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A B S T R A C T  

Motivated by the pro b lem of accurately predicting gap times betw e en s uc c essiv e blood don ations, w e prese n t he re a ge ne ral cl as s of Bayesi an 

nonpa ra metric models for clus te ring. The se mode ls allow for the prediction of new r ecurr ences, accommoda tin g co v ari a te informa tion tha t 
de scribe s the personal cha racte ris tics of the s amp le individuals. We introduce a prior for the ra ndom pa rt it ion of the s amp le individuals, which 

enc ourages tw o individuals to be c o-clus te re d if they h av e similar c ovariate values . Our prior ge ne r aliz es product part it ion models with cov ari ates 
( PPMx ) models in the litera tur e, which ar e define d in terms of c o hesion and simil arity function s. We as s ume c o hesion function s that yield 

mixtures of PPMx models, while our similarity functions r epr ese n t the de nse ness of a clus te r. We show that including cov ari a te informa tion in 

the prior spec i fica tion impr oves the pos te rior predictive pe rforma nce a nd helps in te rpret the es tim ate d clus te rs in te rm s of cov ari ates in the b lood 

dona tion applica tion. 

KEY W OR DS : Bayesian cluster models; blood donations; non-exchang e able prior; prediction; random part it ion; r ecurr ent events. 
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1 I N T R O D U C T I O N 

uman blood is an es s enti al res ource in global health care, for
xa mple, in acute e me rge ncies, surgical in te rve n tions, or for the
urvival of chronic patie n ts. To unde rs ta nd its releva nce, before
OVID-19, the de ma nd was about 10 mi l lion units per year in

he United St ate s and 2.1 mi l lion in Italy ( World Health Orga-
ization, 2012 ) , and these values are cons ta n tly growing. Unfor-

unately, blood cannot be produc e d in a laboratory. It can only
e withdrawn from healthy unpaid v olunte ers, at least in West-
 rn coun tries, a nd its short shel f li fe limits the period betw e en
ithdrawal and use. 
In mode rn healthca re sys te m s, b lood is supp lied by the Blood
 on ation Supply Ch ain ( BDSC ) , which pro vides a dequate

lood units to meet the de ma nd of tra nsfusion ce n te rs a nd hos-
itals ( B a ̧s et al., 2016 ) . B lood c olle ction is the first echelon of

he BDSC, and it has a releva n t impact on the e n tire sys te m in
erm s of b lood unit flow. A key is sue lies in the unce rtain ty as s o-
iated with the arrival of donors at the c olle ction c e n te rs. Th us,
re dicting don ations and their temporal distribution is crucial to
etter fe e d and c on trol the e n tire BDSC. 
This w ork h as be en motivate d b y a pplicative a nd me thodo lo g-

cal goals. The app licative purpos e is to c ompute ac cura te pr edic-
ions of donation times for the enrolled donors in a blood col-
e ction c e n te r or, equivale n tly, of ga p times betw e en s uc c essiv e
 lood donation s as w e do in this w ork. As a first task, the pre dic-
ion of gap times supports the p l anning of donation activities.
hi s i s importa n t not only for the in te rnal orga nization of the
e c eiv e d: O cto ber 15, 2022; Revis e d: July 6, 2023; Ac c epte d: Nov e mbe r 29, 2023 
The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ) , wh

he original work is properly cited. 
e n te r, to dime nsion h uma n a nd mate ri al res ourc es ne c es s ary for
roc essing the inc oming donors on each c olle ction day, but also

or the integration of collection with the other echelons of the
 lood supp ly chain . For the b lood ce n te r in te rnal orga nization,

he prediction of gap times for all eligible donors provides the
ve rall ca pacity r equir ed to serve the donors, indepe nde n tly of

heir blood type ( La nza rone a nd Yalçınd a ̆g, 2020 ) . A t the s ame
ime, from the production viewpoint, it su ppl ies the production
f units for each blood type in a given time horizon. 
As a se c ond task, gap time pre diction influenc es the profil-

ng of the donors. Blood c olle ction c e n te rs inves t, also in e c o-
omic t erms, t o ca rry out ca mpai gns t o promot e and acquire

urther donors. The goal is to enroll novel donors who regu-
a rly a nd freque n tly dona te blood. Pr omotion ca mpai gns should
arge t individuals whos e cha racte ris tics gua ra n tee hi gh donation
reque ncy a nd con tin uity ove r the yea rs, that is, those with short
 nd s table ga p times as s oci ated with hi ghe r productivity. Our a p-
roach is able to infer the clus te ring s tructure of the donors and,
t the same time, the prediction of their gap times, to hi ghli gh t
hich groups are more productive ( eg, s tude n ts ve rsus worke rs,

ounge r ve rsus elde r ) . As a res ult, the c olle ction c e n te r wi l l be
b le to appropri ately choos e the targe t of a promotion ca mpai gn
irecting it toward the most promising profiles. 
Ther e is r ela tiv ely limite d litera tur e on the pr ediction of gap

imes betw e en s uc c essiv e blood don ations: for ins ta nce, Bosnes
t al. ( 2005 ) predict the n umbe r of donors that wi l l arrive on
 given d ate, Forts ch a nd Kha palova ( 2016 ) es timate ARMA
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
ich permits unre stricted re use, dis tribution, a nd reproduction in any me dium, provide d 
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models for total daily blood de ma nd, or Ja mes a nd Ma t thews
( 1996 ) analyze blood donor return behavior using frequen-
tist survival analysi s method s. Our data have been collected at
the Mila no Depa rtme n t of the Associazio ne Volo nt ari It a liani del
Sangu e , refe rred to as AVIS in the following, which serves a
large hospital in the same city ( Ni gua rda hospital ) . Like many
b lood co llection ce n te rs, AVIS r equir es pr oper p l anning of do-
nat ion act ivit ies and , at the same t ime, aims a t pr operly pr o-
fil ing donor s. They aim t o det e rmine whethe r homoge neous
clus te r s of donor s can be det ect ed, a nd whethe r those a re cha r-
acte rized b y spec i fic pa t terns of r ecurr e n t donat ion t imes and
similar donors’ characteristics ( given by personal and reg i stry
informa tion ) . The da t aset include s donors who did not exit
the r ecurr e n t dona tion pr ocess in the time window we consider
( 6.5 years ) . Ther efor e, we addr ess them as loyal donors in the
rest of the paper. 

From the me thodo lo gical viewpoint, we propos e suitab le
Baye sian mode ls for clus te rin g donors usin g r ecurr e n t eve n t
dat a. The mode ls allow the prediction of ne w r ecurr ence s, ac -
commodating for cov ari a te informa tion tha t de scribe s the per-
son al ch a racte ris tics of the sa mple individuals. At the same time,
w e use c ovariate inform ation of the individuals in the prior dis tri -
bution of the random part it ion of the s amp le individuals them-
se lve s. The Baye sia n fra mew ork n aturally h andle s mode l- based
clus te rin g assumin g that the ra ndom pa ra mete r of the model
includes the part it ion of the s amp le subj ects ( Ha rti ga n, 1990 ;
Quin ta na a nd Iglesias, 2003 ) . We introduce a prior encouraging
tw o s ubje cts to c o-clus te r a pr ior i i f their cor respondin g co va ri -
ate values are similar. 

Cov ari ate-dependent priors in a Bay esian nonpar ametric con-
text ar e r ela tively new. The semin al w ork in this area is Ma cEa ch-
ern ( 1999 ) . How ev er, r efer ence papers with clustering with
cov ari a tes ar e Müller and Quintana ( 2010 ) and Müller et al.
( 2011 ) . In these works, the prior on the random part it ion is
given via cluster-spec i fic cohesion and similarity functions. The
cohesion function c typically depends only on the cluster size,
whi le the simi larity g is a non-ne gativ e function th at form alizes
the similarity among the cov ari ates in the cluster. The cov ari ate-
depe nde n t prior is given through a product part it ion approach
as 

Pr (ρn = 

{
A 1 , . . . , A k n 

} | x 1 , . . . , x n ) 

∝ 

k n ∏ 

j=1 

c ( A j ) g( x ∗j ) , ( 1 )

whe re ρn de notes the pa rt it ion of the n s amp le subj ects and x ∗j =
{ x i , i ∈ A j } denotes the c olle ction of covariates corresponding
t o it ems belon gin g to the jth clus te r A j , being x i the v e ctor of
cov ari ates of individual i . In Müller and Quintana ( 2010 ) and
Müller et al. ( 2011 ) , the cohesion function is deriv e d from the
Dirichle t proces s and the simil a rity g is the ma rg inal di stribu-
tion of cov ari ates x ∗j in an auxili ary pro ba bility model, e ven if
the x i , i = 1 , . . . , n , are not ass ume d ra ndom. The prior in tro-
duc e d product part it ion models with cov ari ates ( PPMx ) . For
simila r a pproa ches, possibly includin g v ari ab le s e lection or spa -
tial depe nde nc e, se e Pa rk a nd Dun s on ( 2010 ) , Quin ta na et al.
( 2015 ) , Barcell a e t al. ( 2016 ) , Page and Quintana ( 2016 ) , Page
a nd Quin ta na ( 2018 ) , a nd Page et al. ( 2022 ) . Alte rn ativ e mod-
e ls with de pe nde n t priors for ra ndom pa rt it ion s are in Dahl e t al.
( 2017 ) , Dahl ( 2008 ) , Blei and Frazier ( 2011 ) , and Bianchini 
et al. ( 2020 ) . 

Our cov ari ate- dependent prior generali zes ( 1 ) into tw o dire c- 
t ions: ( i ) to mit igate the r ich -get-r icher prope rty, we depa rt from 

the cohesion function of the Dirichlet process and assume the 
cohesion function c ge ne rated b y a more ge ne ral cl as s of ran- 
dom pr obability measur e s, name ly the normalized comp le tely 
random measures ( Regazzini et al., 2003 ) ; ( ii ) we consider sim- 
il arity function s g, which a re not ma rginal de nsities; borrowing 
the idea from dat a -drive n clus te ring a pproaches, we in troduce g’s 
measuring the den s enes s of cov ari ates in each cluster. In this pa- 
per, we use denseness to denote a measure of proximity of the co- 
v ari ate v e ctors in a clus te r, that is, a clus te r is de n s e when the to-
t al dist anc e betw e en c ov ari ates in the cluster and the as s oci ated
ce n troid is sm a ll . The resultin g model turns out to be a mixture 
of PPMx models as in ( 1 ) , allowing the construction of a general 
Ma rkov chain Mon te Ca rlo ( MCMC ) sa mple r, which does not 
depend on the spec i fic choice of similarity. 

We first describe the model for a unidimensional r egr ession 

s e tting. Then, w e c onsider a more general model for AVIS data 
usin g a lon gitudinal approa ch for the se quenc e of the lo garithm s 
of gap times ( the respon s es ) be tw e en re curre n t eve n ts that are
b lood donation s. In the l a t ter case, since the observ e d log -gap 

time s are ske w e d, w e ass ume a ske w- normal distribution for the 
respon s e ( Azzalini, 2005 ; Arell a no-Valle a nd Azzalini, 2006 ) . 
We propose three diffe re n t simila rity function s, dis cus sing how 

their analytical properties might influence posterior inference, 
a nd we a pply two of the m in the sim ulated exa mples a nd the 
mot ivat ing applicat ion. Sinc e the an alytic norm alizing c ons ta n ts 
of some of the full-c ondition als of our MCMC are unknown, 
we cannot assume that the hype rpa ra mete rs of the cohesion or 
of the similarity functions are random. How ev er, w e later dis- 
cuss how to set these hype rpa ra mete rs. The desi gn of a n MCMC 

s amp ler for the computation of posterior inference is among the 
contributions of our paper, also ac c ommodating for the longi- 
tudin al n a tur e of the respon s es and the skew-normal s amp ling 
model for the blood donation application. We extend the aug- 
me n te d m argin al G ib bs s amp ler for norm alize d c omp le tely ran-
dom measures mixture models by Favaro and Teh ( 2013 ) . 

We me n tion he r e tha t our prior π (ρn | x 1 , . . . , x n ) , as well
as the PPMx prior and its ge ne raliza tions ( 1 ) , has the a t tractive 
prope rty of e ncourag ing individual s with e qual or similar c ova ri - 
at es t o be co-clust ere d. Nev erthe le ss, this type of priors does 
not h av e the m argin al inv ari anc e property, th at is, the prior of
the random part it ion for n individual cannot be obtained as the 
m argin al of the prior of the random part it ion for n + 1 individ- 
uals. 

2 B AY E  S I A  N  COVA  R I AT E  D R I V E N 

C LU ST E R I N G  

In a r egr es sion context, le t y i ∈ R be the o bs erv e d value of the
respon s e random v ari ab le Y i , and le t x i ∈ R 

m be the cov ari ate
v e ctor of the i th o bs erv ation . We denote by y 

∗
j ( or x ∗j ) the s e t

of all respon s es y i ( or cov ari ates x i ) in clus te r A j , with y 

∗
j =

{ y i , i ∈ A j } ( equivale n tly x ∗j = { x i , i ∈ A j } ) . We ass ume th a t r e-
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pon s e s are inde pendent across grou ps, cond itionally on cova ri -
tes and the cluster-spec i fic parameter s, d istribute d ac c ording
o a r egr es sion s amp ling model. The r egr ession pa ra mete rs a re
lus te r-spec i fic and are ass ume d i .i .d . from a base distribution P 0 .
he prior on the part it ion depends on cov ari a tes thr ough a sim-

lar ity f unct io n . We then assume 

Y 1 , . . . Y n | x 1 , . . . , x n , θ∗
1 , . . . , θ

∗
k n , ρn 

∼
k n ∏ 

j=1 

f (y 

∗
j | x ∗j , θ∗

j ) ( 2 ) 

θ∗
1 , . . . , θ

∗
k n | ρn 

iid ∼ P 0 ( 3 ) 

Pr (ρn = { A 1 , . . . , A k n } | x 1 , . . . , x n ) 

∝ 

∫ + ∞ 

0 
D (u, n ) 

k n ∏ 

j=1 

c (u, n j ) g(x ∗j ) du, ( 4 ) 

here f (y 

∗
j | x ∗j , θ∗

j ) = 

∏ 

i ∈ A j f (y i ; x i , θ∗
j ) , n j is the size of

lus te r A j , g(x ∗j ) is the similarity function on clus te r A j , a nd P 0 is
 non-atomic probability measure on �. The l ikel ihood spec i fi-
ation in ( 2 ) may be any model, from simp le regres sion models
s in Web Appendix C , t o the more complex models for gap times
f r ecurr e n t eve n ts as the case s tudy of S ection 4 . T he functions
 and c in ( 4 ) are defined as 

D (u, n ) = 

u 

n −1 

�(n ) 
exp 

{
−

∫ + ∞ 

0 

(
1 − e −us ) ζ (s ) ds 

}
, 

c (u, n j ) = 

∫ + ∞ 

0 
s n j e −us ζ (s ) ds, ( 5 ) 

nd ζ (s ) , s > 0 , is a posit ive funct ion, de noted as Lévy in te n-
ity. Note that, when g ≡ 1 , ( 4 ) and ( 5 ) define a prior that can
e equivale n tly in troduced as the prior induced on a s amp le of n

ate n t va riables from a norm alize d c omp le tely random measure
 Regazz ini et al ., 2003 ) , which encompas s es the Dirichle t pro-
ess under a suitable choice of ζ . One of the major adva n t age s
f norm alize d c omp le te ly random measure s is that prior ( 4 )
ith g ≡ 1 is pa rticula rly robus t for clus te r es t imat ion, implying
eavy tails of the as s oci ated prior of the n umbe r of clus te rs k n a nd
 trongly miti g ating the rich-g et-riche r prope rty of the Dirichlet
roc ess . Se e Lijoi et al. ( 2007 ) and Argiento et al. ( 2015 ) for fur-

her details on mixtures driven by norm alize d c omp le tely ran-
om probability meas ures . 
Equation 4 is the integral with respect to u of some in tegra nd

unct ion, and , because defining the prior of our model pa ra me-
er ρn , it enters into the full-c ondition als of the G ib bs s amp ler
or pos te rior infe re nce. Being a n in tegral, it is ge ne rally d iffic ult
o be n ume rically evaluate d. How ev er, note th at the inte grand
unction is a PPMx for each fixed u , with cohesion c (·, u ) and
imilarity function g. Hence, if we pr ove tha t U = u can be inter-
reted as an auxiliary random v ari ab le, that is, if w e can c ompute

ts m argin al dis tribution, ( 4 ) ca n be exp l ained as a mixture of
PMx. Con s eque n tly, using a s ta nda rd augme n tation a pproach,

he integral in ( 4 ) is disint egrat ed by a ddin g u to the state space
f the as s oci at ed MCMC . When g ≡ 1 , this disin tegration a p-
roach has been successfully use d; se e Fava ro a nd Teh ( 2013 )
 nd Argie n to a nd De Iorio ( 2022 ) . 
To show that π (ρn | x 1 , . . . , x n ) in ( 4 ) is well defined, we re-
 ark th at, by ass uming th at g t ake s value s in ( 0,1], w e h av e 

M g (x 1 , . . . , x n ) : = 

∑ 

ρn 

∫ + ∞ 

0 
D (u, n ) 

k n ∏ 

j=1 

c (u, n j ) g(x ∗j ) du 

≤
∑ 

ρn 

∫ + ∞ 

0 
D (u, n ) 

k n ∏ 

j=1 

c (u, n j ) du = 1 .

he last equality follows from Pitman ( 2003 ) , Coro ll ary 6. Con-
eque n tly, the marginal density of the mixing variable U is 

p(u | x 1 , . . . , x n ) = 

D (u, n ) 
M g (x 1 , . . . , x n ) 

∑ 

ρn 

k n ∏ 

j=1 

c (u, n j ) g(x ∗j ) . 

ll these comme n ts jus tify the na me PPMx-mixt for the prior
 4 ) . Note th at c ov ari ates that e n te r the simila rity function do not
e e d to be ne c es s arily the same as those in the r egr ession part
f the l ikel ihood . St ill , they can be sele cte d spe c i fically for each
pp lication . 
For concre tenes s, the pres e n tation focuses on a cohesion

unction arising from a spec i fic nor malized comp le tely random
eas ure, the norm alize d ge ne r aliz e d gamm a proc ess, denote d

y NGG (κ, σ, P 0 ) . Such a choic e re c ov e rs as pa rticula r cases
everal models commonly used in the Bayesian nonpara-

etric litera tur e, such as the Dirichlet process ( Ferguson,
973 ) , the norm alize d inv ers e-Gaus si an proces s ( Lij oi
t al., 2005 ) , and the norm alize d σ -stable proc ess ( Pitm an,
003 ) . T he Lévy in te n sity of the NGG proces s i s g ive n b y
( ds ) = 

κ

�( 1 − σ ) 
s −1 −σ e −s 1 (0 , + ∞ ) ( s ) ds , where σ ∈ [0 , 1)

 s a di scoun t pa ra mete r a nd κ > 0 is the total mass pa ra mete r.
n this case, the cohesion function equals 

c ( u, n j ) = 

κ �( n j − σ ) 
�( 1 − σ ) 

1 

( 1 + u ) n j −σ
. ( 6 )

a ra mete r σ has a strong impact on the clus te ring s tructure. In
a rticula r, whe n g ≡ 1 , the la rge r is σ , the more d isper sed the
 umbe r of clus te rs i s. Thi s fea tur e mitiga tes the a nno ying the
 ich -get-r icher effect, typical of the Dirichlet process, lea din g to

ore size-balanc e d clus te rs. For more det ails on the be havior of
in NGGs, see for ins ta nce Lijoi et al. ( 2007 ) and Argiento et al.

 2010 , 2015 ) . The G ib bs s amp ler Pólya urn s cheme for model
 2 ) - ( 4 ) is detailed in Web Appendix C. 
The lack of m argin al inv ari ance of the prior for the random par-

 it ion preve n ts us t o comput e post erior pre dictiv e distributions
or new individuals as the integral of the s amp ling model with
espect to the pos te rior dis tribution. How ev er, w e deal with this
alcul ation con sidering the respon s es of new individuals as miss-
ng data and including the as s oci ated new cov ari ates in the s e t of
ll cov ari ates v alues. For a n alte rn ativ e appro ach, b ased on an im-
orta nce sa mpling re-wei gh ting s tep, see Mülle r et al. ( 2011 ) . 

3 T H E  C  H O I C  E  O F  T H E  S I M I L A R I T Y  

F U N C T I O N  

n this pa pe r, a clus te r is dense whe n the sum of the dis ta nces
etw e en each cov ari ate in the cluster and the as s oci ate d c en-

roid is sm a ll . We con sider simil arity function s g, with 0 < g ≤ 1
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FIGURE 1 Left: plot of the similarity functions for α = 1 and λ = 1 ; ri gh t: plot of g C for diffe re n t values of λ. 
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( se e Se ction 2 ) , which qua n tifies the de n s enes s of the clus te r
through cov ari ates. To this end, le t us denote g(x ∗j ) := g(D A j ) ,
where 

D A j = 

∑ 

i ∈ A j 
d(x i , c A j ) , ( 7 )

d is some dis ta nc e betw e en v e ctors and c A j is the ce n troid of the
s e t of cov ari at es in clust er j, here ass ume d as the Fréchet mean.
We ass ume th at g is a de cr easing ( ie, non-incr easing ) function
of D A j , so that the smaller is D A j ( and hence the den s er is the
clus te r A j ) , the la rge r is the value g(x ∗j ) . We let x i = (x c i , x 

b 
i ) ,

where x c i ( of size m c ) and x b i ( of size m b ) are the av ail ab le contin-
uous a nd bina ry cova ria tes, r espe ctiv ely. We define the function
d(·, ·) in ( 7 ) as 

d(x 1 , x 2 ) = 

m c 

m 

d c (x c 1 , x 
c 
2 ) + 

m b 

m 

d b (x b 1 , x 
b 
2 ) , ( 8 )

whe re d c a nd d b de note the Mahala nobis a nd the norm alize d
Ha mming dis ta nc es . 

We propose a list of similarity functions based on prelimi-
na ry s tudies in B ia nchini ( 2018 ) : ( i ) g A (x ∗j ; λ) = e −t α , for α >

0 ; ( ii ) g B (x ∗j ; λ) = e −α log (1+ t ) , for α > 0 ; ( iii ) g C (x ∗j ; λ) =
e −t log (1+ t ) . Here, t = λD A j . 

Hype rpa ra mete r λ is responsible for rescaling the range of
values of D A j , where we evaluate the similarity function. It is
the analog to the t empera ture pa ra mete r defined in Dahl et al.
( 2017 ) a nd it te mpe rs how cova riates impact the prior. The
powe r pa ra mete r α drives the influence of the cov ari ates in
the prior of the random part it ion, by stretching or compress-
ing the function over its support. Typical values for α are
1 / 2 , 1 , 2 . Figure 1 shows the grap h s of the three similarities
as a function of t ≥ 0 . Similarity functions g A and g B are in-
tuitiv e, th at is, their behavior for t → + ∞ is expone n tial a nd
po lynomi al , respect ively. As far as g C is concerned, we have pro-
pos ed the expres sion e −t log (1+ t ) in such a way that, for large
t , w e c on tras t the asymptotic behavior of the Ga mma func-
tion in the cohesion ( 6 ) induced by the NGG. Note that,
D A j ∪{ i } ≥ D A j , where { i } is a single ton; s ee Web Appendix A
( S1 ) . This implies that the function g pe nalizes la rge clus te rs
tha t ar e not den s e at the s ame time. Thi s i s exactly the fea tur e
w e w ould lik e to guar ant ee t o mitigat e the r ich-get-r icher prop-
erty of the cohesion function as s oci ated with the Dirichlet pro- 
c ess . 

We propose a heuristic strat egy t o fix λ: given the av ail ab le 
dat a, we e stima te the incr e me n t of D A j whe n we add the new
o bs erv a tion { x i } acr os s all pos sib le v alues of the s amp le size of
A j . For ins ta nce, for a ny sa mple size n j from 2 to n , we uni for mly
choose a clus te r A j of size n j , and we add a point i ( not in A j ) ,
to obtain a Monte Carlo estimate of the incre me n t (D A j ∪{ i } −
D A j ) . We average over the s amp le size n j , obtaining an estimate 
ˆ ε . Then, we choose λ such that λ ˆ ε = ε ∗, for small values of ε ∗, 
that is, ε ∗ = 10 

−1 , 10 

−2 , 5 × 10 

−3 . The choice of ε ∗, and con- 
seque n tly of λ, calibrates the influence of the similarity function 

in the pos te rior es tim ate d clus te rs, which mi gh t be ove r-drive n
b y cova riate values. For a thorough d isc ussion about the cali- 
brat ion of similarit ie s in PPMx mode ls, see Page a nd Quin ta na 
( 2018 ) . 

The spec i fication of a PPMx-mixt prior consists in choosing a 
cohesion function, c (u ; n j ) ≥ 0 for n j ∈ { 1 , . . . , n } , and a non-
ne gativ e similarity function g. The forme r qua n tifies the proba- 
bility mass of a ge ne ric clus te r A j , j = 1 , . . . , k n , through its ca r-
d inal ity, cond itioning to u > 0 a nd rega rdless of the knowledge 
of the s ubje cts in A j , while the la t te r formalizes the simila rity of
the cov ari ates. The simil a rity function affects pos te rior infe re nce 
through the pos te rior pre dictiv e law reported in ( S5 ) and ( S6 ) 
of Web Appendix C. The first formula shows that there are two 

factor s, the fir s t depe nding only on the respon s es y i ’s through the 
m argin al density of data in clus te r j, while the se c ond factor de- 
pends on the cohesion and the similarity, that is, 

c ( u, n j + 1) g( x ∗j ∪ { x i } ) 
c ( u, n j ) g( x ∗j ) 

. 

The ratio betw e en c o hesion s c ( u, n j + 1) and c ( u, n j ) assume
values proportional to n j − σ , and consists in the usual pre- 
dictiv e w ei gh t in NGG mixture models. He nceforth, we focus 
on the ratio betw e en the similarity values. For λ fixed as we 
h av e describe d abov e, let t = λD A j and t + ε = λD A j ∪{ i } , so
that ε re pre se n ts the incre me n t of the average ce n te r-based dis-
ta nce whe n { x i } is assi gned to clus te r A j . So, it is in te res ting to
study g (t + ε) /g (t ) , for t > 0 a nd a ny fixed ε > 0 . This ratio is
smaller or equal than 1, since g is non-increasing. It is adva n t a - 
ge ous to h av e a ratio th at ass ume s s mall value s when t is large to
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FIGURE 2 H ist ogram of the logarithm of the observ e d gap times grouped by gender; male donors on the left and female donors on the right. 
The red line denotes the minimum waiting time betw e en tw o don ations, ac c ording to the Italian law. The black con tin uous a nd dashed lines 
denote the empirical median and mean, respe ctiv ely. 
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is courage non-den s e clusters. The function g C is the only one
o fulfil l this r equir e me n t, a mong the three simila rities proposed
ere, as shown in Figure 1 in Web Appendix B. The same fig-
re shows that the ratio is cons ta n t for g A , a nd it is increasing

or g B . Similarly, it is interesting to study the ratio g (t + ε) /g (t )
lso as a function of ε > 0 , for any fixed value of t > 0 which, of
ourse, is non-increasing with ε. He nce, whe n we add o bs erv a-
ion i in clus te r A j , tw o sc en arios can oc cur: ( 1 ) the new o bs erv a-
ion is similar to the others belon gin g to A j , so ε is small, and the
atio is close to one, yielding to a w eak pen alization of the wei gh t
f the clus te r A j ∪ { i } ; ( 2 ) the new o bs erv a tion str ongly d iffer s

rom the ele me n ts in A j , so ε is large and the ratio be c ome s s mall.
n this case, the model s trongly pe n alizes the w ei gh t of the clus te r
 j ∪ { i } . 
A sim ulation s tudy to compa re the effect of the simila rity func-

ions g A and g C on poster ior distr ibution is shown in Web Ap-
endix E. A comparison with altern ativ e models using bench-
ark data is given in Web Appendix F. 

4 B L O O D  D  O N A  T I O N  DA  TA  A P P L I C A T I O N  

ur data c onc ern new donors of who le b lood , donat ing betw e en
a n ua ry 1s t, 2010 a nd May 15th, 2016 in the main building of
VIS Milano. By a new donor, we mean a blood donor who has
on ate d for the first time afte r Ja n ua ry 1s t, 2010. Data a r e r ecur-
e n t donation times, with extra information s umm arize d in a s e t
f cov ari ates, co llected by AVIS p hysici an s . D onors include only

oyal individuals, that is, a new donation is expe cte d within a fi-
ite a moun t of time with proba bility one. T he r esulting da taset
ontains 11 505 donations, made by 2 912 donors; the number
f gap times betw e en re curre n t donations varies from 1 to 20. 
The s tatis tical focus is the clus te ring of donors ac c ording to the

ra je ctories of gap times and the computation of accurate pre-
ict ion of donat ion t imes. Figur e 2 r eports the his togra m of ga p

imes ( in the log -scale ) for men and women. 
The ske wne ss of the s e histo gram s can be exp l aine d sinc e, ac-

ording to the Italian law, the maximum number of whole blood
onations is 4 per year for men and 2 for women, with a min-

mum of 90 days betw e en one donation and the next. In the
 atas e t, the minimum for men is around 4.47 ( e 4 . 47 � 87 days ) ,
hile the median gap time for men is 121 days. For women,

he distribution has a median of appr oxima tely 5.24 in the log
 cale: this mean s 189 d ays, corresponding to about 6 month s.
 onors m ay don a te befor e the minim um imposed b y law, unde r

ood donor’s health conditions and the physicia n’s conse n t. Fi g-
re S2 in Web Appendix B reports the mean and median tra je c-

ories of gap times for any r ecurr enc e j = 1 , . . . , 20 . D onors en-
e r the s tudy ra ndomly in the whole time window. The n umbe r
f donors for each j = 1 , . . . , 20 is decr easing: ther e ar e 2 912
onors with at least the first gap time, but only two with 20 gap

imes. 
Among diffe re n t cova riates available, we sele cte d some of

he m, which a re known to be as s oci ated with the gap times,
c c ording to a preliminary study ( see Gia noli, 2016 ) : Ge nde r
 indicator of ge nde r, 1 if w om an, 0 if m an ) ; Blood group ( 4-lev el
ategor ical var iable, equal to 0, A, B, and AB ) ; RH ( rhe sus fac -
or, 1 if it is positive, 0 if ne gativ e ) ; Smoke ( indicator of smoking
abit, ie, 1 if the donor regularly s moke s, 0 otherwise ) ; Age ( age

n years at the first donation at the e n tra nce in the study ) ; BMI
body mass index ( at the e n tra nce in the s tudy ) ]. Cova riates
 uch as w ei gh t, hei gh t, a nd smoke a r e not dir e ctly c ontrolle d by
VIS p hysici an s, but are c ommunicate d by donors them s e lve s

o that they can be inaccurate. See the last line of Table 3 for the
 mpirical freque ncies of the cate gorical c ov ari at es list e d abov e.
a mple s tatis tics of the age ( in years ) at the first don ation giv e
hat the minimum is 18, the maximum is a maximum of 68, em-
irical qua n tiles of orde r 25%, 50%, 75% equal to 27, 35, 44,
hile the empirical mean and standard deviation are 33.83 and
0.27. Analo gous s amp le s tatis tics for the B MI v alues at first do-
a tion ar e 21.56, 23.93, a nd 25.70 ( sa mple qua rtiles ) a nd 23.93
nd 3.37 ( s amp le mean and standard deviation ) . 

4.1 A fra mewo rk fo r r ecurr e nt eve nts 
et n be the n umbe r of individuals ( donors ) and T i,t be the time
f the tth donation of donor i . We assume that 0 := T i, 0 corre-
ponds to the time of first donation for each i and that individual
 is o bs erv e d ov er the time interval [0 , τi ] , where τi denotes the
en s oring time of the i th o bs erv ation . If m i events are o bs erv e d
t times 0 < T i, 1 < · · · < T i,m i < τi , let W i,t = T i,t − T i,t−1 for
 = 1 , . . . , m i denote the waiting times ( gap times ) betw e en
ve n ts of subject i and W i,m i +1 = T i,m i +1 − T i,m i , assuming that
 i,m i +1 > τi denotes the (m i + 1) th gap time for the i th donor
en s or ed a t time τi . We ass ume th at the study h as be en adminis-
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trativ ely c en s ore d, th at is, c en s oring and o bs erv ation s are inde-
pe nde n t. Furthe r, our a pproach conside r s the time of all fir st do-
nation s as known . We aim to model the waiting times W i,t , t =
1 , . . . , m i , for i = 1 , . . . , n , by incorporating some exogenous
information in the prior distribution of the late n t pa rtition in the
form of cov ari ates. 

Le t Y i,t = lo g (W i,t ) for all i a nd all t , a nd let Y i :=
(Y i, 1 , . . . , Y i,m i , Y i,m i +1 ) . We assume that gap times are con-
ditionally indepe nde n t within clus te rs, that is, f (y 

∗
j | x ∗j , θ∗

j ) =∏ 

i ∈ A j f ( y i | x i , θ∗
j ) , but diffe re n tly from Section 2 , each Y i has

dime nsion m i + 1 . Furthe rmore, the evaluation of the sampling
distribution includes the information on the cen s oring of the
(m i + 1) th gap time for each i = 1 , . . . , n . It is clear from
Figure 2 that the assumption of gaussianity for observ e d data
 i,t = log (W i,t ) ’s is not appr opria te, while the more flexible

assumption of ske w- normality would fit the d atas e t. For each
t = 1 , . . . , m i + 1 and each i in clus te r A j , j = 1 , . . . , k n , we
ass ume th at 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Y i,t | s i = j, β0 , βt , α j , ψ j , σ
2 
j , ηi,t 

ind ∼ N (
α j + β

ᵀ 
0 x i + β

ᵀ 
t x i,t + ψ j ηi,t , σ

2 
j 

)
ηi,t 

iid ∼ TN [0 , + ∞ ) (0 , 1) 

, ( 9 )

whe re ηi,t a re late n t va riables from the s ta nda rd hal f-nor mal dis-
tribution and s i r epr ese n ts the clus te r allocation of individual
i . Note th at ( 9 ) c orresponds to ass uming th at Y i,t has a skew-
normal distribution. S k ew-normal mixture models h av e be en
e mplo yed in the Bayesia n fra mework, as, for ins ta nce, Bayes
a nd Bra nco ( 2007 ) , Früh wirth-Schna t te r a nd Pyne ( 2010 ) ,
Arel lano-Val le et al. ( 2007 ) , and Canale et al. ( 2016 ) . For a defi-
nition and its propertie s, see Az zalini ( 2005 ) and Are l lano-Val le
and Azzalini ( 2006 ) . In ( 9 ) , the c ondition al distributions of the
gap times on the log scale in clus te r A j share the group-spec i fic
pa ra mete r θ∗

j = (α j , ψ j , σ
2 
j ) . We omit the as te risk on the ri gh t

to a void hea vier notation . Fo llow ing Frühw irth-Schnatte r a nd
Pyne ( 2010 ) , α j is the ra ndom in te rcept, ψ j /σ j is the ske wne ss
pa ra mete r, a nd σ j is a scale pa ra mete r. From ( 9 ) , the expect a -
tion of Y i,t , in addition to the two linear terms, is α j + ψ j 

√ 

2 /π ,
while its v ari ance is σ 2 

j + ψ 

2 
j (1 − 2 /π ) . 

As far as the linear predictor is conce rned, we dis tinguish re-
gression pa ra mete r s correspond ing to fixe d-time c ov ari ates ( β0 )
from the pa ra mete rs refe rring to time-va ryin g co variates ( βt ) ,
and x i includes p 1 fixe d-time c ov ari ates and x it denotes p 2 time-
varyin g co va riates. No in te rcept is included in the linear predic-
t or t o avoid ide n t ificat ion issues with the clus te r-spec i fic random
in te rcept α j . The prior we assume is described as follows: 

β0 ∼ N p 1 ( 0 , �0 ) ( 10 )

β1 , . . . , βJ | ξ 2 
1 , . . . , ξ

2 
p 2 

iid ∼ N p 2 

(
0 , diag(ξ 2 

1 , . . . , ξ
2 
p 2 ) 

)
, 

ξ 2 
1 , . . . , ξ

2 
p 2 

iid ∼ IG (·; ν0 , γ0 ) ( 11 )

p(ρn | x 1 , . . . , x n ) ∼ PPMx-mixt ( 12 )
(α j , ψ j , σ
2 
j ) | ρn 

iid ∼ P 0 

= N 2 

(
(α j , ψ j ) T  ; (α0 , ψ 0 ) T  , σ 2 

j diag (κ0 , κ1 ) 
)

×IG 

(
σ 2 

j ; a, b 
)

. ( 13 ) 

The n umbe r k n of clus te r-spec i fic pa ra mete rs is dete rmined b y
ρn , and is random. Notation IG (·; a, b) denotes the inverse- 
ga mma de nsity with mea n b/ (a − 1) and diag (ξ 2 

1 , . . . , ξ
2 
p 2 ) is a 

diagon al m atrix, which e n tries ξ 2 
1 , . . . , ξ

2 
p 2 . In our spec i fic case, 

p 2 = 1 and the distributions of β1 , . . . , βJ collapse on a univa ri - 
ate Gaus si a n dis tribution, whe re J = max i (n i + 1) is the max- 
im um n umbe r of ga p time s. Not ation PPMx- mixt denote s the 
pr ior descr ibe d in Se ction 2 . We ass ume th at the c ohe sion func -
tion c (u, n j ) and the Lévy intensity ζ (d s ) correspond to the 
NGG proc ess . The choic e of P 0 yields c on ju gacy of the as s oci-
ate d full-c ondition al ( se e Frühwirth-Schn atte r a nd Pyne, 2010 ) . 

The same covariates may e n te r in to the linear predictor and 

the prior of the ra ndom pa rt it ion . In this app lica tion, after pr e-
limin ary c ov ari ate choice vi a LPML ( lo g ps eudo m argin al like- 
lihood, Chris te n s en e t al., 2010 ) ev aluation, we choos e to in- 
clude Ge nde r, Blood group, RH, Smo ke, and B MI ( at the first 
donation ) in the linear term, so that p 1 = 7 considering dummy 
v ari ab les too. The only time-varying cov ari ate included in the 
linea r te rm is Age a t the tth dona tion. Only sta tic cov ari ates en-
ter the prior of the random part it ion: Gender, Blood Group, 
RH, Smoke, Age at the first donation and BMI at the first 
donation. 

4.2 Poste rio r infe re nce 
To pe rform pos te rior infe re nce for model ( 9 ) - ( 13 ) , we modify 
the G ib bs s amp ler in Web Appendix C to consider the l ikel i- 
hood of r ecurr e n t eve n ts. See Web Appe ndi x D for details. We fix 
hype rpa ra mete r s as follows: �0 = d iag ( 1 , . . . , 1) , ( ν0 , τ0 ) =
(2 , 1) , α0 = ψ 0 = 0 and κ = 0 . 5 [see ( 6 ) ]. Since n j − σ is the
unnorm alize d w ei gh t that a new ite m is assi gned to clus te r A j , σ
in ( 6 ) is a key hype rpa ra mete r; w e ass ume thre e diffe re n t values
for σ and report the as s oci at ed post erior estimat es in Table 1 for 
s en sitivity an alysis . The dis ta nce d(x i , x j ) e n te ring the similar-
ity function’s definition is given in ( 8 ) . Every run of the G ib bs 
s amp ler produc e d a fin al s amp le size of 10 000 it erations, aft er a
burn-in of 5 000 iterations . Conv ergenc e was che cke d in all sim- 
ul ation s using visual inspection a nd s ta nda rd diagnos tics as in 

Figure S3 of Web Appendix B. 
Table 1 shows the n umbe r of clus te rs of the estim ate d parti- 

tion and LPML values with similarity functions g C and g ≡ 1 

( no cov ari a tes in the prior ) , for differ ent values of the temper- 
a tur e hype rpa ra mete r λ a nd the r einfor ce me n t pa ra mete r σ . By
definition, the la rge r the LPML is, the bette r the model fits the 
da ta. Ther e is a clear effect of σ , λ and cov ari a tes ( thr ough g C )
on LPML: the best value corresponds to λ = 0 . 1 and σ = 0 . 15 . 
Values of LPML for g C are much larger than in the case of g ≡ 1 . 
For any of the hype rpa ra mete r values in the table, we have com- 
puted a n es timate of the ra ndom pa rt it ion for the s amp le donors, 
minimizing a pos te r ior i the expectation of the var iation of infor- 
mat ion ( VI ) loss funct ion ( s ee, for in s ta nce, Wade a nd Ghahra- 
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TABLE 1 Lo g ps eudo m argin al l ikel ihood ( LPML ) a nd n umbe r of clus te rs in the estim ate d part it ion, obtained minimiz ing a pos te r ior i VI, for 
the blood donation data, for diffe re n t values of λ and σ , and similarities g C , g ≡ 1 . 

g C g ≡ 1 PPMx 

λ σ LPML 

ˆ K VI LPML 

ˆ K VI LPML 

ˆ K VI 

0.005 0.001 −22 032.51 5 −22 424.91 5 −21 850.19 8 
0.010 0.001 −22 068.25 5 
0.100 0.001 −21 812.24 6 
0.005 0.150 −21 990.26 6 −22 252.37 6 
0.010 0.150 −21 758.68 5 
0.100 0.150 −21 221.55 5 
0.005 0.300 −22 150.35 5 −22 311.26 7 
0.010 0.300 −22 012.24 6 
0.100 0.300 −21 672.05 7 
In evidence: the best model in terms of LPML. 

TABLE 2 Pos te rior s umm aries of the fixe d-time re gression c oefficie n ts β0 for the blood donation 

app lication . 

Covariate Me dia n 95% C.I. max { Pr ( β j > 0) , Pr ( β j < 0) } 
BMI −0.060 ( −0.077; −0.043 ) 1.000 
Ge nde r 1.119 ( 0.938; 1.329 ) 1.000 
Blood group 0 1.137 ( 0.779; 1.480 ) 1.000 
Blood group A 1.131 ( 0.768; 1.486 ) 1.000 
Blood group B 1.230 ( 0.755; 1.692 ) 1.000 
RH 0.533 ( 0.295; 0.755 ) 1.000 
Smoke 0.339 ( 0.148; 0.526 ) 0.999 
BMI: body mass index. 
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ani, 2018 ) . We report the number ˆ K VI of estim ate d clusters in
able 1 . Since the card inal ity of the visited part it ions is quite

arg e, as sugg es ted b y Wade a nd Ghahra ma ni ( 2018 ) , from the
C MC e stimate of the post erior co-clust er ing matr ix, we con-

ider all the part it ions designed by a hierarchical clustering algo-
ithm with comp le te linkage. The n, as the poin t es tim ate, w e se-
ect the part it ion that achieves the minimum value of the poste-
ior los s function . It i s clear that ˆ K VI i s r obust with r espect to the
ffe ct of c ov ari ates in the prior a nd cha nges in σ a nd λ, though
s expe cte d, ˆ K VI increases with σ . Thi s i s an aspect of the well-
nown trade-off betw e e n the es t imat ion of the n umbe r of clus-
e rs a nd the pos te rior pre dictiv e che cks, espe ci ally in the cas e of

isspec i fied models ( see, for ins ta nce Be raha et al., 2022 , Sec-
ion 7 ) . T ypically , the pos te rior pre dictiv e che ck improv es when
ve res t imat ing the n umbe r of clus te rs. 
The rest of the posterior inference reported below is com-

uted for the optimal values of the hype rpa ra mete rs, that is, λ =
 . 100 and σ = 0 . 150 . Note that σ = 0 . 001 in Table 1 a pproxi -
 ates the c ohesion function yielde d by the Dirichle t proces s as

n Müller and Quintana ( 2010 ) and Müller et al. ( 2011 ) ( though
hey use a diffe re n t simila rity ) . 

Table 2 shows pos te rior mea ns of the r egr ession coefficie n ts of
he fixe d-time c ov ari ates . All the fixe d-time c ov ari ates included
n the study are significantly differ ent fr om zer o; s ee the l ast co l-
mn. The average log-gap time increases for donors with blood
roups 0, A, and B with respect to the refe re nc e lev el AB. Of
 ourse, w ome n exhibit longe r ga p times in ac c ordanc e with the
tali an l a w. F igure S4 in Web Appendix B shows the r egr ession
oefficie n ts for the only time-depe nde n t cova riate included in
he study ( age of the donor ) . All these pa ra mete rs a re si gnifi-
a n tly diffe re n t from ze ro. Furthe r, as the occasion of donation
ncreases, the impact of age on the log-gap time decreases in m ag -
itude, implying that loyal donors are less s ubje ct to age differ-
nc es . 
Figure 3 shows the tra je ctories of the observ e d log -gap times

rouped by the estim ate d clusters as exp l ained before. It is clear
rom the clus te r sizes that the r ich -get-r icher property of the cohe-
ion as s oci ated with the Dirichle t proces s is he re miti gated. We
o not o bs erv e s ubstantial differenc es among the log-gap times

n the estim ate d clusters . How ev er, Cluster 1 se ems to group
onger tra je ctories ( se e also the n umbe r of donations pe r clus-
er in Table 3 ) . 

Table 3 reports empirical s umm aries of the cov ari ates
 included in the prior ) within each estimated clus te r, that
s, e mpirical mea ns for con tin uous cova riates a nd e mpirical
requency for the binary or categorical cov ari ates. The l ast two
o lumn s disp l ay the empirical average and stand ard devi ation
or the n umbe r of r ecurr e nces ( m i ’s ) a nd the log gap times per
lus te r, grouped b y ge nde r. Clus te r 1 groups older donors, since
he clus te r mea n is one s ta nda r d devia tion abo ve the o verall

ean . Thes e donors als o h av e a sli gh tly hi ghe r BMI a nd a hi ghe r
e rce n tage of wome n. From Fi gure 3 , it is also clear that those
onors h av e longer tra je ctorie s of gap time s . On the other h and,
able 3 shows that the average number of donations in Clus te r
 is hi ghe r tha n the ove rall e mpirical ave rages for me n a nd
omen. 
Clus te r 2 contains donors with empirical averages of covari-

tes ( but for the indicator of smoking ) and the n umbe r of dona-
ion s clos e to the correspondin g o ve rall e mpirical mea ns. Clus-
er 3 groups younger donors than Cluster 2, with fewer smok-
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FIGUR E 3 R ecurre n t ga p times ( on the lo g s cale ) b y es tim ate d clus te r for the blood donation a pp lication . We draw each clus te r’s sa mple mea n 

( con tin uous line ) , median ( dashed line ) , and the 90% sample qua n tile ba nd. The b l ack con tin uous a nd dashed lines de note the ove rall mea n 

a nd media n, respe ctiv ely. 

TABLE 3 Empirical summaries of cov ari ates, number of donation s, and lo g gap-times within each estim ate d cluster for the blood donation 

app lication . 

Age BMI Ge nde r B lood gr oup RH Sm o ke No. donations Log gap-time 
Female A B AB 0 + Yes Mean ( SD ) Mean ( SD ) 

Cl. 1 46.81 24.48 36.35% 40.29% 12.51% 3.34% 43.86% 88.92% 32.78% M 4.99 ( 4.05 ) 4.92 ( 0.48 ) 
F 2.92 ( 2.19 ) 5.46 ( 0.42 ) 

Cl. 2 33.92 24.11 29.06% 38.59% 11.88% 3.18% 46.35% 87.18% 37.53% M 4.52 ( 3.86 ) 4.98 ( 0.53 ) 
F 2.44 ( 1.73 ) 5.55 ( 0.43 ) 

Cl. 3 28.16 23.77 33.64% 34.01% 12.13% 3.49% 50.37% 87.13% 31.07% M 4.82 ( 3.76 ) 4.99 ( 0.49 ) 
F 2.62 ( 1.75 ) 5.50 ( 0.34 ) 

Cl. 4 22.83 22.95 32.24% 38.22% 12.16% 5.02% 44.59% 84.94% 27.80% M 3.63 ( 3.14 ) 5.03 ( 0.54 ) 
F 2.39 ( 1.69 ) 5.58 ( 0.42 ) 

Cl. 5 20.26 23.79 7.45% 37.89% 14.91% 8.70% 38.51% 77.64% 27.95% M 4.59 ( 3.13 ) 5.00 ( 0.49 ) 
F 3.25 ( 2.34 ) 5.41 ( 0.29 ) 

All 33.83 23.93 31.39% 38.11% 12.33% 3.91% 45.64% 86.74% 32.69% M 4.55 ( 3.76 ) 4.97 ( 0.51 ) 
F 2.64 ( 1.91 ) 5.51 ( 0.41 ) 

The clus te r s umm a ries in the las t tw o c o lumn s a re give n pe r ge nde r. B MI: body mas s index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/1/ujad021/7609161 by U
niversity of M

ilan-Bicocca user on 02 O
ctober 2024
e rs. Clus te rs 4 and 5 group very young donors and Cluster 5 is
mostly made of men with a high percentage of blood type 0 

−.
How ev er, donors in Clus te r 4 donate less than average for both
ge nde rs. The clus te rs do not show clear differences as far as the
log gap times are c onc erne d. We h av e also c ompare d the clus-
te r es tima tes r eporte d abov e ( λ = 0 . 1 , σ = 0 . 15 ) for g C , with
competitor models: ( i ) g ≡ 1 and σ = 0 . 15 ( no effect of cova ri -
ates in the prior ) , ( ii ) λ = 0 . 1 and σ = 0 . 001 for g C , that is, co-
he sion function corre sponding to the Dirichlet proce ss and ( iii )
the original PPMx in Müller et al. ( 2011 ) . See Web Appendix G.
The estim ate d clus te rs unde r the ori ginal PPMx prior a re less
clea rly in te rpre tab le in term s of cov ari ates th an ours . 

4.3 The impact of poste rio r estimates on AVIS planning and 

profiling 

Accura te pr ediction of gap times betw e en s uc c essiv e blood do-
nations of donors impacts donor profiling and donation p l an-
ning. Curre n tly, AVIS does not use any particular dat a -driven
method for predicting blood supply. There is a tar get le vel pro-
vided by Niguarda hospital but AVIS aims a t pr oducing as much
blood as possible r egar dless of this target. In the eve n t of over-
production, the excess blood is typically tra nsfe rr ed fr om Ni-
guarda hospital to another fa cility. Instea d , the crit ical pro b lem
is the production imbalance of each blood type betw e en days,
which makes it d iffic ult t o st ore blood in Ni gua rda hospit al fa -
cility. Henc e, a tool pre dicting donors’ gap times would allow
the design of robust s cheduling system s tha t pr operly r edir ect 
donors to the most appr opria te days. This would also reduce the 
imbalance of blood production betw e en days . The sche duling 
sys te m curre n tly adopted b y AVIS is dete rminis tic a nd does not 
include donor arrival predictions ( Ba ̧s et al., 2018 ) . 

The estim ate d clustering structure is particularly useful for the 
pr ofiling pr o b lem . The 5 estim ate d clus te r s correspond to d i-
vers e typo lo gies of donor s, as highl ighted by the cov ari ates as- 
s oci ated with each clus te r. The r efor e, ac c ording to our analy- 
sis, donor recruitme n t ca mpai gns should be dire cte d toward the 
older donors identified by Cluster 1, since they can guarantee 
high dona tion fr eque ncy a nd con tin uity ove r the yea rs. These 
ca mpai gns could be orga nized, for ins ta nce, b y s e tting up mo bile 
healthcare facilities for blood donations near the working sites 
where we expect to find individuals belon gin g t o Clust er 1 ( eg, 
bi g compa nie s with ol d e mplo yees ) . 

5 D I S  C U S S  I O N 

In this w ork, w e propose a regression model for gap times of 
r ecurr e n t eve n ts, whe re pa ra mete rization includes the partition 

ρn of the blood donors through clus te r-spec i fic random effects 
modeled as a PPMx-mixt. We assume a skew-normal conditional 
distribution for the logarithm of gap times betw e en blood don a- 
tions from AVIS. The prior we fix for ρn encompas s es cov ari ate 
inform ation, enc ouraging tw o individuals to be co-clus te red if 
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hey h av e similar c ov ari ate v alues . We h av e se en th at including
ov ari a te informa tion in a similarity function improves the pos-
erior pre dictiv e perform anc e and helps interpret the estim ate d
lus te rs in terms of c ovariates . By introducing a late n t va riable
 > 0 , we can express the cohesion function in the prior, and
ence the whole prior for the random part it ion of the s amp le, as a
ixture of PPMx. We propose three examples of similarity func-

ion s, emp hasizing their properties and their effects on the pos-
erior pre dictiv e distribution of the model. Cros s-v alid ated pos-
erior pre dictiv e root mea n-squa red e rrors ( Web Appe ndix G )
or the AVIS d atas e t show that the inclusion of the similarity
unction g in the prior for the ra ndom pa rt it ion yields a lower
alue than in the case with no covariates in the prior. We es-
imate 5 clus te rs of homoge ne ous donors . Thi s grouping al so
elps ide n tify individuals’ cha racte ris tics a nd importa n t fea tur es
 cov ari ates ) , s upporting profil ing for effe ctiv e ca mpai gns to ac-
uire further donors. Comparison to cluster e stimate s under the
ri ginal PPMx form ulation ( Mülle r et al., 2011 ) shows a la rge r
 umbe r of clus te rs for the la t ter prior, which do not seem easier

o exp l ain in term s of cov ari ates. The simil arity function s g that
e propose m us t be calibrated via a pa ra mete r λ, a nd we d isc uss
ow to fix it. This is a key pa ra mete r that preve n ts the overpo w -
ring effect of cov ari ates on clusters with respect to li keli hood. 
An in te res ting cha racte ris tic of our mode l is that, thou gh it

lus te rs donor ga p times tra je ct ories, it allows us t o int erpret
he estim ate d clus te rs also in te rms of othe r fea tur es. In particu-
 ar, our model con siders cov ari a te informa tion: some of the es ti -
 ate d clus te rs a re simila r whe n looking a t the r espon s e traj ecto-

ies, but diffe re n t whe n lookin g at the co v ari ate s. We be lieve this
spect is an advantage of all models with cov ari ate-depe nde n t
rior for the ra ndom pa rt it ion—includ ing our s—as it allows for
r ea ter flexibility and interpretability. 
We h av e ass ume d a c on tin uous c ondition al distribution for

he logarithm of the gap times, which are expres s ed in d ays. Ho w -
ver, thes e d a ta ar e gro uped , a c c ording to the definition in Tutz
nd Schmid ( 2016 ) , that is when the continuous time is divided
n to in te rvals a nd, if the eve n t h as oc curre d in the morning of
he s th day, one says that it has been o bs erv e d at “day s ,” with s
n tege r. Modeling con tin uous dis tributions to r epr ese n t discrete
ata shows adva n t age s: la rge r flexibility of con tin uous dis tribu-
 ions, computat ional efficacy especially in the case of MCMC
l gorithms, a nd gr ea te r in te rpretability of the pa ra mete rs of con-
in uous dis tributions. Con tin uous dis tributions a r e mor e c onv e-
ie n t whe n we r epr ese n t the pos te rior pre dictiv e densities on the
eal line. On the othe r ha nd, using dis cre te distribution s to r epr e-
e n t the l ikel ihood could be useful whe n eve n t times a re in trinsi -
ally dis cre te ( which is not the cas e he re ) , or whe n we model the
aza rds ( which a re c ondition al probabil ities for d is cre te d ata ) . 
The pitfall of our strate gy c onsists in its c omputation al c ost.

uture work may consider using appr oxima te s amp ling strategies
o ov erc ome this limitation. 
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