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ABSTRACT

Motivated by the problem of accurately predicting gap times between successive blood donations, we present here a general class of Bayesian
nonparametric models for clustering. These models allow for the prediction of new recurrences, accommodating covariate information that
describes the personal characteristics of the sample individuals. We introduce a prior for the random partition of the sample individuals, which
encourages two individuals to be co-clustered if they have similar covariate values. Our prior generalizes product partition models with covariates
(PPMx) models in the literature, which are defined in terms of cohesion and similarity functions. We assume cohesion functions that yield
mixtures of PPMx models, while our similarity functions represent the denseness of a cluster. We show that including covariate information in
the prior specification improves the posterior predictive performance and helps interpret the estimated clusters in terms of covariates in the blood

donation application.
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1 INTRODUCTION

Human blood is an essential resource in global health care, for
example, in acute emergencies, surgical interventions, or for the
survival of chronic patients. To understand its relevance, before
COVID-19, the demand was about 10 million units per year in
the United States and 2.1 million in Italy (World Health Orga-
nization, 2012), and these values are constantly growing. Unfor-
tunately, blood cannot be produced in a laboratory. It can only
be withdrawn from healthy unpaid volunteers, at least in West-
ern countries, and its short shelf life limits the period between
withdrawal and use.

In modern healthcare systems, blood is supplied by the Blood
Donation Supply Chain (BDSC), which provides adequate
blood units to meet the demand of transfusion centers and hos-
pitals (Bas et al., 2016). Blood collection is the first echelon of
the BDSC, and it has a relevant impact on the entire system in
terms of blood unit flow. A key issue lies in the uncertainty asso-
ciated with the arrival of donors at the collection centers. Thus,
predicting donations and their temporal distribution is crucial to
better feed and control the entire BDSC.

This work has been motivated by applicative and methodolog-
ical goals. The applicative purpose is to compute accurate predic-
tions of donation times for the enrolled donors in a blood col-
lection center or, equivalently, of gap times between successive
blood donations as we do in this work. As a first task, the predic-
tion of gap times supports the planning of donation activities.
This is important not only for the internal organization of the

center, to dimension human and material resources necessary for
processing the incoming donors on each collection day, but also
for the integration of collection with the other echelons of the
blood supply chain. For the blood center internal organization,
the prediction of gap times for all eligible donors provides the
overall capacity required to serve the donors, independently of
their blood type (Lanzarone and Yalgindag, 2020). At the same
time, from the production viewpoint, it supplies the production
of units for each blood type in a given time horizon.

As a second task, gap time prediction influences the profil-
ing of the donors. Blood collection centers invest, also in eco-
nomic terms, to carry out campaigns to promote and acquire
further donors. The goal is to enroll novel donors who regu-
larly and frequently donate blood. Promotion campaigns should
target individuals whose characteristics guarantee high donation
frequency and continuity over the years, that is, those with short
and stable gap times associated with higher productivity. Our ap-
proach is able to infer the clustering structure of the donors and,
at the same time, the prediction of their gap times, to highlight
which groups are more productive (eg, students versus workers,
younger versus elder). As a result, the collection center will be
able to appropriately choose the target of a promotion campaign
directing it toward the most promising profiles.

There is relatively limited literature on the prediction of gap
times between successive blood donations: for instance, Bosnes
et al. (2005) predict the number of donors that will arrive on
a given date, Fortsch and Khapalova (2016) estimate ARMA
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models for total daily blood demand, or James and Matthews
(1996) analyze blood donor return behavior using frequen-
tist survival analysis methods. Our data have been collected at
the Milano Department of the Associazione Volontari Italiani del
Sangue, referred to as AVIS in the following, which serves a
large hospital in the same city (Niguarda hospital). Like many
blood collection centers, AVIS requires proper planning of do-
nation activities and, at the same time, aims at properly pro-
filing donors. They aim to determine whether homogeneous
clusters of donors can be detected, and whether those are char-
acterized by specific patterns of recurrent donation times and
similar donors’ characteristics (given by personal and registry
information). The dataset includes donors who did not exit
the recurrent donation process in the time window we consider
(6.5 years). Therefore, we address them as loyal donors in the
rest of the paper.

From the methodological viewpoint, we propose suitable
Bayesian models for clustering donors using recurrent event
data. The models allow the prediction of new recurrences, ac-
commodating for covariate information that describes the per-
sonal characteristics of the sample individuals. At the same time,
we use covariate information of the individuals in the prior distri-
bution of the random partition of the sample individuals them-
selves. The Bayesian framework naturally handles model-based
clustering assuming that the random parameter of the model
includes the partition of the sample subjects (Hartigan, 1990;
Quintana and Iglesias, 2003). We introduce a prior encouraging
two subjects to co-cluster a priori if their corresponding covari-
ate values are similar.

Covariate-dependent priors in a Bayesian nonparametric con-
text are relatively new. The seminal work in this area is MacEach-
ern (1999). However, reference papers with clustering with
covariates are Miiller and Quintana (2010) and Miiller et al.
(2011). In these works, the prior on the random partition is
given via cluster-specific cohesion and similarity functions. The
cohesion function ¢ typically depends only on the cluster size,
while the similarity g is a non-negative function that formalizes
the similarity among the covariates in the cluster. The covariate-
dependent prior is given through a product partition approach
as

Pr(p, = {An, ..., A} | %1, ... x,)

ky
o [T e(a))s(x). ()
j=1

where p, denotes the partition of the n sample subjects and x}k =
{x;, i € A;} denotes the collection of covariates corresponding
to items belonging to the jth cluster A;, being x; the vector of
covariates of individual i. In Miiller and Quintana (2010) and
Miiller et al. (2011), the cohesion function is derived from the
Dirichlet process and the similarity g is the marginal distribu-
tion of covariates x}k in an auxiliary probability model, even if
thex;, i =1, ..., n, are not assumed random. The prior intro-
duced product partition models with covariates (PPMx). For
similar approaches, possibly including variable selection or spa-
tial dependence, see Park and Dunson (2010), Quintana et al.
(2015), Barcella et al. (2016), Page and Quintana (2016), Page

and Quintana (2018), and Page et al. (2022). Alternative mod-
els with dependent priors for random partitions are in Dahl et al.
(2017), Dahl (2008), Blei and Frazier (2011), and Bianchini
etal. (2020).

Our covariate-dependent prior generalizes (1) into two direc-
tions: (i) to mitigate the rich-get-richer property, we depart from
the cohesion function of the Dirichlet process and assume the
cohesion function ¢ generated by a more general class of ran-
dom probability measures, namely the normalized completely
random measures (Regazzini et al.,, 2003); (ii) we consider sim-
ilarity functions g, which are not marginal densities; borrowing
the idea from data-driven clustering approaches, we introduce gs
measuring the denseness of covariates in each cluster. In this pa-
per, we use denseness to denote a measure of proximity of the co-
variate vectors in a cluster, that is, a cluster is dense when the to-
tal distance between covariates in the cluster and the associated
centroid is small. The resulting model turns out to be a mixture
of PPMx models as in (1), allowing the construction of a general
Markov chain Monte Carlo (MCMC) sampler, which does not
depend on the specific choice of similarity.

We first describe the model for a unidimensional regression
setting. Then, we consider a more general model for AVIS data
using a longitudinal approach for the sequence of the logarithms
of gap times (the responses) between recurrent events that are
blood donations. In the latter case, since the observed log-gap
times are skewed, we assume a skew-normal distribution for the
response (Azzalini, 200S; Arellano-Valle and Azzalini, 2006).
We propose three different similarity functions, discussing how
their analytical properties might influence posterior inference,
and we apply two of them in the simulated examples and the
motivating application. Since the analytic normalizing constants
of some of the full-conditionals of our MCMC are unknown,
we cannot assume that the hyperparameters of the cohesion or
of the similarity functions are random. However, we later dis-
cuss how to set these hyperparameters. The design of an MCMC
sampler for the computation of posterior inference is among the
contributions of our paper, also accommodating for the longi-
tudinal nature of the responses and the skew-normal sampling
model for the blood donation application. We extend the aug-
mented marginal Gibbs sampler for normalized completely ran-
dom measures mixture models by Favaro and Teh (2013).

We mention here that our prior 7 (p, | xy, - .., X,), as well
as the PPMx prior and its generalizations (1), has the attractive
property of encouraging individuals with equal or similar covari-
ates to be co-clustered. Nevertheless, this type of priors does
not have the marginal invariance property, that is, the prior of
the random partition for n individual cannot be obtained as the
marginal of the prior of the random partition for n 4 1 individ-
uals.

2 BAYESIAN COVARIATE DRIVEN
CLUSTERING

In a regression context, let y; € R be the observed value of the
response random variable Y;, and let x; € R" be the covariate
vector of the ith observation. We denote by y} (or x7) the set
of all responses y; (or covariates x;) in cluster A, with y§ =
i€ Aj} (equivalentlyxj.‘ ={x;,i € A,-}).We assume that re-
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sponses are independent across groups, conditionally on covari-
ates and the cluster-specific parameters, distributed according
to a regression sampling model. The regression parameters are
cluster-specific and are assumed i.i.d. from a base distribution P,.
The prior on the partition depends on covariates through a sim-
ilarity function. We then assume

..Yn|x1,...,xn,9 -

gkapfl

ks
~TTs671x00) (2)
j=1
« iid
01,.. 9k|pnNP0 (3)

Pr(p, = {Ar, ..., A} | X1, ...,%,)

+00 n
o / D(u, n)l_[c(u, n;)g(x; )du, (4)
0 i=1

where f(y;‘ | x%,0%) = HieA/ £ x;, 07 ), nj is the size of
cluster A;, g(x;‘ ) is the similarity function on cluster A ;, and By is
a non-atomic probability measure on ©. The likelihood specifi-
cation in (2) may be any model, from simple regression models
asin Web Appendix C, to the more complex models for gap times

of recurrent events as the case study of Section 4. The functions
Dand cin (4) are defined as

ol [ ueeo)

+oo
c(u,n;) = /0 s"e T (s)ds, (5)

and ¢ (s), s > 0, is a positive function, denoted as Lévy inten-
sity. Note that, when g = 1, (4) and (S) define a prior that can
be equivalently introduced as the prior induced on a sample of n
latent variables from a normalized completely random measure
(Regazzini et al., 2003), which encompasses the Dirichlet pro-
cess under a suitable choice of . One of the major advantages
of normalized completely random measures is that prior (4)
with ¢ = 1 is particularly robust for cluster estimation, implying
heavy tails of the associated prior of the number of clusters k,, and
strongly mitigating the rich-get-richer property of the Dirichlet
process. See Lijoi et al. (2007) and Argiento et al. (2015) for fur-
ther details on mixtures driven by normalized completely ran-
dom probability measures.

Equation 4 is the integral with respect to u of some integrand
function, and, because defining the prior of our model parame-
ter p,, it enters into the full-conditionals of the Gibbs sampler
for posterior inference. Being an integral, it is generally difficult
to be numerically evaluated. However, note that the integrand
function is a PPMx for each fixed u, with cohesion ¢(-, u) and
similarity function g. Hence, if we prove that U = u can be inter-
preted as an auxiliary random variable, that is, if we can compute
its marginal distribution, (4) can be explained as a mixture of
PPMzx. Consequently, using a standard augmentation approach,
the integral in (4) is disintegrated by adding u to the state space
of the associated MCMC. When g = 1, this disintegration ap-
proach has been successfully used; see Favaro and Teh (2013)
and Argiento and De Iorio (2022).

D(u,n) =
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To show that 7 (p, | X1, . .., X,) in (4) is well defined, we re-
mark that, by assuming that g takes values in (0,1], we have

+o0 ky
Mg(x1, -, X,) ;:Z/O D(u, n)l_[c(u, n;)g(x}k)du

ky
< Z/ D(u, n)l_[c(u, n;)du = 1.
P j=1

The last equality follows from Pitman (2003), Corollary 6. Con-
sequently, the marginal density of the mixing variable U is

=) Zl_[c(u n;)g(x;).

All these comments justify the name PPMX-mixt for the prior
(4). Note that covariates that enter the similarity function do not
need to be necessarily the same as those in the regression part
of the likelihood. Still, they can be selected specifically for each
application.

For concreteness, the presentation focuses on a cohesion
function arising from a specific normalized completely random
measure, the normalized generalized gamma process, denoted
by NGG(k, o, B). Such a choice recovers as particular cases
several models commonly used in the Bayesian nonpara-
metric literature, such as the Dirichlet process (Ferguson,
1973), the normalized inverse-Gaussian process (Lijoi
et al, 2005), and the normalized o -stable process (Pitman,

2003). The Lévy intensity of the NGG process is given by
K
ds) = ——s 17
¢(ds) = TSR

is a discount parameter and k¥ > 0 is the total mass parameter.
In this case, the cohesion function equals
kT(nj—o) 1 _ ©)
M(l—0) (Q+u)i°

Parameter 0 has a strong impact on the clustering structure. In
particular, when g = 1, the larger is o, the more dispersed the
number of clusters is. This feature mitigates the annoying the
rich-get-richer effect, typical of the Dirichlet process, leading to
more size-balanced clusters. For more details on the behavior of
0 in NGGs, see for instance Lijoi et al. (2007) and Argiento etal.
(2010, 2015). The Gibbs sampler Pélya urn scheme for model
(2)-(4) is detailed in Web Appendix C.

The lack of marginal invariance of the prior for the random par-
tition prevents us to compute posterior predictive distributions
for new individuals as the integral of the sampling model with
respect to the posterior distribution. However, we deal with this
calculation considering the responses of new individuals as miss-
ing data and including the associated new covariates in the set of
all covariates values. For an alternative approach, based on an im-
portance sampling re-weighting step, see Miiller et al. (2011).

D(u 1)

Xn) - M(Xl,..

p(u|xl’---,

7e " 1(9, +00)(s)ds, where o € [0, 1)

c(u, nj) =

3 THE CHOICE OF THE SIMILARITY
FUNCTION

In this paper, a cluster is dense when the sum of the distances
between each covariate in the cluster and the associated cen-
troid is small. We consider similarity functions g, with0 < g <'1
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FIGURE 1 Left: plot of the similarity functions for o = 1 and A = 1; right: plot of gc for different values of A.

(see Section 2), which quantifies the denseness of the cluster
through covariates. To this end, let us denote g(x}k) := g(Da,),
where

DA, = Z d(x;, CA,), (7)

i€EA;

d is some distance between vectors and ¢y, is the centroid of the
set of covariates in cluster j, here assumed as the Fréchet mean.
We assume that g is a decreasing (ie, non-increasing) function
of DA/ , so that the smaller is ’DA/. (and hence the denser is the
cluster A;), the larger is the value g(x}‘). We let x; = (x¢, xP),

where x¢ (of size m,) and xf’ (of size my,) are the available contin-
uous and binary covariates, respectively. We define the function

d(-,-)in(7) as
me ¢ ¢ m
d(Xl,Xz) == —dC(Xl,Xz) + _bdb(xﬁ’xg)v (8)
m m

where d, and d;, denote the Mahalanobis and the normalized
Hamming distances.

We propose a list of similarity functions based on prelimi-
nary studies in Bianchini (2018): (i) ga (x}‘; 2 =e " fora >
0; (ii) gs(xj; 1) = e 1980+ for o > 0; (iii) ge(xisA) =
e t1o8(1+) Here, t = ADy,.

Hyperparameter A is responsible for rescaling the range of
values of Dy, where we evaluate the similarity function. It is
the analog to the temperature parameter defined in Dahl et al.
(2017) and it tempers how covariates impact the prior. The
power parameter o drives the influence of the covariates in
the prior of the random partition, by stretching or compress-
ing the function over its support. Typical values for o are
1/2,1, 2. Figure 1 shows the graphs of the three similarities
as a function of t > 0. Similarity functions g4 and gg are in-
tuitive, that is, their behavior for t — +00 is exponential and
polynomial, respectively. As far as gc is concerned, we have pro-
posed the expression e~ t1g(1+) iy guch a way that, for large
t, we contrast the asymptotic behavior of the Gamma func-
tion in the cohesion (6) induced by the NGG. Note that,
DA/.U{,-} > DA/. , where {i} is a singleton; see Web Appendix A
(S1). This implies that the function g penalizes large clusters
that are not dense at the same time. This is exactly the feature
we would like to guarantee to mitigate the rich-get-richer prop-

erty of the cohesion function associated with the Dirichlet pro-
cess.

We propose a heuristic strategy to fix A: given the available
data, we estimate the increment of D, when we add the new
observation {x;} across all possible values of the sample size of
A;. For instance, for any sample size n; from 2 to 1, we uniformly
choose a cluster A; of size nj, and we add a point i (not in Aj),
to obtain a Monte Carlo estimate of the increment (DA,.U{,-} —
Dy, )- We average over the sample size 1, obtaining an estimate
£. Then, we choose A such that A¢ = ¢*, for small values of ¥,
thatis, * = 1071, 1072, § x 1073. The choice of £*, and con-
sequently of A, calibrates the influence of the similarity function
in the posterior estimated clusters, which might be over-driven
by covariate values. For a thorough discussion about the cali-
bration of similarities in PPMx models, see Page and Quintana
(2018).

The specification of a PPMx-mixt prior consists in choosing a
cohesion function, c(u; n;) > Oforn; € {1, ..., n},andanon-
negative similarity function g. The former quantifies the proba-
bility mass of a generic clusterAj, j = 1, ..., k,, through its car-
dinality, conditioning to u > 0 and regardless of the knowledge
of the subjects in A ;, while the latter formalizes the similarity of
the covariates. The similarity function affects posterior inference
through the posterior predictive law reported in (SS) and (S6)
of Web Appendix C. The first formula shows that there are two
factors, the first depending only on the responses y;’s through the
marginal density of data in cluster j, while the second factor de-
pends on the cohesion and the similarity, that is,

c(u,nj + I)g(x’; U {x;})
c(u, nj)g(x3)

The ratio between cohesions c(u, n; + 1) and c(u, n;) assume
values proportional to n; — o, and consists in the usual pre-
dictive weight in NGG mixture models. Henceforth, we focus
on the ratio between the similarity values. For A fixed as we
have described above, let t = 2Dy, and t + & = AD4 yyy, so
that ¢ represents the increment of the average center-based dis-
tance when {x;} is assigned to cluster A;. So, it is interesting to
study g(t + ¢)/g(t),fort > Oand any fixed ¢ > 0. This ratio is
smaller or equal than 1, since g is non-increasing. It is advanta-
geous to have a ratio that assumes small values when ¢ is large to
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The red line denotes the minimum waiting time between two donations, according to the Italian law. The black continuous and dashed lines

denote the empirical median and mean, respectively.

discourage non-dense clusters. The function gc is the only one
to fulfill this requirement, among the three similarities proposed
here, as shown in Figure 1 in Web Appendix B. The same fig-
ure shows that the ratio is constant for g4, and it is increasing
for gg. Similarly, it is interesting to study the ratio g(t + ¢)/g(t)
also as a function of ¢ > 0, for any fixed value of t > 0 which, of
course, is non-increasing with . Hence, when we add observa-
tioniin cluster A , two scenarios can occur: (1) the new observa-
tion is similar to the others belonging to A, so € is small, and the
ratio is close to one, yielding to a weak penalization of the weight
of the cluster A; U {i}; (2) the new observation strongly differs
from the elementsin A, so € is large and the ratio becomes small.
In this case, the model strongly penalizes the weight of the cluster
A; U (i),

A simulation study to compare the effect of the similarity func-
tions g4 and gc on posterior distribution is shown in Web Ap-
pendix E. A comparison with alternative models using bench-
mark data is given in Web Appendix F.

4 BLOOD DONATION DATA APPLICATION

Our data concern new donors of whole blood, donating between
January 1st, 2010 and May 15th, 2016 in the main building of
AVIS Milano. By a new donor, we mean a blood donor who has
donated for the first time after January 1st, 2010. Data are recur-
rent donation times, with extra information summarized in a set
of covariates, collected by AVIS physicians. Donors include only
loyal individuals, that is, a new donation is expected within a fi-
nite amount of time with probability one. The resulting dataset
contains 11 505 donations, made by 2 912 donors; the number
of gap times between recurrent donations varies from 1 to 20.

The statistical focus s the clustering of donors according to the
trajectories of gap times and the computation of accurate pre-
diction of donation times. Figure 2 reports the histogram of gap
times (in the log-scale) for men and women.

The skewness of these histograms can be explained since, ac-
cording to the Italian law, the maximum number of whole blood
donations is 4 per year for men and 2 for women, with a min-
imum of 90 days between one donation and the next. In the
dataset, the minimum for men is around 4.47 (e**” >~ 87 days),
while the median gap time for men is 121 days. For women,
the distribution has a median of approximately 5.24 in the log

scale: this means 189 days, corresponding to about 6 months.
Donors may donate before the minimum imposed by law, under
good donor’s health conditions and the physician’s consent. Fig-
ure S2 in Web Appendix B reports the mean and median trajec-
tories ofgap times for anyrecurrence j = 1, ..., 20.Donors en-
ter the study randomly in the whole time window. The number
of donors for each j = 1, ..., 20 is decreasing: there are 2 912
donors with at least the first gap time, but only two with 20 gap
times.

Among different covariates available, we selected some of
them, which are known to be associated with the gap times,
according to a preliminary study (see Gianoli, 2016): Gender
(indicator of gender, 1 if woman, 0 if man); Blood group (4-level
categorical variable, equal to 0, A, B, and AB); RH (rhesus fac-
tor, 1 ifit is positive, 0 if negative); Smoke (indicator of smoking
habit, ie, 1 if the donor regularly smokes, 0 otherwise); Age (age
in years at the first donation at the entrance in the study); BMI
[body mass index (at the entrance in the study)]. Covariates
such as weight, height, and smoke are not directly controlled by
AVIS physicians, but are communicated by donors themselves
so that they can be inaccurate. See the last line of Table 3 for the
empirical frequencies of the categorical covariates listed above.
Sample statistics of the age (in years) at the first donation give
that the minimum is 18, the maximum is a maximum of 68, em-
pirical quantiles of order 25%, 50%, 75% equal to 27, 35, 44,
while the empirical mean and standard deviation are 33.83 and
10.27. Analogous sample statistics for the BMI values at first do-
nation are 21.56, 23.93, and 25.70 (sample quartiles) and 23.93
and 3.37 (sample mean and standard deviation).

4.1 Aframework for recurrent events

Let n be the number of individuals (donors) and T; ; be the time
of the tth donation of donor i. We assume that 0 := T; ¢ corre-
sponds to the time of first donation for each i and that individual
iis observed over the time interval [0, 7;], where T; denotes the
censoring time of the ith observation. If m; events are observed
attimes0 < Tj; < -+ < Tjp, < TyletW;y = T,y — T, for
t =1,...,m; denote the waiting times (gap times) between
events of subject i and W, ,, 11 = T} 41 — Ti,m,, assuming that
T m+1 > T; denotes the (m; + 1)th gap time for the ith donor
censored at time ;. We assume that the study has been adminis-
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tratively censored, that is, censoring and observations are inde-
pendent. Further, our approach considers the time of all first do-
nations as known. We aim to model the waiting times W, t =
1,...,myfori=1,...,n by incorporating some exogenous
information in the prior distribution of the latent partition in the
form of covariates.

Let Y;; =log(W;;) for all i and all ¢, and let Y;:=
(Yi1s - s Y, Yim+1). We assume that gap times are con-
ditionally independent within clusters, that is, f (y;k | x7, 9}*) =
]_LGAI filxi, 9;‘ ), but differently from Section 2, each Y; has
dimension m; + 1. Furthermore, the evaluation of the sampling
distribution includes the information on the censoring of the
(m; + 1)th gap time for each i =1, ..., n. It is clear from
Figure 2 that the assumption of gaussianity for observed data
Y.; = log(W,;)’s is not appropriate, while the more flexible
assumption of skew-normality would fit the dataset. For each
t=1,...,m+1and eachiin cluster A;, j =1, ..., k,, we
assume that

. ind
Yie |si= j, Bos Br o, Wj, sz, Ny ~ N
(0‘1‘ + Bixi + Bl xie + Vimie, Gf) ; 9)

iid
Mie ~ TN[0 +00)(0, 1)

where 1; ; are latent variables from the standard half-normal dis-
tribution and s; represents the cluster allocation of individual
i. Note that (9) corresponds to assuming that Y;; has a skew-
normal distribution. Skew-normal mixture models have been
employed in the Bayesian framework, as, for instance, Bayes
and Branco (2007), Frithwirth-Schnatter and Pyne (2010),
Arellano-Valle et al. (2007), and Canale et al. (2016). For a defi-
nition and its properties, see Azzalini (2005) and Arellano-Valle
and Azzalini (2006). In (9), the conditional distributions of the
gap times on the log scale in cluster A; share the group-specific
parameter 9;‘ = (aj, ¥}, Gf). We omit the asterisk on the right
to avoid heavier notation. Following Frithwirth-Schnatter and
Pyne (2010), «; is the random intercept, 1/;/0; is the skewness
parameter, and 0 is a scale parameter. From (9), the expecta-
tion of Y; ;, in addition to the two linear terms, is or; + V/;4/2/7,
while its variance is 0].2 + 1//]2(1 —2/7).

As far as the linear predictor is concerned, we distinguish re-
gression parameters corresponding to fixed-time covariates ()
from the parameters referring to time-varying covariates (3,),
and x; includes p; fixed-time covariates and x;; denotes p, time-
varying covariates. No intercept is included in the linear predic-
tor to avoid identification issues with the cluster-specific random
intercept o ;. The prior we assume is described as follows:

Bo ~ Ny, (0, %) (10)

5 iid

B BylEL . 825N, (o, diag(&2, ...,g;z)) :
iid
£l By ~ IG(s v0, 00) (11)

p(pn | X1, ..., X,) ~ PPMx-mixt (12)

iid
(aj, ¥j, U,-Z) | ow ~ Py
=N ((0‘/’ ¥i)T; (o, ¥o)T, szdiag(’(o’ K1)>

x1G (af; a, b) ) (13)

The number k, of cluster-specific parameters is determined by
Py, and is random. Notation IG(-; a, b) denotes the inverse-
gamma density with mean b/(a — 1) and diag(&7, . . ., ;Z) isa
diagonal matrix, which entries & 12, o
p> = landthedistributions of B, . .
ate Gaussian distribution, where ] = max;(n; + 1) is the max-
imum number of gap times. Notation PPMx-mixt denotes the
prior described in Section 2. We assume that the cohesion func-
tion c(u, n j) and the Lévy intensity ¢ (ds) correspond to the
NGG process. The choice of P, yields conjugacy of the associ-
ated full-conditional (see Frithwirth-Schnatter and Pyne, 2010).

The same covariates may enter into the linear predictor and
the prior of the random partition. In this application, after pre-
liminary covariate choice via LPML (log pseudo marginal like-
lihood, Christensen et al., 2010) evaluation, we choose to in-
clude Gender, Blood group, RH, Smoke, and BMI (at the first
donation) in the linear term, so that p; = 7 considering dummy
variables too. The only time-varying covariate included in the
linear term is Age at the tth donation. Only static covariates en-
ter the prior of the random partition: Gender, Blood Group,
RH, Smoke, Age at the first donation and BMI at the first
donation.

,E ;2. In our specific case,
B ) collapse on a univari-

4.2 Posterior inference

To perform posterior inference for model (9)-(13), we modify
the Gibbs sampler in Web Appendix C to consider the likeli-
hood of recurrent events. See Web Appendix D for details. We fix
hyperparameters as follows: Xy = diag(1, ..., 1), (v, 7o) =
(2,1),00 = Yo = Oandk = 0.5 [see (6)]. Since n; — o is the
unnormalized weight that a new item is assigned to cluster A, o
in (6) is a key hyperparameter; we assume three different values
for o and report the associated posterior estimates in Table 1 for
sensitivity analysis. The distance d(x;, x;) entering the similar-
ity function’s definition is given in (8). Every run of the Gibbs
sampler produced a final sample size of 10 000 iterations, after a
burn-in of 5 000 iterations. Convergence was checked in all sim-
ulations using visual inspection and standard diagnostics as in
Figure S3 of Web Appendix B.

Table 1 shows the number of clusters of the estimated parti-
tion and LPML values with similarity functions gc and g =1
(no covariates in the prior), for different values of the temper-
ature hyperparameter A and the reinforcement parameter 0. By
definition, the larger the LPML is, the better the model fits the
data. There is a clear effect of o', A and covariates (through gc)
on LPML: the best value correspondstoA = 0.1ando = 0.1S.
Values of LPML for gc are much larger than in the case of g = 1.
For any of the hyperparameter values in the table, we have com-
puted an estimate of the random partition for the sample donors,
minimizing a posteriori the expectation of the variation of infor-
mation (VI) loss function (see, for instance, Wade and Ghahra-
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TABLE 1 Log pseudo marginal likelihood (LPML) and number of clusters in the estimated partition, obtained minimizing a posteriori VI, for
the blood donation data, for different values of A and o, and similarities g¢, g = 1.

gc g=1 PPMx
A o LPML K LPML K LPML Kyt
0.005 0.001 —22032.51 5 —2242491 5 —21850.19 8
0.010 0.001 —22068.25 5
0.100 0.001 —21812.24 6
0.005 0.150 —21990.26 6 —22252.37 6
0.010 0.150 —21758.68 5
0.100 0.150 —21221.55 5
0.005 0.300 —22150.35 s —22311.26 7
0.010 0.300 —22012.24 6
0.100 0.300 —21672.05 7

In evidence: the best model in terms of LPML.

TABLE 2 Posterior summaries of the fixed-time regression coefficients fy for the blood donation

application.

Covariate Median 95% C.I. max{Pr(B; > 0), Pr(B; < 0)}
BMI —0.060 (—0.077; —0.043) 1.000

Gender 1.119 (0.938; 1.329) 1.000

Blood group 0 1.137 (0.779; 1.480) 1.000

Blood group A 1.131 (0.768; 1.486) 1.000

Blood group B 1.230 (0.755; 1.692) 1.000

RH 0.533 (0.295; 0.755) 1.000

Smoke 0.339 (0.148; 0.526) 0.999

BMI: body mass index.

mani, 2018). We report the number Ky; of estimated clusters in
Table 1. Since the cardinality of the visited partitions is quite
large, as suggested by Wade and Ghahramani (2018), from the
MCMC estimate of the posterior co-clustering matrix, we con-
sider all the partitions designed by a hierarchical clustering algo-
rithm with complete linkage. Then, as the point estimate, we se-
lect the partition that achieves the minimum value of the poste-
rior loss function. It is clear that Ky is robust with respect to the
effect of covariates in the prior and changes in o and A, though
as expected, Ky increases with o. This is an aspect of the well-
known trade-off between the estimation of the number of clus-
ters and the posterior predictive checks, especially in the case of
misspecified models (see, for instance Beraha et al., 2022, Sec-
tion 7). Typically, the posterior predictive check improves when
overestimating the number of clusters.

The rest of the posterior inference reported below is com-
puted for the optimal values of the hyperparameters, thatis, A =
0.100 and 0 = 0.150. Note that 0 = 0.001 in Table 1 approxi-
mates the cohesion function yielded by the Dirichlet process as
in Miiller and Quintana (2010) and Miiller etal. (2011) (though
they use a different similarity).

Table 2 shows posterior means of the regression coefficients of
the fixed-time covariates. All the fixed-time covariates included
in the study are significantly different from zero; see the last col-
umn. The average log-gap time increases for donors with blood
groups 0, A, and B with respect to the reference level AB. Of
course, women exhibit longer gap times in accordance with the
Italian law. Figure S4 in Web Appendix B shows the regression
coeflicients for the only time-dependent covariate included in
the study (age of the donor). All these parameters are signifi-

cantly different from zero. Further, as the occasion of donation
increases, the impact of age on the log-gap time decreases in mag-
nitude, implying that loyal donors are less subject to age differ-
ences.

Figure 3 shows the trajectories of the observed log-gap times
grouped by the estimated clusters as explained before. It is clear
from the cluster sizes that the rich-get-richer property of the cohe-
sion associated with the Dirichlet process is here mitigated. We
do not observe substantial differences among the log-gap times
in the estimated clusters. However, Cluster 1 seems to group
longer trajectories (see also the number of donations per clus-
ter in Table 3).

Table 3 reports empirical summaries of the covariates
(included in the prior) within each estimated cluster, that
is, empirical means for continuous covariates and empirical
frequency for the binary or categorical covariates. The last two
columns display the empirical average and standard deviation
for the number of recurrences (m;’s) and the log gap times per
cluster, grouped by gender. Cluster 1 groups older donors, since
the cluster mean is one standard deviation above the overall
mean. These donors also have a slightly higher BMI and a higher
percentage of women. From Figure 3, it is also clear that those
donors have longer trajectories of gap times. On the other hand,
Table 3 shows that the average number of donations in Cluster
1 is higher than the overall empirical averages for men and
women.

Cluster 2 contains donors with empirical averages of covari-
ates (but for the indicator of smoking) and the number of dona-
tions close to the corresponding overall empirical means. Clus-
ter 3 groups younger donors than Cluster 2, with fewer smok-
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Cluster 1 Cluster 2
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n =850
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n =544 n=518 n=161

log gap times
i
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recurrence

FIGURE 3 Recurrent gap times (on the log scale) by estimated cluster for the blood donation application. We draw each cluster’s sample mean
(continuous line), median (dashed line), and the 90% sample quantile band. The black continuous and dashed lines denote the overall mean

and median, respectively.

TABLE 3 Empirical summaries of covariates, number of donations, and log gap-times within each estimated cluster for the blood donation

application.
Age BMI  Gender Blood group RH Smoke No. donations  Log gap-time
Female A B AB 0 + Yes Mean (SD) Mean (SD)
CL1 46.81 2448 36.35% 4029% 12.51% 3.34% 43.86% 88.92% 32.78% M  4.99(4.05) 4.92(0.48)
F 2.92 (2.19) 5.46 (0.42)
Cl2 3392 2411 29.06% 38.59% 11.88% 3.18% 46.35% 87.18% 37.53% M 4.52 (3.86) 4.98 (0.53)
F 2.44 (1.73) 5.55(0.43)
CL3 28.16  23.77 33.64% 34.01% 12.13% 3.49% S50.37% 87.13% 31.07% M  4.82(3.76) 4.99 (0.49)
F 2.62 (1.75) 5.50 (0.34)
ClL4 22.83 2295 32.24% 3822% 12.16% S5.02% 44.59% 84.94% 27.80% M  3.63(3.14) 5.03 (0.54)
F 2.39 (1.69) 5.58 (0.42)
CLS 2026 2379 7.45% 37.89% 14.91% 8.70% 38.51% 77.64% 27.95% M  4.59(3.13) 5.00 (0.49)
F 3.25(2.34) 5.41(0.29)
All 33.83 2393 31.39% 38.11% 12.33% 3.91% 45.64% 86.74% 32.69% M 4.55(3.76) 4.97(0.51)
F 2.64 (1.91) 5.51(0.41)

The cluster summaries in the last two columns are given per gender. BMI: body mass index.

ers. Clusters 4 and S group very young donors and Cluster $ is
mostly made of men with a high percentage of blood type 0.
However, donors in Cluster 4 donate less than average for both
genders. The clusters do not show clear differences as far as the
log gap times are concerned. We have also compared the clus-
ter estimates reported above (A = 0.1, o = 0.15) for gc, with
competitor models: (i) g = land o = 0.15 (no effect of covari-
ates in the prior), (ii) A = 0.1 and 0 = 0.001 for g, that is, co-
hesion function corresponding to the Dirichlet process and (iii)
the original PPMx in Miiller et al. (2011). See Web Appendix G.
The estimated clusters under the original PPMx prior are less
clearly interpretable in terms of covariates than ours.

4.3 The impact of posterior estimates on AVIS planning and
profiling
Accurate prediction of gap times between successive blood do-
nations of donors impacts donor profiling and donation plan-
ning. Currently, AVIS does not use any particular data-driven
method for predicting blood supply. There is a target level pro-
vided by Niguarda hospital but AVIS aims at producing as much
blood as possible regardless of this target. In the event of over-
production, the excess blood is typically transferred from Ni-
guarda hospital to another facility. Instead, the critical problem
is the production imbalance of each blood type between days,
which makes it difficult to store blood in Niguarda hospital fa-
cility. Hence, a tool predicting donors’ gap times would allow

the design of robust scheduling systems that properly redirect
donors to the most appropriate days. This would also reduce the
imbalance of blood production between days. The scheduling
system currently adopted by AVIS is deterministic and does not
include donor arrival predictions (Bas et al., 2018).

The estimated clustering structure is particularly useful for the
profiling problem. The § estimated clusters correspond to di-
verse typologies of donors, as highlighted by the covariates as-
sociated with each cluster. Therefore, according to our analy-
sis, donor recruitment campaigns should be directed toward the
older donors identified by Cluster 1, since they can guarantee
high donation frequency and continuity over the years. These
campaigns could be organized, for instance, by setting up mobile
healthcare facilities for blood donations near the working sites
where we expect to find individuals belonging to Cluster 1 (eg,
big companies with old employees).

S DISCUSSION

In this work, we propose a regression model for gap times of
recurrent events, where parameterization includes the partition
pn of the blood donors through cluster-specific random effects
modeled as a PPMx-mixt. We assume a skew-normal conditional
distribution for the logarithm of gap times between blood dona-
tions from AVIS. The prior we fix for p, encompasses covariate
information, encouraging two individuals to be co-clustered if
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they have similar covariate values. We have seen that including
covariate information in a similarity function improves the pos-
terior predictive performance and helps interpret the estimated
clusters in terms of covariates. By introducing a latent variable
u > 0, we can express the cohesion function in the prior, and
hence the whole prior for the random partition of the sample, asa
mixture of PPMx. We propose three examples of similarity func-
tions, emphasizing their properties and their effects on the pos-
terior predictive distribution of the model. Cross-validated pos-
terior predictive root mean-squared errors (Web Appendix G)
for the AVIS dataset show that the inclusion of the similarity
function g in the prior for the random partition yields a lower
value than in the case with no covariates in the prior. We es-
timate S clusters of homogeneous donors. This grouping also
helps identify individuals’ characteristics and important features
(covariates), supporting profiling for effective campaigns to ac-
quire further donors. Comparison to cluster estimates under the
original PPMx formulation (Miiller et al., 2011) shows a larger
number of clusters for the latter prior, which do not seem easier
to explain in terms of covariates. The similarity functions g that
we propose must be calibrated via a parameter A, and we discuss
how to fix it. This is a key parameter that prevents the overpow-
ering effect of covariates on clusters with respect to likelihood.

An interesting characteristic of our model is that, though it
clusters donor gap times trajectories, it allows us to interpret
the estimated clusters also in terms of other features. In particu-
lar, our model considers covariate information: some of the esti-
mated clusters are similar when looking at the response trajecto-
ries, but different when looking at the covariates. We believe this
aspect is an advantage of all models with covariate-dependent
prior for the random partition—including ours—as it allows for
greater flexibility and interpretability.

We have assumed a continuous conditional distribution for
the logarithm of the gap times, which are expressed in days. How-
ever, these data are grouped, according to the definition in Tutz
and Schmid (2016), that is when the continuous time is divided
into intervals and, if the event has occurred in the morning of
the sth day, one says that it has been observed at “day s,” with s
integer. Modeling continuous distributions to represent discrete
data shows advantages: larger flexibility of continuous distribu-
tions, computational efficacy especially in the case of MCMC
algorithms, and greater interpretability of the parameters of con-
tinuous distributions. Continuous distributions are more conve-
nient when we represent the posterior predictive densities on the
realline. On the other hand, using discrete distributions to repre-
sent the likelihood could be useful when event times are intrinsi-
cally discrete (which is not the case here), or when we model the
hazards (which are conditional probabilities for discrete data).

The pitfall of our strategy consists in its computational cost.
Future work may consider using approximate sampling strategies
to overcome this limitation.
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