use vehicle systems, in [14]
the authors highlighted four main advantages with important consequences on the quality of life: i) provision
of mobility alternatives that are more flexible than public transport and cheaper than the private vehicle, ii)
potential to lower human transport costs and reduce the need for city parking areas, iii) improvement of air
quality since most solutions are based on electric or hybrid-electric vehicles and iv) access to and encouragement
of the use of more efficient and environmentally friendly modes of transport.

The early forms of alternative mobility came in the shape of bike-sharing services, followed by car-sharing
schemes. Later, moped sharing has established itself as an innovative mobility model in urban areas, with
some peculiarities that make it an attractive option, especially for short distances in the central areas of the city.
Finally, in recent years, electric scooters have also been introduced with great success. Existing literature on
shared mobility focuses mainly on car sharing or bike sharing. Regarding car sharing, previous studies have
widely analyzed the typical profile of users [170] or its impact on modality competition [44]. While, in the bike
sharing field, many authors have extensively explored the main factors for and barriers to the adoption of bike
sharing systems [43], as well as its effect on urban congestion [195]. Finally, in the last few years, research
focused on the benefits and use of electric scooters has also been growing [21, 10].

To the best of our knowledge, e-moped adoption is poorly understood, despite its significant growth in
recent years. There are only a handful of works dealing specifically with mopeds, also due to the limited
data available. In fact, [2] and [3] grounds their analyses solely on an online survey conducted in Spain, [46]
and [143] use actual mobility data; lastly, [206] uses a simulator to generate synthetic mobility data. More in
detail, in [46] a first approach was tested for the clustering of users of mopeds. The authors developed a cluster
analysis to study moped-sharing users and identify customer segmentation based on scooter-sharing usage data.
Users are profiled according to four variables: i) age, ii) time between rides, iii) distance driven, and iv) revenue
per customer. In [2] the authors focused on identifying the characteristics that most influence the use of electric
moped sharing. They adopted a generalized ordered logit model to explore the key factors determining the
use of shared e-mopeds. In [143] the authors used GIS and GPS data to identify optimal locations for moped
sharing parking spaces in central Madrid. A first overview of the moped sharing demand by exploring the usage
and views towards this new mobility alternative is provided in [3]. To this end, they conducted Kruskal-Wallis
tests to identify the segment of the urban population that is most likely to adopt moped sharing, and further
statistical mean differences were made in specific variables related to moped sharing. Finally, [206] investigates
the capacity of a shared platform of electric mopeds to replace the transport by passenger cars in Berlin by
developing a simulation-based analysis. Based on the data generated by a simulator, the authors also provide
holistic environmental and economic views through an analysis of the impact on the life cycle of the fleet.

In conclusion, the literature analysis suggests that this study is the first to analyze in detail socio-economic
and structural factors behind the utilization patterns of e-mopeds in a city. In addition, it also explored the
interplay between e-moped use and social isolation of the more and less affluent social classes within the city.

2.4 Case Study

A real word case study was considered for the experimental analysis: E-Moped Sharing Dataset contains
records of vehicle pick-ups and drop-offs over one week (December 2-8, 2019) for the city of Milan, Italy. The
coordinates of each vehicle, the sampling time, and the reference marker, i.e., the one the vehicle falls within,
are provided. Sampling has been performed at regular intervals of 15 minutes. By analyzing the dataset, it is
possible to trace the trips made by the vehicles and construct the transition matrix containing the probabilities
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of displacement. In this case, the central section of Milan has been divided into 223 regular markers with sides
of 400 meters, as shown in Figure 2.1. The marker size, set in the original dataset, is comparable with those
used in other studies [2, 60, 206]; it can reasonably be considered adequate as corresponds to a distance easily
walkable to reach a vehicle. The dataset was provided to us by FLUCTUO, a European leading aggregator of
data on shared mobility services, for research purposes.

Figure 2.1 Area of analysis

2.4.1 Dependent and Independent Variables

Travel radius. Figure 2.2 shows the travel radius distribution. As can be seen, the travel radius is directly
proportional to the distance from the city center; indeed, there is a positive correlation (0.57) between rg and xd .
This means that people from areas further from the city center tend to travel on average longer than those who
start trips from the center. This is easily explained considering that in the historical center of the city of Milan
are concentrated the main economic, social, and shopping districts.

Figure 2.2 Travel Radius

Average daily flow. This target variable was calculated by applying the Haversine formula [150]; however,
it was decided to set a lower bound on the number of trips to be considered. In particular, the connections
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between regions that registered only one transfer for the whole week were not taken into consideration. In this
way, unusual movements were eliminated.

Distance from center. The city of Milan (Ita) has a street network conformed of concentric circles deriving
from its medieval legacy. Moreover, as for many European cities, the cathedral (Duomo), with coordinates
(45.464211, 9.191383), can still be identified as the geographical (as well as, cultural and economic) center of
the city. Admittedly, the study of this metric requires the prior identification of a point to be considered the
city center, intended as an attraction and aggregation pole such as to have a substantial impact on mobility, and
this is not always straightforward as in the case of the city of Milan. In these cases, knowledge of the city and
careful data analysis are required. In addition, a modern city might be polycentric with distinct economic and
social centers. In these cases, alternative approaches must be considered; for instance, the distance from the
closest center could be used.
Education index. The data used to construct the education index were obtained from the ISTAT (The Italian
National Institute of Statistics) portal [89] relating to the 2011 census. As shown in Figure 2.3, the percentage
of graduates is higher in the more central areas of the city, while it tends to decrease moving radially towards
the suburbs. Furthermore, the strong negative correlation (-0.74) between xg and xd highlights an inverse
proportionality between the two variables. This result confirms the soundness of considering the percentage of
graduates as a proxy feature of the socio-economic status of an area.

Figure 2.3 Distribution of the proportion of graduates in the city

Walkability. Figure 2.4 shows the distribution of Walkability in Milan. The index values in the image tend to
be high, especially in the central part of the city and near the green areas. This result can be explained by the
highly pedestrian nature of the center of Milan where several areas are inaccessible to cars.
Concentration of places. The distribution of the variable is asymmetric, pointing towards values between 0.7
and 0.8 with mean 0.75 and standard deviation 0.14. Such a distribution strongly depends on the portion of the
city considered in this work, as being the central area of the city, the concentration of POI is quite homogeneous
with only a subtle difference between the different markers.
Correlation between independent variables. We computed the correlation coefficients between all the
independent variables, as shown in Table 2.1, and found that there is a strong negative correlation (−0.74)
between Distance from center and Education index. This could be a sign of collinearity among the predictors.
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Figure 2.4 Walkability index in Milan

To further asses this, we calculated the variance inflation factor among the independent variables, and
indeed confirmed that the Distance from center and Education index have higher VIF values Table 2.2. This
could be indicative of the fact that higher education may afford people to move to larger suburban houses. This
phenomenon needs to be accounted for in any further analysis in the form of an interaction variable between
education and distance from center.

Table 2.1 Correlation between the independent variables

Independent variables Correlation
Distance from center xd Education index xg Concentration of places xp Walkability xs

Distance from center xd 1 -0.74 0.23 -0.21
Education index xg -0.74 1 -0.15 0.20
Concentration of places xp 0.23 -0.15 1 -0.18
Walkability xs -0.21 0.20 -0.18 1

Table 2.2 Variance Inflation Factor

Variables VIF
Distance from center xd 2.25

Education index xg 2.19
Concentration of places xp 1.077

Walkability xs 1.072

2.5 Experimental Analysis

In this section, we initially present the analyses conducted on the dataset for its validation, and subsequently,
we discuss the results obtained from the experiments carried out to predict the two target variables: travel radius
and average daily flow.
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2.5.1 Dataset Validation

To perform the experiments, the 223 squares were aggregated in i) districts and ii) municipalities. Districts are
census areas, which consist of neighboring blocks (i.e., sections delimited by street segments) grouped based
on socio-economic conditions [132], while Municipalities are a different subdivision of the territory decided
starting from 1999.The subdivision implies that each Municipality, except for the central area, extends from the
semi-central area to the periphery and acquires partial administrative autonomy.

Therefore, as previously done in [159], each marker was assigned to a specific district. If an area overlapped
several districts, as can be seen in Figure 2.5a, it was assigned to the district with which it had the largest
overlap. We performed the same procedure for the assignment of squares to municipalities, since, as shown in
Figure 2.5b, a similar scenario occurs. In the end, 46 districts were analyzed, about half of the districts in the
entire city, and all nine municipalities.

One of the issues that can arise from the aggregation of spatial data is the Modifiable Areal Unit Problem
(MAUP), i.e., an effect of statistical bias appearing when samples in a given area are used to estimate aggregated
information. For this reason, we decided to perform two different aggregations (namely, at the municipality and
district level) and in the analyses we carried out, we compared the behavior of the variables analyzed in both
scenarios to check the consistency of the results obtained.

(a) District subdivision (b) Municipalities subdivision

Figure 2.5 (a) District subdivision; (b) Municipalities subdivision

Finally, it was tested whether E-Moped Sharing Dataset verified the hypothesis that the distance frequency
distribution is exponentially distributed; this derives by the assumption that people rarely move away from
familiar areas, traveling to a limited number of nearby locations, and therefore short-range movements are
more frequent than long-range ones. The data on e-mopeds in Milan validate the hypothesis: the Figure 2.6a
shows the probability (log) of traveling a certain distance, and as can be seen from the image, as the distance
increases, the probability of traveling decreases. Furthermore, it was investigated whether the considered
dataset remained consistent with the geographic closeness hypothesis when different temporal aggregations are
considered. More in detail, the original records were aggregated by daily time slots (morning, afternoon and
evening) and by days of the week (Weekdays and Weekends). As shown in Figure 2.6b and Figure 2.6c, the
pattern is also evident at these levels. It can also be seen that trips made at weekends and in the evening have a
higher probability of making long distances. This evidence confirms what has been shown in [3], which points
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(a) Log probability of one’s travelling a certain distance
(b) Log probability of one’s travelling a certain distance
across different time slots

(c) Log probability of one’s travelling a certain distance across weekdays and weekend

Figure 2.6 Log probability of one’s travelling

out that electric mopeds are widely used for leisure activities, as opposed to free car sharing where the main use
is for commuting and airport transfers [16].

It should be noted that in all three graphs, trips over 5 km have a very low probability. This behavior is
consistent with what has been observed in the literature: in [206], for instance, the authors observe that the
average distance traveled with an electric moped in Berlin is between 3.6 and 4.1 km.

2.5.2 Travel Radius Prediction

Table 2.3 shows the results of the two regressions constructed to predict the travel radius. Analyzing in detail
the regression related to the district aggregation, one can see that three out of the four variables (xd , interaction



2.5 Experimental Analysis 20

Table 2.3 Radius prediction

Radius

Districts Municipalities

Distance from center xd 1781.75*** -
(505.21)

Education index xg 580.18 −379.25**

(421.22) (73.96)

Interaction of xd and xg −1661.34** -
(730.81)

Walkability xs −399.83** −421.22*

(129.61) (132.93)

Concentration of places xp - -

Constant 2886.31*** 3880.88***

(496.36) (344.22)

Observations 42 9

R-squared 0.569 0.922

Adj. R-squared 0.522 0.896

* p < 0.05, ** p < 0.01, *** p < 0.001
Note: Robust standard errors in parentheses

of xd and xg, and xs) are significant for the prediction of the radius. The four covariates jointly explain the
variance of 56.9%, and we get a RAd j

2 of 0.522.
The significance of the variable xd indicates that, as the distance from the city center of an area increases,

the length of the travel radius also increases: the distances that users, who are in more peripheral areas, have to
travel to reach different places in the city are greater than those traveled in trips that start in the central area of
the city. Therefore, users in areas with vehicle availability but in a less central position use moped sharing to
travel longer distances than users in the city center. This result is in line with what has been observed in studies
on bike sharing, where transfer distances are generally longer in suburban areas where public transport services
are typically less available [113]. The significance of the variable xs explains how the use of mopeds is also
negatively influenced by the walkability: pedestrian areas have a reduction in the distance traveled. Therefore,
these are areas where the environment is suitable for walking and does not encourage the use of e-mopeds.

Regarding the results obtained from the aggregation in municipalities, the value of R2
Ad j cannot be trusted

due to the small sample size (9 observations). Nonetheless, in the following, the behavior of the covariates is
discussed and compared against that seen in the districts scenario in order to check the possible presence of
MAUP. It emerges how the variable xs is significant, and its behavior is the same as seen previously. Furthermore,
xg is also negatively related to the target variable: as the education index increases, the travel radius decreases.
This behavior is well explained by the fact that the richest zones are in areas of the city where shopping and
leisure districts are located. Incidentally, those zones are also better covered by public transportation and feature
a higher degree of walkability, making long-distance travels less frequent.
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2.5.3 Average Daily Flow Prediction

Table 2.4 shows the results obtained from the regression regarding the daily adoption of shared scooters.

Table 2.4 Average daily flow regression

Average daily flow

Districts Municipalities

Distance from center xd 12.06*** 2.32*

(2.62) (0.77)

Education index xg 16.97** -
(5.53)

Interaction of xd and xg −11.60*** -
(7.97)

Walkability xs - -

Concentration of places xp −1.42 −6.12*

(1.23) (2.04)

Constant −4.01 5.46
(2.16) (1.60)

Observations 34 9

R-squared 0.580 0.756

Adj. R-squared 0.522 0.675

* p < 0.05, ** p < 0.01, *** p < 0.001
Note: Robust standard errors in parentheses

Analyzing the result obtained with the aggregation in districts, the four covariates explain 58% of the target
variable, with a RAd j

2 of 0.522. The significant predictors are xd (p-value ≤ 0.001), xg (p-value < 0.01) and
the interaction between xd and xg (p-value ≤ 0.001). We set a lower bound, as explained in section 2.4, and
we had a reduction of 19% in the number of observations. Table 2.4 shows the significance of the variables
xd and xg. It can be seen with xd that moving away from the center leads to an increase in daily scooter use.
Similarly, an increase in the education index xg leads to an increase in scooter use. The latter behavior has also
been observed in bike sharing, where variables such as educated, working, high income are strongly correlated
to the user profile of bike sharing services [52]. Also in the case of car sharing, people with graduate degrees
are more likely to use this service; nonetheless, unlike what we see for e-mopeds, living in city center seems to
encourage the use of car sharing [16].

Even if the variable is not statistically significant, an increase in xp leads to a reduction in the daily flow:
since as the entropy grows, the diversification of the available POIs increases, this effect is synonymous with a
well-supplied area and from which it is not compulsory to move away daily.

Finally, also for this prediction, the regression carried out with the aggregated observations in municipalities
cannot be evaluated in terms of R2

Ad j for the small number of observations. Again, to check for MAUP, we
verify the consistency of results in the municipalities and districts scenarios.

Interestingly, after feature selection, the same two covariates, xd and xp, remain, and both are significant
(p-value ≤ 0.05). The first one turns out to be significant also in the district scenario, while the second one is



2.5 Experimental Analysis 22

not. Nonetheless, the parameters associated with xd and xp have the same signs in both scenarios, suggesting
that the presence of MAUP can be ruled out.

2.5.4 E-moped Sharing is not a Social Equalizer

Figure 2.7 The four different communities based on the well-off indicator shown on the city map

In recent years, several pieces of research have focused on social isolation in cities, where it has emerged
that social isolation is experienced by residents of highly disadvantaged and highly advantaged neighborhoods
because the two groups spend time in largely non-overlapping parts of the city [104]. Additionally, a surprisingly
high consistency was identified between neighborhoods of different races and income characteristics in average
walking distances (in meters) and the number of unique neighborhoods visited in the metropolitan region [152].

We are interested in analyzing the phenomenon of social isolation from the point of view of shared moped
users. Our goal, in fact, is to verify whether mopeds can be considered vehicles of social equalization. Therefore,
we initially identified four different communities, shown in Figure 2.7 for the city of Milan, based on the
well-off indicator: i) very deprecated (VD), ii) deprecated (D), iii) well-off (W) and iv) very well-off (VW);
then, we calculated the interaction ratio reported in Figure 2.8 (see subsection 2.2.3 for more details). As can
be seen from the image, the iteration ratio between areas of the same community is strong, but it is interesting
to analyze the behavior of users of the more affluent and poorer areas: there are few interactions between these
two communities. In detail, the interaction ratio of wealthy areas (Community VW) with less well-off areas
(Community VD) is 0.08%, while on the other direction is 0.17%. Observing the tendency of the two curves
from Figure 2.9, an evident trend emerges: the greater the distance in terms of well-being between communities,
the lesser the interaction.
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Figure 2.8 Interaction ratio between communities

In order to double-check the consistency of the analyses, we observed the behavior of two markers belonging
to the city center, an area where the education index is generally high; both belong to the VW class. For both
the ratio of interaction with markers of the same social level is very high (32% and 37%). The interaction ratio
decreases dramatically when we consider the movements between these areas and the poorer areas of the city.
In this case, the interaction ratio falls to 10% and 7% respectively. A similar behavior was observed when we
picked two markers with a low value of education index, one from the north of the city and one in the west.
Also in this case, the interaction ratio with markers of the same social level is high (31% and 27%, respectively).
While, the interaction ratio with markers for the most well-off areas, the ratio decreases to 14% for the first
marker and 16% for the second.

The results obtained are consistent with known dynamics of large cities, in which communities tend to be
homogeneous in terms of wealth, isolating themselves (even geographically) from one another. In this scenario,
even an agile mobility mean, such as the electric moped, does not seem to play an important role in reducing
social isolation.

2.6 Conclusion

The identification of the variables that allow to better explain and understand the adoption of ecological
alternative mobility solutions (like shared e-moped) seems to be a topic not yet explored. Besides the relative
novelty of these services, it is believed that the main cause of this void in the literature is due to the difficulty of
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Figure 2.9 Trend of community VD and community VW interactions

acquiring data to study. The handful of works on this topic in fact make use of surveys administered directly to
service users or simulation tools.

This chapter presents a study that analyses four different variables related to territorial and population
characteristics without using any direct information on users. The analysis allowed us to explore the sharing
behavior of e-moped in the central area of the Italian city of Milan, where users experience limited problems
in terms of service delivery. Compared to past studies that limited themselves to highlighting a greater use
of e-mopeds in the city center, our study suggests that, under the assumption that there is no shortage in the
supply of vehicles, the use of shared e-mopeds (average daily flow) and the distance traveled (travel radius) is
directly proportional to the distance from the city center. Furthermore, the impact of two of those variables
(namely, concentration of places and walkability) on the adoption of the sharing moped seems to suggest that
the diversification of the POIs and the organization of the roads play a central role in explaining mobility
patterns. Therefore, urban and traffic planners who deploy sharing services could use the outcomes of this
work as support for the distribution and allocation of vehicles in cities, especially when available mobility data
for the service is limited or missing. Finally, we analyzed the possibility that the e-moped sharing service
could play a role in social equalization, studying the interaction ratio between neighborhoods according to their
socio-economic status; unfortunately, the results of the analyses conducted indicate that communities within a
city tend to aggregate by wealth and isolate themselves from one another. Very few interactions, in terms of
trajectories, have been observed between the richest and poorest areas of the city.

Limitations and Future Work. The biggest limitation of this study concerns the limited dimensionality
of the dataset both in terms of time horizon (only one week of data) and in terms of space (Milan’s suburbs
are excluded). Nevertheless, the results obtained are statistically significant and consistent with well-known
dynamics in large cities. Future developments will involve studying the impact of the considered variables on
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other use cases (different sharing services and cities) to uncover similarities and differences with respect to
their predictive power on the particular sharing service adoption.



3
Area Clustering

Characterizing urban communities is essential for understanding citizens’ needs and neighborhood-
wise dynamics. Discriminating factors are population mobility patterns, neighborhood structural
characteristics, and distance to other areas of the city. Available approaches focus on one aspect and,
often, suffer from isolated nodes and excessive geographical fragmentation of solutions. For these
reasons, we formulate the problem of urban community clustering considering all three aspects and
provide an algorithm that combines hierarchical aggregation with node adjustment and relocation.
We evaluate our approach on a real-world data set and the obtained results show its efficacy. Finally,
we also show the importance of using map embedding for characterizing neighborhood from the
structural standpoint. Research reported in this chapter has been published in [60].

3.1 Introduction

The continuous evolution of urban mobility, which involves citizens’ commuting behavior, and the frenetic
structural transformations that occur within the city are making the municipality’s zoning obsolete. Indeed,
there is less and less evidence of homogeneity within these (often artificial) urban communities; in this context,
the phrase urban community refers to a contiguous geographic region with dense crowd aggregation and
homogeneous characteristics [112].

The problem of identifying the structure of the city communities is becoming increasingly important,
especially from the point of view of policymakers, who would have a tool for knowing which areas show
similar characteristics. This problem features strong topological, temporal and context components. In fact,
distances and the city street layout (topological component), and the morphological characteristics of each
neighborhood (context component or semantic information) have a profound impact on mobility over time
with evident seasonal patterns (temporal component). In this study, the geographical space of interest (city) is
logically partitioned into a regular grid of dimension N×M oriented by longitude and latitude. Each element
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of the grid (region) is addressable through a pair of (n,m) coordinates corresponding to the nth row and the mth

column of the grid.
According to [120], there are currently two challenges in the field of urban community structure identification:

• Mixed Objective: Identifying urban community structure with mixed objectives is a difficult NP-
problem [221], and even designing scalable and accurate heuristics is an arduous task, especially on
complex graphs.

• Structural Complexity: Potential communities are difficult to identify due to the inherent complexity of
mobility and city structure. Frequently, isolated nodes and geographical fragmentation bedevil available
solutions. This phenomenon is a consequence of the difficulty to identify a pattern in the sharing mobility
data.

To address the first challenge, we propose a framework that considers three different aspects for the
identification of urban community structures. We also addressed the structural complexity issue, using
a combination of hierarchical aggregation and node-level adjustment to effectively capture the clustering
structure.

The rest of this Chapter is organized as follows. In Section 3.2 we define the urban community structure
problem and the proposed framework is described in detail. In Section 3.3, the literature on techniques used in
location embedding and community identification is analyzed. In Section 3.4 data and results of experiments
are presented and analyzed. Finally, the conclusions and recommendations for future work are discussed in
Section 3.5.

3.2 Problem Statement and Proposed Framework

Given a partition of the area of interest (henceforth referred to as city) into regions of regular shape, the
problem dealt in this work encompasses the identifications and clustering of similar areas in homogeneous
neighborhoods, that is sharing similar characteristics in terms of structure (streets, buildings, parks, etc.) and
human behavior (e.g. similar mobility patterns).

More formally, the problem can be seen as a clustering problem on a graph. In detail, a graph G(V,E,Av,Ae)

with geographical zones, or markers, as nodes V , the edges E represent a route between two zones recorded by
at least one mobility service, the distance among nodes and the transition probability associated with mobility
information are attributes of the edges Ae and structural information of the regions as node attributes Av.

Clearly, the ability of a graph to represent the static and structural characteristics of the city areas (with
a major impact on the effectiveness of any clustering algorithm) depends heavily on what information is
actually used and how it is represented as node attributes. This is an open problem that has been addressed in
various ways in the literature. In the next section we describe an approach, based on Neural Networks, that can
synthesize such physical features into vectors of real numbers.

In this section, we first show how discrete metadata describing the structural information of each area
(e.g., number of streets) can be compressed and encoded as real-valued vectors; then, we present a clustering
algorithm for identifying urban communities exploiting such a representation.

3.2.1 Encoding Structural Information

To identify urban communities, we consider structural information about each region. However, this information
can be exploited following two different representations:
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(a) (b)

(c) (d)

Figure 3.1 Map tiles

• Metadata. The clustering algorithm can use directly a heterogeneous vector of features where each
element quantifies a specific characteristic such as the number of streets, the presence of parks and
buildings.

• Map Embedding. Starting from an image of the map, referred to as map tile, the information is extracted
and encoded as a vector of real numbers from a hidden layer of a neural network.

In this case, we have used the second methodology, which is similar to that proposed in [200]. The decision
to use this methodology stems from the results of an analysis we carried out, in which it has emerged that the
use of map embeddings is more effective in characterizing urban areas, as opposed to pure metadata. The idea
behind this technique is to use two different types of data: i) map tile, the image, that describes the map in
its geospatial information such as shapes and colors, and ii) metadata that quantify it, such as the number of
streets, parks, buildings, etc. Although these two data are different in nature, they manage to describe the same
area from different points of view and present a strong correlation. Therefore, the images are used as input
and metadata as labels of a convolutional multi-label neural network based on ResNet50 [75], chosen for its
proven efficiency in image processing tasks. The complete architecture of ResNet50 is used, excluding the last
two layers, which are substituted by problem-specific layers.The first layer added is a fully-connected layer of
size 512×E with activation function SeLu, where E is the size of the vector space. The model is completed
by another fully-connected layer of dimension E×C, where C is the number of target classes. The activation
function is the Sigmoid, which is used to detect whether or not each of the labels of C exists for a given map
tile. The vector (embedding) used as a node attribute is eventually extracted from the penultimate layer of the
Neural Network, and the operation described is called Map Embedding.

Figure 3.1 shows two map tiles pairs. (a,b) has a cosine similarity of 0.98 (calculated using map embed-
dings) and 0.55 considering the metadata. This pair clearly shows a similar structure of the two regions; as a
matter of fact, similarities are found in the presence of small parks, a similar distribution of transport stations,
and the presence of a main street in both areas. Therefore, it appears evident that the comparison using map
embedding is more effective than using vectors of metadata.
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The pair (c,d) instead highlights two very different regions: the image on the left represents a section of the
railway station of “Milano Porta Garibaldi” and it is characterized by a high presence of railway lines, while
the image to which it is compared is an urban district. In this case, the similarity value calculated with map
embeddings is 0.27, as opposed to 0.70 obtained using metadata.

3.2.2 Algorithm

The method we propose to identify the structure of the urban community exploits the combination of two
complementary ideas: an initial hierarchical aggregation, considering each node as a community in its own
right, and a subsequent adjustment and relocation of the nodes. This is a multi-objective greedy optimization
algorithm designed to partition the graph G such that:

C⋆← argmax
C

(δQ+β Id + γEd) (3.1)

where C is the set of all possible clusters of urban areas, Q, Id and Ed are the Modularity (Equation (3.2)), the
Inverse Distance (Equation (3.4)) and the Embedding base Distance (Equation (3.6)) respectively, and δ , β

and γ are non-negative real numbers. Note that the dependence of the objective function on C is not explicitly
stated, so as not to lighten the notation.

Modularity. The problem can be seen as a clustering problem on a graph. This different point of view allows us
to use modularity to measure the degree of connection among nodes. We compute the metric both intra-cluster,
where the value is the resultant of all possible pairs of markers (vi,v j) with i and j belonging to the same cluster,
and inter-cluster, whose value is the resultant of all possible pairs of markers (vi,v j) with i and j indicating two
different clusters as follows:

Q =
1

2|E| ∑
vi,v jεV

(
w(evi,v j)−

d(vi)d(v j)

2|E|
)

(3.2)

∆Q =
1

2|E|
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∑
i, j

(
w(evi,v j)−

d(vi)d(v j)

2|E|
)

(3.3)

where w(evi,v j) is the weight of the edge evi,v j , d(vi) is the degree of vertex vi and |E| is the number of the
edges.

Inverse Distance. This metric accounts for the geographical distance among nodes in the same cluster
intra-cluster and among cluster inter-cluster:

Id =
2

|V |2−|V | ∑
vi,v jεV

( 1
1+distance(vi,v j)

)
(3.4)

∆Id =
1

|E||X ||Y |

cvi=CX ,cv j=CY

∑
i, j

( 1
1+distance(vi,v j)

)
(3.5)

where 2
|V |2−|V | is the inverse of the cardinality of the possible combinations of pairs within a cluster, while

|X ||Y | is the value resulting from combining the elements of two different communities.



3.2 Problem Statement and Proposed Framework 30

Embedding base distance. The structural information component is represented by the vector space defined
by the map embedding. To compare the vectors, we use the weighted cosine similarity. Below, a mathematical
formulation for calculating both intra-cluster and inter-cluster similarities:

Ed =
2

|V |2−|V | ∑
v⃗i ,⃗v jεV

cosine(⃗vi, v⃗ j) (3.6)

∆Ed =
1

|E||X ||Y |

c⃗vi=CX ,c⃗v j=CY

∑
i, j

cosine(⃗vi, v⃗ j) (3.7)

where v⃗i, v⃗ j are the embeddings of nodes i and j.
In order to obtain the final clustering solution, 4 different steps are performed in sequence:

1. Hierarchical aggregation. In the first step, a hierarchical aggregation of markers is performed to capture
the clustering structure of the graph and reduce the number of communities. The gain of each commu-
nity aggregation, which is evaluated according to the gain δ∆Q+βδ Id + γ∆Ed (Equation (3.3), (3.5)
and (3.7)), is calculated at every iteration.

Once the values of all possible combinations have been calculated, the two communities with the highest
gain are identified. If the gain is positive, the two corresponding communities are merged. The process
of calculating the gain and merging the communities is repeated as long as the gain is greater than 0.

2. Marker relocation. The second component of the algorithm is responsible for verifying that each
community is composed of at least a number of elements equal to a certain threshold. Therefore, if the
number of elements assigned to the cluster is lower than the threshold, the markers belonging to it are
reassigned to the other existing communities.

For each cluster element to be reassigned, a new target cluster is identified among the adjacent ones; the
choice falls on the one with highest gain δ∆Q+βδ Id + γ∆Ed (calculated using the node to relocate as a
single-node cluster).

3. Reduction of the number of clusters. The third part of the algorithm reduces the number of clusters
obtained from the previous steps until the target number of communities is reached. The operations
performed are the same as in the hierarchical aggregation step; however, the process halts when the target
number of clusters is reached. Notice that in this context, the community recombination always leads to
a negative gain; in this case, the cluster merging with the lowest loss is performed.

4. Handling isolated markers. The final section of the algorithm deals with the identification of markers
that are isolated, i.e. nodes that do not have any neighbors belonging to the same cluster. Once the
isolated markers have been identified, two different situations can be profiled: i) the marker is surrounded
by a single community and is aggregated to that cluster, ii) the gain with each of the neighboring clusters
is calculated, and the marker is assigned to the community with the highest gain value.

Figure 3.2 shows the four steps that are presented above, where the white circles inserted in Figures 3.2a
and 3.2b have been inserted to highlight the change in the communities of these markers with the application of
the marker relocation step. In Algorithm 1, the pseudocode of the proposed algorithm is shown in more detail.
Moreover, its implementation is available on GitHub [57].
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Algorithm 1: Urban Communities Cluster Algorithm
Input: Graph G
Output: C∗

// Hierarchical Aggregation
1 Initialize each node as an independent community
2 repeat
3 for each pair (Cx,Cy) do
4 ∆Q,∆Id ,∆Ed ← gains(Cx,Cy) // Eq. (3.3), (3.5), (3.7)

5 xmax,ymax← argmax(δ∆Q+βδ Id + γ∆Ed)
6 merge communities Cxmax ,Cymax

7 until max (∆Q+∆Id +∆Ed) ≤ 0
// Marker relocation

8 for each Cy ≤ Threshold do
9 for each pair (Cx,cvi) where cvi ∈Cy do

10 if Cx ̸=Cy then
11 ∆Q,∆Id ,∆Ed ← gains(Cx,Cy)

12 imax,dmax← argmax(δ∆Q+βδ Id + γ∆Ed)
13 merge communities cvimax

,Cxmax

// Reduction of the number of clusters
14 repeat
15 if |C|> number of clusters then
16 for each pair (Cx,Cy) do
17 ∆Q,∆Id ,∆Ed ← gains(Cx,Cy)

18 imax,dmax← argmax(δ∆Q+βδ Id + γ∆Ed)
19 merge communities Cxmax ,Cymax

20 until |C|= number of clusters
// Relocation of isolated markers

21 for each cvi ∈Cy do
22 if cvi is isolated then
23 if cvi is surrounded only by Cx then
24 merge cvi ,Cx

25 else
26 for each Cx ∈ Ncvi

do
27 ∆Q,∆Id ,∆Ed ← gains(Cx,cvi )

28 imax,dmax← argmax(δ∆Q+βδ Id + γ∆Ed)
29 merge communities cvimax

,Cxmax

3.3 Related Work

3.3.1 Location Embedding

The analysis of environmental information mainly in an urban context is rich in structural, geographical and
commercial information can be extracted from a satellite image, defined as map tile, the representation of
which, however, is generally very computationally intensive. Therefore, the efficient use of this extracted
information, through learning the representation for location embedding (with size reduction) is currently a
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(a) Hierarchical aggregation (b) Marker relocation step

(c) Cluster reduction step (d) Isolated point step

Figure 3.2 Example of the application of the four steps for the creation of a cluster in the city of Milan

much studied topic. In [213] a new method is proposed to transform GPS coordinates, which are fine-grained
position indicators, into semantic feature vectors through a new structure based on a two-level grid to learn
semantic embeddings for geo-coordinates from around the world. In [151], a Siamese type embedding model
was trained using map images and Google Street View images. While, [107] used convolutional autoencoder
and Principal Component Analysis (PCA) to generate location embedding from Street View images, but these
do not contain semantic information. Some state-of-the-art works such as [92, 171] assume that neighboring
locations have similar semantic representations, an assumption that may be incorrect since in a dense urban area,
geospatial information may vary significantly between them, despite two locations being very close to each
other. On the contrary, [202] defines similarity by incorporating POI metadata to the map images. Finally, [200]
proposes an approach that uses geographic maps and structural metadata collected by Open Steet Map. Map
tiles describe the map in its geospatial information such as shapes, colors and size of structures, while metadata
describes it by numerical values, such as the number of streets, parks and buildings. These two different pieces
of information are used to construct a supervised multi-label classification problem.
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3.3.2 Communities Identification

The aim in identifying the structure of urban communities is to study the internal characteristics and mechanisms
of urban communities [196]. Over the years, two categories of research have received particular attention:
functional regions [209], which is a territorial unit resulting from the organization of social and economic
relations, and population flow [145]. In recent years, Point of Interest (POI) have been widely used in the
literature as they are easy to access and carry regionally relevant functional information. For this reason,
researchers in [221] have classified the functions of urban areas using POIs exclusively. In particular, some
studies such as [160] analyze different typical patterns of human behavior in cities to find out whether they can
help identify the semantics of geographical locations. In line with this branch of research, the relationships
between human mobility and geographical areas are explicitly explored in [86]. The studies analyzed so far in
this subsection have verified the feasibility of analyzing the interaction between geographical areas through
population flow.

Hierarchical clustering is one of the main methods to identify urban community structure in machine
learning, as it allows studying the information of the graph structure [91]. Hierarchical clustering has two
advantages over K-means: i) it does not need to predetermine the number of clusters as it is not known in
advance how many communities can be identified in the analyzed area and ii) it has the characteristics of fast
speed. In [23], a hierarchical cluster is applied: the community after each iteration is considered as a new node,
generating a new higher order graph structure to continue the iteration until the end. In [168] they propose
a combo algorithm that combines three different types of node-level adjustment and allows to remedy the
defect of incorporating a local optimum. Finally, in [120], they formulate the problem of identifying the urban
community structure as an optimization of the modularity of the graph with constraints on the distribution of
public services, developing an algorithm using hierarchical clustering combined with node-level adjustment
strategies.

Our method is inspired by hierarchical aggregation, but different node-level adjustment techniques are
developed, and we introduce an innovative use of map embedding.

3.4 Experimental Analysis

The experimental evaluation has been conducted on a real-world case study. To conduct the experiment, two
datasets of the city of Milan are used:

• Motorbike sharing dataset. The dataset contains records of vehicle pick-ups and drop-offs from
different companies over one week (December 2-8, 2019). The coordinates of each sampled vehicle,
the sampling time and the reference marker, i.e. the one closest to the vehicle coordinates, are provided.
Sampling has been performed at regular intervals of 15 minutes and the dataset consists of 224 reference
markers. By analyzing the dataset, it is possible to trace the trips made by the vehicles and build up a
transition matrix that contains travel probability on both weekdays and weekends.

• Milano Map dataset. The dataset consists of 224 map tiles, images of size 230×325, and 22 metadata
describing some structural information (number of buildings, presence of parks, etc.), for each image.
The dataset has been built using entirely the data collected by Open Street Map1. The city of Milan has
been divided into 9 administrative municipalities in 1999. As shown in Figure 3.3b, the subdivision
implies that each municipality, except for the central area, extends from the semi-central zone to the

1https://www.openstreetmap.org/#map=13/45.4762/9.1910&layers=C

https://www.openstreetmap.org/#map=13/45.4762/9.1910&layers=C
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periphery. The decision to identify the different municipalities following this radio-centric structure
reflects the development model of the city that from the single-center projects outward the radials that
connect it with the territory.

The peculiarity of our algorithm lies in its ability to obtain dynamic and purpose-specific solutions. In
fact, it is possible to control the impact of the three factors (Modularity, Inverse Distance and Embedding base
distance) on the creation of the clusters or to choose whether to jointly include trips made during weekdays and
weekends or exclude one of the two.

Specifically, by setting the number of clusters to 9 (like the city’s municipalities) and assigning more weight
to the Inverse Distance (component Equation (3.5)), it is possible to obtain a representation of the city that
partly follows the subdivision decided by the municipality as shown in Figure 3.3. In fact, municipalities 4 to 8
are quite well identified by our clusters, while municipality 9, 2, and partially 3 are considered to be the same
cluster. The municipality 1 represents the center of Milan can be divided in two parts: the first one represented
by clusters 1, 4, 6, 7 and 8 that are connected to municipalities 4 to 8, while the cluster 3 covers municipalities
2, 3, and partially 9 (this pattern will be better explain later the discussion).

(a) Weighted Inverse Distance (b) Municipalities of Milan

Figure 3.3 Comparison between weighted Inverse Distance and Municipalities

On the contrary, when we give more weight to the Embedding base distance, and we analyze the result
obtained by considering the weekly and weekend transition matrix separately, it can be seen from Figure 3.4 that
the number of clusters identified by the algorithm drops to 8 in the first case and to 6 in the second case. This
phenomenon can be explained above all by the diversification of behavior between the two time periods taken
into consideration: during the week there is a greater diversification of movements, on the contrary at weekends
movements are directed towards the more lively areas of the city. Moreover, in Figure 3.4b, municipality 2
is clearly differentiated from municipality 9 and 3. This is explained due to the number of relevant area for
nightlife such as “Garibaldi-Isola” district and shopping area such as “Corso Buenos Aires” that is the largest
commercial street in Italy. Such areas are very crowed during the weekend more than weekday. Notice that the
observation of this analysis and the previous one, demonstrate that the city division created in 1999 reflects the
different area of the city of Milan according to different criteria that can be easily identified by our solution.

Finally, by assigning greater weight to Modularity and setting the number of clusters to 9, the communities
identified by our algorithm are more fragmented, as shown in Figure 3.5. This effect is the direct consequence
of possible differences in travel behavior that can be evidenced even within the same municipalities. By
considering the center of Milan, you can see that is can be divided in two halves. The first one represents cluster



3.5 Conclusion 35

(a) Weekday (b) Weekend

Figure 3.4 Resulted with weighted Embedding base distance

(a) Weighted Modularity (b) Municipalities of Milan

Figure 3.5 Comparison between weighted Modularity and Municipalities

2, 4 and 7 that are connected to the municipality 5, 6, 7 and 8; while cluster 0, 3, 6, and 8 intersect the other
municipalities.

3.5 Conclusion

Identifying the community structure of a city is a challenging task. In this study, we proposed a clustering
algorithm that uses information about mobility (transition matrix), structural information (map embedding)
and distance between areas (distance matrix) to identify homogeneous city regions. The developed algorithm
has obtained good results in the identification of urban communities, succeeding in obtaining homogeneous
areas and identifying consistent and coherent aggregations in the experiment conducted. In fact, the ability
of our algorithm to optimize the three different aspects simultaneously allows us to avoid the problems of
geographical fragmentation and isolated nodes. Furthermore, the addition of the map embedding component,
which integrates the visual and semantic components of the maps in the clustering, allows for a more effective
representation of the urban environment, compared to the use of structural metadata alone.
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Future Work. It would be interesting to share the results obtained with a domain expert, such as an urban
planner, so that he or she could evaluate the solutions obtained. In addition, it would be appropriate to apply
the algorithm to other cities and compare it with other clustering techniques such as K-means and Spectral
Clustering. For what concern the future development of the algorithm, we should improve the current cluster
reduction step by introducing the possibility to increase the number of communities up to the desired value.



4
Displacement Prediction

In recent years, studying and predicting mobility patterns in urban environments has become
increasingly important as accurate and timely information on current and future vehicle flows can
successfully increase the quality and availability of transportation services (e.g., sharing services).
However, predicting the number of incoming and outgoing vehicles for different city areas is
challenging due to the nonlinear spatial and temporal dependencies typical of urban mobility
patterns. In this chapter, we propose 3D-CLoST and STREED-Net, two Deep Learning models
that effectively captures and exploits complex spatial and temporal patterns in mobility data for
short-term flow prediction problem. The results of a thorough experimental analysis using real-life
data are reported, indicating that the two proposed model bring benefict to the state-of-the-art for
this task. Research reported in this chapter has been published in [59, 62].

4.1 Introduction

In recent years, academia and industry have devoted much time and energy to the study and creation of models
to describe and predict mobility dynamics, or flow prediction in urban areas. This interest is motivated by
the need to comprehend displacement dynamics, which are also rapidly changing due to alternative electric
and shared public transport systems, to define effective regulatory strategies for human mobility and freight
transport in the smart city [228]. This rush to create increasingly accurate predictive models is also motivated by
the pursuit of enhancing the quality of services provided to citizens by both private companies, such as shared
mobility companies, and public administrations. As an example, private companies offering shared vehicles
can benefit from accurate models to estimate demand in order to improve vehicle relocation operations [178].
On the other hand, the public decision maker can rely on real-time flow data and deep learning models to swiftly
identify risky traffic conditions [220].
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The problem addressed in this work concerns the short-term flow prediction. More precisely, given a
tessellation of the area of interest in squared regions, the number of vehicles entering (Inflow) and exiting
(Outflow) each region is to be predicted for the next time period. This problem has inherently spatio-temporal
characteristics; evidently, the vehicular flow entering (exiting) a region does not only present temporal de-
pendencies (time of day, flow in the previous hours) but also spatial dependencies as it strongly depends on
the traffic leaving (entering) adjacent areas. Formally, such considerations relate to two widely recognized
properties in the study of displacement dynamics [223], namely temporal and spatial correlations. Mobility
data are innately continuous time series, generally not associated with abrupt changes. This means that the
displacement dynamics in periods temporally close share similarities, and this phenomenon is all the more true
when the sampling frequency increases. Similarly, since the outflow of an area constitutes the inflow of its
neighbors (and vice versa), there is a manifest spatial correlation in traffic dynamics that is widely recognized
and exploited in the literature. The most recent research has also shown that some spatial and temporal patterns
influence forecasting more than others. This is the case for some districts [122], conglomerate areas featuring
similar functional characteristics (e.g., residential, commercial and industrial areas), that show correlated traffic
patterns and explain much of the city’s traffic. Finally, external factors also have a profound impact on the
use of vehicles. For instance, it is well known in the literature that weather conditions and the days of the
week (workdays vs. weekend) affect displacement dynamics, especially for lightweight transport means like
bikes [223].

The rest of this chapter is organized as follows. Section 4.2 defines the flow prediction problem in urban
areas. The first proposed Deep Learning model is described in Section 4.3, while the second architecture is
presented in Section 4.4. In Section 4.5, the literature on techniques used for flow and traffic prediction is
reviewed. In Section 4.6 data and results of experiments are presented and analyzed, and in Section 4.7 a
specific case study is introduced. Finally, conclusions and recommendations for future work are discussed in
Section 4.8.

4.2 Problem Statement

Given a tessellation of the area of interest (henceforth referred to as city) in regularly-shaped regions, a set
of historical observations regarding trajectories of vehicles within the city and, possibly, other spatial and
non-spatial data sources for a reference time horizon TH of H time points, the citywide vehicle flow prediction
problem [34] is defined as the problem of minimizing the prediction error for vehicle Inflow and Outflow at
time t ′ that is the first time point after TH .

In the literature, there are several definitions of location/region with different granularity and different
semantic meaning [98]. However, when it comes to traffic forecasts, the majority of works use a rectangular
tessellation, which maximizes the number of neighboring areas. Similarly, in this study, the geographical
space of interest (city) is logically partitioned into a regular grid of size N×M oriented by longitude and
latitude [223]. Each element of the grid is termed region and is addressable through a pair of coordinates (n,m)

corresponding to the nth row and the mth column of the grid.
The term Inflow (Outflow, respectively) refers to the number of vehicles entering (leaving) a specific region

in the considered time unit (Figure 4.1) [34]. More specifically, the Inflow (Outflow) indicates the number of
pedestrians, cars, public transport, and sharing vehicles entering (leaving) the region in a certain time period.
As shown in Figure 4.1, by analyzing the movement data of the vehicles, it is possible to obtain the Inflow
and Outflow matrices, which encompass the information about displacements between the areas of the city at
each time t. More in detail, let τi = {s1

i ,s
2
i , . . .s

t
i} be a trajectory where st

i represents the position of vehicle i at
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time t, and let T be a collection of trajectories. The Inflow (Outflow, respectively) of a region (n,m) at time t,
namely ι t

n,m (ω t
n,m) can be formally defined as in Equations (4.1) and (4.2), respectively).

ι
t
n,m = ∑

τi∈T
φι(τi, t,n,m) (4.1)

ω
t
n,m = ∑

τi∈T
φω(τi, t,n,m) (4.2)

where

φι(τi, t,n,m) =

1, if st−1
i /∈ (n,m)∧ st

i ∈ (n,m)

0, otherwise.

and

φω(τi, t,n,m) =

1, if st−1
i ∈ (n,m)∧ st

i /∈ (n,m)

0, otherwise.

Figure 4.1 Measurement of flows. (a) Inflow and Outflow; (b) Measurement of flows.

Finally, the state of the vehicular flow at time t can be represented by a tensor (also referred to as frame
in what follows) Ft ∈ RN×M×C, where C indicates the number of flow variables considered in the analysis,
in this specific case C = 2 (Inflow/Outflow), whereas N×M is the total number of regions in the city. Then,
to take into account the temporal dependence, over the time horizon T (divided into H time points), the flow
representation is extended to a tensor of four dimensions F ∈ RH×N×M×C, which represents the main input
to our problem. The problem at issue then becomes predicting Ft given a volume, that is a sequence of past
tensors V ⊂ F . It is worth noting that the resulting problem shows several similarities with the frame prediction
problem [59] since the tensor F can be seen as a four-dimensional volume composed of H consecutive images,
each of which featuring C channels.

4.3 3D-CLoST

The first proposed vehicle flow prediction framework is 3D-CLoST (3D Convolution LSTM on Spatio -
Temporal). It exploits the synergy between 3D convolution and long short-term memory (LSTM) networks
to jointly learn the characteristics of the space-time correlation in urban mobility. The main innovations and
contributions of 3D-CLoST are as follows:

• To the best of our knowledge, 3D-CLoST is the first attempt to combine 3D convolutional and LSTM
nets to predict mobility dynamics in urban environments.
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• The use of autocorrelation analyses is proposed for cherry-picking a reduced set of historical data with
multi-temporal correlation. It allows us to build a framework that does not require the use of multiple
branches to model the different time dependencies.

• The use of a mask is proposed to coerce the model to properly account for areas that are forbidden to
vehicles (for instance river areas).

4.3.1 3D-CLoST Architecture

In this subsection, the proposed vehicle flow prediction framework (3D-CLoST) is presented and discussed.
Figure 4.2 displays the two main blocks of 3D-CLoST architecture, that are:

• Core component: A Deep-learning model featuring a composition of different types of neural networks.
In a nutshell, a 3D CNN is used to learn spatial and temporal patterns, followed by a LSTM to strengthen
the temporal aspect. A fully connected network, which may considers also external inputs, completes the
model (see Figure 4.3.1 for more details).

• Extension: A set of corollary techniques (discussed in Equation 4.3.1) developed to streamline the
construction of small-sized input volumes (a sample of D along the time axis containing only the most
significant data points) and to enforce the framework to handle prohibited regions.

Figure 4.2 The architecture of 3D-CLoST. (a) Heuristic for the creation of the volumes. (b) Spatial and temporal
dependencies are captured by the convolutional stage, which subsequently pass into the (c) LSTM section. (e)
Transform external information and insert it into the model. (d) The mask applied to the output of the neural
network

Core Component

As mentioned, the core of 3D-CLoST, available under an open source license on GitHub [58], consists of a
convolutional network, followed by an LSTM, and concluded by a fully connected network that may consider
external factors to generate inflow and outflow forecasts. The number of convolutional and LSTM layers is
dictated by factors such as the city size and vehicle type.
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Our framework implements a 3D convolutional layer, which captures temporal dependencies better than
a 2D one [183] that, if applied on V , would compress the temporal axis immediately after each convolution
operation, causing a critical information loss.

More in detail, the 3D CNN consists of multiple stages intended to extract information from the tensor with
increasing levels of abstraction. Each of them is made of three cascading layers: convolutional layer, activation
layer, and pooling function. The three stages are described below.

Convolution layer: this stage performs a 3D convolution (on both flow variables) between the input tensor
and a kernel:

S(n,m, t) = (V ∗K)(n,m, t) (4.3)

where V is the input tensor carrying past flow information, K represents the kernel, while the output S is
referred to as the feature map or kernel map.

Activation layer: this second stage uses a nonlinear activation function to learn complex dependencies. In
accordance with the best practices of literature [199], ReLU has been selected as activation function, which
considerably accelerates the convergence of the stochastic gradient descent.

Pooling layer: it reduces the spatial size of the feature map extracting dominant features by means of a
summarization process performed on the feature map by region. It has the advantage to reduce the computational
complexity of the network and to make the network more robust to small variations in the input [29].

In cascade to the convolutional levels a dense, fully connected layer of 128 units with ReLU activation
function has been placed, its purpose is to convert and resize the feature map (in input) into a vector of
information that can be passed to the next stage, the LSTM one.

The long short-term memory (LSTM) [78] is another first class deep learning architecture used to identify
patterns in sequences of data points, it has been introduced in the framework to improve the ability of capturing
temporal dependencies. More in details, it is a recurrent neural network with a sequence of interconnected units,
referred to as cells. Each cell acts as a memory that keeps track of the dependencies between the points of the
input. Within each cell, three main structures, called gates, can be found: an input gate, a forget gate, and an
output gate. Those three gates, which have independent weights and biases, are meant to drive the network to
learn:

• How much of the current input to use to update the cell state (input gate)

• How much of the cell state to be forgotten (forget gate)

• How much of the cell state to use to generate the output activation (output gate)

Stacked LSTM architecture has been implemented in 3D-CLoST. It can be defined as an LSTM model
comprised of multiple LSTM layers. The use of multiple layers improves the effectiveness of the network
in recognizing complex patterns, potentially allowing the hidden state of each layer to operate on a different
timescale. Technically, a stacked LSTM is implemented by linking various LSTM layers, each containing
several cells. Such a network outputs a tensor (with three dimensions, where the first dimension corresponds to
the batch size) rather than a single matrix.

Further, 3D-CLoST encompasses a stage dedicated to external factors; those can deeply affect the vehicular
flow. Examples of such factors are weather conditions (rainfall and temperature), traffic events, and the day
of the week (workdays, weekend). Through the use of two stacked fully connected layers, this information is
conveyed, encoded, into the main flow of the network. The first layer serves to embed each sub-factor whereas
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the second one is used to map low to high dimensions in order to match the size of the flattened LSTM output
vector, a similar approach has been used in [34]. Further downstream, in fact, the LSTM output vector (HRp)
and the external components (HExt ) join:

H f = HRp⊕HExt (4.4)

Finally, the joined output H f becomes the input of a fully connected layer using the Swish activation
function, defined:

F(x) = x×σ(x) (4.5)

where σ(·) is the sigmoid function.
We conclude this section with a brief analysis of the complexity of the model. To achieve the general

complexity, it is necessary to analyze the convolutional layers and the LSTM layers individually [185]. The
complexity of all the convolutional layers can be estimated as O(∑d

l=1 nl−1 ·s2
l ·nl ·m2

l ), where d is the number of
convolutional layers, nl is the number of filters in the lt j layer, nl−1 is the number of input channels of the lt j layer,
sl is the spatial dimension of the filter and ml is the spatial dimension of the map of the output characteristics.
Regarding the LSTM layers, the time complexity per weight is O(1), with an overall per time step equal to O(w).
Consequently, the 3D-CLoST complexity for all the training process is O((∑d

l=1(nl−1 · s2
l ·nl ·m2

l )+w) · i · e)
where i is the input length and e the number of epochs.

Extension

As introduced previously, the problem addressed in the study concerns the prediction of Ft using a volume
V ⊂ F . Creating a minimum size volume that includes only the frames prior to time t, that express most
reliably the time dependencies in the displacement dynamics, and guarantees both low prediction error and
reduced training times is undoubtedly an appealing topic. In this section, we identify the various types of time
dependencies and propose a heuristic for creating V from historical data.

Within the historical series, it is possible to identify two types of temporal dependencies, which can be
roughly classified as near and far. The vehicular flow dependence on nearby periods is responsible for the flow
trend, while a possible relationship with more remote periods describes recurrent phenomena. In urban areas,
the main seasonalities are daily and weekly; thus, distant time dependencies can be further specified in two sets
of frames referring to two periods called Recent and Distant, respectively. In what follows, those three periods
are precisely defined (see also Figure 4.3).

Figure 4.3 Overview of the frame selection

Nearby periods (also called closeness [34]) are selected by setting a maximum number of time slots hc

before the time to predict t, it results in a sequence [Ft−hc ,Ft−(hc−1), ....,Ft−1] of consecutive frames.
For the far periods, we have:
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Algorithm 2: Volume Construction Heuristic

Input :F ; // inflow-outflow information
1thr; // threshold

Output :V ; // volume
2 ρ ← autocorrelation(F)
3 recent_period← checkRecentPeriod(ρ)
4 distant_period← checkDistantPeriod(ρ)
5 (hc,d,hd ,s,hs)← identifyRelatedHours(ρ, thr)
6 for i in [1, hc] do
7 Vi← Ft−i

8 if (recent_period == True) then
9 for i in [0, hd] do

10 Vi ← Ft−d−i

11 if (distant_period == True) then
12 for hs in [0, hs] do
13 Vi← Ft−s−i

14 return V

• Recent period. Let d be the period span and hd the maximum number of time slots, the recent period is
made of frames [Ft−d−hd ,Ft−d−(hd−1), ....,Ft−d ].

• Distant period. Let s be the period span and hs maximum number of time slots, the distant period is
made of frames [Ft−s−hs ,Ft−s−(hs−1), ....,Ft−s].

The problem of identifying time dependencies is known in the literature, where it is often tackled via
automatic extraction that is the identification of frame relevance is left to the network, relying on the network
ability to learn the functionality directly from the raw data. This type of approach imposes the use of a more
complex model architecture [34] with different branches based on time dependence (hourly, daily and weekly)
and a large number of input frames. As a result, the algorithm turns out to be slower to converge and learn.

Instead of leaving every choice to the network, a feature engineering approach to select the most significant
frames is proposed. To thin aim, we have developed a heuristic (algorithm 2) based on the use of the
autocorrelation analysis. Autocorrelation is the correlation of a signal with a delayed copy of itself as a function
of the considered delay. It is a time-domain measure of a stochastic process memory. More in details, given
a pool of measurements e1, e2, e2, ..., en at time t1, t2, ..., tn the lag k autocorrelation function ρ(k), for a
non-stationary stochastic process, is defined as:

ρ(k) =
Cov(en,en+k)√

Var(en)Var(en+k)
(4.6)

The heuristic (presented in Algorithm 2) develops by setting a threshold (0.3 in the studies we have carried
out) above which the frames are considered carrying important information to predict flows at time t. The
size of the initial volume will depend on the chosen threshold value. Nonetheless, the volume structure can
still be improved, for this reason, we have explored alternative configurations around this initial solution (see
Appendix A.1 for more details). Nevertheless, the following reasons lead to an exploration of the neighborhoods
in the initial volume:

i. The awareness that there may be differences among the city regions
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ii. The autocorrelation is a linear analysis; thus, it might neglect possibly important non-linear correlations

This approach has allowed us to build a single tensor to model the different temporal relationships (near
and far), significantly reducing the number of parameters to be learned.

After discussing time constraints, we consider another important aspect of the flow prediction problem,
which concerns traffic forbidden regions i.e. those regions that due to the conformation of the territory (lakes,
rivers, mountains, etc.) and urban planning, cannot be associated with certain type of vehicle. For example,
considering New York City, the data shows that bikes can never be found in 62.5% of the town areas, so the
number of bicycles in those areas will always be zero. The main effect of this phenomenon concerns the
problem of the class imbalance [90]. In fact, when the number of regions, in which there are never bikes, is
high, there is a greater difficulty for the neural network in better predicting those areas that have a number of
bicycles that varies between [0, N] [30]. However, there is no indication in the literature on how to manage
such regions; thus, a simple but effective solution has been implemented to avoid that the regions without
vehicles affect the results of the model. It has been decided to insert a mask of values {0; 1} calculated over the
historical data. The mask is a tool to break the continuity of each frame, forcing the convolutional kernels to
drop specific frame cells. The output of the core component is multiplied to as follows:

ôt
n,m =

{
ŷt

n,m ·0 region where there can never be vehicles
ŷt

n,m ·1 otherwise

where ôt
n,m is the vehicular flow predicted for region (n,m) at time t, ŷt

n,m is the output of the fully connected
network. The mask is created in two steps:

1. Computation of the magnitude (number of vehicles) for each region of the city for each period t.

2. Sum of all magnitudes over the whole reference time horizon.

If the sum of a region is equal to zero, then the value of the mask is set to zero. Notice that, the mask is an
integral part of the neural network and performs its function during training. The mask, in its simplicity, has
proved effective, reducing the Root Mean Square Error (RMSE) of approximately 1.28% in the experiments
carried out.

(a) (b) (c)

Figure 4.4 (a) Bike week; (b) Bike weekly seasonality; (c) Taxi daily seasonality

4.4 STREED-Net

The second proposed vehicle flow prediction framework is STREED-Net (Spatio Temporal REsidual Encoder-
Decoder Network). The main contributions of this model are the following:
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• To the best of our knowledge, STREED-Net is the first autoencoder architecture that combines the use
of time-distributed convolutional blocks with residual connections, a CMUs and two different attention
mechanisms.

• STREED-Net, unlike other state-of-the-art models [34, 193, 223], focuses only on recent time depen-
dencies (closeness), by taking into account a few previous time periods. This simplifies the prediction
process by requiring less information to be considered.

Figure 4.5 shows the architecture of the STREED-Net: it is an Autoencoder Deep Learning model that
combines time-distributed convolutions and CMU with two different types of Attentions (spatial and temporal).
Therefore, after a short introduction to the main underpinning concepts, namely the autoencoder architecture
and the attention mechanism, the components of STREED-Net (Encoder, External Factors and Decoder) are
presented in details.

4.4.1 Background

An overview of autoencoder architecture and the attention mechanism is presented in this subsection.
Autoencoder architecture. Given a set of unlabeled training examples {x1,x2,x3, ...}, where xi ∈ Rn,

an autoencoder neural network is an unsupervised learning algorithm that applies backpropagation setting
the target values to be equal to the inputs y(i) = x(i). It is a neural network that is trained to learn a function
hW,b(x) = x̂≈ x, where W and b are weights and biases of the ANN, respectively. In other words, an autoencoder
approximates the identity function by producing x̂ that is as similar to x as possible. The overall network can be
decomposed into two parts: an encoder function h = f (x), which maps the input vector space onto an internal
representation, and a decoder that transforms it back, that is x̂ = g(h). This type of architecture has been applied
successfully to different difficult tasks, including traffic prediction [212].

Attention mechanism. In Deep Neural Network (DNN) Attention Mechanism helps focus on important
features of the input, shadowing the others. This paradigm is inspired by the human neurovisual system,
which quickly scans images and identifies sub-areas of interest, optimizing the usage of the limited attention
resources [187]. Similarly, the attention mechanism in DNN determines and stresses on the most informative
features in the input data that are likely to be most valuable to the current activity. Recently, attention has
been widely applied to different areas of deep learning, such as natural language processing [11], image
recognition [226], image captioning [210], image generation [70] and traffic prediction [121].

Figure 4.5 STREED-Net Architecture.
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4.4.2 Encoder

The encoder structure depicted in Figure 4.6 is the first block of the STREED-Net architecture.
It is composed of an initial convolutional layer, a series of residual units, and a final convolution layer.

Unlike similar approaches (e.g., STAR [193]), the proposed encoder structure introduces three novel aspects:
(i) each layer is time-distributed, meaning that the model learns from a sequence of frames (for time coherence)
instead of focusing on each frame singularly. (ii) it applies further convolutions after the residual unit, so that to
reduce the frame size and (iii) it applies a Batch Normalization (BN) after each convolution to avoid gradient
disappear/explode problems and achieve faster and more efficient reported optimization [85, 154].

Figure 4.6 Encoder.

Unlike other works from the literature, where the distant temporal information is also used (from the
previous day and previous week), the encoder takes as input a four-dimensional tensor F ∈ RH×N×M×2. This
tensor is a sequence of consecutive three-dimensional frames conveying flow information of nearby periods
(with regard to the prediction time t ′). Such a tensor (also referred to as closeness in the literature [34]) is
obtained by selecting p points preceding the prediction time t ′, i.e., the sequence [Ft ′−p,Ft ′−(p+1), ....,Ft ′−1].
In this way, STREED-Net can focus on the most recent dynamics only. Each frame in F is processed by
the convolution layer to extrapolate spatial information. It is worth noting that in Figure 4.5, the encoder is
represented by a collection of identical blocks in parallel execution on the input frames instead of (as in reality)
a single convolution applied sequentially. Such a representation is used to highlight that a time-distributed layer
is trained by taking into account all input frames simultaneously. The use of this approach leads the model to
identify temporal (that is, inter-frame) dynamics, rather than looking only to spatial dependencies within each
frame.

Each convolutional layer is followed by a ReLU activation function and a BN layer. Formally, we have:

E(0)
t = BN(ReLU(W (0)

e ∗Ft +b(0)e )) (4.7)
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where E(0)
t corresponds to the output of the first convolutional layer, Ft is one of p frames in input to the

model and ∗ the convolution operator. W (0)
e and b(0)e are the weights and biases of the respective convolutional

operation. Next, L encoder blocks (see Figure 4.6) are placed. Each of these blocks is composed of a residual
unit followed by a downsampling layer:

E(l)
t = Downsampling(ResUnit(E(l−1)

t )) (4.8)

where E(l−1)
t and E(l)

t correspond respectively to the input and output of the encoder block; l takes values in
{1, ...,L}. The residual units have been implemented as a sequence of two convolutional layers whose output is
eventually summed to the block input. Mathematically, in STREED-Net the residual unit are defined as follows:

c1 = BN(ReLU(W (l)
1 ∗E(l−1)

t +b(l)1 )) (4.9)

c2 = BN(ReLU(W (l)
2 ∗ c1 +b(l)2 )) (4.10)

ERU (l)
t = E(l−1)

t + c2 (4.11)

where E(l−1)
t is the residual unit input and ERU (l)

t (Encoder Residual Unit) is used to indicate the result of
ResUnit(E(l−1)

t ). ∗ is the convolution operator, W (l)
1 , W (l)

2 and b(l)1 , b(l)2 are the weights and biases of the
respective convolutional operations.

For what concerns the Downsampling, it has been implemented as:

E(l)
t = BN(ReLU(W (l)

ds ∗ERU (l)
t +b(l)ds ) (4.12)

where W (l)
ds , b(l)ds and ∗ indicate a convolutional layer with kernel size and stride parameters set to halve the

height and width of the input frame.
The rationale behind the design of this architecture is threefold: (i) a deep structure is needed for the model

to grasp dependencies not only among neighboring regions but also among distant areas; (ii) Deep networks
are difficult to train as they present both the problem of the explosion or disappearance of the gradient and a
greater tendency to overfitting due to the large number of parameters. To try to avoid these obstacles and to
make the training model more efficient, we introduced residual units. Finally, (iii) the downsampling layers
were introduced to ensure translational equivariance [67].

Finally, the encoder structure ends with a closing convolution-ReLU-BN sequence, which has as its main
objective to reduce the number of feature maps. In this way, the next architectural component (i.e., the Cascading
Hierarchical Block) will receive and process a smaller input, reducing the computational cost of the CMU array.
The encoder output is:

E(L+1)
t = BN(ReLU(W (L)

e ∗E(L)
t +b(L)e )) (4.13)

The output of the encoder is a tensor E(L+1) ∈ RH×N/2L×M/2L×C′ , where C′ is the number of feature maps
generated by the last convolution of the encoder.

4.4.3 Cascading Hierarchical Block

A connection section between the encoder and the decoder is provided to handle the temporal relationships
among the frames. Unlike what is proposed in other works that combine the use of CNN with the use of RNN
such as LSTM [148], STREED-Net implements a Cascading Hierarchical Block with CMU (CMU) [212],
which computes the hidden representation of the current state directly using the input frames of both previous
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and current time steps, rather than what happens in recurrent networks that model the temporal dependency
by a transition from the previous state to the current state. This solution is designed to explicitly model the
dependency between different time points by conditioning the current state on the previous state, improving the
model accuracy; incidentally, it also reduces training times.

The fundamental constituent of CMU architecture is the MU [96], which is a non-recurrent convolutional
structure whose neuron connectivity, except for the lack of residual connections, is quite similar to that of
LSTM [78]; the output, however, only depends on the single input frame h. Formally, MU is defined by the
following equation set:

g1 = σ(W1 ∗h+b1) (4.14)

g2 = σ(W2 ∗h+b2) (4.15)

g3 = σ(W3 ∗h+b3) (4.16)

u = tanh(W4 ∗h+b4) (4.17)

MU(h;W ) = g1⊙ tanh(g2⊙h+g3⊙u) (4.18)

where σ is the sigmoid activation function, ∗ the convolution operator and ⊙ the element-wise multiplication
operator. W1 ∼W4 and b1 ∼ b4 are the weights and biases of the respective convolutional gates and W denotes
all MU parameters.

CMU incorporates three MU. Unlike MU, CMU accepts two consecutive frames as input to model explicitly
the temporal dependencies between them. The more recent frame in time is inputted to a MU to capture the
spatial information of the current representation. The older frame is instead processed by two MU in sequence
to overcome the time gap. The partial outputs are then added together and finally, thanks to two gated structures
containing convolutions along with non-linear activation functions, the output of the CMU (X l+1

t ) is generated.
CMU is described by the following equations:

h1 = MU(MU(E l
(t−1);W1);W1) (4.19)

h2 = MU(E l
t ;W2) (4.20)

h = h1 +h2 (4.21)

o = σ(Wo ∗h+bo) (4.22)

X l+1
t = o⊙ tanh(Wh ∗h+bh) (4.23)

where W1 and W2 are the parameters of the MU in the left branch and of the MU in the right branch respectively,
Wo, Wh, bo and bh are the weights and biases of the corresponding convolutional gates. The cascading
hierarchical block uses CMUs to process all frames at the same time (see Figure 4.7):

Xcmu =CascadeCMU(E(L+1)) (4.24)

where Xcmu ∈ RN×M×C′ .

4.4.4 External Factors

As mentioned at the beginning of Section 4, displacement dynamics are influenced by many complex external
factors, such as the day of the week, holidays, and weather conditions. For this reason, following similar
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Figure 4.7 Cascading Hierarchical Block.

approaches from the literature [193, 223], features a specific input branch to integrate external information. The
input is a one-dimensional vector that contains information that refers to prediction time t ′.

Through the use of two fully connected overlapping layers, this information is conveyed, encoded, into the
mainstream of the network. The first level is used to embed each sub-factor, while the second reshapes the
external factors embedding space to match the size of the CMU output vector.

4.4.5 Decoder

The decoder is the last component of STREED-Net and its task is to generate the flow prediction starting from
the latent representation that corresponds to the output of the cascading hierarchical block.

As shown in Figure 4.8, the decoder takes as input a tensor z = Xcmu +Xext , where z ∈ RN×M×C′ , which
is the result of the sum of the outputs of the hierarchical structure and the network dedicated to incorporate
external factors. Xext is added at this point of the network to allow the model to use the information extracted
from the external factors during the reconstruction phase.

The decoder architecture features a structure that is somehow symmetrical to that of the encoder with an
array of residual units preceded and followed by a convolutional layer (Equation (4.25)).

D(0) = BN(ReLU(W (0)
d ∗ z+b(0)d )) (4.25)

Nevertheless, this symmetry is breached by the presence of two significant differences. The first one is the
presence of a long skip connection before every residual unit. The long skip connection is used to improve the
accuracy and to recover the fine-grained details from the encoder. Another benefit is a significant speed-up in
model convergence [173].

Generic decoding block D(l), ∀l ∈ {1 . . .L} can be formally defined as the sequential application of the
following three operations:

sc(l) = Conv2DTranspose(D(l−1))+ERU (L+1−l)
1 (4.26)

U (l) = BN(ReLU(sc(l)) (4.27)

D(l) = ResUnit(U (l)) (4.28)
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Figure 4.8 Decoder.

where D(l−1) corresponds to the input block, Conv2DTranspose indicates the transposed convolution operation
(also known as deconvolution), which doubles the height and width of the input, and sc(l) (skip connection)
is the sum of u with ERU (L+1−l)

1 , i.e., the output of the remaining encoder unit at level L+1− l for the most
recent frame. The residual units of the decoder are structured exactly like those of the encoder.

The second difference is the presence of two attention blocks (viz. Channel and Temporal Attention) before
the final convolution layer. More details are provided in the following subsections.

Channel Attention

After the convolutional stage of the decoder, a three-dimensional tensor, referred to as D(L) ∈ RN×M×C′ , is
obtained with the channel size C′. Since the dimension of the channel also includes the temporal aspects
compressed by the cascading hierarchical block, the channel attention [204] has been introduced to identify
and emphasize the most valuable channels. Figure 4.9 depicts the inner structure of the Channel Attention
Block. Given the input tensor, D(L) a channel attention map Ac ∈R1×1×C′ is created by applying attention block
deduction operations on the channels. More precisely, through the operation of global average pooling and
global max pooling performed simultaneously, two different feature maps (Xmax and Xavg) of size 1×1×C′

each are spawned. The rationale behind the choice to use both pooling strategies is that the avg pooling (Xavg)
allows for the computation of spatial statistics [80], whereas max pooling (Xmax) provides basic translation
invariance to the internal representation by observing the maximum presence of different features.
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Figure 4.9 Channel Attention Block.

The two feature maps (Xmax and Xavg) go through two Fully Connected (FC) layers that allow the model
to learn (and assess) the importance of each channel. The first layer performs a dimensionality reduction,
downsizing the input feature maps to 1×1× C′

s , based on the choice of the reduction ratio s; the second layer
restores the feature maps to their original size. This approach has proven to increase the model efficiency
without accuracy reduction [121]. Once these two steps have been completed, the two resulting feature maps
are combined into a single tensor through a weighted summation as:

Ac = σ(Λ1⊗FC(FC(Xmax))+Γ1⊗FC(FC(Xavg)))

= σ(Λ1⊗W2(W0(Xmax))+Γ1⊗W3(W1(Xavg))) (4.29)

where σ denotes the sigmoid function, W0 ∈ RC
′×C

′
s , W1 ∈ RC

′×C
′

s , W2 ∈ R
C
′

s ×C
′

and W3 ∈ R
C
′

s ×C
′

represent
the weights of the FC layers, and Λ1 and Γ1 are two trainable tensors with the same size as the two feature
maps. Λ and γ are set during the training phase and weight the relative importance of each element of the two
feature maps. Finally, the process of getting channel attention can be summarized as:

D
′
= Ac⊗D(L) (4.30)

where D
′

is the operation output and ⊗ denotes the element-wise multiplication.
Unlike its original version [204], the weights of Fully Connected layers are independent of each other,

and we add two variables Λ and Γ to enable the network to learn how to best balance the impact of the two
branches.



4.4 STREED-Net 52

Spatial Attention

Cities are made up of a multitude of different functional areas. Areas have different vehicle concentrations and
mobility patterns; thus, the spatial attention mechanism has the task of identifying where are located the most
significant areas and scale their contribution to improve the prediction. Figure 4.10 presents the main internals
involved in the calculation of the spatial attention map.

Figure 4.10 Spatial Attention Block

The spatial attention map As ∈ RN×M×1 can be calculated by applying pooling operations along the axes of
the channel to highlight informative regions [102]. Therefore, first the global average pooling (Xavg) and global
max pooling (Xmax) operations are applied along the channel axes and, as in the Channel Attention Block, two
distinct feature maps of size N×M×1 are obtained. Instead of simply concatenating these two feature maps as
in [204], they are combined by a weighted sum to enhance the network’s learning capability. Subsequently, the
combined feature map passes through a convolution layer with a filter size of 4×4 and the sigmoid activation
function is applied, as reported in Equation (4.31).

As = σ( f 4×4(Λ2⊗Xmax +Γ2⊗Xavg)) (4.31)

where σ denotes the sigmoid function and f 4×4 represents a convolution operation with the filter size of 4×4.
It is worth noting that the filter size depends on the size of the areas that make up the city. For the case studies
addressed in this work (see Section 4.6.2), which feature rather large regions, the proposed model does not
need to focus on large area clusters; therefore, the size of the filter in this work (4×4) is reduced compared to
those proposed in [204].

Finally, the process of getting spatial attention can be summarized as:

D
′′
= As⊗D

′
(4.32)
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If the reader is interested to explore the impact of the different components of the architecture, more details
are presented in Appendix A.2

4.5 Related Prior Work

Several studies have addressed the problem of predicting vehicle flows in urban environments. This problem
has been initially modeled as a time series prediction problem for each city area and approached through
classical statistical methods at first, and ANN (e.g., deep learning) later. In particular, different statistical
methods have been applied, including autoregressive integrated moving average (ARIMA) [129], Kalman
filtering [71], and their variants, as well as other classical approaches such as Bayesian networks [172],
Markov chain [146], and SVR models [207]. Other approaches have used k-means clustering, principal
component analysis, and self-organizing maps to mine spatio-temporal performance trends [4]. However,
classical statistics models show some weaknesses when applied to the flow prediction problem, namely they are
unable to capture the spatial dependencies between the various areas because data for each region of the city
are considered as independent time series, and they fail to capture the nonlinear relationship between space and
time, which is essential for reliable prediction. Further studies overcame these downsides by considering spatial
relationships [179] and external factors (e.g., environment and weather conditions [147]) within traditional
time-series prediction methods.

ANN have exploited in flow predictions for their capability of capturing the non-linear spatial and temporal
relationships within data. Initial works using ANN followed two main approaches. The first one exploits
variants of RNN [7] such as i) LSTM [219] and ii) GRU [37], whose architectures can effectively capture both
the long-term pattern and short-term fluctuation of time series. The second research line applies models based
on CNN to identify spatial dependencies in traffic networks, treating dynamic traffic data as a sequence of
frames [125]. Noticeably, while 2D convolutions with residual units [193, 223], 3D convolutions [34] and a
combination of 2D and 3D convolutions [72] are widely used.

Those proposals, furthermore, do not feature specific architectural elements to capture temporal patters.
Spatial and temporal dependencies are intrinsic to traffic data, making it essential to consider both aspects
at the same time when predicting mobility dynamics. In this direction, deep learning-based approaches
have been recently proposed, which exploit architectures able to capture spatial and temporal patterns. For
this reason, authors in [119, 215] have combined convolution layers and LSTMs to capture both aspects:
compared to models using only convolutions, they try to strengthen the model’s ability to identify temporal
patterns. Additionally, in [119, 215] an attention mechanism is used and in [212] simultaneously implements
an autoencoder model with inner CMU layers.

In recent years, with the development of graph convolutional networks [99], which can be used to capture the
structural characteristics of the graph network, we are witnessing their use in the field of traffic prediction [93].
Those approaches assume the existence of an origin-destination matrix, which provides details about the
connections between different areas. This information, however, is often not available. One of the first graph-
based works is [114] where the authors propose DCRNN, it is a model that captures the characteristic space
through random walks on the graphs, and the temporal feature through the encoder-decoder architecture, while
in [225] they apply the temporal graph convolutional network (T-GCN) model, which is in combination with
the graph convolutional network (GCN) and gated recurrent unit (GRU). In [142] the authors propose a method
of forecasting the traffic flow based on dynamic graphs: the traffic network is modeled by dynamic probability
graphs. The convolution of the graph is performed on the dynamic graphs to learn the spatial features, which
are then combined with the LSTM units to learn the temporal features. Finally, in [115] the authors propose
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a dynamic perceptual graph neural network model for the temporal and spatial hidden relationships of deep
learning segments. Indeed, the proposed model learns potential relationships of temporal features and spatial
features. For a comprehensive review, we refer the reader to [109, 216], while a comprehensive library providing
an open-source implementation of a number of models for traffic problems is presented in [194]. We provide a
more detailed description of a selection of the approaches mentioned above in Section 4.6.

4.6 Experimental Analysis

This section reports an extensive experimental evaluation of the proposed models (3D-CLoST and STREED-
Net) by comparing them with various reference models (as outlined in Section 4.6.1). The evaluation is
conducted on three different case studies (described in detail in Section 4.6.2) using three different performance
metrics. A computational complexity analysis is also included in the section.

4.6.1 Reference Methods

The proposed models are compared against the following state-of-the-art methods expressly devised to solve
the citywide vehicle flow prediction problem [34]:

ST-ResNet [223]: it is one of the first deep learning approaches to traffic prediction. It predicts the flow of
crowds in and out of each individual region of activity. ST-ResNet uses three residual networks that model the
temporal aspects of proximity, period, and trend separately.

MST3D [34]: this model is architecturally similar to ST-ResNet. The three time dependencies and the
external factors are independently modeled and dynamically merged by assigning different weights to different
branches to obtain the new forecast. Differently from ST-ResNet, MST3D learns to identify space-time
correlations using 3D convolutions.

ST-3DNet [72]: the network uses two distinct branches to model the temporal components of closeness and
trend, while the daily period is left out. Both branches start with a series of 3D convolutional layers used to
capture the spatio-temporal dependencies among the input frames. In the closeness branch, the output of the
last convolutional layer is linked to a sequence of residual units to further investigate the spatial dependencies
between the frames of the closeness period. The most innovative architectural element is the Recalibration
Block. It is a block inserted at the end of each of the two main branches to explicitly model the contribution that
each region makes to the prediction.

STAR [193]: this approach aims to model temporal dependencies by extracting representative frames of
proximity, period and trend. However, unlike other solutions, the structure of the model consists of a single
branch: the frames selected for the prediction are concatenated along the axis of the channels to form the main
input to the network. In STAR as well, there is a sub-network dedicated to external factors and the output it
generates is immediately added to the main network input. Residual learning is used to train the deep network
to derive the detailed outcome for the expected scenarios throughout the city.

PredCNN [212]: this network builds on the core idea of recurring models, where previous states in the
network have more transition operations than future states. PredCNN employs an autoencoder with CMU,
which proved to be a valid alternative to RNN. Unlike the models discussed above, this approach considers
only the temporal component of closeness but has a relatively complex architecture. The key idea of PredCNN
is to sequentially capture spatial and temporal dependencies using CMU blocks.

ACFM [119]: this module is composed of two progressive Convolutional Long Short-Term Memory
(ConvLSTM [164]) units connected via a convolutional layer. Specifically, the first ConvLSTM unit takes the
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sequential flow features as input and generates a hidden state at each time-step, which is further fed into the
connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning
the dynamic spatial-temporal representations from the attentionally weighted traffic flow features.

HA: the algorithm generates Inflow and Outflow forecasts by performing the arithmetic average of the
corresponding values of the same day of the week at the same time as the instant in time to be predicted. This
classical method represents a baseline in our comparative analysis, as it has not been developed specifically for
the flow prediction problem.

Excluding MST3D, which has been entirely reimplemented following the indications of the original paper
strictly, and PredCNN, whose original code has been completed of some missing parts, for all the other models
the implementation released by the original authors has been used. The STREED-Net code, together with all
the code realized for this research work, is freely available on GitHub [58].

We conclude this section by pointing out that, although the literature offers numerous proposals for deep
learning models based on graphs with performances often superior to those of convolutional models, for the
problem addressed in this paper, preliminary experiments that we conducted with graph-based models did not
lead to satisfactory results. This is due to the nature of the problem considered, whose basic assumption is
to be able to observe only the inflow and outflow across all areas of the city. Such a scenario is feasible and
more realistic than one in which the trajectory or origin-destination pair of all vehicles is known but makes it
impossible to create graphs with nontrivial connections (i.e., not between adjacent areas) for the problem under
consideration.

4.6.2 Case Studies

Three real-life case studies are considered for the experimental analysis, which differ in both the city considered
(New York and Beijing) and the type of vehicle considered (bicycle and taxi). This choice allow the models to
be assessed on usage patterns that are expected to be significantly distinct. Follows a brief description of the
considered case studies:

BikeNYC. In this first case study, the behavior of bicycles in New York City is analyzed. The data has been
collected by the NYC Bike system in 2014, from 1 April to 30 September. Records from the last 10 days form
the testing dataset, while the rest is used for training. The length of each time period is of 1h.

TaxiBJ. In the second case study, a fleet of cabs and the city of Beijing are considered. Data have been
collected in 4 different time periods: 1 July 2013–30 October 2013, 1 March 2014–30 June 2014, 1 March
2015–30 June 2015, 1 November 2015–15 April 2016. The last four weeks are test data and the others are used
for training purposes. The length of each time period is set to 30 min.

TaxiNYC. Finally, a dataset containing data from a fleet of taxicabs in New York is considered. Data have
been collected from 1 January 2009 to 31 December 2014. The last four weeks are test data and the others
are used for training purposes. The length of each time period is set to one hour. This case study has been
specifically created to perform a more thorough and sound experimental assessments than those presented in
the literature.

The city of New York has been tessellated into 16×8 regions, while the city of Beijing has been divided into
32×32 areas; the discrepancy in the number of regions considered is due to the large difference in extension
between the two cities. The Beijing area (16,800 km2) is 22 times bigger than the New York area (781 km2).

The Beijing taxi dataset (TaxiBJ) and New York Bike dataset (BikeNYC) are available via [223]; they are
already structured to carry out the experiments reported in this work. The TaxiNYC dataset has been specifically
built for this research by processing and structuring data from the NYC government website [136].
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A Min-Max normalization has been applied to all datasets to convert traffic values based on the scale
[−1,1]. Note, however, that in the experiments a denormalization is applied to the expected values to be used in
the evaluation.

In the three experiments, public holidays, metadata (i.e., DayOfWeek, Weekday/ Weekend) and weather
have been considered as external factors. Specifically, the meteorological information reports the temperature,
the wind speed, and the specific atmospheric situation (viz., sun, rain and snow).

4.6.3 Experimental Results

This section presents and discusses the results of experiments performed by running STREED-Net and the
models presented in Section 4.6.1 on the three case studies. Moreover, three different evaluation metrics are
used in this study to compare the results obtained: RMSE, Mean Absolute Percentage Error (MAPE) and
Absolute Percentage Error (APE), which are defined as follows:

RMSE =
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∑
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where ι̂n,m and ω̂n,m are, respectively, the predicted Inflow and Outflow for region (n,m) at time t ′ and N×M is
the total number of regions in the city.

It is worth noting that to account for and reduce the inherent stochasticity of learning-based models,
each experiment was repeated ten times (replicas) using a different random seed in each replica. Mean and
standard deviation are reported for each metric to provide a robust indication of the overall behavior of the
compared methods.

Finally, tables in this section report the best results in boldface and the second best results in underlined.

BikeNYC

For the BikeNYC case study, STREED-Net parameters have been set as follows. The number n of input frames
has been set to 4, the number L of encoding and decoding blocks has been set to 2. This decision has been
dictated by the size of the grid (16×8): setting L greater than 2 (for example 3) would result in an encoder
output tensor of size 4×2×1×C, which would be too small to allow the CMU block to effectively capture
the time dependencies in the section located between the encoder and decoder. After some preliminary tests,
the number of convolutional filters has been set to 64 in the first layer of the encoder and in the subsequent
blocks, while in the last layer it has been set equal to 16. In this way, the dimensionality of the input vector
goes from I ∈ R4×16×8×2 to O ∈ R4×4×2×16 as the encoder output. Symmetrically, the convolutions within
the decoder use 64 filters, except for the final layer which uses only 2 filters to generate the prediction of the
Inflow and Outflow channels. The parameters corresponding to the dimensionality of the convolution kernel, to
the batch size and to the learning rate, have been optimized with the Bayesian optimization technique [167].
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The best result has been obtained with a kernel size of 3, a batch size of 16 and a learning rate of 0.0001. The
number of epochs is set to 150.

In terms of parameters for 3D-CLoST, we define the input volume using the autocorrelation function applied
to the dataset. After removing the weekly seasonality (Figure 4.11), a strong correlation is identified with i) the
3 hours preceding the hour to be predicted, and ii) the hour before and after it on the previous week. Two 3D
convolutional layers are used for this experiment, this choice is made due to the small size of each 3D volume
(8×16) and the kernel sizes is set to (2,3,3). The number of filters in the 3D convolutions varies in the two
levels; in the first level is 32, while in the second level is 64. After the 3D convolutional layers, a max pooling
layer with a reduced size of (1,2,2) is applied. This model features two layers of LSTM, each with 350 units.
The batch size is set to 64, the number of training epochs to 150 and the learning rate to 0.001.

Figure 4.11 BikeNYC without weekly periodicity

Regarding the models from the literature, they have been arranged and trained following carefully the
parameter values and indications reported in the respective publications.

As shown in Table 4.1, STREED-Net outperforms both 3D-CLoST and all other considered approaches in
all evaluation metrics. In addition, the small standard deviation values are evidence of the robustness of the
proposed approach. Nonetheless, it is worth observing that all learning-based approaches return similar results.
We believe this is mainly due to the reduced size of the dataset that does not allow the models to be adequately
trained. Moreover, the tessellation used in this case study (widely used in the literature), with a small grid of
dimensions (16×8), tends to level off the metrics and hinder a more precise performance assessment.

Table 4.1 Results obtained for the Bike NYC data set.

Model RMSE MAPE APE
HA 6.56 26.46 4.09 ·105

ST-ResNet 5.01 ± 0.07 21.97 ± 0.26 3.40 ·105 ± 4.06 ·105

MST3D 4.98 ± 0.05 22.03 ± 0.47 3.41 ·105 ± 7.26 ·105

PredCNN 4.81 ± 0.04 21.38 ± 0.24 3.31 ·105 ± 3.76 ·105

ST-3DNet 4.75 ± 0.06 21.42 ± 0.28 3.31 ·105 ± 4.36 ·105

STAR 4.73 ± 0.05 20.97 ± 0.13 3.24 ·105 ± 2.02 ·105

ACFM 4.68 ± 0.13 20.98 ± 0.68 3.25 ·105 ± 1.05 ·105

3D-CLoST 4.90 ± 0.04 21.38 ± 0.20 3.31 ·105 ± 3.12 ·105

STREED-Net 4.67 ± 0.03 20.85 ± 0.15 3.23 ···1110005 ± 2.31 ···1110005
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TaxiBJ

As with the experiment discussed above, for the TaxiBJ case study, the parameters of the models have
been set according to the specifications given in the respective publications. In the case of STREED-Net,
the hyperparameters are kept unchanged in the two experiments, except for the number L of encoding and
decoding blocks, which has been increased to 3 because the grid is larger (32×32) in this experiment and more
convolutional layers are needed to map the input tensor of the model. Also for this experiment, the kernel size,
batch size, and learning rate parameters have been optimized with Bayesian optimization and the best values
found were 3, 16, and 0.0001 respectively. The number of epochs has been set at 150. Notice that these values
are the same used in the BikeNYC experiment.

In the 3D-CLoST model, only a few parameters have been modified from the previous experiment. Specif-
ically, three layers of 3D convolutional layers are used. The choice has been made for the size of the input
volume (32×32), which is much greater than the New York one. The number of filters on the three different
levels of convolutional 3D have been set to 32, 64 and 64. The kernel size is set to (3, 3, 3). The model features
two layers of LSTM, the first one has 500 units and the second has 250 units.

As can be seen from Table 4.2, STREED-Net outperforms 3D-CLoST and all other methods, in particular,
reducing MAPE and APE by 2.9%, and 2.8%, respectively, compared with the second-best approach. The
difference in performance in favor of the proposed model, in this experiment, is more appreciable because the
dataset used for the training process is more significant but also because the number of regions is higher. This
last consideration highlights how the proposed model seems suitable to be applied in real-world scenarios,
i.e., where high model accuracy and dense tessellation are required (i.e., the city is partitioned into a large
number of small regions).

Table 4.2 Results obtained for the Taxi Beijing dataset.

Model RMSE MAPE APE
HA 40.93 30.96 6.77 ·107

ST-ResNet 17.56 ± 0.91 15.74 ± 0.94 3.45 ·107 ± 2.05 ·106

MST3D 21.34 ± 0.55 22.02 ± 1.40 4.81 ·107 ± 3.03 ·105

PredCNN 17.42 ± 0.12 15.69 ± 0.17 3.43 ·107 ± 3.76 ·105

ST-3DNet 17.29 ± 0.42 15.64 ± 0.52 3.43 ·107 ± 1.13 ·106

STAR 16.25 ± 0.40 15.40 ± 0.62 3.38 ·107 ± 1.36 ·106

ACFM 15.67 ± 0.23 15.16 ± 0.33 3.32 ·107 ± 7.25 ·105

3D-CLoST 17.10 ± 0.23 16.22 ± 0.20 3.55 ·107 ± 4.39 ·105

STREED-Net 15.61 ± 0.11 14.73 ± 0.21 3.22 ···1110007 ± 4.51 ···1110005

TaxiNYC

As mentioned earlier, the TaxiNYC case study was created specifically to be able to evaluate the behavior of the
proposed model in a wider set of scenarios than the literature. Consequently, in order to make a fair comparison,
it was necessary to search for the best configuration of hyperparameters not only for the STREED-Net model
but also for all the other approaches considered. The optimized parameters and the relative values used in the
training phase are briefly summarized below for each model.

The unreported configuration values are the same as those used for the BikeNYC case study, since both
experiments use the same map size (16×8). The parameters for each model are as follows:
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• ST-ResNet*. Optimized parameters: number of residual units, batch size and learning rate. Optimal
values found: 2, 16 and 0.0001.

• MST3D. Optimized parameters: batch size and learning rate. Optimal values found: 16 and 0.00034.

• PredCNN. Optimized parameters: encoder length, decoder length, number of hidden units, batch size
and learning rate. Optimal values found: 2, 3, 64, 16 and 0.0001.

• ST-3DNet. Optimized parameters: number of residual units, batch size and learning rate. Best values
found: 5, 16 and 0.00095.

• STAR*. Optimized parameters: number of remaining units, batch size and learning rate. Optimal values
found: 2, 16 and 0.0001.

• ACFM. Optimized parameter: learning rate. Optimal value found: 0.0003.

• 3D-CLoST. Optimized parameters: number of LSTM layers, number of hidden units in each LSTM
layer, batch size, and learning rate. Optimal values found: 2, 500, 16, and 0.00076.

• STREED-Net. Optimized parameters: kernel size, batch size, and learning rate. Optimal values found:
3, 64 and 0.00086.

It is worth noting that, preliminary experiments showed a convergence issue for the training phase of both
STAR and ST-ResNet models. In particular, they were unable to converge for any combination of parameters.
This behavior is due to the strong presence of outliers and to the concentration of the relevant Inflow and
Outflow values in a few central regions of the city. To overcome this issue, Batch Normalization layers have
been inserted in the structure of the two models. In particular, Batch Normalization layers have been added
after each convolution present in the residual units (a possibility that has already been foreseen in the original
implementations) and after the terminal convolution of the networks (an option not considered in the source
code provided by the original authors). For this reason, ST-ResNet and STAR are marked with an asterisk in
the Table 4.3, which summarizes the experimental results.

Table 4.3 Results obtained for the Taxi New York dataset.

Model RMSE MAPE APE
HA 164.31 27.19 7.94 ·105

ST-ResNet* 35.87 ± 0.60 22.52 ± 3.43 6.57 ·105 ± 1.00 ·105

MST3D 48.91 ± 1.98 23.98 ± 1.30 6,98 ·105 ± 1.34 ·104

PredCNN 40.91 ± 0.51 25.65 ± 2.16 7.49 ·105 ± 6.32 ·104

ST-3DNet 41.62 ± 3.44 25.75 ± 6.11 7.52 ·105 ± 1.78 ·105

STAR* 36.44 ± 0.88 25.36 ± 5.24 7.41 ·105 ± 1.53 ·105

ACFM 36.75 ± 0.94 19.10 ± 1.08 5.58 ···1110005 ± 2.21 ···1110004

3D-CLoST 48.17 ± 3.16 22.18 ± 1.05 6.48 ·105 ± 3.08 ·104

STREED-Net 36.22 ± 0.72 20.29 ± 1.48 5.93 ·105 ± 4.31 ·104

As it can be seen from Table 4.3, STREED-Net achieve excellent results in this experiment as well, ranked
as one of the best models, while 3D-CLoST obtained poor performance ranking as the third-to-last model.
In particular, as far as the RMSE is concerned, the performances obtained by STREED-Net are very close to
the best one (achieved by ST-ResNet*, which is considerably different from the original ST-ResNet). As for
MAPE and APE values, place our proposal ranks as the second-best approach, closely after ACFM.
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4.6.4 Number of Trainable Parameters and FLOPs

A brief analysis of the number of trainable parameters and the computational complexity (measure in number
of FLOPs) of each model for the different case studies is reported in this section. For what concerns the number
of trainable parameters, as shown in Table 4.4, STREED-Net has a generally low number compared to other
models as only STAR features lesser parameters to train. Such a reduced number of parameters is due to the
fact that the dimensionality of the input is reduced by the encoder downsampling mechanism. The model with
the highest number of parameters is 3D-CLoST, which uses both 3D convolutions and LSTM.

Table 4.4 Number of trainable parameters.

Model BikeNYC TaxiNYC TaxiBJ
ST-ResNet 906,272 458,304 2,696,992

MST3D 668,218 668,378 8,674,370
PredCNN 3,967,906 3,967,906 4,827,842

ST-3DNET 540,696 617,586 903,242
STAR 161,052 310,076 476,388
ACFM 182,065 270,581 969,893

3D-CLoST 13,099,090 19,477,648 72,046,714
STREED-Net 582,673 582,673 765,497

Finally, Table 4.5 provide the computational complexity of each model in terms of floating point operations
(FLOPs) as in [19] for each case study. As can be seen from the results obtained, the model with the higher
computational complexity is PredCNN, which is based on CMUs. While, 3DCLoST is the model with the
shortest forward and backward times. STREED-Net, instead, has a middle-range computational complexity
compared to the other models, despite its autoencoder structure, the use of attention blocks, and CMUs. This
occurs because although the number of network parameters is small, the network employs high complexity
operators. However, the training and execution times of STREED-Net are compatible with its applicability in
full-scale real-world scenarios.

Table 4.5 Computational complexity (in number of FLOPs).

Model BikeNYC TaxiNYC TaxiBJ
ST-ResNet 230,849,450 115,735,786 5,459,663,018

MST3D 33,042,250 33,042,570 272,483,226
PredCNN 1,015,468,288 1,015,468,288 9,883,813,888

ST-3DNET 171,242,496 190,130,922 1,823,295,898
STAR 40,449,706 78,231,530 928,100,922
ACFM 41,687,924 93,643,568 621,498,864

3D-CLoST 29,613,094 9,601,920 338,148,804
STREED-Net 130,047,738 130,047,738 1,067,063,882

4.7 Case Study: Predicting Inflow and Outflow for Relocation

In this section we investigate the benefits of incorporating a Deep Learning model, in this case 3D-CLoST,
into a relocation system to assess, in terms of satisfied demand and cost, the benefits of improving relocation
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through the use of a predictive model. Specifically, we apply the model to forecast the number of e-scooters
entering and leaving different areas of the city, allowing the relocation system to know in advance areas with a
deficit or surplus of vehicles.

Identifying pick-up and drop-off zones

The relocation system receives as input the exact number of scooters needed to meet demand at a given time, as
calculated by the Delta(t,z) function, which represents the expected number of scooters added to an area z at a
specific time t:

∆(t,z) = O(t,z)−D(t,z)−S(t,z) (4.36)

where O(t,z) is the number of vehicles expected to start a new trip from zone z in time [t,t +∆T ], where ∆T
is one hour. D(t,z), instead, is the predicted number of vehicles that will end a trip to such a zone in the same
time interval. The difference between these two terms gives the predicted incoming or outgoing flow for a given
zone at a given hour. S(t,z) is the current number of e-scooters present in zone z. As such, if ∆(t,z)> 0, zone z
is expected to have a surplus - thus being a pick-up zone. Vice versa, if ∆(t,z)< 0, zone z is expected to suffer
from a lack of vehicles (drop-off zone), and |∆(t,z)| represents how many scooters should be placed at zone z.

In this study, O(t,z) and D(t,z) are estimated in two different ways:

• Baseline. It is based on a simple stationary model for O(t,z) and D(t,z), where we assume that the
average past demand is a good prediction of future demand as well. Therefore, we consider the type of
day (weekday or weekend) and the time of day (in the 24 hours), obtaining 48-time slots in total. For
each of them, the average number of e-scooters rented (returned), for each origin (destination) zone, is
calculated. These averages are used to make predictions, that is, to obtain the O(t,z) and D(t,z) matrices.
Then, we compute Delta(t,z) with S(t,z) as the current state.

• DNN. It refers to the 3D-CLoST model analyzed in Section 4.3. The outputs are the number of expected
trips starting and ending in the next hour in each zone z, i.e., O(t,z) and D(t,z), from which we get
∆(t,z).

In our experimentation, we utilized e-scooter datasets from Austin [5] and Louisville [123]. We evaluated
the performance of the two predictive models using the metric of RMSE and analyzed their impact on the
relocation system.

Analysis of Predictions

Table 4.6 RMSE on the test

Model RMSE
Baseline DNN Driven

Austin Origin O(t,z) 6.34 0.29
Destination D(t,z) 6.20 0.29

Louisville Origin O(t,z) 1.38 0.23
Destination D(t,z) 1.32 0.22

Table 4.6 presents the RMSE values for the predictive models in Austin and Louisville. The DNN
model demonstrates superior performance compared to the baseline model, with a significant improvement
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in Austin. However, in Louisville, the difference in performance between the two models is less pronounced.
This difference in performance may be ascribed to the smaller size and more homogenous usage patterns in
Louisville compared to Austin. They refer to Appendix B for additional information.

4.8 Conclusion

Predicting vehicular flow is one of the central topics in the field of Smart Mobility. It is a challenging task,
influenced by several complex factors, such as spatio-temporal dependencies and external factors. In this
chapter, we have evaluated two Deep Learning proposals: 3D-CLoST and STREED-Net. The first model
relies on multiple 3D CNNs and LSTM networks, while, the latter is based on 2D convolutions and CMU.
Both methods are designed to predict the Inflow and Outflow in each region of the city. A comprehensive
experimental campaign has been conducted on three different real-world case studies. According to the results,
STREED-Net consistently outperforms 3D-CLoST and other state-of-the-art models in all the experiments
conducted across the three performance metrics considered. We also analyze the results of a complexity analysis
conducted on the architectures, revealing that 3D-CLoST has the lowest computational complexity.

Future Work. The integration of other external factors, such as the territorial characteristics of each
geographical area, should be tested. Moreover, it would be appropriate to increase the granularity of the city
tessellation, as well as conduct transfer learning experiments to study the applicability of the proposed models
to scenarios with a reduced amount of data available.



5
Enhancing Spectral-Based GCNs to Solve

Mobility Challenges

This chapter introduces SigMaNet, a generalized Graph Convolutional Network (GCN) capable
of handling both undirected and directed graphs with weights not restricted in sign nor magnitude.
The cornerstone of SigMaNet is the Sign-Magnetic Laplacian (Lσ ), a new Laplacian matrix that we
introduce ex novo in this work. Lσ allows us to bridge a gap in the current literature by extending the
theory of spectral GCNs to (directed) graphs with both positive and negative weights. Lσ exhibits
several desirable properties not enjoyed by other Laplacian matrices on which several state-of-the-art
architectures are based, among which encoding the edge direction and weight in a clear and natural
way that is not negatively affected by the weight magnitude. Lσ is also completely parameter-free,
which is not the case of other Laplacian operators such as, e.g., the Magnetic Laplacian. The
versatility and the performance of our proposed approach is amply demonstrated via computational
experiments. Research reported in this chapter has been published in [63].

5.1 Introduction

The dramatic advancements of neural networks and deep learning have provided researchers and practitioners
with extremely powerful analytics tools. Increasingly complex phenomena and processes which can often be
modeled as graphs or networks, such as, e.g., social networks [8], knowledge graphs [231], protein interaction
networks [97], or the World Wide Web (only to mention a few) can now be successfully addressed via Graph
Convolutional Networks (GCNs).

Graph Convolutional Networks have also been used in the field of Smart Mobility [115, 217] because many
occurrences in this area can be modeled as graphs, and Convolutional Neural Networks cannot be applied to
non-Euclidean domains, as shown in Figure 5.1. Compared with other approaches, GCNs effectively manage to
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represent the data and its interrelationships by explicitly capturing the topology of the underlying graph with a
suitably-designed convolution operator. In the literature, GCNs mostly belong to two categories: spectral-based

Figure 5.1 Illustration of 2D Convolutional Neural Networks (left) and Graph Convolotional Networks (right).

and spatial-based [208]. Spatial GCNs define the convolution operator as a localized aggregation operator [201]
(although, rigorously speaking, such an operator may not always be called a convolution operator from a
mathematical perspective). Differently, spectral GCNs define the convolution operator (a rigorous one in this
case) as a function of the eigenvalue decomposition of the Laplacian matrix associated with the graph [99]. In
their basic definition, both methods assume the graph to be undirected and to feature nonnegative weights. For
a comprehensive review, we refer the reader to [77, 208].

Many real-world processes and phenomena can be modeled as directed graphs. While spatial GCNs have a
natural extension to directed graphs, most spectral methods require the graph to be undirected and to feature
nonnegative weights for their convolution operator to be well-defined. Indeed, due to being based on graph
signal processing [35, 153], spectral GCNs require three fundamental properties to be satisfied which fail to hold
when the graph is directed and/or features negative weights: a) the Laplacian matrix must be diagonalizable,
i.e., it must admit an eigenvalue decomposition, b) the Laplacian matrix must be positive semidefinite, and c)
the spectrum of the normalized Laplacian matrix must be upper-bounded by 2 [99, 208].

In recent years, several extensions of the definition of Laplacian matrix have been proposed to overcome the
first limitation, i.e., to handle directed graphs (see, e.g., the Magnetic Laplacian [222, 224] and the Approximate
Digraph Laplacian constructed via the PageRank matrix [180]). Differently, no spectral techniques have been
introduced so far to overcome the second limitation, i.e., to handle graphs with edge weights unrestricted in sign,
which arise in many relevant applications (such as, e.g., those where the graph models credit/debit transactions
between customers, like/dislike evaluations among users, or positive/negative user opinions). Our proposal
extends the use of spectral-based GCN to various mobility problems, including the prediction of electric cars
charging and discharge. City locations form a directed graph, where vehicles charging or discharging can be
determined based on the link direction (downhill for charging or flat/uphill for discharging). This graph is
composed of both the direction and sign (positive/negative) of the edges.

The remainder of the Chapter is structured as follows. Preliminaries and previous works are summarized in
Section 5.2. The Sign-Magnetic Laplacian operator is introduced in Section 5.3 together with its properties.
The section also provides an overview of the SigMaNet architecture that we build upon the Sign-Magnetic
Laplacian. Computational results are reported in Section 5.4, where we apply our model to node classification
and link prediction tasks and compare it to different state-of-the art spectral and spatial methods. Finally,
conclusions and recommendations for future work are discussed in Section 5.5. The proofs of our theorems and
further numerical results are provided in Appendix C.
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5.2 Preliminaries and previous works

For a given n ∈ IN, we denote by [n] the set of integers {1, . . . ,n}. For a given matrix M of appropriate
dimensions with real eigenvalues, we denote its largest eigenvalue by λmax(M). Throughout the paper, e and
ee⊤ denote the all-one vector and matrix of appropriate dimensions. Undirected and directed graphs are denoted
by G = (V,E), where V is the set of vertices and E the set of edges. In the undirected (directed) case, E is a
collection of unordered (ordered) pairs of elements in V . G is always assumed to be self-loop free.

5.2.1 Generalized convolution matrices

For some n ∈ IN, let M ∈ ICn×n be a positive semidefinite Hermitian matrix1 with eigenvalue (or spectral)
decomposition M = UΛU∗, where Λ ∈ IRn×n is the diagonal matrix whose elements are the (real, as M is
Hermitian) eigenvalues of M, U ∈ ICn×n, and U∗ is the complex conjugate of U . For each i ∈ [n], the i-th column
of U coincides with the i-th eigenvector of M corresponding to its i-th eigenvalue Λii. The columns of U form a
basis of ICn. We assume λmax(M)≤ 2.

Given a signal x ∈ ICn, let x̂ be its discrete Fourier transform with basis U , i.e., x̂ =U∗x. As U−1 =U∗, the
transform is invertible and the inverse transform of x̂ reads x =Ux̂. Given a filter y ∈ ICn, the transform of its
convolution with x satisfies the relationship ŷ∗ x = ŷ⊙ x̂ = Diag(ŷ)x̂, where ∗ and ⊙ denote the convolution
and the Hadamard (or component-wise) product, respectively. Applying the inverse transform, we have
y∗ x =U Diag(ŷ)U∗x. Letting Σ := Diag(ŷ), we call a generalized convolution matrix the matrix Y :=UΣU∗,
as y∗ x = Y x.

Let Λ̃ := 2
λmax(M)Λ− I be the normalization of Λ. As UU∗ = I, the same normalization applied to M leads

to M̃ =UΛ̃U∗ = 2
λmax

M− I. Following [74, 99], we assume that y is such that the entries of ŷ are real-valued
polynomials in Λ̃, i.e., that ŷi = ∑

K
k=0 θkTk(λ̃i), i ∈ [n], where θ0, . . . ,θK ∈ IR, K ∈ IN, and Tk is the Chebyshev

polynomial of the first kind of order k. Tk is recursively defined as T0(x) = 1,T1(x) = x, and Tk(x) = 2xTk−1(x)−
Tk−2(x) for k≥ 2, with x ∈ IR∩ [−1,1]. Thus, we rewrite Σ as Σ = Diag(ŷ) = ∑

K
k=0 θkTk(Λ̃), where Tk is applied

component-wise to Λ̃, i.e., (Tk(Λ̃))i j = Tk(Λ̃i j) for all i, j ∈ [n]. With this, the convolution of x by y can be
rewritten as Y x =UΣU∗x =U

(
∑

K
k=0 θkTk(Λ̃)

)
U∗x. Since, as it is easy to verify, (UΛ̃U∗)k =UΛ̃kU∗ holds for

all k ∈ IN, one can also verify that Y x =U
(
∑

K
k=0 θkTk(Λ̃)

)
U∗x = ∑

K
k=0 θkTk(UΛ̃U∗)x = ∑

K
k=0 θkTk(M̃)x.

Assuming λmax = 2, we have M̃ = M− I. Letting K = 1 and θ1 =−θ0, deduce:

y∗ x = Y x = (θ0I−θ0(M− I))x = θ0(2I−M)x. (5.1)

If M is chosen so as to express the topology of the graph and x coincides with the graph features, Equa-
tion (5.1) represents the convolution operation underlying a spectral GCN. M should satisfy three properties for
Equation (5.1) to apply:

i) it should admit an eigenvalue decomposition,

ii) it should be positive semidefinite, and

iii) its spectrum should be upper-bounded by 2.

Examples of M are given in the following subsections.

1A matrix is called Hermitian if its real part is symmetric and its imaginary part skew-symmetric.
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5.2.2 Spectral convolutions for undirected graphs

Let G = (V,E) be an undirected graph with n = |V | without weights nor signs associated with its edges and
let A ∈ {0,1}n×n be its adjacency matrix, with Ai j = 1 if and only if {i, j} ∈ E. The Laplacian matrix of G is
defined as:

L := D−A,

where D := Diag(Ae) is a diagonal matrix and, for each i ∈ V , Dii equal to the degree of node i [38]. The
normalized Laplacian matrix is defined as:

Lnorm := D−
1
2 LD−

1
2 = D−

1
2 (D−A)D−

1
2 = I−D−

1
2 AD−

1
2 .

Lnorm satisfies many properties, among which i), ii) and iii).
The spectral convolution on the undirected graph G introduced by [99] is obtained by letting M := Lnorm

and defining Y as done before. Equation (5.1) becomes:

y∗ x = Y x = θ0(2I− (I−D−
1
2 AD−

1
2 )x

= θ0(I +D−
1
2 AD−

1
2 )x. (5.2)

To alleviate numerical instabilities and exploding/vanishing gradients when training a GCN built on Equa-
tion (5.2), [99] suggest the adoption of the following modified equation with a modified convolution matrix
Ỹ :

y∗ x = Ỹ x = θ0(D̃−
1
2 ÃD̃−

1
2 )x, (5.3)

where Ã := A+ I and D̃ := Diag(Ãe).

Drawbacks The Laplacian matrix L is well-defined only for undirected graphs with (if any) nonnegative
weights. The reason is twofold. i) If G is a directed graph, the adjacency matrix A (and, thus, L) is, in the
general case, not symmetric and, thus, L may not admit an eigenvalue decomposition. ii) If G is directed, the
sum of the rows of A is not necessarily identical to the sum of its columns, and, thus, the matrix D is not well-
defined (as Diag(Ae) ̸= Diag(e⊤A)). If, on the other hand, G is undirected but features edges {i, j} ∈ E with a
negative weight wi j < 0, L is not positive semidefinite in the general case as, even if Diag(Ae) = Diag(e⊤A),
D−

1
2 /∈ IRn×n if Dii < 0 for some i ∈V .

5.2.3 Extending spectral convolutions to directed graphs

Since the adjacency matrix of a directed graph is asymmetric, the Laplacian matrix L defined before does not
enjoy properties i), ii) and iii) and, therefore, it is not possible to directly apply Equation (5.2) to define a
spectral graph convolution. Alternative approaches such as those of [181] and [180] (which split the adjacency
matrix A into a collection of symmetric matrices in such a way that the information regarding the direction of
the edges is not lost) are known, but they typically come at the cost of increasing the size and complexity of the
neural network.

A more direct way to encode the directional information of the edges is resorting to complex-valued matrices
that are Hermitian. Indeed, albeit asymmetric in the general case, Hermitian matrices admit an eigenvalue
decomposition with real eigenvalues. The Magnetic Laplacian is one such matrix. It was first introduced in
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particle physics and quantum mechanics by [117] and then applied in the context of community detection
by [54], in graph signal processing by [66] and, lastly, in the context of spectral GCNs by [222, 224].

Let As := 1
2

(
A+A⊤

)
be the symmetrized version of A and let Ds := Diag(Ase). The Magnetic Laplacian

is defined as the following Hermitian positive semidefinite matrix:

L(q) := Ds−H(q),

with
H(q) := As⊙ exp

(
iΘ

(q)
)
,Θ(q) := 2πq

(
A−A⊤

)
,

where i is the square root of the negative unit, i.e., i =
√
−1, and exp

(
iΘ(q)

)
= cos(Θ(q))+ isin(Θ(q)), where

cos(·) and sin(·) are applied component-wise. Θ is a phase matrix that captures the directional information of
the edges. The parameter q≥ 0 represents the electric charge. It is typically set to values smaller than 1 such as[
0, 1

4

]
as in [224] or

[
0, 1

2

]
as in [55]. If q = 0, Θ(q) = 0 and L(q) boils down to the Laplacian matrix L defined

on the "symmetrized" version of the graph with adjacency matrix As (which, crucially, renders G completely
undirected and its directional information is lost).

For unweighted directed graphs where A∈ {0,1}n×n, H(q) straightforwardly captures the graph’s directional
information. Assuming q = 0.25, we have H(q)

i j = H(q)
ji = 1+ i0 if (i, j),( j, i) ∈ E and H(q)

i j = 0+ i 1
2 and

H(q)
ji = 0− i 1

2 if (i, j) ∈ E ∧ ( j, i) /∈ E. This way, digons (pairs of antiparallel edges) are represented as single
undirected edges in the real part of H(q) whereas any other edge is represented in the imaginary part of H(q)

with a sign encoding its direction.

Drawbacks The Magnetic Laplacian L(q) suffers from two drawbacks. The first Drawback is that L(q) is well-
defined only for graphs with nonnegative weights. Indeed, if (Ds)ii < 0 for some i∈V , in the general case L(q) is

not positive semidefinite and D
− 1

2
s does not belong to IRn×n. The second Drawback is that, even when restricted

to graphs with nonnegative weights, L(q) exhibits a crucial sign-pattern inconsistency if the edge weights are
sufficiently large. Indeed, while for unweighted graphs L(q) always captures the directional information of the
edges by the sign of the imaginary part of H(q), this (as we are about to show) is not necessarily the case for
weighted graphs, where the sign pattern of H(q) can drastically change irrespective of the edge direction by just
scaling the edge weights by a positive constant. To see this, assume, for instance, (i, j) ∈ E and ( j, i) /∈ E with
Ai j = 1. Then, we obtain: H(0.25)

i j = 0.40 ·0.31+ i0.40 ·0.95 and H(0.25)
ji = 0.40 ·0.31− i0.40 ·0.95 by scaling

Ai j by 0.8; H(0.25)
i j =−1+ i0 by scaling Ai j by 2; H(0.25)

i j = 0+ i 5
2 by scaling Ai j by 5; and H(0.25)

i j = 36
2 + i0 by

scaling Ai j by 36. This shows that L(q) is not robust to scaling and that, in it, the edge direction information can
easily be lost. A full example of this behavior is reported in Appendix C.2.

5.3 Our proposal: the Sign-Magnetic Laplacian and SigMaNet

In this section, we extend the theory underlying spectral GCNs by introducing the Sign-Magnetic Laplacian
matrix, a positive semidefinite Hermitian matrix that well captures the directional as well as the weight
information of any directed graph with weights unrestricted in sign nor magnitude without suffering from the
two drawbacks we outlined before.

Detailed proofs of the theorems contained in this section are provided in Appendix C.1.
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Sign-Magnetic Laplacian

We introduce the following Hermitian matrix, which we refer to as the Sign-Magnetic Laplacian:

Lσ := D̄s−Hσ ,

with
Hσ := As⊙

(
ee⊤− sgn(|A−A⊤|)+ isgn

(
|A|− |A⊤|

))
,

where As := 1
2

(
A+A⊤

)
, D̄s :=Diag(|As|e), and sgn : IR→{−1,0,1} is the signum function (applied component-

wise).
Let us illustrate the way the graph topology and its weights are stored in Hσ . Hσ encodes the direction

and weight of every edge (i, j) ∈ E that does not have an antiparallel edge ( j, i) purely in its imaginary part
by Hσ

i j =−Hσ
ji = 0+ i 1

2 Ai j. Pairs of antiparallel edges with Ai j = A ji are encoded purely in the real part by
Hσ

i j =Hσ
ji =

1
2 (Ai j+A ji)+ i0 (as if they coincided with an undirected edge of the same weight). Differently, pairs

of antiparallel edges with Ai j ̸= A ji are encoded purely in the imaginary part by Hσ
i j =−Hσ

ji = 0+ i 1
2 (Ai j +A ji)

if |Ai j|> |A ji| and Hσ
i j =−Hσ

ji = 0− i 1
2 (Ai j +A ji) if |Ai j|< |A ji|.

We define the normalized version of Lσ as:

Lσ
norm := D̄

− 1
2

s Lσ D̄
− 1

2
s = I− D̄

− 1
2

s Hσ D̄
− 1

2
s . (5.4)

One can show that both Lσ and Lσ
norm are Hermitian by construction. Therefore, they admit an eigenvalue

decomposition and, thus, satisfy property i).
Lσ is defined in such a way that, if G is unweighted, it mirrors the behavior of L(q) with q = 0.25:

Theorem 1. If A ∈ {0,1}n×n and q = 0.25, Lσ = L(q).

In contrast with L(q), Lσ does not suffer from drawback #1 as it is well-defined even when G features negative
weights.

With the following two results, we show that Lσ and Lσ
norm enjoy the two remaining properties ii) and iii)

that are required for the construction of a convolution operator:

Theorem 2. Lσ and Lσ
norm are positive semidefinite.

Theorem 3. λmax(Lσ
norm)≤ 2.

With the next result, we show that Lσ encodes the topology of G (including its directions) and the weights
of its edges in such a way that it is always proportional to the magnitude of A (i.e., to the magnitude of graph
weights):

Theorem 4. Given a constant α ∈ IR+, Lσ satisfies the following positive homogeneity property:

Lσ (αA) = αLσ (A),

where Lσ (αA) and Lσ (A) are the Sign-Magnetic Laplacian matrices of a directed graph with, respectively,
adjacency matrix αA ∈ IRn×n and A ∈ IRn×n.

Theorem 4 shows that Lσ is robust to scaling applied to the weights of G. From it, we deduce the following
result, which shows that Lσ does not suffer from drawback #2:
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Corollary 1. The sign-pattern of Lσ is uniquely determined by the topology of G and, thus, Lσ does not suffer
from any sign-pattern inconsistencies.

Lastly, we show that Lσ satisfies the following invariant:

Theorem 5. Consider a weighted digon-free directed graph G = (V,E). Given a directed edge (i, j) ∈ E of
weight wi j, let G′ = (V,E ′) be a graph obtained by reversing the direction of (i, j) in G into ( j, i) and flipping
the sign of its weight by letting w ji = −wi j. Let Lσ (G) and Lσ (G′) be the Lσ matrix defined on G and G′,
respectively. Then:

Lσ (G) = Lσ (G′).

Theorem 5 shows that the behavior of Lσ is consistent with applications where the graph models a flow
relationship in which flipping the sign of an edge coincides with flipping its direction. This applies to, among
others, scenarios where the weights represent flow values such as cash flows, where it is reasonable to assume
that a negative flow from i to j corresponds to a positive flow from j to i. Further details on the impact of this
property are reported in Appendix C.3.

5.3.1 SigMaNet’s architecture

As previously discussed, for the spectral convolution operator to be well defined the Laplacian matrix must
satisfy properties i), ii), and iii). As the hermiticity of Lσ

norm, Theorem 2, and Theorem 3 show that Lσ
norm enjoys

these properties, Equation (5.2) can be rewritten as:

Y x = θ0

(
I + D̄

− 1
2

s Hσ D̄
− 1

2
s

)
x.

Following [99] to avoid numerical instabilities, we apply Equation (5.3) with D̃
− 1

2
s H̃σ D̃

− 1
2

s in lieu of

I + D̄
− 1

2
s Hσ D̄

− 1
2

s , where H̃σ and D̃s are defined based on Ã := A+ I rather than A. We generalize the feature
vector signal x ∈ ICn×1 to a feature matrix signal X ∈ ICn×c with c input channels (i.e., a c-dimensional feature
vector for every node of the graph). Letting Θ∈ ICc× f be a matrix of learnable filter parameters with f filters and
φ be an activation function applied component-wise to the input matrix, the output Zσ ∈ ICn× f of SigMaNet’s
convolutional layer is:

Zσ (X) = φ(D̃
− 1

2
s H̃σ D̃

− 1
2

s XΘ). (5.5)

Since the argument of φ is a complex matrix and, thus, traditional activation functions cannot be directly
adopted, we follow [224] and rely on a complex version of the ReLU activation function which is defined for
a given z ∈ IC as φ(z) = z if ℜ(z)≥ 0 and φ(z) = 0 otherwise. As the output of the convolutional layer Zσ is
complex-valued, to coerce it into the reals without information loss we apply an unwind operation by which
Zσ (X) ∈ ICn× f is transformed into [ℜ(Zσ (X));ℑ(Zσ (X)] ∈ IRn×2 f . To obtain the final result based on the task
at hand, we apply either a linear layer with weights W or a 1D convolution.

Considering, e.g., the task of predicting the class of an edge, SigMaNet is defined as:

softmax
(

unwind
(

Zσ(2)
(

Zσ(1)
(

X (0)
)))

W
)
,

where X (0) ∈ IRn×c is the input feature matrix, Zσ(1) ∈ ICn× f1 and Zσ(2) ∈ ICn× f2 are the spectral graph con-
volutional layers, W ∈ IR2 f2×d are the weights of the linear layer (with d being the number of classes), and
softmax : IRd → IRd is the normalized exponential activation function.
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SigMaNet features a flexible architecture that differs from other spectral GCNs proposed in the literature
(e.g., MagNet [224]) mainly in the way the convolutional layer is defined. As such, it can easily be applied to a
variety of tasks in an almost task-agnostic way (provided that one defines a suitable loss function). As Lσ is
entirely parameter-free, SigMaNet does not require any fine-tunings to optimize the propagation of topological
information through the network, differently from, e.g., DiGraph [180] and MagNet [224].

5.3.2 Complexity of SigMaNet

Assuming, as done in our experiments, that SigMaNet features two graph-convolutional layers with f1 and f2

filters, each defined as in Equation (5.5) and c features per node, the complexity of SigMaNet is O(nc(n+ f1)+

n f1(n+ f2)+Γ), where Γ accounts for the complexity of the last (task-specific) layer. For the four tasks that we
consider in the next section, we have Γ = mtrain f2d for the first three (link sign/direction/existence prediction),
where mtrain is the number of edges in the training set and d is the number of classes, and Γ = n f2d for the last
one (node classification). Such a complexity is quadratic in n and, assuming O( f1) = O( f2) = O(c) = O(d),
also quadratic in the dimension of the feature/class space. Detailed calculations are reported in Appendix C.6.

We remark that, while enjoying a wider applicability due to being able to handle graphs with edge weights
unrestricted in sign), SigMaNet features half the weights of MagNet.

5.4 Experimental Analysis

In this section, we report on a set of computational experiments carried out on four tasks: link sign prediction,
link existence prediction, link direction prediction, and node classification. The experiments are conducted to
assess the performance of SigMaNet on graphs with weights unrestricted in sign on which no other spectral
GCNs can be applied (link sign prediction) and to compare it to other state-of-the-art spectral and spatial
approaches on graphs with nonnegative weights (link existence/direction prediction and node classification).
The code is available on GitHub [56].

For the link sign prediction task, we compare SigMaNet with three categories of methods: i) signed
network embedding: SiNE [198], SIGNet [88], BESIDE [36]; ii) Feature Engineering: FeExtra [110]; and
iii) signed Graph Neural Networks: SGCN [47], SiGAT [81], and SDGNN [82]. For the link prediction and
node classification tasks, we compare SigMaNet with the following three categories of methods: i) spectral
methods designed for undirected graph: ChebNet [45], GCN [99]; ii) spectral methods designed for directed
graphs: DGCN [181], DiGraph [180], DiGCL [182], and MagNet [224], and iii) spatial methods: APPNP [100],
SAGE [73], GIN [211], GAT [191], and SSSNET [76].

Throughout the tables contained in this section, the best results are reported in boldface and the second best
are underlined. Further results and analysis are reported in Appendix C.5.

5.4.1 Datasets

We test SigMaNet on six real-world datasets from the literature: Bitcoin-OTC and Bitcoin Alpha [106];
Slashdot and Epinions [111]; WikiRfa [203]; and Telegram [26]. In order to better assess Sig-
MaNet’s performance as the density of the graph increases, in three tasks we also consider a synthetic set of
graphs generated via a direct stochastic block model Direct Stochastic Block Model (DSBM) with (unlike
what is done in [224]) edge weights greater than 1. These datasets are generated by varying: i) the number of
nodes n; ii) the number of clusters C; iii) the probability αi j to create an undirected edge between nodes i and j
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belonging to different clusters ; iv) the probability αii to create an undirected edge between two nodes in the
same cluster, and v) the probability βi j of an edge taking a certain direction. Each node is labeled with the index
of the cluster it belongs to. A more detailed description of the datasets we use can be found in Appendix C.4.

5.4.2 Link sign prediction

The link sign prediction task is a classification problem designed for graphs with both positive and negative
edge weights. It consists of predicting the sign of the edges in the graph and, thus, for such task SigMaNet is
the only spectral-based GCN that can be used.

For this task, we adopt the Bitcoin Alpha, Bitcoin-OTC, WikiRfa, Slashdot, and Epinions
datasets, which are directed graphs with weights of unrestricted sign (necessary for the task to be applicable)
and of arbitrary magnitude, with the sole exception of the last two, whose weights satisfy A ∈ {−1,0,+1}n×n.
In these five datasets, the classes of positive and negative weighted edges are imbalanced (i.e., nearly 80%
are positive edges). The experiments are run with k-cross validation with k = 5, reporting the average score
obtained across the k splits. Connectivity is maintained when building each training set by guaranteeing that
the graph used for training in each fold contains a spanning tree. Following [82], we remove 20% of the edges
for testing and use the remaining 80% for training.

The results are reported in Table 5.1.2 We observe that SigMaNet clearly outperforms all competitors
on the three datasets whose graphs have unrestricted weights, i.e., Bitcoin Alpha, Bitcoin-OTC, and
WikiRfa. On graphs with unit weights, i.e., Slashdot and Epinions, its performance, while marginally
worse, is still in line with the best methods. This suggests the relevance of Corollary 1 towards SigMaNet’s
performance. We remark that the latter is achieved in spite of SigMaNet being less complex than the deep
neural networks we compared it to here, which feature two sequentially-applied neural networks (one producing
a set of embeddings from which the other one predicts the link sign via a logistics regression).

5.4.3 Link (existence and direction) prediction

We now consider two tasks: existence prediction and direction prediction. In the first one, the model is asked to
predict whether (u,v) ∈ E for a given pair of vertices u,v ∈ V,u ̸= v provided as input. The second one is a
binary task where the model is asked to predict whether a) (u,v) ∈ E or b) (v,u) ∈ E or both.

For both tasks, we only consider graphs with nonnegative edge weights. This allows us to compare
SigMaNet not just to spatial GCNs as done before, but also to state-of-the-art spectral-based ones. As such
GCNs are designed solely for graphs with nonnegative weights, one may expect that the wider applicability of
SigMaNet should come at the price of inferior performances. Our experiments show that this is not the case.

The datasets that we consider are: Telegram, Bitcoin Alpha, Bitcoin-OTC, and synthetic DBSM
graphs. The latter are generated with n = 2500, C = 5, αii = 0.1, βi j = 0.2, with an increasing inter-cluster
density αi j ∈ {0.05,0.08,0.1}. 3 Following [224], in each task we reserve 15% of the edges for testing, 5%
for validation, and use the remaining ones for training. The experiments are run with k-cross validation with
k = 10, preserving graph connectivity.

2Except for SigMaNet, the results are taken from [82]. For SGCN, SiGAT, and SDGNN, we chose to report
the results in [82] rather than those in [77] as the former are better, and, thus, more challenging for SigMaNet.

3As spectral methods, except for SigMaNet, cannot handle graphs with negative weights, to be able to
compare our proposal to them in a setting in which the latter can be applied, in these experiments we pre-process
Bitcoin-OTC and Bitcoin Alpha by removing any edge with a negative weight—in the tables, these
datasets are denoted by a ‘*’.
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Table 5.1 Link sign prediction results assessed with four metrics

Signed
Network Embedding

Feature
Engineering

Graph
Neural Network

Dataset Metric (%) SiNE SIGNet BESIDE FeExtra SGCN SiGAT SDGNN SigMaNet

Bitcoin Alpha

Micro-F1 94.58 94.22 94.89 94.86 92.56 94.56 94.91 95.13
Binary-F1 97.16 96.96 97.32 97.30 96.07 97.14 97.29 97.44
Macro-F1 68.69 69.65 73.00 71.67 63.67 70.26 73.90 74.69

AUC 87.28 89.08 89.81 88.82 84.69 88.72 89.88 92.46

Bitcoin-OTC

Micro-F1 90.95 92.29 93.20 93.61 90.78 92.68 93.57 94.49
Binary-F1 95.10 95.81 96.28 96.53 94.91 96.02 96.47 97.02
Macro-F1 68.05 73.86 78.43 78.26 73.06 75.33 80.17 80.53

AUC 85.71 89.35 91.52 91.21 87.55 90.55 91.24 93.67

WikiRfa

Micro-F1 83.38 83.84 85.89 83.46 84.89 84.57 86.27 86.56
Binary-F1 89.72 90.01 91.17 89.87 90.69 90.42 91.42 91.64
Macro-F1 73.19 73.84 78.03 72.35 75.27 75.35 78.49 78.66

AUC 86.02 86.82 89.81 86.04 85.63 88.29 88.98 90.53

Slashdot

Micro-F1 82.65 83.89 85.90 84.72 82.96 84.94 86.16 85.03
Binary-F1 89.18 89.83 91.05 90.70 89.26 90.55 91.28 90.59
Macro-F1 72.73 75.54 78.92 73.99 74.03 76.71 78.92 77.63

AUC 84.09 87.52 90.17 88.80 85.34 88.74 89.77 89.79

Epinions

Micro-F1 91.73 91.13 93.36 92.26 91.12 92.93 93.55 92.25
Binary-F1 95.25 94.89 96.15 95.61 94.86 95.93 96.28 95.51
Macro-F1 81.60 80.60 86.01 81.30 81.05 84.54 86.10 83.41

AUC 88.72 90.95 93.51 94.17 87.45 93.33 94.11 94.19

Tables 5.2 and 5.3 report the results obtained for the existence and direction prediction tasks, respectively.
The tables show that, when compared to the other 10 methods, SigMaNet achieves the best performance on
9 datasets out of 12 and that it achieves either the first- or the second-best performance on 12 datasets out of
12. SigMaNet is also consistently better than the state of the art on the synthetic datasets. This is likely due to
the positive homogeneity property (Theorem 4) as the synthetic datasets have a significantly wider range of
weights ([2,1000]) than the real-world ones (in Telegram, for instance, the mean and median weight is 2 and
20.7 and only 96.4% of the weights are smaller than 100).

Table 5.2 Accuracy (%) on datasets of the existence prediction task

Existence prediction
Telegram Bitcoin Alpha* Bitcoin-OTC* αi j = 0.05 αi j = 0.08 αi j = 0.1

ChebNet 75.30±1.54 81.93±0.64 82.07±0.38 50.24±0.35 50.21±0.33 50.25±0.34
GCN 67.88±1.39 81.53±0.57 81.65±0.35 50.26±0.30 50.24±0.26 50.18±0.26

APPNP 68.52±5.76 81.62±0.57 81.02±0.51 60.62±0.46 62.61±0.64 63.51±1.93
SAGE 85.36±1.27 82.74±0.48 83.28±0.65 60.92±0.82 61.50±4.05 62.77±1.50
GIN 72.37±3.57 74.64±5.43 77.75±1.15 57.52±4.47 55.50±5.14 55.25±7.14
GAT 78.37±2.11 82.60±0.43 83.43±0.52 55.97±2.58 54.37±0.89 50.24±0.35

DGCN 82.97±2.06 83.13±0.61 83.79±0.36 55.41±3.09 55.70±5.71 56.15±5.65
DiGraph 82.15±1.11 83.24±0.38 84.77±±±0.83 59.09±3.66 57.64±2.35 58.66±3.28
DiGCL 78.80±1.50 80.22±0.77 81.99±0.62 60.69±0.27 60.63±0.18 60.49±0.15
MagNet 86.32±±±1.06 83.26±0.50 84.14±0.44 61.27±0.19 63.81±0.20 64.93±0.43

SigMaNet 84.95±0.95 83.28±±±0.54 84.71±0.39 62.25±±±0.31 64.48±±±0.17 65.49±±±0.31



5.4 Experimental Analysis 73

Table 5.3 Accuracy (%) on datasets of the direction prediction task

Direction prediction
Telegram Bitcoin Alpha* Bitcoin-OTC* αi j = 0.05 αi j = 0.08 αi j = 0.1

ChebNet 78.56±3.53 53.86±1.15 50.06±1.04 50.13±0.30 50.23±0.25 50.13±0.30
GCN 63.86±1.40 55.32±1.12 49.63±1.82 50.05±0.15 50.24±0.29 50.13±0.30

APPNP 75.70±9.08 57.14±1.03 52.61±1.63 66.42±1.35 70.25±1.46 71.93±0.47
SAGE 91.15±0.77 55.82±1.60 55.29±1.23 66.62±1.72 68.84±2.38 69.43±6.79
GIN 80.77±5.01 56.04±1.42 53.31±1.58 60.51±6.88 60.87±9.50 57.66±9.04
GAT 84.06±11.17 55.20±1.06 53.23±0.63 52.71±1.53 57.07±1.50 57.43±1.07

DGCN 89.81±1.20 56.35±0.84 54.06±0.90 55.97±2.58 62.64±6.91 65.53±6.73
DiGraph 87.46±0.84 58.62±1.09 56.37±1.29 65.51±1.71 67.09±1.65 67.43±2.10
DiGCL 82.98±1.72 55.98±0.91 56.42±±±0.59 67.34±0.33 66.92±0.26 66.24±0.29
MagNet 91.65±0.79 56.84±0.74 55.63±0.74 68.50±0.23 72.01±0.33 73.28±0.37

SigMaNet 91.20±±±0.65 56.90±0.60 57.19±±±0.58 69.10±±±0.18 72.74±±±0.23 73.77±±±0.18

5.4.4 Node classification

The node classification task consists in predicting the class label to which each node belongs.
Also for this task, we only consider graphs with nonnegative edge weights, and thus compare SigMaNet not

just to spatial GCNs, but also to the state-of-the-art spectral-based ones. Similarly to the previous two tasks, we
will show that also for this task the wider applicability of SigMaNet does not hinder its performance.

We consider the Telegram dataset4 as well as the three synthetic datasets. Bitcoin-OTC and Bitcoin
Alpha dataset are not considered as they lack label information. We rely on the standard 60%/20%/20% split
for training/validation/testing across all datasets. The experiments are run with k-cross validation, with k = 10.

Table 5.4 Testing accuracy (%) of node classification.

Node classification
Telegram αi j = 0.05 αi j = 0.08 αi j = 0.1

ChebNet 61.73±4.25 20.06±0.18 20.50±0.77 19.98±0.06
GCN 60.77±3.67 20.06±0.18 20.02±0.06 20.01±0.01

APPNP 55.19±6.26 33.46±7.43 34.72±14.98 36.16±14.92
SAGE 65.38±5.15 67.64±9.81 68.28±10.92 82.96±10.98
GIN 72.69±4.62 28.46±8.01 20.12±0.20 20.98±8.28
GAT 72.31±3.01 22.34±3.13 21.90±2.89 21.58±1.80

SSSNET 24.04±9.29 91.04±±±3.60 94.94±1.01 96.77±0.80
DGCN 71.15±6.32 30.02±6.57 30.22±11.94 28.40±8.62

DiGraph 71.16±5.57 53.84±14.28 38.50±12.20 34.78±9.94
DiGCL 64.62±4.50 19.51±1.21 20.24±0.84 19.98±0.45
MagNet 55.96±3.59 78.64±1.29 87.52±1.30 91.58±1.04

SigMaNet 74.23±5.24 87.44±0.99 96.14±±±0.64 98.60±±±0.31

The results are reported in Table 5.4. SigMaNet achieves notable performance on all four datasets, especially
on the synthetic ones as the graph density increases, where being able to rely on both edge direction and
weight information seems to be paramount for correct node labeling. This is confirmed by the extremely poor
performance of ChebNet and GCN, which ignore the edge direction. When comparing SigMaNet to MagNet,
SigMaNet achieves a consistently better performance of about 10% on average. This can be ascribed to the

4We point out that Telegram was also used for node classification in [224], but it is treated as an
unweighted graph. In contrast, in our experiments the original topology of the graph is maintained.
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positive homogeneity property of SigMaNet, which circumvents the sign-pattern inconsistency MagNet suffers
from, which is likely to reduce its ability to adequately propagate the information between nodes. We note that,
while SSSNET outperforms SigMaNet once by about 4%, SigMaNet outperforms SSSNET by about 50% on
Telegram. SSSNET’s poor performance on this dataset is likely due to the lack of seed nodes that SSSNET
needs to identify and target node classes (which are present in the DSBM graphs).

5.5 Conclusion

We have extended the applicability of spectral GCNs to (directed) graphs with edges of weight unrestricted
in sign by introducing the Sign-Magnetic Laplacian matrix. Thanks to its properties, which we rigorously
derived, we embedded the matrix into a generalized convolution operator which is the cornerstone of our
proposed spectral GCN: SigMaNet, which is the first spectral GCN capable of handling (directed) graphs with
weights not restricted in sign nor magnitude. Compared with similar approaches presented in the literature,
SigMaNet also does not suffer from any sign-pattern inconsistencies, making it capable to handle graphs with
arbitrarily large weights (also in a completely parameter-free way and without preprocessing). Thanks to
extensive numerical experiments, we have shown that, on graphs with negative weights where no other spectral
GCN can be applied, SigMaNet’s performance is either better or in line with more complex architectures, and
that, on graphs with nonnegative weights where state-of-the-art spectral GCNs can be employed, SigMaNet’s
performance is consistently either the best or the second-best across all tasks.

Future Work. Extending the Sign-Magnetic Laplacian to multi-graphs and non-digon-free graphs without
information loss (an issue shared by every Hermitian Laplacian matrix), and to hypergraphs, as well as
experimenting with architectures featuring three or more convolutional layers.



6
On-Street Parking Prediction

The increasing number of cars in urban areas and the limited parking space have made it necessary
to address this issue. For these reasons, this chapter focuses on analyzing the parking phenomenon
in urban areas and predicting parking indicators. In particular, we created two quantitative indices -
the Average Parking Time and the Average Number of Vehicles Parked Simultaneously - to describe
parking from the time and quantity perspectives. We employed various Machine Learning and
Deep Learning techniques, including statistical models, convolutional graph networks (GCNs), and
convolutional neural networks (CNNs), to predict the values of these indicators. In our experiments,
we found that the 3D-CLoST model excelled in accurately predicting parking indicators compared
to other techniques. Interestingly, we also observed that statistical models were able to achieve
performance levels that were very close to those of more complex models.

6.1 Introduction

As a result of the increase in motor vehicles, the limited availability of on-street parking and associated traffic
congestion has become a major problem in urban transportation systems. Finding available parking, especially
during peak hours, is a significant challenge faced by cities both big and small such as Paris, New York and even
Santander [141]. The phenomenon known as "cruising for parking" [166] where drivers continuously search
for a free parking spot, is commonly observed in urban areas with high parking demand. This not only causes
delays for drivers, but also contributes to increased traffic congestion, as per an IBM survey, it’s estimated that
around 30% of urban road traffic consists of vehicles searching for parking spaces [83].

The issue of finding a parking spot not only causes inconvenience for drivers, but also harms the environment.
Studies, such as [230], have shown that traffic congestion caused by searching for parking leads to increased
pollution in urban areas. For example, in the city of Los Angeles, cars traveling at low speeds in search of
a parking spot result in nearly 1.61 million vehicle miles traveled annually. This results in wasted time for
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drivers, with an estimated 95,000 hours spent searching for parking, as well as significant fuel consumption,
47,000 gallons (or approximately 178,000 liters) leading to emissions of 730 tons of CO2. A study conducted in
Zurich [32], Switzerland, examines the impact of parking occupancy in the city. The work finds that in a small
area of the city measuring 0.28 km2 and experiencing a demand of 2,687 trips on a typical workday, vehicles
searching for an available parking spot results in 83 additional hours of travel and 1,038 km of additional travel
distance. The most challenging conditions are observed during the lunch hour, with the average time required
to find a free parking spot being 13 minutes. As a result, the difficulty in finding parking amplifies problems
including increased fuel consumption, pollution emissions, traffic congestion, and wasted time, but it also poses
a danger to drivers, as their focus on finding parking can lead to accidents [103].

Prior knowledge of parking information can benefit both motorists and public administration. With this
knowledge, the decision-maker can anticipate and address potential problems, and also suggest new parking
areas to users based on accurate predictions. For this reason, a significant amount of research has been
conducted in the area of parking management, with solutions such as the use of sensors to detect available
parking spaces [140] and user feedback through apps to inform others of available parking spaces [149].
However, these solutions are limited as they rely on real-time data and do not enable the reservation and
allocation of spaces, making them only useful for brief moments and when the user is near the parking area.
Recently, in order to address this problem, predictive models have been developed to effectively predict parking-
related indicators, such as the number of available free parking spaces at a specific time [165]. In addition, the
increased connectivity of urban areas allows for the deployment of sensors to collect a large amount of data that
can be used for analysis and decision-making [17]. This data can also be shared with drivers through mobile
devices or integrated into vehicle infotainment systems [166] for real-time updates.

The introduction of predictive models has contributed to the emergence of two different categories: off-street
and on-street parking prediction [9]. Off-street parking predictions are forecasting tasks performed with data
regarding garages, surface lots, and other dedicated parking facilities. They are generally easier to model than
the same on-street tasks because the information is more readily available and often known in advance. In
contrast, tasks concerning on-street parking use data concerning public streets. Unlike off-street parking, the
number of on-street parking spaces can vary depending on factors such as street width and the presence of
sidewalks, and can be difficult to detect and measure. In these cases, machine learning models can be trained
on data from various sources, such as street cameras, sensors, and GPS data.

As we have just analyzed, the topic of parking is very broad and encompasses a wide range of issues and
factors that can affect parking systems. There are many aspects of this topic that can be studied in order to
gain insights into the different elements that characterize this phenomenon. Unlike previous studies, this work
investigates parking behavior in the city by analyzing and predicting two key indicators: the average parking
time and the average number of vehicles parked simultaneously. These indexes provide valuable insights
into the utilization and occupancy of parking lots in the city. For this reason, in particular, we focus on their
prediction in the context of on-street parking, utilizing data collected from the GPS of vehicles. In order to
make predictions, we used three different approaches commonly found in the literature: statistical models,
CNN models, and GCN models. The purpose of this selection was to evaluate their differences in performance,
as researches have shown that GCN models often outperform CNN and statistical models in the problem of
flow prediction within the city [12, 169], but no comparison of this kind has been conducted before on these
two indicators.

The rest of this Chapter is organized as follows. In Section 6.2 we define the on-street parking prediction
problem and the proposed framework is described in detail. In Section 6.3, the literature on techniques used in
flow and traffic prediction is analyzed. In Section 6.4 we describe the case study and in Section 6.5 data and
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results of experiments are presented and analyzed. Finally, conclusions and recommendations for future work
are discussed in Section 6.6.

6.2 Problem Statement and Methodology

Given a tessellation of the area of interest (i.e. the city) into regions of regular shape and a set of historical
vehicle observations within the city, along with potential other spatial and non-spatial data sources for a
reference time horizon TH of H time points, the parking index prediction problem is defined as the problem of
minimizing the prediction error for the selected parking index at the first time point after TH , denoted as t ′.

In this study, two indexes have been chosen to assess the parking phenomenon: i) the Average parking time,
which reflects how long cars are parked in a particular area, and ii) the Average number of vehicles parked
simultaneously, which can provide insight into the demand for parking lots in a particular area. These two
indexes have a dynamic connotation, meaning that they can vary over time. They enable us to examine the
parking phenomenon from two distinct perspectives: i) duration (average parking time) and ii) quantity (number
of vehicles parked simultaneously).

Below is a comprehensive explanation of the two indices and the procedure for constructing the input
matrices for the algorithms.

6.2.1 Index Definition

For this study, we consider two different indexes:

1. Average parking time (S). This index measures the mean time spent by parked vehicles in each area i
and time slot t. It is defined as follows.

St
i =

∑
V
j=0 st

i j

V t
i

i ∈ {1, ..., I} and t ∈ {1, ...,T} (6.1)

where st
i j is the parking time of vehicle j in area i at each time t, and V t is the total number of vehicles

that at some point in t found themselves parked in i. Figure 6.1 illustrates an example of the index.

H1 H2 H3 H4

Figure 6.1 Example of the average parking time
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2. Average number of vehicles parked simultaneously (B). This index measures the mean number
of vehicles parked simultaneously in each area i and time slot t. It provides an indication of the
simultaneously parked vehicles in different areas of the city. The equation for this index is shown below.

Bt
i =

∑
K
k=0 f tk

i
Kt with i ∈ {1, ..., I} and t ∈ {1, ...,T} (6.2)

where k is the time interval within t in which there are no changes in the number of parked vehicles, f tk

i

is the number of vehicles parked simultaneously in area i during k within t, and Kt is the total number of
changes in parked vehicles number at each time slot t. An example of the index is shown in Figure 6.2.

H2 H3 H4H1

Figure 6.2 Example of the average number of vehicles parked simultaneously

6.2.2 Matrix Definition

The appropriate definition of input is a crucial step when using Deep Learning algorithms, as it forms the
foundation of the model’s ability to learn and make accurate predictions. In this specific case, we are utilizing
both CNN and GCN models. These types of networks have different characteristics and require different types
of input to function effectively. For this reason, we necessarily have to define two different matrices:

1. Transition Matrix

2. Features Matrix

Following, we will analyze in detail the steps for their creation.

Transition Matrix

The transition matrix (L) represents the probability of displacement between different areas within a city. It
highlights the spatial correlation between different regions, remaining constant regardless of the index chosen,
but varying in time. In the context of graph theory, it is known as the adjacency matrix. The size of this matrix
is determined by the number of zones (nodes) in the city, so if there are N (Z×M) regions, the matrix at time t
is of size Lt ∈ RN×N . Then, to take into account the temporal dependence, over the time horizon TH (equally



6.2 Problem Statement and Methodology 79

divided into H time slots of duration ω), the transition representation is extended to a tensor of three dimensions
L ∈ RH×N×N .

Denoting with τ j the travel duration of vehicle j, each displacement is associated with a weight p j, which
can take on two different values:

p j =

1, if ω > τ j

ω

τ j
, otherwise.

(6.3)

Therefore, trips that span across multiple time slots are given a lower weight, reflecting the fact that the
displacement occurred over a longer period of time. As shown in Figure 6.3, vehicle three (green line) has a
travel time shorter than the time slot duration, resulting in p3 = 1. While, vehicles one (red line) and two (blue
line) have travel times longer than ω , thus their weights are computed using the formula ω

τ j
.

H1 H2 H3 H4

Figure 6.3 A schematic example of how weights are determined

The adjacency matrix, represented by the transition matrix, is a crucial component for graph models as it
defines the rule for information propagation within the graph [134].

Features matrix

The values of the feature matrix (F), unlike the transition matrix, vary not only by time but also by the index
used, as it has to contain the information that the models will use to make predictions. The construction of the
feature matrix also varies depending on the model class. In particular:

• In graph-based models, the state of the index at time t can be represented by a matrix Ft ∈ RN×C, where
N is the total number of regions in the city and C indicates the variables considered in the analysis (in
this specific case we consider separately the two indices, so C = 1). Then, to take into account the time
horizon TH (divided into H time points), we obtain a three-dimensional tensor F ∈ RH×N×C.

• In traditional convolutional models, the initial matrix Ft is transformed into a three-dimensional tensor
F
′

t ∈ RZ×M×C, where Z×M is the total number of regions in the city and C is the number of features, in
our case C = 1. Also in this case, to take into account the time horizon TH , we create a four-dimensional
tensor F

′ ∈ RH×Z×M×C.
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6.3 Related Prior Work

The majority of the research and development were focused on addressing a specific problem: the recommenda-
tion of parking spots. One common solution is a recommendation system that uses real-time sensors to detect
the availability of parking spaces and provides this information to users through a mobile phone application
or other mean [140]. For instance, in [214] the authors evaluate a real-time Wireless Sensor Network (WSN)
connected to a web server that collects data on available parking spots and sends it to users via a mobile app.
Similarly, the Intelligent Parking Assistant (IPA) Intelligent Parking Assistant (IPA) is proposed in [13]. This
system allows users to reserve a parking spot, but does not provide predictions on parking spot availability.
Authors in [50] present a simulation-based method called Parking Rank that uses public information about
parking spots, such as price and availability, to rank them using the Page Rank algorithm. However, these
systems are limited in their ability to predict the availability of parking spaces in a specific area or time frame,
as they rely on collecting data in real-time.

As a result, in recent years, several studies have proposed solutions using Machine Learning and Deep
Learning techniques to solve problems that go beyond just recommending parking spots. In particular, related
to the off-street prediction tasks, authors in [192] propose a Neural Network model to predict the occupancy
rate of parking areas and parking spots. For instance, using this model, it is estimated that there is a 75%
chance of finding a parking spot available within 5 minutes in a specific parking area. A study conducted
in [9] compares different techniques such as Bayesian Regularized Neural Network, Support Vector Regression,
Recurrent Neural Network, and Auto-regressive integrated moving average, for forecasting the availability
of parking spots within a specific garage without identifying a specific spot. Their approach is limited to
parking garages with gates (i.e., off-street parking spots) and also includes weather forecasts in their dataset.
Authors in [227] compare Regression Tree, Neural Network, and Support Vector Regression (SVR) methods
for predicting parking occupancy rates. They collected data that focused on information such as the number of
occupied parking spaces. They found that the Regression Tree method was more effective than the other two
methods they evaluated. An approach to predict the number of available parking spots utilizing recurrent neural
networks (RNNs) is proposed in [31]. Authors improve the performance by introducing a Genetic Algorithm
(GA) technique to search the best configuration of RNN. They used the parking data from Birmingham, U.K.,
which includes the parking occupancy rate for each parking area, given the time and date. Authors in [218]
employee the Auto Regressive Integrated Moving Average (ARIMA) model to predict the number of available
parking spaces. The ARIMA model is commonly used for making time series predictions. In their experiment,
they utilized data from the underground parking of a central mall for one month, October 2010. However, using
only one month’s data may not provide a comprehensive understanding of the parking occupancy patterns
as it could vary from month to month, and other factors such as public holidays can also impact the results.
The study in [20] focuses on identifying occupied parking spots using image processing on video footage.
This work uses real-time processing and does not provide any predictions for future occupancy. However, the
approach can be useful for collecting data. Similarly, authors in [175] use computer vision techniques and
camera sensors to detect parking spaces and identify their occupancy status. They carried out various steps
including frame pre-processing, adaptive background subtraction, metrics and measurements, history creation,
results merging for final classification, and parking space status. Like the previous work above, this one is not
related to predicting the future availability of parking spots.

Unlike previous works, authors in [6] deal with the prediction of on-street parking in Santander, a Spanish
smart city. Their approach focuses on forecasting the status of individual parking spaces, with a short-term
prediction horizon of 10–20 minutes. This is based on the observation that during peak hours, the occupancy
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status of parking spots near city centers or shopping malls tends to change frequently within 10-20 minute
intervals, making a longer time horizon less accurate.

Our study also leverages on-street parking data, but unlike prior research that only predicts parking
occupancy, our focus is on developing two indicators to reflect parking characteristics and conducting an
experimental study comparing three diverse groups of predictive models.

6.4 Case Study

A real-world case study was considered for the experimental analysis: RomaCar dataset contains 15 million
records of 28,513 vehicle pick-ups and drop-offs over a one-year period for the city of Rome, Italy. The vehicles
in this dataset are equipped with On Board Unit (OBU) device, that records information related to vehicle
position (latitude and longitude), time, GPS signal quality, distance from the last position, motor status (on,
off, running), heading and instantaneous speed. The OBU device stores GPS measurements with an accuracy
range of 10-30 meters every 2 kilometers traveled or, alternatively, every 30 seconds when the vehicle is on a
freeway or major urban street. This dataset was collected by OctoTelematics in 2013 and the penetration rate of
equipped vehicles in Rome is approximately 6% [116, 135].

The city of Rome has been divided into 2322 regular zones, with markers of 400 meters on each side,
covering an area of approximately 450 km2, extending from the city center to the outer ring road, as shown in
Figure 6.4. The marker size used in this study is consistent with the ones used in other studies [2, 60, 206] and
in our previous study conducted in the city of Milan, which was reported in Chapter 2.

Figure 6.4 Map of Rome’s tessellation

Each record in the dataset, representing a single displacement, is identified by the following parameters:

• idtrajectory. Unique number identifying the trip

• idterm. Unique number identifying the vehicle
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• from_zone_fid. Unique number identifying the departure zone

• from_timedate_gmt. Date and time the trip began

• to_zone_fid. Unique number identifying the arrival zone

• to_timedate_gmt. Date and time the trip ended

• tripdistance_m. Distance traveled in meters

• triptime_s. Duration of the trip in seconds

• stoptime_s. Duration of the stop at the end of the trip in seconds.

6.4.1 Pre-processing

Before using the dataset for experiments, a pre-processing step was conducted. This involved removing all
records that had a value less than 300 seconds for the column stoptime_s. This resulted in the removal of all
stops shorter than 5 minutes from the original dataset. Additional columns were then added to enhance the
available information. Specifically:

• vel_km_h. Calculated as the ratio of distance traveled to time spent, represents the average cruising speed.

• end_stoptime. Calculated by adding the stoptime_s column to the to_timedate column, represents the
time when the stop ends.

• in_out. Column identifying whether the displacement occurred within the city or came from or is headed
outside the analyzed areas. It takes the value 0 if the displacement is within the city, value 1 if the
displacement is incoming, and -1 if the displacement is outgoing the city.

Finally, all records that have value equal to −1 in the in_out column are removed from the dataset. This
choice is due to the fact that we are only interested in analyzing the value of indexes within the city of Rome.
Therefore, at the end of the pre-processing phase, the dataset now consists of approximately 12 million records.

6.4.2 Descriptive Statics

Table 6.1 shows summary statistics for several variables related to parking and travel. These variables include
"Parking Duration", "Speed", "Travel Time", "Trip Distance", and "Parked vehicles simultaneously". The
statistics provided include the mean, median, upper quartile, lower quartile, and maximum value for each
variable. The statistics show that on average, the vehicles in the dataset stay parked for around 7 hours. The
distribution of parking duration is heavily skewed to the left, with 90% of parking durations being less than 15
hours. Since this analysis is focused on vehicles primarily traveling in urban areas, the average speed is 25
km/h with short travel times, around 18 minutes. As a result, the average distance traveled is also relatively
short, at 8.63 kilometers. When analyzing the number of cars parked simultaneously, it appears that in most
cases this number is not excessively high, on average there are about 8 vehicles parked simultaneously with
the 90th percentile of the distribution being equal to 16. The unexpected result may be attributed to the fact
that, as we have already discussed, our dataset represents approximately 6% of all cars in Rome. Overall, this
data suggests that the vehicles in question primarily stay parked for short periods of time, travel relatively short
distances, and tend to have a limited number of vehicles parked in the same location at the same time.
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Table 6.1 Dataset statistics

Variable Mean Median Upper Quartile Lower Quartile Max value
Parking Duration (h) 6.57 1.54 7.40 0.34 872
Speed (km/h) 25.46 21.01 30.93 14.68 143
Trip Time (min) 17.57 13.32 23.02 7.4 179
Trip Distance (kilometer) 8.63 4.62 10 2.1 199
Parked Vehicles simultaneously 8.50 8 12 4 59

6.5 Experimental Analysis

In this section, we discuss the results obtained from the experiments carried out to predict the two parking
indexes: the average parking time and the average number of vehicles parked simultaneously.

6.5.1 Reference Methods

As previously stated, the experiments have been conducted by comparing three different types of approaches:
statistical models, CNN models, and GCN models. For this experiment, most of the models evaluated were
previously introduced in Chapter 4 for the flow prediction problem. Two additional statistical models and two
GCN models were also included in the comparison. Specifically:

ARIMA [28]: this is a statistical model used for time series forecasting. It combines three components:
i) autoregression (AR) component, which models the dependence between an observation and a number of
lagged observations, ii) difference component (I, for "integrated"), which models the dependence between an
observation and the differences between consecutive observations, and iii) moving average (MA) component,
which models the dependence between an observation and a moving average of past errors or residuals.

Prophet [176]: it is a time series forecasting model developed by Facebook. It is based on an additive
model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It is
designed to handle missing data, large outliers and make automatic adjustments for the effects of holidays and
other events. The model is easy to interpret, and can handle time series with strong multiple seasonality and
non-liner growth, which makes it a popular choice for many practitioners.

T-GCN [225]: this is a Deep Learning model that is designed to analyze temporal graph data. It combines
the use of GCN and Gated Recurrent Unit (GRU) to learn representations of the data. GCN is used to extract
features from the graph at each time step, while the GRU part is used to capture the temporal dependencies
between the nodes.

T-SigMaNet: This model has a similar architecture to T-GCN, but with one key difference: instead of
using a standard GCN to extract features from the graph, it uses our solution, SigMaNet [63]. As discussed
in Chapter 5, SigMaNet is based on the Sign-Magnetic Laplacian, a positive semidefinite Hermitian matrix
designed to handle (un)directed graphs with weights unrestricted in sign nor magnitude.

The models proposed for comparison were evaluated using two different metrics, RMSE and MAPE, which
are defined as follows:
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RMSE =

√√√√√ N

∑
n=1

(ŷn− yn)
2

N

MAPE = 100 ·

N

∑
n=1

∣∣∣∣ (ŷn− yn)

yn

∣∣∣∣
N

where ŷn is the predicted parking index for region n at time slot t ′ and N is the total number of regions in the
city.

Each experiment was repeated ten times (replicas) with a different random seed in each replica in order to
reduce the natural stochasticity of learning-based models. Mean and standard deviation are reported for each
metric to give a reliable indication of the general performance of the compared methods. In order to make a fair
comparison, it was necessary to search for the optimal configuration of hyperparameters for all approaches
considered through the Bayesian optimization technique [167]. Finally, in the experiment conducted with the
graph-based models, only one adjacency matrix has been used, computed as the average of all Lt matrices.

Finally, throughout the tables contained in this section, the best results are reported in boldface and the
second best are underlined.

6.5.2 Average Parking Time

The optimized parameters and the relative values used in the training phase are briefly summarized below for
each model.

• ST-ResNet. Optimized parameters: number of residual units, batch size and learning rate. Optimal
values found: 2, 8 and 0.001.

• MST3D. Optimized parameters: batch size and learning rate. Optimal values found: 16 and 0.00014.

• PredCNN. Optimized parameters: encoder length, decoder length, number of hidden units, batch size
and learning rate. Optimal values found: 3, 2, 64, 16 and 0.00062.

• ST-3DNet. Optimized parameters: number of residual units, batch size and learning rate. Best values
found: 4, 32 and 0.0007.

• STAR. Optimized parameters: number of remaining units, batch size and learning rate. Optimal values
found: 6, 8 and 0.001.

• 3D-CLoST. Optimized parameters: number of LSTM layers, number of hidden units in each LSTM
layer, batch size, and learning rate. Optimal values found: 2, 500, 16, and 0.001.

• STREED-Net. Optimized parameters: kernel size, batch size, and learning rate. Optimal values found:
4, 16 and 0.00067.

• T-GCN Optimized parameters: batch size, number of filters, and learning rate. Optimal values found: 8,
64, and 0.01.

• T-DGCN Optimized parameters: kernel size, batch size, and learning rate. Optimal values found: 3, 64
and 0.00086.
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Table 6.2 Results obtained for the Average Parking Time

Model RMSE MAPE
HA 14.92 24.01

ARIMA 8.99 19.39
Prophet 13.53 22.92

ST-ResNet 8.14 ± 0.009 17.53 ± 0.032
MST3D 13.23 ± 0.05 21.19 ± 0.095

3D-CLoST 7.14 ±±± 0.38 9.99 ±±± 0.85
PredCNN 8.32 ± 0.007 18.04 ± 0.105
ST-3DNet 8.14 ± 0.04 17.75 ± 0.034

STAR 8.02 ± 0.011 17.46 ± 0.065
STREED-Net 8.29 ± 0.018 17.53 ± 0.035

T-GCN 7.86 ± 0.011 17.35 ± 0.042
T-SigMaNet 8.12 ± 0.006 17.87 ± 0.015

Table 6.2 reports the results of the average parking time experiment. The best performance is achieved
by the 3D-CLoST model in both metrics, while the HA model has the worst one. The second-best model is
T-GCN, which is 10% and 73% behind 3D-CLoST in RMSE and MAPE, respectively. The best model in this
experiment is based on Convolutional Neural Networks, specifically, it was the only method that combined
both 3D convolutions and LSTMs. This architecture effectively extracts spatial and temporal information from
the dataset, thanks to the capability of 3D convolutions to capture both spatial and temporal information, and
LSTM’s ability to process sequential information. Analyzing the performances of the three statistical models, it
is interesting to see that the simplest one (HA) performs worse than the two more advanced methods (ARIMA
and Prophet). Based on only time series, the three statistical models perform similarly to Deep Learning
models that also take into account spatial relationships between areas. In order to understand this result, two
different aspects must be considered. First, the Coefficient of Variation (CV) [127] of the index, calculated as
CV = Standard Deviation

Mean , is 0.37, indicating low variability. Thus, it is relatively easy for the statistical models to
identify successive values. Second, unlike the displacement prediction problem [223], the analyzed index does
not appear to have a strong spatial correlation. This last observation is supported by the fact that the states of
the vehicular flow in nearby regions are strongly correlated with each other, whereas, the parking index does
not feature such a spatial dependency.

6.5.3 Average number of vehicles parked simultaneously

As before, the optimized parameters and the relative values used in the training phase for each model are briefly
summarized below.

• ST-ResNet. Optimized parameters: number of residual units, batch size and learning rate. Optimal
values found: 4, 8 and 0.00049.

• MST3D. Optimized parameters: batch size and learning rate. Optimal values found: 16 and 0.0003.

• PredCNN. Optimized parameters: encoder length, decoder length, number of hidden units, batch size
and learning rate. Optimal values found: 3, 2, 32, 16 and 0.00047.

• ST-3DNet. Optimized parameters: number of residual units, batch size and learning rate. Best values
found: 6, 16 and 0.0004.
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• STAR. Optimized parameters: number of remaining units, batch size and learning rate. Optimal values
found: 3, 8 and 0.0007.

• 3D-CLoST. Optimized parameters: number of LSTM layers, number of hidden units in each LSTM
layer, batch size, and learning rate. Optimal values found: 2, 150, 16, and 0.0003.

• STREED-Net. Optimized parameters: kernel size, batch size, and learning rate. Optimal values found:
4, 16 and 0.00086.

• T-GCN. Optimized parameters: batch size, number of filters, and learning rate. Optimal values found: 8,
64, and 0.0637.

• T-SigMaNet. Optimized parameters: kernel size, batch size, and learning rate. Optimal values found: 3,
64 and 0.00086.

Table 6.3 Results obtained for the Average number of vehicles parked simultaneously

Model RMSE MAPE
HA 2.57 48.04

ARIMA 2.43 37.84
Prophet 2.44 41.82

ST-ResNet 2.06 ± 0.015 36.12 ± 1.64
MST3D 2.32 ± 0.013 40.08 ± 0.51

3D-CLoST 1.10 ±±± 0.002 31.88 ±±± 0.01
PredCNN 2.49 ± 0.004 42.45 ± 0.89
ST-3DNet 2.01 ± 0.002 33.86 ± 0.33

STAR 2.02 ± 0.005 34.57 ± 0.72
STREED-Net 2.04 ± 0.01 35.09 ± 1.14

T-GCN 2.09 ± 0.03 38.53 ± 0.09
T-SigMaNet 2.08 ± 0.001 40.01 ± 0.03

Table 6.3 reports the results of the Average number of vehicles parked simultaneously. Also in this
experiment, the best performance was achieved by the 3D-CLoST model in both metrics, while, in this case,
the HA model has the worst one. The second-best model, ST-3DNet, performed 82% and 6% worse than
3D-CLoST in terms of RMSE and MAPE, respectively. The performance of the three statistical models is
comparable to Deep Learning models. This result is in line with the previous experimentation and confirms that
spatial relationships play a minor role in the index prediction problem, allowing statistical methods to perform
similarly to Deep Learning models. Furthermore, the coefficient of variation for this index is 0.87, indicating a
relatively stable level of fluctuation. This reduced variability makes it easy for statistical models to accurately
identify and predict the values of the average number of vehicles parked simultaneously in different areas.

6.5.4 Threats to Validity

In this study, we examined parking patterns in Rome by analyzing and predicting the average parking time and
the number of vehicles parked simultaneously. Our findings indicate that simple statistical models can perform
as well as more complex ones. This result can be attributed to two factors regarding the indices: i) they have
low variability, and ii) they do not show a strong spatial relationship. However, the conclusions drawn should
not be considered general. Some important issues can be pointed out:
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• The experimentation was done by considering only two indices, it is necessary to increase the number of
indices to evaluate if the conclusions about low variability and lower impact of spatial relationships can
be generalized to the parking phenomenon.

• The dataset used represents only a very small percentage, around 6%, of the vehicles circulating in the
city of Rome.

• The best model is based on 3D convolution and LSTM, but no experimentation was conducted to
determine which component is mainly responsible for the performance obtained.

Furthermore, it is worth noting that the 12 models proposed in the comparison were not specifically designed
for this type of task, but all models except the statistical models were originally intended for traffic prediction.
Although both tasks are spatio-temporal problems, the displacement prediction problem, as we have already
analyzed above, has a strong spatial continuity component that is missing in parking indices.

Finally, the experimental campaign could be extended to other state-of-the-art architectures and techniques,
such as transformer-based models.

6.6 Conclusion

The field of parking is becoming increasingly important within the Smart Mobility landscape, as it is a research
area with significant social impact. However, it poses many challenges due to its complexity and lack of
exploration, especially regarding on-street parking prediction. In this chapter, we first examined two indices
(average parking time, and average number of vehicles parked simultaneously) that provide valuable insights
into the utilization and occupancy of parking lots in the city. Then, through an experimental campaign, we
compared three different families of prediction approaches (statistical models, CNN models and GCN models)
for predicting these two indices to evaluate the models’ performance in this specific context. The results indicate
that 3D-CLoST consistently outperforms other models in predicting both indexes, while the performance of
statistical models is on par with the other two types of models. This is a direct result of the high significance of
the temporal component, as opposed to the spatial component, shown by the analyzed indices.

Future Work. Extending the experimental campaign by testing the model on other indices and datasets
from different cities. This would provide a broader understanding of the model’s performance and its ability to
generalize to different urban environments. Furthermore, it would be valuable to explore other cutting-edge
Neural Network architectures and techniques, such as transformer-based models, to determine their potential
for enhancing performance in this research field.
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Conclusion and Outlook

Smart mobility solutions include a wide range of technologies and strategies, such as autonomous vehicles,
intelligent transportation systems, and shared mobility alternatives. These technologies have the potential to
greatly improve the efficiency and safety of our transportation systems, by reducing congestion and accidents,
and making it easier for people to move. Moreover, Smart Mobility can reduce emissions and improve air
quality as well as provide greater accessibility for all members of society, including those with disabilities or
limited mobility. The benefits of Smart Mobility make it a worthwhile investment for cities and governments.
In light of the ongoing development of advancing technologies and the growing demand for more efficient and
sustainable transportation, it has the potential to play a crucial role in shaping the future of transportation. As a
result, Smart Mobility is a valuable solution to improving the way people move, and it contributes to a more
sustainable, livable, and efficient future.

In particular, this work focuses on bridging Artificial Intelligence and Transportation Science by delivering
theoretical contributions as well as novel technical solutions to mobility problems. We demonstrated how the
proposed solutions outperform the literature and try to answer some of the currently open research questions. In
Chapters 2 and 3, emphasis is initially placed on data processing and explaining mobility data. In Chapters 4, 5,
and 6, the focus shift towards the implementation and application of advanced Deep Learning techniques
capable of better capturing spatial and temporal dependencies.

In Chapter 1, we identified several key research questions that shaped the direction of this thesis. In order to
provide a comprehensive overview of our findings and demonstrate their relevance, we provide here specific
answers to each question.

Research Question 1. Can we predict the level of adoption of shared vehicles in a city, by analyzing and
identifying the factors that drive their usage?

In Chapter 2 and in Fiorini et al. [61], we demonstrate that the adoption of shared vehicles, specifically electric
mopeds, can be predicted by considering certain factors, other than those related directly to users. Indeed,



89

our findings suggest that the use of e-mopeds is also driven by elements related to the built environment and
demographic aspects of each neighborhood. In details, we considered four key features: three concerning
the geographic characteristics (distance from center, walkability, concentration of places) and one about the
population (education index). The results obtained on a real-world case study in the urban city of Milan reveal
the strong impact these factors have in determining the adoption of e-moped sharing services.

Research Question 2: Can we create an algorithm that can efficiently identify urban communities, by consider-
ing a set of factors?

Characterizing urban communities is essential for understanding citizens’ needs and neighborhood-wise dy-
namics. In Chapter 3 and in Fiorini et al. [60], we provide a multi-objective optimization algorithm that is
able to identify behavioral communities by considering several factors, including population mobility patterns,
neighborhood structural characteristics (via Map Embeddings), and distance between areas. The efficacy of
this approach is validated through a practical application of the algorithm on a real-world dataset. The results
showcase the effectiveness of the algorithm in defining meaningful communities.

Research Question 3: Can we develop and efficiently implement novel Deep Learning architectures that
enhance the ability to extract information from spatio-temporal mobility data?

Predicting the number of incoming and outgoing vehicles for different city areas is challenging due to the
nonlinear spatial and temporal dependencies typical of urban mobility patterns. In Chapter 4 and in Fiorini et al.
[59, 62], we propose two different Deep Learning methods: i) 3D-CLoST, a model that exploits the synergy
between 3D convolution and LSTM networks, and ii) STREED-Net, a novel autoencoder architecture featuring
time-distributed convolutions, cascade hierarchical units and two distinct attention mechanisms (one spatial and
one temporal). The idea behind these two architectures is to find a way to effectively captures and exploits
complex spatial and temporal patterns in mobility data for the short-term flow prediction problem. The results
of an extensive experimental analysis, conducted on three real-world datasets, indicate that one of our proposals,
STREED-Net, improves the state of the art for this specific task.

Research Question 4: Can spectral Graph Convolutional Networks solve mobility problems that involve the
management of directed graphs with both positive and negative weights of arbitrary magnitude?

In Chapter 5 and in Fiorini et al. [63], we introduce SigMaNet, a generalized Graph Convolutional Network
capable of handling both undirected and directed graphs with weights not restricted in sign nor magnitude. The
cornerstone of SigMaNet is the Sign-Magnetic Laplacian (Lσ ), a new Laplacian matrix that we introduce ex
novo in this work. Lσ allows us to bridge a gap in the current literature by extending the theory of spectral
GCNs to (directed) graphs with both positive and negative weights. Lσ exhibits several desirable properties,
including the encoding of the edge direction and weight in a clear and natural way that is not negatively affected
by the weight magnitude. These properties are not enjoyed by other Laplacian matrices, on which several
state-of-the-art architectures are based. Lσ is also completely parameter-free, which is not the case of other
Laplacian operators such as, e.g., the Magnetic Laplacian. Our proposed approach’s versatility and performance
are amply demonstrated via computational experiments. Indeed, our results show that, for at least a metric,
SigMaNet achieves the best performance in 15 out of 21 cases and either the first- or second-best performance
in 21 cases out of 21, even when compared to architectures that are either more complex or that, due to being
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designed for a narrower class of graphs, should—but do not—achieve better performance.

Research Question 5: Can Deep Neural Networks and Statistical Models accurately predict the indices that
describe the pattern of city parking?

As a result of the increase in motor vehicles, the limited availability of on-street parking and associated
traffic congestion has become a major problem in urban transportation system. There are several elements
that characterize the phenomenon of parking that can be studied. In Chapter 6, we compared three different
categories of prediction models, namely statistical models, CNN models, and GCN models, to address the
parking index problem of predicting the value of a specific parking indicator. Specifically, two indices that are
able to evaluate the parking phenomenon were used: average parking time and average number of vehicles
parked simultaneously. The results showed minimal performance variation among the different model cate-
gories, even if our proposed model, 3D-CLoST, consistently outperformed the others. This limited diversity
in results can be attributed to two factors related to the indices: i) low variability, and ii) weak spatial relationship.

Our examination of Smart Mobility has emphasized the critical role of AI in addressing mobility challenges:
AI offers the potential to resolve persistent problems in the field. However, we have also observed that some
issues, like displacement prediction, receive more attention, while others are neglected due to a lack of data
or limited interest. To ensure that AI solutions for Smart Mobility are effective, it is important to take a more
comprehensive approach that seeks a trade-off between algorithm performance and other critical factors such as
data quality, explainability, and generalizability. Furthermore, the development of AI-based solutions for Smart
Mobility requires close collaboration between researchers, industry experts, and policymakers. The integration
of AI into the field of mobility requires a thorough understanding of the challenges and opportunities, as well
as the technical, regulatory, and social implications. Collaboration is crucial to develop and apply AI to achieve
the goals of Smart Mobility, such as increased efficiency, accessibility, safety, and sustainability.

7.1 Outlook

Despite the significant progress made in this field, there are still a number of challenges and opportunities
for further research. Below are reported some of the main challenges that need to be addressed in the field
of Smart Mobility. Many time-sensitive applications such as connected vehicles, smartphone applications,
and many more in a smart city context require real-time or near-real-time data analytics. New analytic
frameworks that allow advanced data analytics, as well as streaming data analytics, are required for these
applications. Therefore, designing an effective data-driven approach to adapt the time-series model [158] for
next-generation mobile, IoT, or resource-constrained devices and applications could be another major issue
in the area. Implementing efficient solutions for dynamic routing in transportation [174] is crucial for the
success of Smart Mobility systems. Several key steps are involved in this process, such as estimating user travel
demands and optimizing resources. To ensure citizens have accurate, up-to-date information on the best routes
and modes of transportation, considering factors such as traffic, weather, and disruptions, real-time routing, and
scheduling is essential. In certain circumstances, the typical Machine Learning techniques may not be effective
in building an analytical city model. It depends on data characteristics, problem nature, as well as target
solution. In a rule-based system, for example, the association rule learning technique [1] extracts redundant
generation from the data, making the decision-making process complicated and unproductive [157]. Therefore,
a deeper understanding of the strengths and limitations of existing learning methods is required, and proposing
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new techniques as well as their ensembles could be a promising direction for data-driven Smart City research.
Lastly, the first/last mile problem [177], which is the lack of connectivity between public transportation and
an individual’s starting/destination point. This disconnect can greatly impact the overall convenience and
efficiency of public transportation, making it difficult for individuals to fully utilize the available services. To
address this, efficient smart mobility solutions must provide door-to-door connectivity, regardless of the mode
of transportation.
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[175] Paula Tătulea, Florina Călin, Remus Brad, Lucian Brâncovean, and Mircea Greavu. An image feature-
based method for parking lot occupancy. Future Internet, 11(8):169, 2019.

[176] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45,
2018.

[177] Miles Tight, Fiona Rajé, and Paul Timms. Car-free urban areas: A radical solution to the last mile
problem or a step too far? Built Environment, 42(4):603–616, 2016.

[178] Leonardo Tolomei, Stefano Fiorini, Alessandro Ciociola, Luca Vassio, Danilo Giordano, and Marco Mel-
lia. Benefits of relocation on e-scooter sharing - a data-informed approach. In 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), pages 3170–3175, 2021.

[179] Yongxin Tong, Yuqiang Chen, Zimu Zhou, Lei Chen, Jie Wang, Qiang Yang, Jieping Ye, and Weifeng
Lv. The simpler the better: A unified approach to predicting original taxi demands based on large-scale
online platforms. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, page 1653–1662, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450348874.

[180] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David S. Rosenblum, and Andrew Lim. Digraph
inception convolutional networks. Advances in Neural Information Processing Systems, 2020-December
(NeurIPS):1–12, 2020. ISSN 10495258.

[181] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S. Rosenblum, and Andrew Lim. Directed graph
convolutional network, 2020.



Bibliography 102

[182] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu Wang. Directed
graph contrastive learning. Advances in Neural Information Processing Systems, 34:19580–19593, 2021.

[183] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotempo-
ral features with 3d convolutional networks. In Proceedings of the IEEE international conference on
computer vision, pages 4489–4497, 2015.

[184] Tien Dung Tran, Nicolas Ovtracht, and Bruno Faivre d’Arcier. Modeling bike sharing system using built
environment factors. Procedia CIRP, 30:293–298, 2015. ISSN 2212-8271. 7th Industrial Product-Service
Systems Conference - PSS, industry transformation for sustainability and business.

[185] Eleni Tsironi, Pablo Barros, Cornelius Weber, and Stefan Wermter. An analysis of convolutional long
short-term memory recurrent neural networks for gesture recognition. Neurocomputing, 268:76 – 86,
2017. Advances in artificial neural networks, machine learning and computational intelligence.

[186] TU Wienn. European Smart Cities 4.0 (2015). Accessed March. 27, 2023 [Online]. URL https:
//www.smart-cities.eu/?cid=01&ver=4.

[187] Sabine Kastner Ungerleider and Leslie G. Mechanisms of visual attention in the human cortex. Annual
review of neuroscience, 23(1):315–341, 2000.

[188] United Nation Climate Change. The Paris Agreement. Accessed March. 27, 2023 [Online]. URL
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.

[189] United Nations Department of Economic and Social Affairs. 68% of the world population projected to
live in urban areas by 2050, says UN. Accessed March. 27, 2023 [Online]. URL https://www.un.org/
development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html.

[190] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.
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A.1 3D-CLoST: Impact of the Heuristic For Volume Construction

Figure A.1 Results of 3D-CLoST and its variants on NYCBike

To identify an optimized volume configuration for the two case studies, as explained in the Equation 4.3.1,
we have started from the results extrapolated from the autocorrelation chart and explored the neighborhood
of the resulted initial configuration to identify possible better volume composition. As regards the New York
City dataset (with 1 hour time period), the volume suggested by the analysis of the autocorrelation chart is the
[Ft−1,Ft−2,Ft−3,Ft−167,Ft−168,Ft−169], while, for the data set of BJTaxi (with 30 minute time period) volume
is composed of [Ft−1,Ft−2,Ft−46,Ft−47,Ft−48,Ft−49,Ft−50].

Taking into consideration the periods (closeness, recent and distant) identified by the autocorrelation
analysis, we have decreased the number of time intervals considered by 1, 2 and 3 hours for closeness period
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and 1 - 6 for the other two periods. For example, the configuration with the maximum number of frames in the
NYCBike dataset is given by [Ft−1, ...,Ft−6,Ft−164, ...,Ft−172].

The best configuration, based on the performance obtained, with regard to bicycles in New York is
[Ft−1,Ft−2,Ft−168] and [Ft−1,Ft−2,Ft−46,Ft−47,Ft−48,Ft−49,Ft−50] for the taxis in Beijing. Interestingly, for
the BJTaxi case study the best volume configuration coincides with the one suggested by the autocorrelation
analysis, whereas for NYCBike the best results are achieved using a configuration contained in the initial one
but with fewer frames.

Starting from the best configuration, we have separately assessed the impact of the various components on
the prediction quality. As for New York, two different configurations are compared:

• 3D-CLoST_2H: the volume entered as input is composed of [Ft−1,Ft−2]

• 3D-CLoST_2HW: the volume entered as input is composed of [Ft−1,Ft−2,Ft−168]

Similarly, for Beijing taxis:

• 3D-CLoST_D: the volume entered as input is composed of [Ft−1, ft−2]

• 3D-CLoST_2HD: the volume entered as input is composed of [Ft−1,Ft−2,Ft−46,Ft−47,Ft−48,Ft−49,Ft−50]

Notice that it is impossible to analyze the volume configuration consisting only of the distant (weekly)
period in New York and only of closeness in Beijing without altering the kernels, whose depth coordinate are
set to 2 and 3, respectively.

Figure A.2 Results of 3D-CLoST and its variants on BJTaxi

Figure A.1 shows how the 3D-CLoST_2HD configuration achieves the best performance (even if the
difference is statistically significant only compared to 3D-CLoST_2H). This result seems to demonstrate that
the use of all frames increases the performance capacity of the framework when the value of the information
added compensates for the increased complexity of the model. Figure A.2 shows the comparison between
the different volume configurations on the Beijing taxi dataset. As it can be seen from the graph, the 3D-
CLoST_2HD configuration, i.e. the volume that brings together the frames of the previous hours and the
previous day, reaches the lowest RMSE even if the difference with the RMSE of the configuration with only
the hour frames previous to the hour to predict, is only marginally significant. This result highlights how the
information contained by the closeness frames is the most important for a high-quality forecast, even if pieces
of information from the daily period component can contribute to improving the overall performance.
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A.2 STREED-Net: Ablation Study

In this section, an ablation study conducted on STREED-Net is presented, in which variations in the input
structure and in the network architecture are analyzed. The study, for reasons of space, refers only to BikeNYC
case study and does not involve the full combinatorics of all possible variants of the proposed model but aims to
assess the impact on performance metrics of some parameters (namely, the number of input time points n) and
specific architectural choices (viz., long skip connection, attention blocks, and external factors input branch),
while maintaining all other conditions. More precisely, in what follows, STREED-Net is compared against the
5 different variations described below:

• STREED-Net_N3. Same architecture as STREED-Net, but input volumes with 3 frames
([Xt−3,Xt−2,Xt−1)].

• STREED-Net_N5. Same architecture as STREED-Net, but input volumes with 5 frames
([Xt−5,Xt−4,Xt−3,Xt−2,Xt−1]).

• STREED-Net_NoLSC. STREED-Net by removing the long skip connection between encoder and
decoder.

• STREED-Net_NoAtt. STREED-Net without the attention blocks.

• STREED-Net_NoExt. STREED-Net without the external factors.

Notice that the study does not consider the variations with n = 1 and n = 2 as such values would not allow
the network to capture meaningful temporal patterns between traffic flows.

Table A.1 reports the results of the ablation study conducted. Each data point in the table has been obtained
performing 10 times the training procedure for each model variation changing the random seed, and evaluating
the resulting network on the test set. The mean and standard deviation are reported.

Table A.1 Results obtained from ablation studies.

Model RMSE MAPE APE
STREED-Net_N3 4.75 ± 0.04 21.18 ± 0.18 3.28 ·105 ± 2.73 ·103

STREED-Net_N5 4.74 ± 0.03 21.03 ± 0.22 3.26 ·105 ± 3.43 ·103

STREED-Net_NoLSC 4.84 ± 0.04 21.53 ± 0.24 3.33 ·105 ± 3.71 ·103

STREED-Net_NoAtt 4.78 ± 0.04 20.95 ± 0.27 3.25 ·105 ± 4.20 ·103

STREED-Net_NoExt 4.76 ± 0.04 20.99 ± 0.29 3.26 ·105 ± 4.55 ·103

STREED-Net 4.67 ± 0.03 20.85 ± 0.15 3.23 ···1110005 ± 2.31 ···1110003

The results show that regarding the time horizon, for the BikeNYC case study, n = 4 allows the model to
obtain better results. This means that, considering the particular setup, for the city of New York 4 hours of
data allow to predict more accurately the dynamics of bicycle mobility whereas considering a greater amount
of information (n = 5) would reduce the accuracy of the network. It is plausible to believe that considering a
larger number of temporal instants would lead the network to grow in the number of parameters to be trained
and thus require a larger amount of data to identify possible longer-term patterns.

From the architectural point of view, the two components attention block and long skip connection, confirm
their importance in improving the performance of the proposed model, accounting for a 2.36% and 3.64%
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increase in RMSE, respectively. In particular, as regards the attention block, not only STREED-Net reaches
lower average error values, but also the standard deviation is reduced, proving that the attention blocks are
effective in helping the network single out the most meaningful information and in making the training process
more stable. Finally, the experiment shows also a strong impact of the long skip connection mechanism, which,
as illustrated in Section 4.4.5, connects the encoder to the decoder to convey fine-grained details through
the network.
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B.1 Benefits of Relocation on E-scooter Sharing - a Data-Informed
Approach

The cost of the system setup, the short lifetime of e-scooters, and the need for frequent battery charging
operations call for system optimization to maximize fleet utilization, thus revenues [79]. To this extent,
relocation policies play a fundamental role in optimizing the availability of e-scooters and satisfying users’
mobility demands. Notice that relocation in the context of e-scooters has peculiar characteristics:

• A single worker can relocate multiple e-scooters at the same time.

• Given the typical short trip distance, customers look only for nearby e-scooters, making the spatial
granularity much more fine-grained than for, e.g., car-sharing systems.

• The mobility demand is much more variable, given the more occasional usage of e-scooters [33, 229, 39].

This study examines, in terms of system performance and costs, the benefits of improving relocation by
using a prediction system. What is the benefit in terms of mobility demand that the system can meet? Do
these benefits bring additional profit? What is the importance of predicting e-scooters’ shortages and surpluses
accurately? To answer these questions, two models that predict the expected demand at a given time and place
are trained. Then a real trace is produced using a simulator1, comparing the performance of the system. In a
nutshell, an observed rental demand at a given time is simulated. If an e-scooter exists nearby, it is rented and
made available at the final location at the return time. If no scooter exists, on the other hand, it is recorded as an
unfulfilled trip, i.e., a request from a user that cannot be fulfilled due to the lack of a vehicle. The system also
simulates the battery charging process via battery swap. The case studies analyzed involve actual trips made
available by the municipalities of Austin and Louisville.

1https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-shared-e-mobility-in-urban-scenarios/

https://smartdata.polito.it/odysseus-an-origin-destination-simulator-of-shared-e-mobility-in-urban-scenarios/
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Table B.2 Summary of system parameters and costs

Description Var Value
Scooter battery capacity B 425 Wh [39]
Scooter efficiency Es 11 Wh/km [39]
Scooter cost (per year) cs 560 $/unit a

Unlock fee f0 1 $/trip a

Per minute fee f1 0.30 $/minute a

Relocation worker cost cw 15 $/hour b

Relocation vehicle cost c f 9.6 $/100 km cd

Relocation speed ws 20 km/h
Fleet size N variable
Number of relocation workers nw variable

ahttps://atommobility.com/blog-1/how-profitable-is-scooter-sharing-business
bhttps://www.indeed.com/cmp/Bird-Rides-Inc./salaries
chttps://www.globalpetrolprices.com/USA/diesel_prices/
dhttps://www.fueleconomy.gov/feg/best/bestworstEPAtrucksNF.shtml

B.2 Heuristic for scheduling relocations

Given the lists of pick-up and drop-off zones, it is necessary to define which relocation operations shall be
implemented. This depends on the capacity of the system, e.g., the number of workers. Therefore, a simple
greedy strategy is chosen to define which e-scooters to move from which zone to which zone.

First, each worker is associated to a single pick-up zone and to a single drop-off zone2. Iteratively, the
pick-up a area with the largest positive Delta (i.e., the one with the largest expected abundance of e-scooters)
and the drop-off b with the lowest negative Delta (i.e., the one with most predicted lack of e-scooters).
Then the worker closest to the pick-up zone is identified and made to move a number of e-scooters equal to
min(∆(t,a), |∆(t,b)|,max_capacity). The worker will then remain idle in the redeployment zone until the next
redeployment program. max_capacity models the maximum number of e-scooters each worker can move, e.g.,
modeling the capacity of the support vehicle. To simplify the scenario, in the following, we set it very large and
comment on this limit in the result section.

B.3 Datasets and Parameters

Table B.1 Dataset characteristics

City N scooters Avg trip dur. Avg trip dist. N zones N trips train N trips sim
Austin 8 350 899 s 1 288 m 2 794 4 642 309 527 776

Louisville 850 1 031 s 1 593 m 720 199 646 53 065

The train set, for both datasets, consists of data from August 2018 to August 2019. As a result, September 2019
trace was used for simulation and results collection. Dataset characteristics are summarized in Table B.1. As it

2This heuristic can be easily optimized by performing an actual path optimization based on relocation needs,
with multiple pick-up and drop-off zones associated to a single worker.

https://atommobility.com/blog-1/how-profitable-is-scooter-sharing-business
https://www.indeed.com/cmp/Bird-Rides-Inc./salaries
https://www.globalpetrolprices.com/USA/diesel_prices/
https://www.fueleconomy.gov/feg/best/bestworstEPAtrucksNF.shtml
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can be seen, Austin e-scooter system is much bigger than Louisville. Moreover, this is reflected also in a much
more heterogeneous temporal and spatial demand.

In the simulations, the following indexes are analyzed:

• Satisfied demand. Percentage of trips that are completed overall trip requests.

• Marginal profit. Revenues from satisfied trips minus costs of relocation and fleet. In this case, however,
costs related to other aspects are not considered.

Table B.2 summarizes the system parameters that we keep fixed through all simulations, while we vary the
fleet size N and number of workers nw. Both affect the number of satisfied trips – thus the revenues – and costs.

Given the set of satisfied rentals SatTrips in one month, revenues Rtot are:

Rtot = ∑
i∈SatTrips

( f0 + f1 ·δ ti). (B.1)

The costs Crel for the relocation set Rels account for the worker’s and relocation vehicles costs:

Crel = ∑
j∈Rels

(
cw

ws
+ c f

)
[d(b j−1,a j)+d(a j,b j)] (B.2)

where d(a j,b j) is the distance between the pick-up and drop-off zone of relocation j, and d(b j−1,a j) is
the distance between worker’s previous position and the next pick-up zone. Every worker is assigned a single
relocation task every hour, so we take into consideration only the actual time to complete the relocation. As a
result, the marginal profit for the month becomes:

P = Rtot −Crel−N · cs/12 (B.3)

where N · cs is the yearly cost of the e-scooter fleet. Notice that the chosen parameters (Table B.2) can have
a significant influence on the revenues and marginal profit.

B.4 Extensive analysis on Austin and Louisville case studies

A detailed analysis of the two case studies is provided below.
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B.4.1 Austin case study
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Figure B.1 Austin case study.

The metrics of interest (satisfied demand and monthly marginal profit) are evaluated by simulating different
scenarios: the size of the N fleet and the predictive model used (baseline or DNN) are varied. Figure B.1a,
shows the percentage of satisfied trips to Austin, setting nw = 1 and nw = 5 workers. The solid black curve
shows the results without relocation. A system with a small fleet would not be able to meet user demand. With
N greater than 6000, the system can meet about 40% of the demand, and increasing the number of e-scooters
has little benefit.

Relocation significantly increases satisfied demand, especially for small fleets. Notice how with relocation,
the same satisfied trip percentage can be obtained with a much smaller fleet size than without relocation.
Intuitively, it is fundamental to move e-scooters where customers are looking for them. DNN offers the best
results, improving by up to 42% the satisfied demand w.r.t. no relocation. Even for large fleet size, relocation
allows 10% improvements in satisfied demand. Interestingly, nw = 1 suffices with the accurate predictions
offered by DNN, while the rough prediction based on averages requires more relocation operations every hour
to see some benefits. One relocation per hour is already enough to improve system performance, provided the
pick-up and drop-off zones are accurately predicted using the DNN model. This is confirmed by observing
how many e-scooters are moved for each relocation/worker. With N = 8000 and nw = 1, on average we move
28.4 vehicles with the DNN Driven predictions, while this reduces to 5.0 for the baseline ones. With nw = 5
workers, the e-scooters moved for each relocation reduces to 10.2 for DNN and 3.1 for baseline. The additional
workers move few e-scooters, bringing little overall benefits for DNN.

Figure B.1b shows the monthly marginal profit. For all systems, marginal profit increases with N when this
is beneficial to improve the satisfied demand (left part of the figure). On the contrary, an excessive increase
in fleet size increases costs, reducing profits (right side of figure). Focusing on nw = 1 with DNN, the system
results are always more profitable than a system with no relocation. That is, the extra-cost of relocation always
pays-off in terms of additional revenues. With N = 4000, we move on average only 415 e-scooters per day.
This allows a difference in marginal profit of 670 000 $ with respect to the case without relocation, for which we
obtain a negative marginal profit. This is not true for the baseline model: as soon as N > 5000, the additional
revenues are totally consumed by the relocation costs. With nw = 5, revenues would reduce w.r.t. no relocation
even for the DNN predictions, highlighting the need to accurately balance the benefits and costs of workers.
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B.4.2 Louisville case study
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Figure B.2 Louisville case study

Figure B.2a shows the percentage of satisfied requests in Louisville. Even without relocation, the satisfied
demand grows up to 80% with 1000 scooters, and it increases by about an additional 10% with relocation.
Here, the prediction based on the baseline works similarly to the DNN predictions, especially for N > 600.
This happens because the system already performs quite well, and there are few areas that require a relocation
operation. Regarding the marginal profit, Figure B.2b shows that the profit is maximum without relocation.
This is because relocation results are too expensive compared to the extra revenues, and thus it is not sustainable
with few trips in a city.

If the reader wishes to further explore the topic discussed in this appendix, they can refer to [178].



C
Appendix C

C.1 Properties of the Sign-Magnetic Laplacian

This section presents the proofs of theorems.

Theorem 1. If A ∈ {0,1}n×n and q = 0.25, we have Lσ = L(q).

Proof. As A ∈ {0,1}n×n, D and D̄ coincide. Let us consider Hσ and H(q). For each i, j ∈ V , if Ai j = 1, we
have Hσ

i j = −Hσ
ji = 0+ i 1

2 = H(0.25)
i j = −H(0.25)

ji ; if Ai j = 0, we have Hσ
i j = Hσ

ji = 1+ i0 = H(0.25)
i j = H(0.25)

ji .
Thus, we have Lσ = L(0.25) and the claim follows.

Theorem 2. Lσ and Lσ
norm are positive semidefinite.

Proof. Following the definition of the Sign-Magnetic Laplacian, we have ℜ(Lσ ) = D̄s−As⊙ (ee⊤− sgn(|A−
A⊤|)) and ℑ(Lσ ) = −As⊙ sgn(|A| − |A⊤|). As ℜ(Lσ ) is symmetric and ℑ(Lσ ) is skew symmetric by con-
struction, Lσ is Hermitian. Since Lσ is Hermitian, x∗ℑ(Lσ )x = 0 holds for all x ∈ ICn. As, by construction,
D̄s = Diag(|As|e) and As is symmetric, the following holds for all x ∈ ICn: 2x∗ℜ(Lσ )x

= 2
n

∑
i, j=1

(D̄s)i jxix∗j −2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

= 2
n

∑
i=1

(D̄s)iixix∗i −2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

= 2
n

∑
i, j=1
|(As)i j||xi|2−2

n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

=
n

∑
i, j=1
|(As)i j||xi|2 +

n

∑
i, j=1
|(As) ji||x j|2

−2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))
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=
n

∑
i, j=1
|(As)i j||xi|2 +

n

∑
i, j=1
|(As)i j||x j|2

−2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

=
n

∑
i, j=1
|(As)i j||xi|2 +

n

∑
i, j=1
|(As)i j||x j|2

−2
n

∑
i, j=1
|(As)i j|sgn((As)i j)xix∗j (1− sgn(|Ai j−A ji|))

=
n

∑
i, j=1
|(As)i j|

(
|xi|2 + |x j|2−2sgn(Ai j)xix∗j (1− sgn(|Ai j−A ji|))

)
≥

n

∑
i, j=1
|(As)i j|

(
|xi|− sgn(Ai j)|x j|

)2

≥ 0.

Thus, Lσ is positive semidefinite. Let us now consider the normalized Sign-Magnetic Laplacian, which,

according to Eq. (5.4), is defined as Lσ
norm = D̄

− 1
2

s Lσ D̄
− 1

2
s . We need to show that x∗Lσ

normx ≥ 0 for all x ∈ ICn.

Letting y = D̄
− 1

2
s x, we have x∗Lσ

normx = x∗D̄
− 1

2
s Lσ D̄

− 1
2

s x = y∗Lσ y, which is nonnegative as proven before.

Theorem 3. λmax(Lσ
norm)≤ 2.

Proof. Let B := D̄s +Hσ . Let us show that B is positive semidefinite. As B is Hermitian by construction, we
have x∗ℑ(Lσ )x = 0. Next, we show that 2x∗ℜ(B)x≥ 0.

2x∗ℜ(B)x

= 2
n

∑
i, j=1

(D̄s)i jxix∗j +2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

= 2
n

∑
i=1

(D̄s)iixix∗i +2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

= 2
n

∑
i, j=1
|(As)i j||xi|2 +2

n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

=
n

∑
i, j=1
|(As)i j||xi|2 +

n

∑
i, j=1
|(As) ji||x j|2

+2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

=
n

∑
i, j=1
|(As)i j||xi|2 +

n

∑
i, j=1
|(As)i j||x j|2

+2
n

∑
i, j=1

(As)i jxix∗j (1− sgn(|Ai j−A ji|))

=
n

∑
i, j=1
|(As)i j||xi|2 +

n

∑
i, j=1
|(As)i j||x j|2

+2
n

∑
i, j=1
|(As)i j|sgn((As)i j)xix∗j (1− sgn(|Ai j−A ji|))
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=
n

∑
i, j=1
|(As)i j|

(
|xi|2 + |x j|2 +2sgn(Ai j)xix∗j (1− sgn(|Ai j−A ji|))

)
≥

n

∑
i, j=1
|(As)i j|

(
|xi|2 + |x j|2

)
≥ 0.

Thus, the normalized version of B satisfies

x∗Bnormx = x∗D̄
− 1

2
s BD̄

− 1
2

s x = y∗By≥ 0.

We have proved that x∗Bnormx is positive semidefinite. Hence, the following holds:

x∗Bnormx≥ 0

x∗
(

I +D−
1
2 Hσ D−

1
2

)
x≥ 0

− x∗D−
1
2 Hσ D−

1
2 x≤ x∗x

x∗Ix− x∗D−
1
2 Hσ D−

1
2 x≤ 2x∗x

x∗Lσ
normx

x∗x
≤ 2.

Due to the Courant-Fischer theorem applied to Lσ
norm, we have:

λmax = max
x ̸=0

x∗Lσ
normx

x∗x
.

Thus, λmax ≤ 2 holds.

Theorem 4. Given a constant α ∈ IR+, Lσ satisfies the following positive homogeneity property:

Lσ (αA) = αLσ (A),

where Lσ (αA) and Lσ (A) are the Sign-Magnetic Laplacian matrices of a directed graph with, respectively,
adjacency matrix αA ∈ IRn×n and A ∈ IRn×n.

Proof. Let Hσ (X) and D̄(X) be the Hσ and D̄ matrices of a directed graph with adjacency matrix X ∈ IRn×n.
We have:

Hσ (A⊙B)

=

(
A⊙B+A⊤⊙B⊤

2
+ i

A⊙B+A⊤⊙B⊤

2

)
⊙(

(ee⊤− sgn(|A−A⊤|))+ i sgn(|A|− |A⊤|)
)
=

=

(
α
(A+A⊤)

2
+ i

α(A+A⊤)
2

)
⊙(

(ee⊤− sgn(|A−A⊤|))+ i sgn(|A|− |A⊤|)
)
=

=

(
A+A⊤

2
+ i

A+A⊤

2

)
⊙
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(
(ee⊤− sgn(|A−A⊤|))+ i sgn(|A|− |A⊤|)

)
⊙B =

= Hσ (A)⊙B.

D̄(A⊙B) = Diag(|A⊙B|e) = Diag(|A|e) = D̄(A)⊙B (the latter by construction of B). The claim follows.

Theorem 5. Consider a weighted directed graph G = (V,E) without pairs of antiparallel edges (digons). Given
a directed edge (i, j) ∈ E of weight wi j, let G′ = (V,E) be a copy of G obtained by reversing the direction of
(i, j) into ( j, i) and flipping the sign of its weight by letting w ji =−wi j. Let Lσ (G) and Lσ (G′) be the Lσ matrix
defined on G and G′, respectively. Lσ (G) = Lσ (G′) holds.

Proof. Let AG and AG′ be the adjacency matrices of G and G′. Let Hσ (X) and As(X) be the Hσ and As matrices
defined for a graph with adjacency matrix X . ℜ(Hσ (G)) = ℜ(Hσ (G′)) holds since both AG−A⊤G and AG′−A⊤G′
are nonzero in positions i, j and j, i and, thus, (ee⊤− sgn(|AG−A⊤G |)) and (ee⊤−|sgn(AG′ −A⊤G′)|) are both
equal to 0 in these positions. To see that ℑ(Hσ (G)) = ℑ(Hσ (G′)), we observe that As(AG)i j =−As(AG′)i j and
As(AG) ji =−As(AG′) ji, but also that sgn(|AG|− |A⊤G |)i j =−sgn(|AG′ |− |A⊤G′ |)i j and that sgn(|AG|− |A⊤G |) ji =

−sgn(|AG′ |− |A⊤G′ |) ji. Thus, the two differences in sign cancel out and the claim follows.

Further observation The results presented in this work still hold if the imaginary part of Hσ is multiplied by
any nonnegative real constant ε > 0. If A ∈ {0,1}n×n, by choosing ε =

√
3, Lσ coincides with the Hermitian

matrix “of the second kind” proposed in [130] in the context of algebraic graph theory.

C.2 Sign-pattern inconsistency of L(q)

We highlighted that the Magnetic Laplacian, L(q), exhibits a crucial sign-pattern inconsistency. Indeed, while,
for unweighted graphs, L(q) encodes the directional information of the edges in the sign of the imaginary part
of H(q), this is not necessarily the case for weighted graphs as the sign pattern of H(q) can change drastically by
just scaling the weights of the graph by a positive constant.

To better illustrate this, we introduce the following example. Consider a directed graph G = (V,E) with
V = {1,2} and E = {(1,2)}. Let us assume that the weight of the (1,2) edge can take one of the following
four values: 0.8, 2, 5, 36 and let q = 0.25. Although the direction of the edge (1,2) does not change, based on
the magnitude of the weight, we observe four different scenarios.

1. A=

[
0 0.8
0 0

]
, As =

[
0 0.4

0.4 0

]
, and H(0.25)=

[
0 0.4

0.4 0

]
⊙
[

1 0.31
0.31 1

]
+ i

[
0 0.40

0.40 0

]
⊙
[

0 0.95
−0.95 0

]
.

We have sgn(ℑ(H(0.25))12) =−sgn(ℑ(H(0.25))21) = sgn(A12) and, thus, the sign of the imaginary part
of H(0.25) encodes the direction of the edge, while ℜ(H(0.25))12 = ℜ(H(0.25))21 ̸= 0.

2. A =

[
0 2
0 0

]
, As =

[
0 1
1 0

]
, and H(0.25) =

[
0 1
1 0

]
⊙
[

1 −1
−1 1

]
+ i

[
0 1
1 0

]
⊙
[

0 0
0 0

]
. We have

ℑ(H(0.25))12 = ℑ(H(0.25))21 = 0 and, thus, the sign of the imaginary part of H(0.25) does not encode at all
the direction of the edge. Furthermore, we note that sgn(ℜ(H(0.25))12) = sgn(ℜ(H(0.25))21) ̸= sgn(A12).
Consequently, the matrix H(0.25) represents the graph as an undirected graph with a negative weight.
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3. A =

[
0 5
0 0

]
, As =

[
0 2.5

2.5 0

]
, and H(0.25) =

[
1 2.5

2.5 1

]
⊙
[

1 0
0 1

]
+ i

[
0 2.5

2.5 0

]
⊙
[

0 1
−1 0

]
. We

have sgn(ℑ(H(0.25))12) =−sgn(ℑ(H(0.25))21) = sgn(A12); thus, the sign of the imaginary part of H(0.25)

encodes the direction of the edge (1,2) consistently with A, while ℜ(H(0.25))12 = ℜ(H(0.25))21 = 0;

4. A =

[
0 36
0 0

]
, As =

[
0 18

18 0

]
, and H(0.25) =

[
0 18

18 0

]
⊙
[

1 1
1 1

]
+ i

[
0 18

18 0

]
⊙
[

0 0
0 0

]
. We have

ℑ(H(0.25))12 = ℑ(H(0.25))21 = 0 and, thus, the sign of the imaginary part of H(0.25) does not encode
the direction of the edge, while sgn(ℜ(H(0.25))12) = sgn(ℜ(H(0.25))21) = sgn(A12). Consequently, the
matrix H(0.25) represents the graph as an undirected graph with a positive weight.

C.3 Flow-based pre-processing

If applied an edge at a time, Theorem 5 can be used to transform a given directed graph with digons into a
multigraph. For applications where the graph entails a flow-like relationship, it is then natural to aggregate
every pair of parallel edges thus obtained into a single edge by summing their weights, thereby obtaining a
(simple) weighted graph. In more details, consider two antiparallel edges (i, j) and ( j, i) with different weights
(wi j ̸= w ji). By applying Theorem 5 to the (i, j) arc, we reverse its direction into ( j, i) and flip the sign of its
weight, thus obtaining the edge ( j, i) of weight w ji :=−wi j. As the graph already contains an ( j, i) arc, the
graph is turned into a multigraph. If the graph models a flow-like relationship, it is reasonable to collapse such
a pair of parallel edges into a single edge of weight equal to w ji :=−wi j +w ji. We carry out this operation
as a pre-processing activity for each task except for the link sign prediction task, whose datasets do not entail
flow-like information.

In the following, we report a quantitative example to show the positive impact of this technique. In more
detail, we consider two scenarios:

1. The flow-based pre-processing is not applied to the graph. As a consequence, some information related
to the topology of the graph is lost.

2. The flow-based pre-processing is applied to the graph. No information is lost.

Consider a graph with a pair of antiparallel edges represented by the adjacency matrix A =

[
0 1
−1 0

]
.

1. If we do not apply the flow-based pre-processing, we have As =

[
0 0
0 0

]
. Thus, Lσ (but also L(q)) fails to

represent the graph as the entire pair of antiparallel edges is lost.

2. If we apply the flow-based pre-processing to the graph (not applicable for L(q)), we obtain the following

new adjacency matrix: Anew =

[
0 2
0 0

]
; thus, we have Asnew =

[
0 1
1 0

]
. Thanks to this, Lσ consistently

represent a graph with one edge, the direction of which is encoded in the imaginary part of Lσ .

C.4 Details on Datasets

All the datasets we considered can be obtained from our code.
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Real-world datasets. We test SigMaNet on six real-world datasets: Bitcoin-OTC and Bitcoin Alpha [106];
Slashdot and Epinions [111]; WikiRfa [203]; and Telegram [26]. The first two datasets, Bitcoin-OTC
and Bitcoin Alpha, come from exchange operations: Bitcoin-OTC and Bitcoin Alpha. Both of these
exchanges allow users to rate the others on a scale of −10 to +10 (excluding 0). According to the OTC
guidelines, scammers should be given a score of −10, while at the other end of the spectrum, +10 means full
trust. Other evaluation values have intermediate meanings. Therefore, these two exchanges explicitly lead to
a graph with weights unrestricted in sign. The other two datasets are Slashdot and Epinions. The first
comes from a tech news website with a community of users. The website introduced Slashdot Zoo features
that allow users to tag each other as friend or foe. The dataset represents a signed social network with friend
(+1) and enemy (−1) labels. Epinions is an online who-trust-who social network of a consumer review site
(Epinions.com). Site members can indicate their trust or distrust of other people’s reviews. The network reflects
people’s views on others. WikiRfa is a collection of votes given by Wikipedia members collected from
2003 to 2013. Indeed, any Wikipedia member can vote for support, neutrality, or opposition to a Wikipedia
editor’s nomination for administrator. This leads to a directed, multigraph (unrestricted in sign) in which nodes
represent Wikipedia members and edges represent votes, which is then transformed into a simple graph by
condensing any parallel edges into a single edge of weight equal to the sum of the weights of the original edges.
The graph features a higher number of nodes and edges than the one proposed in [82]. In these five datasets,
the classes of positive and negative edges are imbalanced (see Table C.1). The last dataset is Telegram, an
influence network that analyses the interactions and influences between distinct groups and actors who associate
and propagate political ideologies. This is a pairwise-influence network between 245 Telegram channels with
8912 links. The labels are generated following the method discussed in [26], with a total of four classes.

Table C.1 Statistics of the six datasets

Data set n |ε+| |ε−| % pos Directed Weighted Density
Telegram 245 8,912 0 100.00 14.91%
Bitcoin-Alpha 3,783 22,650 1,536 93.65 0.17%
Bitcoin-OTC 5,881 32,029 3,563 89.99 0.10%
WikiRfA 11,381 138,143 39,038 77.97 0.14%
Slashdot 82,140 425,072 124,130 77.70 ✕ 0.01%
Epinion 131,828 717,667 123,705 85.30 ✕ 0.01%

Synthetic dataset. The synthetic set of graphs are generated via a direct stochastic block model (DSBM)
with (unlike in [224]) edge weights in the range IN∩ [2,1000]. In detail, in DSBM we define a number of nodes
n and a number of clusters C which partition the vertices into communities of equal size. We define a collection
of probabilities {αi j}1≤i, j≤C, where 0 ≤ αi j ≤ 1 with αi j = α ji, to define the probability that an undirected
edge be generated between a node u and a node v that belong to two different clusters, i.e., u ∈Ci and v ∈C j,
and αii is the probability that an undirected edge is generated between two nodes in the same cluster. As the
generated graph is undirected, we follow [224] and introduce a rule to transform the graph from undirected to
directed: we define a collection of probabilities {βi j}1≤i, j≤C, where 0≤ βi j ≤ 1 such that βi, j +β j,i = 1. Each
edge {u,v} is assigned a direction using the rule that the edge points from u to v with probability βi j if u ∈Ci

and v ∈C j, and points from v to u with probability β ji. For the characteristics of the loss function present in the
SSSNET model, we set 10% of the nodes per class of the graph as seed nodes.
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C.5 Experiment Details

Hardware. The experiments were conducted on 2 different computers: one with 1 NVIDIA Tesla T4 GPU,
380 GB RAM, and Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz CPU, and the other with 1 NVIDIA TITAN
Xp GPU, 80 GB RAM, and Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz CPU.

Model Settings. We train all the models considered in this work with a maximum of 3000 epochs and early
stop if the validation error does not decrease after 500 epochs for both node classification and link prediction
tasks. As in [224], one dropout layer with a probability of 0.5 is created before the last layer. We set the
parameter K = 1 for ChebNet, MagNet, and SigMaNet. A hyperparameter optimization procedure is adopted
to identify the best set of parameters for each model. We tune the number of filters in {16,32,64} for the graph
convolutional layers for all models except for DGCN. We set for both node classification and link prediction
a learning rate of 10−3. For link sign prediction task, the learning rate is set in {10−2,5 · 10−3,10−3}. We
employ Adam as the optimization algorithm, and set weight decays (regularization hyperparameter) to 5 ·10−4

to prevent overfitting.
Some further details are reported in the following:

• The coefficient q for MagNet is chosen in {0.01,0.05,0.1,0.15,0.2,0.25}.

• The coefficient α for PageRank-based models (APPNP and DiGraph) is chosen in {0.05,0.1,0.15,0.2}.

• For APPNP, we set K = 10 for node classification (parameter suggested in [100]), and select K in
{1,5,10} for link prediction.

• For GAT, we adopt a number of heads in {2,4,8}.

• DGCN is somewhat different from the other networks because it requires generating three matrices of
order proximity, i.e., first-order proximity, second-order in-degree proximity and second-order out-degree
proximity. For this network, the number of filters for each channel is searched in {5,15,30} for node
classification and link prediction.

• In GIN, the parameter ε is set to 0 for both tasks.

• In SSSNET, parameters γs and γt are set to 50 and 0.1 respectively.

• In ChebNet and GCN, the symmetrized adjacency matrix As =
A+A⊤

2 is used.

• For DiGCL, we select the Pacing function in [linear, exponential, logarithmic, fixed]. We also adopt two
different configuration: i) τ = 0.4, drop feature rate 1 = 0.3 and drop feature rate 2 = 0.4, and ii) τ = 0.9,
drop feature rate 1 = 0.2 and drop feature rate 2 = 0.1.

Link prediction. In these tasks, we define the feature matrix X ∈ IRn×2 in such a way that, for each node
i ∈V , Xi1 is the in-degree of node i and Xi2 is the node’s out-degree. This is done to allow the models to learn
structural information directly from the adjacency matrix. In particular, for the sign link prediction task, we use
in-degree and out-degree by computing the absolute value of their edge weights.

Node classification. In this task, for the Telegram dataset we retain the dataset’s original features, whereas,
for the synthetic datasets, we create them via the in-degree and out-degree vector as explained before.
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C.6 Complexity of SigMaNet

Assuming, as done in our experiments, that SigMaNet features two graph-convolutional layers with f1 and f2

filters, each defined as in Equation (5.5) and c features per node, the complexity of SigMaNet is O(nc(n+ f1)+

n f1(n+ f2)+mtrain f2d) for link prediction (sign/direction/existence task) and O(nc(n+ f1)+ n f1(n+ f2)+

n f2d)) for node classification, where mtrain is the number of edges in the training set and d is the number of
classes. The detailed calculations for complexity are as follows:

1. The equation D̃−1/2Hσ D̃−1/2 ∈Cn×n is computed in O(|Hσ |) = O(n2) in pre-processing (once per graph,
independently of the node features).

2. The first convolutional layer requires, O(n2c+nc f1 +n f1) = O(nc(n+ f1)) due to 3 operations:

(a) It multiplies D̃−1/2Hσ D̃−1/2 by the node-feature matrix X ∈Cn×c, obtaining P11 ∈Cn×c in O(n2c)
(assuming matrix multiplications require cubic time);

(b) It multiplies P11 by the weight matrix Θ ∈ Rc× f1 , obtaining P12 ∈ Cn× f1 in O(nc f1);

(c) It applies the activation function φ to P12 in O(n f1), resulting in P13 ∈ Cn× f1 .

3. The second convolutional layer carries out similar operations with c→ f1 and f1→ f2, building P23 ∈
Cn× f2 in O(n2 f1 +n f1 f2 +n f2) = O(n f1(n+ f2)).

4. Parts I and II of the unwind layer require a diversification based on the task to be solved:

(a) In the link sign/existence/direction tasks, O(mtrain f2+mtrain f2d) =O(mtrain f2d) due to 2 operations:

i. Unwinding P23 into U IL ∈ Rmtrain×4 f2 in (assuming random access) O(mtrain f2).

ii. Multiplying (linear layer) U IL by W IIL ∈ R4 f2×d to obtain U IIL ∈ Rmtrain×d in O(mtrain f2d).

(b) In the node classification task, O(n f2 +n f2n f2) = O(n f2n f2) due to 2 operations:

i. Unwinding P23 into U IN ∈ Rn×2 f2 in O(n f2).

ii. Applying a 1D convolution with a 0-dimensional kernel between U IN and CIIN ∈ R2 f2×d ,
calculating U IIN ∈ Rn×d in O(n f2d).

5. The Softmax activation function requires linear time w.r.t. its input size, thus not playing any role in the
analysis.
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