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Abstract. This paper concerns developing two hybrid proximal point methods (PPMs) for finding a common

solution of some optimization-related problems. First we construct an algorithm to solve simultaneously an

equilibrium problem and a variational inequality problem, combing the extragradient method for variational

inequalities with an approximate PPM for equilibrium problems. Next we develop another algorithm based

on an alternate approximate PPM for finding a common solution of two different equilibrium problems. We

prove the global convergence of both algorithms under pseudomonotonicity assumptions.
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1 Introduction

The proximal point method (PPM), introduced in [18] and further developed in [23], has been used for solving

optimization problems and variational inequality problems (VIPs) in the monotone case. There are many

interesting papers on this subject; see, e.g., [4, 13, 25] and the references therein. In further developments the

PPM has also been applied for solving vector optimization problems (VOPs) as, e.g., in [3] and equilibrium

problems (EPs) as in, e.g., [9, 12, 16]. Quite recently several versions of the so-called hybrid approximate

proximal method (HAPM) have been introduced and developed in [6] for finding a common solution of

VOPs and VIPs. The latter method is based on combining some ideas of the PPM for solving VOPs and

the extragradient method to solve VIPs, initiated earlier in [17] and then developed in [14]. Let us finally

mention that some variants of the PPM have been recently studied in [8, 22] and the bibliographies therein

to solve EPs in combination with fixed point problems.

In this paper we first develop, partly following the approach of [6], a hybrid proximal algorithm for finding

a common solution of a VIP and an EP by combining the extragradient method for VIPs with an approximate

version of the PPM for EPs. Next we construct a hybrid algorithm for finding a common solutions of two

different EPs based on an alternate approximate PPM of the HAPM type. We prove that both methods are

globally convergent under certain pseudomonotonicity assumptions in finite-dimensional spaces.

The general equilibrium problem under consideration in this paper is formulated as follows. Given a

closed and convex subset C of Rn and a bifunction f : C × C → R with f(x, x) = 0 for all x ∈ C, the EP
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consists of finding a point x̄ ∈ C such that

f(x̄, y) ≥ 0 for all y ∈ C. (EP)

Denote by S(EP) the solution set of (EP) and observe that this model is a common roof for a variety of

optimization-related and equilibrium problems including constrained optimization, variational inequalities,

Nash equilibria, etc. We particularly refer the reader to [2, 15] and the bibliographies therein for excellent

surveys concerning a large spectrum of optimization and equilibrium models that can be written in form

(EP).

An important class of optimization-related problems described in the equilibrium form (EP) involves

variational inequalities of the following type. Given a mapping F : Rn → Rn, consider the variational

inequality problem: find x̄ ∈ C such that

〈F (x̄), y − x̄〉 ≥ 0 for all y ∈ C, (VIP)

where 〈·, ·〉 signifies the usual inner product in Rn. We denote by S(VIP) the solution set for (VIP) and can

easily see that (VIP) is a special case of (EP) with f(x, y) = 〈F (x), y − x〉.
Recall that a bifunction f : Rn × Rn → R is pseudomonotone on C × C if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0 for all x, y ∈ C. (1)

A mapping F : Rn → Rn is pseudomonotone on C if

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0 for all x, y ∈ C. (2)

It is obvious from the definitions that the pseudomonotonicity of F in (2) is equivalent to the pseudomono-

tonicity of f(x, y) = 〈F (x), y − x〉 on C × C in the sense of (1).

The rest of the paper is organized as follows. Section 2 is devoted to developing a new hybrid version

of the PPM to find a common solution of the EP and VIP defined above. We give a description of the

algorithm and prove its global convergence under appropriate assumptions. Furthermore, we discuss certain

modifications of the new algorithm in the case of unknown information and also efficient implementations of

some steps.

In Section 3 we develop a hybrid approximate proximal algorithm to solve simultaneously two differ-

ent equilibrium problems. The main result justifies the global convergence of this algorithm under the

pseudomonotonicity and upper semicontinuity assumptions imposed on both equilibrium functions in the

problems under consideration.

2 Hybrid PPM for Common Solutions to EP and VIP

In this section we develop a globally convergent hybrid PPM for finding a common solution of an EP and

a VIP. The main idea of the algorithm (called below Algorithm 1) is to find first an approximate solution

of some Auxiliary Equilibrium Problem, applying a PPM step for EPs, and then to apply a step of the

extragradient method for the corresponding VIP.

Algorithm 1

1. (Initial Step). Let {αk}, {βk}, {γk}, {δk}, and {εk} be nonnegative sequences of real numbers

such that {αk} is a positive sequence bounded from above, {βk} ⊂ [β′, β′′] for some β′, β′′ ∈ (0, 1),

{δk} ⊂ [δ′, δ′′] for some δ′, δ′′ ∈ (0, 1), and
∞∑
k=0

εk <∞. Pick an arbitrary vector x0 ∈ C and set k = 0.
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2. (Stopping Criterion). If xk ∈ S(EP) ∩ S(VIP), then stop.

3. (Proximal Step). Find yk ∈ C such that ‖yk − ȳk‖ ≤ εk, where ȳk solves the following Auxiliary

Equilibrium Problem (AEP):

fk(ȳk, y) ≥ 0 for all y ∈ C (3)

with fk(x, y) := f(x, y) + αk〈x− xk, y − x〉. Set further zk := βkxk + (1− βk)yk.

4. (Extragradient Step). Compute

v̄k := PC

(
zk − γkF (zk)

)
and vk := PC

(
zk − γkF (v̄k)

)
,

where PC denotes the Euclidean projection onto the set C.

5. (Update of xk). Set xk+1 := δkxk + (1− δk)vk and then go to Step 2 with k = k + 1.

It is clear from the constructions above that Algorithm 1 is well-defined; see Remark 2.2 for more clari-

fication on Step 3. The following theorem justifies the global convergence of this method under appropriate

conditions on the initial data of the EP, VIP, and Algorithm 1.

Theorem 2.1. (global convergence of Algorithm 1). Assume that S(EP) ∩ S(VIP) 6= ∅, that F

is pseudomonotone and Lipschitz continuous with constant L > 0 on C, that {γk} ⊂ [γ′, γ′′] for some

γ′, γ′′ ∈ (0, 1/L), that f is pseudomonotone on C × C, f(·, y) is upper semicontinuous on C for all y ∈ C,
and that the AEP in (3) has a solution for each k ≥ 0. Then the sequence {xk} generated by Algorithm 1

converges to a common element of S(EP) and S(VIP).

Proof. Let x̄ be any element of the intersection S(EP) ∩ S(VIP). Then

‖xk − x̄‖2 = ‖xk − ȳk + ȳk − x̄‖2 = ‖xk − ȳk‖2 + ‖ȳk − x̄‖2 + 2〈xk − ȳk, ȳk − x̄〉.

By definition of ȳk and by the pseudomonotonicity of f , we get

αk〈xk − ȳk, ȳk − x̄〉 ≥ −f(ȳk, x̄) ≥ 0,

which implies the lower estimate

‖xk − x̄‖2 ≥ ‖xk − ȳk‖2 + ‖ȳk − x̄‖2. (4)

It follows from (4) and the definition of yk that

‖yk − x̄‖ ≤ ‖yk − ȳk‖+ ‖ȳk − x̄‖ ≤ εk + ‖xk − x̄‖.

Taking the latter estimate into account gives us

‖zk − x̄‖ = ‖βk(xk − x̄) + (1− βk)(yk − x̄)‖
≤ βk‖xk − x̄‖+ (1− βk)‖yk − x̄‖
≤ βk‖xk − x̄‖+ (1− βk)[εk + ‖xk − x̄‖]
= ‖xk − x̄‖+ (1− βk)εk
≤ ‖xk − x̄‖+ εk.

(5)
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On the other hand, by the properties of the Euclidean projection onto the convex set C and the pseudomono-

tonicity assumption on F we obtain the relationships:

‖vk − x̄‖2 = ‖zk − γkF (v̄k)− vk + vk − x̄‖2 − ‖zk − γkF (v̄k)− vk‖2
−2〈zk − γkF (v̄k)− vk, vk − x̄〉

≤ ‖zk − γkF (v̄k)− x̄‖2 − ‖zk − γkF (v̄k)− vk‖2
= ‖zk − x̄‖2 − ‖zk − vk‖2 + 2γk〈F (v̄k), x̄− vk〉
= ‖zk − x̄‖2 − ‖zk − vk‖2 + 2γk〈F (v̄k), x̄− v̄k〉+ 2γk〈F (v̄k), v̄k − vk〉
≤ ‖zk − x̄‖2 − ‖zk − vk‖2 + 2γk〈F (v̄k), v̄k − vk〉
= ‖zk − x̄‖2 − ‖zk − v̄k‖2 − ‖v̄k − vk‖2 − 2〈zk − v̄k, v̄k − vk〉

+2γk〈F (v̄k), v̄k − vk〉
= ‖zk − x̄‖2 − ‖zk − v̄k‖2 − ‖v̄k − vk‖2 + 2〈zk − γkF (v̄k)− v̄k, vk − v̄k〉
= ‖zk − x̄‖2 − ‖zk − v̄k‖2 − ‖v̄k − vk‖2 + 2〈zk − γkF (zk)− v̄k, vk − v̄k〉

+2γk〈F (zk)− F (v̄k), vk − v̄k〉
≤ ‖zk − x̄‖2 − ‖zk − v̄k‖2 − ‖v̄k − vk‖2 + 2γk‖F (zk)− F (v̄k)‖ · ‖vk − v̄k‖
≤ ‖zk − x̄‖2 − ‖zk − v̄k‖2 − ‖v̄k − vk‖2 + ‖v̄k − vk‖2

+γ2k‖F (zk)− F (v̄k)‖2
= ‖zk − x̄‖2 − ‖zk − v̄k‖2 + γ2k‖F (zk)− F (v̄k)‖2.

(6)

Since F is Lipschitz continuous with constant L, it follows from (5) and (6) that

‖vk − x̄‖2 ≤ ‖zk − x̄‖2 − (1− γ2kL2)‖zk − v̄k‖2
≤ (εk + ‖xk − x̄‖)2 − (1− γ′′2L2)‖zk − v̄k‖2.

(7)

Furthermore, relationships (5) and (7) imply the estimates

‖xk+1 − x̄‖ = ‖δkxk + (1− δk)vk − x̄‖
= ‖δk(xk − x̄) + (1− δk)(vk − x̄)‖
≤ δk‖xk − x̄‖+ (1− δk)‖vk − x̄‖
≤ δk‖xk − x̄‖+ (1− δk) [εk + ‖xk − x̄‖]
= ‖xk − x̄‖+ (1− δk)εk
≤ ‖xk − x̄‖+ εk.

(8)

Employing next Lemma 1.1 from [10, Chapter 3], we get that the sequence {xk} is bounded in Rn, and thus

{‖xk − x̄‖} converges as k →∞ with the limit

µ := lim
k→∞

‖xk − x̄‖. (9)

It also follows from the estimate in (7) that

lim sup
k→∞

‖vk − x̄‖ ≤ µ.

Taking now into account that

lim
k→∞

‖δk(xk − x̄) + (1− δk)(vk − x̄)‖ = lim
k→∞

‖xk+1 − x̄‖ = µ,

we obtain from [24] the limiting relationships

lim
k→∞

‖xk − vk‖ = 0 and thus lim
k→∞

‖vk − x̄‖ = µ. (10)
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It is an immediate consequence of estimate (7) that

‖zk − v̄k‖2 ≤
(εk + ‖xk − x̄‖)2 − ‖vk − x̄‖2

1− γ′′2 L2
.

The latter implies by (9) and (10) that

lim
k→∞

‖zk − v̄k‖ = 0. (11)

Moreover, we have the estimates

‖vk − v̄k‖ ≤ γk‖F (zk)− F (v̄k)‖ ≤ γkL‖zk − v̄k‖ ≤ ‖zk − v̄k‖,

and thus limk→∞ ‖vk − v̄k‖ = 0. This gives therefore the relationships

lim
k→∞

‖zk − vk‖ = 0 and lim
k→∞

‖zk − xk‖ = 0, (12)

which imply in turn that

lim
k→∞

‖zk − x̄‖ = µ. (13)

It follows from (4) the estimate lim supk→∞ ‖yk − x̄‖ ≤ µ and from (13) the equalities

lim
k→∞

‖βk(xk − x̄) + (1− βk)(yk − x̄)‖ = lim
k→∞

‖zk − x̄‖ = µ.

Employing [24] again, we get limk→∞ ‖xk − yk‖ = 0, and thus

lim
k→∞

‖xk − ȳk‖ = 0. (14)

Next let us consider any cluster point x̃ of the sequence {xk}, and let {xkp} be a subsequence converging

to x̃. It follows from (14) that the sequence {ȳkp
} also converges to x̃ as p → ∞. By definition of ȳkp

we

have furthermore that

f(ȳkp , y) + αkp〈ȳkp − xkp , y − ȳkp〉 ≥ 0 for all y ∈ C,

By passing to the limit as p→∞ in the latter inequalities and by using the upper semicontinuity of f(·, y),

we arrive at the equilibrium condition

f(x̃, y) ≥ 0 for all y ∈ C,

i.e., x̃ solves the EP. On the other hand, it follows from (11) and (12) that the sequences {zkp
} and {v̄kp

}
converge to x̃. Recall that we have by the construction above the relationships

v̄kp
= PC

(
zkp
− γkp

F (zkp
)
)

for all p = 1, 2, . . . ,

which imply by passing to the limit as p→∞ and by taking a subsequence if necessary that

x̃ = PC

(
x̃− γ̃F (x̃)

)
with some γ̃ ∈ [γ′, γ′′]. Hence x̃ also solves the VIP. It follows finally from (9) that

lim
k→∞

‖xk − x̃‖ = 0,

which signifies the convergence of the sequence {xk} to an element of S(EP) ∩ S(VIP) and thus completes

the proof of the theorem. 4

The following remarks present some modifications and clarifications of Algorithm 1.
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Remark 2.1. (modification of Algorithm 1 with unknown Lipschitz constant). In the statement

of Theorem 2.1 the choice of the steps γk is based on the exact knowledge of the Lipschitz constant L. We

now show that, if such a constant is unknown, the steps γk can be computed adaptively; cf. also [20]. If we

set parameters σ, τ ∈ (0, 1) and γ̄ > 0, then at each iteration the Extragradient Step can be replaced by the

following procedure:

4a. Set γk := γ̄ and compute v̄k = PC(zk − γk F (zk))

4b. while γk > σ
‖zk − v̄k‖

‖F (zk)− F (v̄k)‖
do

Set γk := τγk and compute v̄k = PC(zk − γk F (zk))

end

4c. Compute vk = PC(zk − γk F (v̄k)).

Since F is Lipschitz continuous with constant L, we have the inequality

σ
‖zk − v̄k‖

‖F (zk)− F (v̄k)‖
≥ σ

L
,

and hence the “while” cycle is repeated a finite number of times. At the end of this procedure the step γk
satisfies the upper estimate

γk ≤ σ
‖zk − v̄k‖

‖F (zk)− F (v̄k)‖
.

Thus we obtain from (6) that

‖vk − x̄‖2 ≤ ‖zk − x̄‖2 − (1− σ2)‖zk − v̄k‖2.

It is easy to check that this procedure gives

γk ∈
[

min{γ̄, στ/L}, γ̄
]
.

Following now the proof of Theorem 2.1, we conclude that Algorithm 1, with the above procedure for finding

the steps γk, converges to an element of the solution set intersection S(EP) ∩ S(VIP).

The next remark clarifies the implementation of Proximal Step in Algorithm 1 to solve constructively

the Auxiliary Equilibrium Problem (3).

Remark 2.2. (solving the AEP in Algorithm 1). At every iteration of Algorithm 1 we need to solve

the AEP in Proximal Step. There is a rather developed existence theory of solutions to equilibrium problems

of type (3); see, e.g., [15, 11, 5] and the references therein. However, the constructive implementation of

Proximal Step in Algorithm 1 requires the usage of numerical methods converging to an optimal solution

of (3) at each iteration of Algorithm 1. For this purpose we can use several descent methods based on gap

functions developed in [1, 7, 19, 26]. In order to guarantee the convergence of such methods, it is sufficient

to suppose that f(x, ·) is convex on C while f is weakly ∇-monotone on C × C with constant η > 0 in the

sense that

〈∇xf(x, y) +∇yf(x, y), y − x〉 ≥ −η‖x− y‖2 for all x, y ∈ C.

Indeed, under these assumptions with αk ≥ ᾱ > η for all k ≥ 0 the bifunction fk is strongly ∇-monotone on

C × C, which allows us to employ the convergence results of [1, 7, 19].
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Furthermore, in order to control the accuracy of an approximate solution to the AEP in Proximal Step

we can use the approach described in [16] that is based on gap functions and allows us to compute an error

bound of the obtained solution. Such an estimate is applied then to problem (3) provided that f is weakly

monotone on C × C with constant η > 0, i.e.,

f(x, y) + f(y, x) ≤ η‖x− y‖2 for all x, y ∈ C.

The latter assumption allows us to prove that the bifunction fk with αk ≥ ᾱ > η in (3) is strongly monotone

on C × C; cf. [16] for more details and discussions.

2.1 Numerical examples

In the following we consider some numerical examples to test Algorithm 1. As stopping criterion we used

the following error measure:

error := max{‖x− arg min
y∈C

[f(x, y) + ‖y − x‖2]‖∞, ‖x− PC(x− F (x))‖∞} < 10−4.

At each iteration the AEP in Proximal Step was solved applying the descent method based on gap functions

developed in [7] and the accuracy of the solution to the AEP was controlled using the approach described

in [16]. We implemented Algorithm 1 in MATLAB 7.10 and we used the solver FMINCON from the

Optimization Toolbox in order to evaluate the gap function in the descent method. Table 1 reports numerical

results on the following three examples. For each starting point (column two) we report the found solution

in column three, the number of iterations in column four, and the error of the found solution in column five.

Example 2.1. Let us consider the feasible set C = [0, 1] × [0, 1]. The EP is defined by the bifunction

f(x, y) = (y1 − y2)2 − (x1 − x2)2 which is monotone and ∇-monotone on C × C. Indeed, such EP is

equivalent to an optimization problem. The solution set of EP is S(EP) = {x ∈ C : x1 = x2}. The VIP

is defined by the map F (x) = (x2,−x1) which is monotone and Lipschitz continuous with constant 1 on C.

The solution set of VIP is S(VIP) = {x ∈ C : x1 = 0}. We set the algorithm parameters as follows: αk = 1,

βk = 0.01, γk = 0.5, δk = 0.01 for all k ≥ 0, and εk = 1/2k. We applied Algorithm 1 starting from 5 different

points in the set C. It is shown in Table 1 that from any starting point Algorithm 1 reaches the solution

(0, 0) which is the unique element of S(EP) ∩ S(VIP).

Example 2.2. Let C = [0, 1] × [0, 1]. The EP is defined by the bifunction f(x, y) = (x1 + x2 − 1) (y1 −
x1) + (x1 + x2 − 1) (y2 − x2) which is monotone and ∇-monotone on C × C. Indeed, such EP is equivalent

to a variational inequality problem. The solution set of EP is S(EP) = {x ∈ C : x1 + x2 = 1}. The VIP is

defined by the map F (x) = (x1 − x2, x2 − x1) which is monotone and Lipschitz continuous with constant 2

on C. The solution set of VIP is S(VIP) = {x ∈ C : x1 = x2}. We set the algorithm parameters as follows:

αk = 1, βk = 0.01, γk = 0.25, δk = 0.01 for all k ≥ 0, and εk = 1/2k. We applied Algorithm 1 starting from

5 different points in the set C. It is shown in Table 1 that from any starting point Algorithm 1 reaches the

solution (0.5, 0.5) which is the unique element of S(EP) ∩ S(VIP).

Example 2.3. Let C = [0, 1]× [0, 1]. The EP is defined by f(x, y) = (y1 − x1) (2 y1 + x1). Such bifunction

is pseudomonotone on C × C, it weakly-monotone with constant 1 on C × C because

f(x, y) + f(y, x) = (x1 − y1)2 ≤ ‖x− y‖2 for all x, y ∈ C,

and is ∇-monotone on C × C. The solution set of EP is S(EP) = {x ∈ C : x1 = 0}. The VIP is defined by

the map F (x) = (−x2, x1) which is monotone and Lipschitz continuous with constant 1 on C. The solution

set of VIP is S(VIP) = {x ∈ C : x2 = 0}. We set the algorithm parameters as follows: αk = 2, βk = 0.01,
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Problem Starting point Solution # Iterations Error

Example 1 (0.569, 0.469) (7.67e-16, 7.67e-16) 10 7.67e-16

(0.012, 0.337) (1.19e-62, 1.19e-62) 30 1.19e-62

(0.162, 0.794) (7.09e-17, 7.09e-17) 9 9.92e-05

(0.311, 0.529) (3.11e-63, 3.11e-63) 31 3.11e-63

(0.263, 0.654) (2.63e-19, 2.63e-19) 9 2.80e-06

Example 2 (0.757 , 0.754) (5.00e-01 , 5.00e-01) 13 8.61e-05

(0.585 , 0.550) (5.00e-01 , 5.00e-01) 21 9.06e-05

(0.076 , 0.054) (5.00e-01 , 5.00e-01) 19 9.87e-05

(0.569 , 0.469) (5.00e-01 , 5.00e-01) 25 8.13e-05

(0.380 , 0.568) (5.00e-01 , 5.00e-01) 27 8.68e-05

Example 3 (0.929 , 0.350) (1.58e-04 , 7.66e-22) 11 7.90e-05

(0.197 , 0.251) (1.08e-04 , 1.42e-22) 12 5.40e-05

(0.616 , 0.473) (1.01e-04 , 1.73e-20) 12 5.03e-05

(0.119 , 0.498) (1.93e-04 , 2.36e-16) 11 9.64e-05

(0.960 , 0.340) (1.60e-04 , 6.33e-22) 11 7.98e-05

Table 1: Numerical results for Algorithm 1 tested on Examples 2.1-2.3.

γk = 0.5, δk = 0.01 for all k ≥ 0, and εk = 1/2k. We applied Algorithm 1 starting from 5 different points in

the set C. It is shown in Table 1 that from any starting point Algorithm 1 reaches the solution (0, 0) which

is the unique element of S(EP) ∩ S(VIP).

3 Hybrid PPM for common solutions to two different EPs

In this section we develop a hybrid approximate proximal algorithm to find a common solution of two different

EPs defined by bifunctions f and g with the same feasible set C. We denote by S(EPf ) and S(EPg) the

correspondent sets of solutions.

The idea of the method (called below Algorithm 2) is the following: at each iteration we construct an

approximate solution of the corresponding AEP with the bifunction f , then we exploit this solution to define

another AEP with the bifunction g, and finally we construct an approximate solution of the latter problem

and we use it to update the new iterate of the algorithm.

Algorithm 2

1. (Initial Step). Let {αk}, {βk}, {ρk}, {δk}, {εk}, and {ζk} be nonnegative sequences of real numbers

such that {αk} and {ρk} are positive sequences bounded from above, {βk} ⊂ [β′, β′′] for some β′, β′′ ∈
(0, 1), {δk} ⊂ [δ′, δ′′] for some δ′, δ′′ ∈ (0, 1),

∞∑
k=0

εk <∞, and
∞∑
k=0

ζk <∞. Let x0 ∈ C and set k = 0.

2. (Stopping Criterion). If xk ∈ S(EPf ) ∩ S(EPg), then stop.

3. (First Proximal Step). Find yk ∈ C such that ‖yk − ȳk‖ ≤ εk, where ȳk solves the following AEP:

fk(ȳk, y) ≥ 0 for all y ∈ C (15)

with fk(x, y) := f(x, y) + αk〈x− xk, y − x〉. Set zk := βkxk + (1− βk)yk.
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4. (Second Proximal Step). Find uk ∈ C such that ‖uk − ūk‖ ≤ ζk, where ūk solves the following

AEP:

gk(ūk, y) ≥ 0 for all y ∈ C (16)

with gk(x, y) := g(x, y) + ρk〈x− zk, y − x〉.

5. (Update of xk). Set xk+1 := δkxk + (1− δk)uk and go to Step 2 with k = k + 1.

The next theorem establishes the global convergence of Algorithm 2 under appropriate conditions imposed

on the initial data of the equilibrium problems of our study.

Theorem 3.1. (global convergence of Algorithm 2). Assume that S(EPf ) ∩ S(EPg) 6= ∅, that f is

pseudomonotone on C×C and f(·, y) is upper semicontinuous on C for all y ∈ C, that g is pseudomonotone

on C ×C and g(·, y) is upper semicontinuous on C for all y ∈ C, and that the AEPs in (15) and (16) have

solutions for each k ≥ 0. Then the sequence {xk} generated by Algorithm 2 converges to a common element

of S(EPf ) and S(EPg).

Proof. Let x̄ ∈ S(EPf ) ∩ S(EPg). Then ‖yk − x̄‖ ≤ ‖xk − x̄‖+ εk and

‖zk − x̄‖ ≤ ‖xk − x̄‖+ εk (17)

similarly to the proof of Theorem 2.1. On the other hand, we have

‖zk − x̄‖2 = ‖zk − ūk + ūk − x̄‖2 = ‖zk − ūk‖2 + ‖ūk − x̄‖2 + 2〈zk − ūk, ūk − x̄〉.

The latter implies, by the definition of ūk and by the pseudomonotonicity of g, that

ρk〈zk − ūk, ūk − x̄〉 ≥ −g(ūk, x̄) ≥ 0,

which yields in turn the estimate

‖zk − x̄‖2 ≥ ‖zk − ūk‖2 + ‖ūk − x̄‖2. (18)

It follows from (18) and the definition of uk that

‖uk − x̄‖ ≤ ‖uk − ūk‖+ ‖ūk − x̄‖ ≤ ζk + ‖zk − x̄‖. (19)

Therefore from (17) and (19) we derive the relationships

‖xk+1 − x̄‖ = ‖δk(xk − x̄) + (1− δk)(uk − x̄)‖
≤ δk‖xk − x̄‖+ (1− δk)‖uk − x̄‖
≤ δk‖xk − x̄‖+ (1− δk)[ζk + ‖zk − x̄‖]
≤ δk‖xk − x̄‖+ (1− δk)[ζk + εk + ‖xk − x̄‖]
≤ ‖xk − x̄‖+ ζk + εk.

(20)

Employing Lemma 1.1 from [10, Chapter 3] allows us to conclude that the sequence {xk} is bounded and

thus the one of {‖xk − x̄‖} converges as k →∞ with the limit

µ := lim
k→∞

‖xk − x̄‖. (21)

Observe also that estimates (17) and (19) yield lim supk→∞ ‖uk − x̄‖ ≤ µ. We get furthermore

lim
k→∞

‖xk − uk‖ = 0 (22)
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from [24] and the obvious equalities

lim
k→∞

‖δk(xk − x̄) + (1− δk)(uk − x̄)‖ = lim
k→∞

‖xk+1 − x̄‖ = µ

and thus arrive at the limiting relationships

lim
k→∞

‖uk − x̄‖ = µ, (23)

lim
k→∞

‖xk − ūk‖ = 0. (24)

Applying further (17) and (18) gives us the estimates

‖uk − x̄‖2 = ‖uk − ūk + ūk − x̄‖2
= ‖uk − ūk‖2 + ‖ūk − x̄‖2 + 2〈uk − ūk, ūk − x̄〉
≤ ζ2k + ‖ūk − x̄‖2 + 2‖uk − ūk‖ · ‖ūk − x̄‖
≤ ζ2k + ‖ūk − x̄‖2 + 2ζk‖ūk − x̄‖
≤ ζ2k + 2ζk‖ūk − x̄‖+ ‖zk − x̄‖2 − ‖zk − ūk‖2
≤ ζ2k + 2ζk‖ūk − x̄‖+ [‖xk − x̄‖+ εk]2 − ‖zk − ūk‖2,

which imply in turn the following one:

‖zk − ūk‖2 ≤ ζ2k + 2ζk‖ūk − x̄‖+ [‖xk − x̄‖+ εk]2 − ‖uk − x̄‖2. (25)

Passing to the limit in (25) as k →∞ and using (21) and (23) ensure that

lim
k→∞

‖zk − ūk‖ = 0. (26)

Moreover, from the above we have the estimate

‖xk − zk‖ ≤ ‖xk − uk‖+ ‖uk − ūk‖+ ‖ūk − zk‖,

and hence limk→∞ ‖xk − zk‖ = 0 due to (22) and (26). Thus

lim
k→∞

‖zk − x̄‖ = µ. (27)

Taking now into account that lim supk→∞ ‖yk − x̄‖ ≤ µ and that

lim
k→∞

‖βk(xk − x̄) + (1− βk)(yk − x̄)‖ = lim
k→∞

‖zk − x̄‖ = µ

by (27), we deduce from [24] that limk→∞ ‖xk − yk‖ = 0 and therefore

lim
k→∞

‖xk − ȳk‖ = 0. (28)

Consider next a cluster point x̃ of {xk} (which always exists due to the finite dimensionality of the space

in question), and let {xkp
} be a subsequence converging to x̃. It follows from (28) that {ȳkp

} also converges

to x̃. By the definition of ȳkp we have

f(ȳkp
, y) + αkp

〈ȳkp
− xkp

, y − ȳkp
〉 ≥ 0 for all y ∈ C

Passing to the limit as p→∞ in the latter inequalities and employing the assumed upper semicontinuity of

f(·, y) give us

f(x̃, y) ≥ 0 for all y ∈ C,
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which means that x̃ ∈ S(EPf ). On the other hand, we get from the definition of ūkp that

g(ūkp , y) + γkp〈ūkp − zkp , y − ūkp〉 ≥ 0 for all y ∈ C. (29)

Since the sequence {ūkp} converges to x̃ by (24), it follows from (29) by passing to the limit as p→∞ and

and using (26) together with the assumed upper semicontinuity of g(·, y) that x̃ ∈ S(EPg). Finally, we get

from (21) that

lim
k→∞

‖xk − x̃‖ = 0,

which justifies the convergence of the sequence {xk} to an element of S(EPf ) ∩ S(EPg) and thus completes

the proof of the theorem. 4

Note that the discussions of Remark 2.2 on solving Auxiliary Equilibrium Problems equally apply to the

AEPs given in (15) and (16) of Algorithm 2.

3.1 Numerical examples

In this subsection we report some numerical examples to test Algorithm 2. We chose the feasible set

C = [0, 1]× [0, 1] in all the examples. As stopping criterion we used an error measure similar to that of the

previous section:

error := max{‖x− yf (x)‖∞, ‖x− yg(x)‖∞} < 10−4,

where yf (x) = arg miny∈C [f(x, y) + ‖y− x‖2] and yg(x) = arg miny∈C [g(x, y) + ‖y− x‖2]. At each iteration

both the AEPs in Proximal Steps were solved applying the descent method developed in [7] and the accuracy

of the solution to the AEP was controlled using the solution bound introduced in [16]. We implemented

Algorithm 2 in MATLAB 7.10 and we used the solver FMINCON from the Optimization Toolbox in order

to evaluate the gap function in the descent method. Table 2 reports numerical results on the following four

examples.

Example 3.1. We consider the same problems of Example 2.1. The EPf is defined by f(x, y) = (y1−y2)2−
(x1−x2)2 which is monotone and ∇-monotone on C×C and its solution set is S(EPf ) = {x ∈ C : x1 = x2}.
The EPg is defined by g(x, y) = x2 (y1−x1)−x1 (y2−x2) which is monotone and ∇-monotone on C×C and

its solution set is S(EPg) = {x ∈ C : x1 = 0}. We set the algorithm parameters as follows: αk = ρk = 1,

βk = δk = 0.01 for all k ≥ 0, and εk = 1/2k. We applied Algorithm 2 starting from 5 different points in the

set C. It is shown in Table 2 that from any starting point Algorithm 2 reaches the solution (0, 0) which is

the unique element of S(EPf ) ∩ S(EPg).

Example 3.2. We consider the same problems of Example 2.2. The EPf is defined by the bifunction

f(x, y) = (x1+x2−1) (y1−x1)+(x1+x2−1) (y2−x2) which is monotone and∇-monotone on C×C, its solution

set is S(EPf ) = {x ∈ C : x1+x2 = 1}. The EPg is defined by g(x, y) = (x1−x2) (y1−x1)+(x2−x1) (y2−x2)

which is monotone and ∇-monotone on C × C, its solution set is S(EPg) = {x ∈ C : x1 = x2}. We set the

algorithm parameters as follows: αk = ρk = 1, βk = δk = 0.01 for all k ≥ 0, and εk = 1/2k. We applied

Algorithm 2 starting from 5 different points in the set C and Table 2 shows that from any starting point

Algorithm 2 reaches the solution (0.5, 0.5) which is the unique element of S(EPf ) ∩ S(EPg).

Example 3.3. We consider the same problems of Example 2.3. The EPf is defined by f(x, y) = (y1 −
x1) (2 y1 + x1) which is pseudomonotone, weakly-monotone with constant 1, and ∇-monotone on C ×C. Its

solution set is S(EPf ) = {x ∈ C : x1 = 0}. The EPg is given by g(x, y) = −x2 (y1 − x1) + x1 (y2 − x2)

which is monotone and ∇-monotone on C × C. Its solution set is S(EPg) = {x ∈ C : x2 = 0}. We set the

algorithm parameters as follows: αk = 2, βk = 0.01, ρk = 1, δk = 0.01 for all k ≥ 0, and εk = 1/2k. We
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applied Algorithm 2 starting from 5 different points in the set C and Table 2 shows that from any starting

point Algorithm 1 reaches the solution (0, 0) which is the unique element of S(EPf ) ∩ S(EPg).

Example 3.4. Here we consider two general EPs. The EPf the same as in Example 3.3. The EPg

is given by g(x, y) = ex
2
2 (y22 − x22) which is monotone and ∇-monotone on C × C. Its solution set is

S(EPg) = {x ∈ C : x2 = 0}. We set the algorithm parameters as follows: αk = 2, βk = 0.01, ρk = 1,

δk = 0.01 for all k ≥ 0, and εk = 1/2k. We applied Algorithm 2 starting from 5 different points in the set C

and Table 2 shows that from any starting point Algorithm 1 reaches the solution (0, 0) which is the unique

element of S(EPf ) ∩ S(EPg).

Problem Starting point Solution # Iterations Error

Example 4 (0.084 , 0.400) (8.05e-32 , 2.64e-04) 19 8.79e-05

(0.260 , 0.800) (6.72e-23 , 2.07e-04) 20 6.90e-05

(0.431 , 0.911) (1.68e-23 , 2.07e-04) 20 6.91e-05

(0.182 , 0.264) (1.68e-25 , 2.57e-04) 19 8.59e-05

(0.146 , 0.136) (1.68e-23 , 2.08e-04) 19 6.95e-05

Example 5 (0.780 , 0.390) (5.00e-01 , 5.00e-01) 8 3.37e-05

(0.242 , 0.404) (5.00e-01 , 5.00e-01) 9 7.02e-05

(0.547 , 0.296) (5.00e-01 , 5.00e-01) 9 3.10e-05

(0.235 , 0.353) (5.00e-01 , 5.00e-01) 10 8.16e-05

(0.575 , 0.060) (5.00e-01 , 5.00e-01) 8 7.23e-05

Example 6 (0.644 , 0.379) (1.82e-04 , 2.93e-06) 13 9.09e-05

(0.812 , 0.533) (1.06e-04 , 2.16e-06) 14 5.30e-05

(0.351 , 0.939) (1.23e-04 , 6.65e-06) 13 6.14e-05

(0.226 , 0.171) (1.33e-04 , 1.17e-06) 14 6.64e-05

(0.622 , 0.587) (1.84e-04 , 2.29e-06) 13 9.22e-05

Example 7 (0.086 , 0.262) (1.72e-04 , 1.31e-04) 12 8.61e-05

(0.801 , 0.029) (1.13e-04 , 1.33e-04) 12 6.63e-05

(0.929 , 0.730) (1.31e-04 , 8.80e-05) 12 6.53e-05

(0.489 , 0.579) (1.67e-04 , 8.08e-05) 12 8.34e-05

(0.237 , 0.459) (8.10e-05 , 7.02e-05) 13 4.05e-05

Table 2: Numerical results for Algorithm 2 tested on Examples 3.1-3.4.
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