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Abstract. Modern malware detection tools rely on special permissions
to collect data able to reveal the presence of suspicious software within
a machine. Typical data they collect for this task are the set of system
calls, the content of network traffic, file system changes, and API calls.
Giving access to these data to an externally created program, however,
means granting the company that created that software complete con-
trol over the host machine. This is undesirable for many reasons. In this
work, we propose an alternative approach for this task, which relies on
easily accessible data – information about system performances (CPU,
RAM, disk and network usage) – and does not need high-level permis-
sions to be collected. To investigate the effectiveness of this approach,
we collected these data in the form of a multi-valued time series and ran
a number of malware programs in a suitably devised sandbox. Then – to
address the fact that deep learning models need large training sets – we
augmented the dataset using a deep learning generative model (a Gen-
erative Adversarial Network). Finally, we trained an LSTM (Long Short
Term Memory) network to capture the malware behavioral patterns. Our
investigation found that this approach, based on easy-to-collect informa-
tion, is very effective (we achieved 0.99 accuracy), despite the fact that
the data used for training the detector are substantially different from
the ones specifically targeted to this purpose. The real and synthetic
datasets as well as corresponding source code are publicly available.
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1 Introduction

Malware, that is, malicious software, is nowadays one of the most common vec-
tors of cyberattacks. It was traditionally considered a problem only for compa-
nies, however in 2017 the situation changed when the ransomware Wanna-Cry
diffused and infected even hospitals and simple users. Nowadays, malware still
represents the prime threat [9], with ransoms skyrocketing up to 50M$ and sin-
gle malware infections costing up to 1M$ per incident [20]. Consequently, the
fight between researchers – who try to implement new approaches for detecting



malware in the fastest way possible – and malware developers – who create in-
creasingly complex malware using evasive strategies to avoid detection – is going
on a day-to-day basis and with alternating fates.

The approaches for malware detection typically fall into one of two typologies:
static analysis and dynamic analysis. The former is focused on features that can
be extracted from the malware code itself, without executing it. Usually, these
features are the hash signature computed on the compiled file, the strings that
can be found in such file, and the Assembly operations that can be extracted
from the compiled file using a disassembler (e.g., [27,13,6]). Unfortunately, static
analysis is gradually becoming less effective, because it can be easily sidestepped
using techniques like encryption, encoding, and polymorphism. Dynamic analy-
sis relies instead on the fact that the malware behavior cannot be changed easily.
To perform dynamic analysis, the malware is usually executed in a safe environ-
ment – a sandbox, to prevent self-infection – while its behavior is observed and
analyzed. The features that can be extracted are many, however the most com-
mon are the API calls (i.e., system calls) that the malware executes to interact
and eventually control/damage the machine which is installed on (e.g., [31,17]).
Nowadays, advanced anti-malware tools combine static and dynamic analysis
with machine learning (ML) to improve detection, giving better results than a
simple antivirus limited to signature analysis [7,14,23,21].

Malware behavior can typically be spotted by how it interacts with the envi-
ronment. For instance, suspicious behavior includes attempts to modify system
files or connections, calls to known malware functions or functions that are typ-
ically not used by legitimate software, and system information requests. The
crucial drawback is that anti-malware tools need to obtain high-level permis-
sions on the machine which they are installed on to detect such a behavior.
Granting anti-malware tools permission to access this kind of information, how-
ever, is equivalent to providing complete control of the machine to the company
which produces the anti-malware tool. Users might be reluctant to grant such a
high level of privileges to third parties, even just for compliance with the com-
pany’s internal policies. There were even examples of software with the ability to
inspect a machine for good purposes that has been used as vector for malware.1

The goal of the present work is to address this issue, by developing an alter-
native approach for malware detection that relies on easily accessible behavioral
data – so as not to require high-level permissions – fed to a deep learning model
that learns to detect malware behavior. We considered that the information re-
lated to the system performances (CPU, RAM, disk and network usage) does
not require high-level permissions to be collected: we set out to find whether this
information would be sufficient to train a behavioral model able to distinguish
between malware and legit software.

To carry on this investigation, we executed a plethora of well-known mal-
ware, and a number of commonly used legit software within a suitably designed
sandbox and collected the performance data at system level (i.e., related to the

1 https://www.ccleaner.com/knowledge/security-notification-ccleaner-v5336162-
ccleaner-cloud-v1073191
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overall system rather than to individual processes) under the form of a multi-
valued time series. Then, to address the fact that deep learning models need
large training sets, we augmented the dataset using a Generative Adversarial
Network (GAN); finally, we trained an LSTM network to capture the malware
patterns. Our investigation found that this approach based on easy-to-collect
information is very effective (0.99% accuracy), despite the fact that the data
used for training are very different from those typically used for this purpose.
Furthermore, the real and synthetic datasets as well as corresponding code are
publicly available at hhttps://doi.org/10.13130/RD_UNIMI/LJ6Z8V.

The remainder of the paper is structured as follows. Section 2 points to the
state of the art; Section 3 outlines the methodology; Section 4 discusses the
results, and Section 5 draws the conclusions.

2 Related Works

Machine learning and deep learning have gained ground in many disparate do-
mains [1,29,4,2,3,24], including the area of malware detection.
Static analysis is based on data that can be extracted from malware/legit code
such as Windows API calls (e.g., [12]) and Assembly instructions (e.g., [13]).
These approaches display an excellent classification performance: using a variety
of classifier algorithms (e.g., decision tree, random forest, AdaBoost, Gradient
Boosting, SVM, kNN) they almost always achieve accuracy, precision, recall well
above 0.9. However, as we observed, they are heavily invasive. The analysis of
Windows PE (Portable Executable) constitutes a large part of research. For
instance, Patri et al. [27] modeled PE files in terms of their entropy to be then
classified using ML; Naz et al. [26] considered the headers of such files only for
feature extraction. Ling et al. [16] focused on the robustness against adversarial
attacks of ML-based PE malware detectors; Demetrio et al. [7] conducted a
similar evaluation.
Dynamic analysis improves over the inability of static analysis of dealing with
encryption, obfuscation, and polymorphism. Hybrid analysis further improves it
by combining static and behavioral information. For instance, Miller et al. [22]
combined static and dynamic features retrieved from the VirusTotal dataset.
Dai et al. [6] combined two types of static features: API calls and low-level
information retrieved from the hardware of the device, such as performance
counters. Their detector consists of an ensemble of ML models.
Android malware received significant attention. For example, Li et al. [15]
focused on static analysis, by extracting features from apps’ files containing
information such as the permissions required and the API calls. Feng et al. [10]
proposed a similar approach while taking into account the limited resources of a
typical Android device. Ma et al. [19] extracted three types of data related to API
calls from the control flow of the app, and trained an ensemble of ML models
thereon. Sihang at el. [31] executed the malware inside an Android emulator;
application logs are stored, transformed into a features vector, and fed to a deep

hhttps://doi.org/10.13130/RD_UNIMI/LJ6Z8V


learning model. Hybrid approaches have also been proposed. For instance, Lu
et al. [17] considered static information by de-compiling the apps’ APK file and
dynamic information by executing the apps in a safe environment.

Lightweight malware detection is based on dynamic analysis performed on
simple features that are overlooked in traditional detectors, and is in its infancy.
For instance, Milosevic et al. [23] collected system- and device-level information
on Android devices mostly related to the memory. A logistic regression model
trained on a reduced set of these features achieved ≈0.84 accuracy and recall.
McDole et al. [21] considered two-dimensional samples: the first one represents
individual processes while the second process-level features such as CPU usage.
Multiple deep learning models achieved ≈0.93 accuracy and ≈0.9 recall in the
best cases. Our approach considers system-level information instead.

Data scarcity is an important issue in the development of malware detec-
tors. Companies that develop malware detectors do not publish their datasets
as competitors could steal information, while attackers could study the dataset
to make new malware that are not detected. This problem can be addressed
using synthetic data. Among the ways to create synthetic data, we considered a
GAN (Generative Adversarial Network) [11]. A GAN is a ML model composed
of two networks that are trained against each other. One network (Generator)
generates new data preserving the same distribution of real data and the other
network (Discriminator) evaluates the synthetic data by computing the prob-
ability that the evaluated data is real or synthetic. Augmentation has already
been evaluated in the context of malware detection. For example, Lu et al. [18]
used a Deep Convolutional GAN to augment the Malimg dataset representing
malware as images [25]. Malimg has been created by converting the malware
executable code into 8-bit vectors then transformed into a gray-scale image.
Interestingly, malware of the same family have a similar image representation.
Wang et al. [33] proposed a similar approach to represent malware as black-white
images. Another model that can be used to generate synthetic data is Variational
Autoencoders. Burks et al. [5] used this approach to augment Malimg showing
that the GAN-based approach of Lu et al. [18] yields better results.

Time series has already been used in some of the aforementioned works (e.g., [27,19,17]).
A general discussion about time series classification can be found in [8].

LSTM is the model of choice in many time-series analyses. For instance, C̆eponis
et al. [32] compared two deep learning approaches for time-series malware clas-
sification, showing that the simpler approach gives equal or better results than
the other one. Sayadi et al. [30] focused on malware hidden inside legit software,
whose dataset is a set of time-series representing branch instructions gathered
at run time.

In summary, the research community is putting a lot of attention on ML-
based malware detection and lightweight detection promises the low overhead
of static analysis with the quality of static analysis. Our approach puts forward



this idea, considering a reduced set of 6 system level-features whose collection
does not require any high-level permissions.

3 Methodology

We present on overview of our approach for lightweight behavior-based malware
detection (Section 3.1) and detail the data collection process (Section 3.2), the
creation of the dataset (Section 3.3), and the classification method (Section 3.4).

3.1 Our Approach at a Glance

Figure 1 shows an overview of our approach. Our sandbox implementation con-
siders a Linux machine requesting the execution of malware/legit software in a
Windows virtual machine, to collect the initial dataset in a safe environment.
Such dataset was then fed to a GAN network, responsible for learning its pe-
culiarities and generating similar synthetic data. Generated data were visually
inspected together with real data in lower-dimensional spaces, through the use of
Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Em-
bedding (t-SNE). Real and synthetic datasets were merged into the final dataset,
split into training, validation, and test sets, to train and evaluate an LSTM
model. Section 4 describes the results of this procedure. The real and synthetic
datasets, the corresponding code, and a detailed description of the complete pro-
cess are publicly available at https://doi.org/10.13130/RD_UNIMI/LJ6Z8V.

3.2 Sandbox Implementation

Running malware to analyze its behavior introduces is the risk of self-infection.
The use of a sandbox can mitigate or remove this risk. A sandbox is an isolated
environment where the malware can be safely executed. This approach is not al-
ways feasible, because some malware are capable of understanding whether they
are running inside a sandbox. When this happens, some malware may change
their behavior or interrupt their execution; some advanced malware are even
capable of escaping the sandbox causing the infection of the system where the
sandbox is installed. For this reason, we used a combination of Linux and Win-
dows machines. Figure 2 shows their interaction. Specifically, we tested Windows
malware and legit software on a Windows 7 virtual machine (VM) hosted by a
Linux machine. The Windows VM is isolated from the Internet by a host-only
connection. This way, the VM does not have access to the physical network card
of the host machine, preventing any malware connections to the Internet.

Executing malware on a machine that cannot communicate on the Internet,
however, has some limitations: some malware needs to connect to remote hosts
to carry out their activities (e.g., Wanna-Cry). To allow the malware to still
create connections without going to the Internet, we set up a second Linux VM.
This VM runs the software iNetSim2 to simulate Internet connections. With this
2 https://www.inetsim.org/

https://doi.org/10.13130/RD_UNIMI/LJ6Z8V
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configuration, the malware executed on the Windows VM can still make requests
and obtain responses without resorting to outside connections.

To allow an effective execution of the malware inside the Windows VM, all
protection controls like firewalls, Windows update, and Windows defender have
been disabled and certain group policies have been changed to give the malware
the capability to act as an administrator. The need to modify these policies
motivates the use of an old Windows version, namely Windows 7.

3.3 Dataset

Malware and legit software. We retrieved real-world malware from VirusShare.3
The website hosts nearly 55 million malware specimens, among which we con-
sidered ≈5,000 PE Windows files. For what concerns legit software, we installed
commonly-used software on the Windows VM, to make the environment as re-

3 https://virusshare.com

https://virusshare.com


alistic as possible. Legit software includes Internet Explorer, Firefox, Mozilla
Thunderbird, Spotify, WinRaR.

Dataset creation. We executed malware and legit software for a fixed amount
of time while collecting performance metrics. The choice of this time span was
critical. On the one hand, a short time span allows to immediately detect mal-
ware and hence preventing system infection. On the other hand, if the time span
is too short, the amount of data will not be enough for the detection. To identify
a suitable time span, we first generated several datasets, comparing the span
and the accuracy of the subsequent classification phase. An acceptable trade-off
was given by a span of 60 seconds.

We performed 10,000 executions varying between malware and legit software.
At each execution, the Windows VM was restored from a clean snapshot (follow-
ing the state of the art [23]) and the chosen software run for the given time span.
During each execution, we collected the multi-valued time series consisting of 6
features: i) CPU usage percentage, ii) RAM usage percentage, iii) bytes writ-
ten out and iv) bytes read from the disk, v) bytes received and vi) sent to the
network. Collected data are sent back to the Linux host where they are saved.

The usage of the LSTM model requires all time-series to have the same length.
For this purpose, we preprocessed collected data normalizing the time series to a
fixed length by padding the shorter time series and pruning the longer ones. Each
resulting time-series contains 10 items each associated with the 6 aforementioned
features. Being the time span of 60 seconds, the sampling time was of 6 seconds.
We note this time is slightly lower than similar approaches [21].

Dataset augmentation. Deep learning models requires a high number of train-
ing samples. Our dataset of ≈10,000 samples is not large enough, but real data
collection is very expensive. Consequently, we opted for the generation of syn-
thetic data, endowed with the same statistical properties as real-world data.
To this purpose, we used one of the most effective methods currently available:
GAN. More specifically, TimeGAN [34].4 The code to instantiate the TimeGAN
is as follows.

arg = ModelParameters(batch_size=128, lr=5e-4, noise_dim=32,
layers_dim=128)

gan = TimeGAN(model_parameters=arg, hidden_dim=10, seq_len=10, n_seq=6,
gamma=1)

We fed our normalized, real dataset to the GAN so that the model could
learn its statistical characteristics and replicate them into the synthetic data.
We first separated the real dataset into malware and legit software. We then
fed each individual dataset to a separate instance of TimeGAN generating a
synthetic dataset of 50,000 samples. We merged the two synthetic datasets and
4 https://pypi.org/project/ydata-synthetic/
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Fig. 3: Comparison of features value of real and synthetic malware samples.

obtained 100,000 samples in total (10-fold increase). The training of each GAN
took approximately 5 hours. We then validate the quality of synthetic dataset
according to several comparisons as follows.

– visual feature comparison: we randomly drawn samples from real and syn-
thetic datasets. For each feature and extracted sample, we plotted their value
to visually compare the differences between the real and the synthetic sam-
ples. Figures 3 and 4 shows the similarity of two random samples of malware
and legit software, respectively.

– comparison with reduced dimensionality (PCA): we performed PCA reduc-
tion to a 2-dimensional space on real and synthetic datasets (limited to 500
samples), and plotted the results for visual comparisons. Figures 5(a)–(b)
show that the synthetic data match real data.

– comparison with reduced dimensionality (t-SNE): we performed t-SNE re-
duction to a 2-dimensional space on real and synthetic datasets (limited to
500 samples). Compared to PCA, t-SNE performs a non-linear transforma-
tion. We plotted and visually compared the results. Figures 6(a)–(b) show
that the synthetic data match real data.

We finally created the overall dataset by merging the real and the synthetic
datasets.

3.4 LSTM Model

Table 1(a) describes the structure of the LSTM model we trained, composed of 4
layers (3 LSTM layers and 1 dense layer) interleaved with 3 batch normalization
layers. Table 1(b) describes the parameters of the training process. We used
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64,871 samples for the training set and 21,624 samples for the validation and
test sets along 200 epochs with optimizer Adam, loss function binary cross-
entropy, and initial learning rate of 0.05. In addition, training is based on early
stopping (stop if loss function value retrieved from the validation set does not
improve in 30 epochs), and on dynamic reduction of the initial learning rate
(of a factor of 0.5 if loss function value retrieved from the validation set does
not improve in one epoch). Further details can be found in our public code at
https://doi.org/10.13130/RD_UNIMI/LJ6Z8V.

https://doi.org/10.13130/RD_UNIMI/LJ6Z8V
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Layer Type Output Shape # Params
LSTM (None, 10, 8) 480
Batch normalization (None, 10, 8) 32
LSTM (None, 10, 8) 544
Batch normalization (None, 10, 8) 32
LSTM (None, 8) 544
Batch normalization (None, 8) 32
Dense (None, 1) 9

Parameter Value
Epochs 200
Batch size 32
Optimizer Adam
Learning rate 0.05, halved if loss

does not improve in
1 epoch, down to
1·10−8

Early stopping Loss does not im-
prove in 30 epochs

Loss function Binary crossentropy
(a) LSTM model structure (b) Training parameters

Table 1: Details of LSTM training process.

4 Analysis Outcome

Starting from the collected real dataset, we executed our experiments on a VM
equipped with 16 vCPU Intel Xeon CPUs E5-2620 v4 @ 2.10 GHz and 48 GBs
of RAM. The VM features Ubuntu 22.02.4 x64, Python v3.10.6 and ML libraries
scikit-learn v1.2.2 [28] and Keras v2.11.0.

4.1 Results

Training took ≈40 minutes, and completed in 40 epochs out of 200 due to early
stopping (see Table 1(b)).

Tables 2(a)–(b) show the results retrieved from the test set. Table 2(a) shows
our confusion matrix. Our approach achieves remarkable results, correctly iden-
tifying virtually all malware as well as legit samples. Table 2(b) shows other
classification metrics. Our approach can distinguish an infected machine from
an uninfected one with an accuracy of 0.99. The same value is achieved in any
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Actual
Negative FP = 10 TN = 10,701

Metric Definition Value
Precision TP

TP+FP
0.9977

Recall TP
TP+FN

0.9973
Specificity TN

TN+FP
0.9976

F1-Score 2 · Precision·Recall
Precision+Recall 0.9975

Accuracy TP+TN
TP+TN+FP+FN

0.8566

AUC Area under
ROC curve 0.9975

(a) Confusion matrix (b) Classification metrics

Table 2: Confusion matrix (a), where TP=True Positive count, FN=False Nega-
tive count, FP=False Positive count, TN=True Negative count; and classification
metrics (b).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate (FPR)

Tr
ue

po
si

tiv
e

ra
te

(T
P

R
)

Best
LSTM
Random classifier

Fig. 7: ROC curve

other metrics, meaning that the detected malware is virtually always malware
(precision) and the number of false negatives is negligible (recall). Figure 7 shows
the ROC (Receiver Operating Characteristics) curve, which represents the true
positive rate (TPR, retrieved as TPR= TP

TP+FN ) vs. the false positive ate (FPR,
retrieved as FPR= FN

FP+TN ) varying the decision threshold of the LSTM classifier.
The closeness to both axes once again proves the quality of our approach.

4.2 Discussion

The approach in this paper relies on information related to the system perfor-
mances (i.e., CPU, RAM, disk and network usage) that does not require high-
level permissions to be collected, and it represents an alternative to the heavily
invasive approaches in the state of the art.

The achieved accuracy matches the accuracy retrieved in state-of-the-art
hybrid approaches, clearly suggesting that, under the conditions of our settings,



malware can be easily distinguished and hence, possibly, blocked in one minute at
most considering system-level performances only. To the best of our knowledge,
there exist few comparable works in literature (see Section 2). Milosevic et al. [23]
considered a larger set of system-level features related to the global behavior of
Android apps (e.g., total CPU usage) as individual samples rather than as time
series. A logistic regression model achieves 0.86 accuracy at most. McDole et
al. [21] considered virtually the same set of features of this work but at process-
level rather than system-level again as individual samples rather than as time
series. A convolutional neural network achieves ≈0.93 accuracy in the best case.
Overall, our approach is far superior than its competitors, mainly due to the
usage of a large synthetic dataset retrieved from a real dataset modeled using
time series rather than individual, disconnected samples. The release of our
complete dataset could pave the way for further tuning of ML models, on one
side, and for retrieving additional insights from malware behavior characteristics.

5 Conclusions

Malware detection represents a urgent problem which is continuously being in-
vestigated by the research community. The approach in this paper sheds new
light on the usage of data that can be collected with ease and can distinguish
between legit and malware behavior. The paper leaves space for future work.
First, we plan the extend the set of features to other system-level and eas-
ily-accessible information. Second, we plan to specifically focus on obfuscating
malware. Third, we plan to strengthen the classifier from evasion attacks using
dedicated techniques such as adversarial training.
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