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Abstract—Brain-computer interfaces (BCIs) have revolution-
ized the way humans interact with machines, particularly for
patients with severe motor impairments. EEG-based BCIs have
limited functionality due to the restricted pool of stimuli that they
can distinguish, while those elaborating event-related potentials
up to now employ paradigms that require the patient’s perception
of the eliciting stimulus. In this work, we propose MIRACLE:
a novel BCI system that combines functional data analysis and
machine-learning techniques to decode patients’ minds from the
elicited potentials. MIRACLE relies on a hierarchical ensemble
classifier recognizing 10 different semantic categories of imagined
stimuli. We validated MIRACLE on an extensive dataset collected
from 20 volunteers, with both imagined and perceived stimuli, to
compare the system performance on the two. Furthermore, we
quantify the importance of each EEG channel in the decision-
making process of the classifier, which can help reduce the
number of electrodes required for data acquisition, enhancing
patients’ comfort.

I. INTRODUCTION

Brain Computer Interfaces (BCIs) are intended to create a
direct connection between the human brain and computerized
devices, enabling individuals to operate such devices without
peripheral muscle involvement [1]. Several BCIs have been
proposed over the years, leveraging information provided by
brain electrical activity. Depending on the specific application,
brain activity can be acquired either invasively through elec-
trocorticogram (ECoG) or non-invasively through electroen-
cephalogram (EEG) [2], [3]. EEG is commonly preferred as
non-invasive, but scalp-measured brain electrical activity has
lower signal-to-noise ratio, which poses significant challenges
to develop effective BCIs [4]. Despite their effectiveness, BCIs
that rely on Steady-State Visual Evoked Potentials (SSVEP)
and P300 (a positive deflection of electric brain activity that
occurs 300ms after stimulus recognition [5] indicating the
presence of conscious mental attention processes [6]) provide
a reduced pool of available functionalities [7]. This is because
P300 remains the same regardless of the stimulus that elicits it,
and SSVEP is limited by the resolution of the system to detect
depolarization changes due to the different flashing frequencies
[8]. To address these limitations, researchers have explored the
use of Event-Related Potentialss (ERPs), which offer a wider
range of evoked responses that can be associated with different
actions [9]. ERPs are time-locked responses to stimuli, and
their shape depends on the category of the stimulus presented.

To exploit ERPs potential, neuroscientists have extensively
studied their morphology to identify reliable and characteristic
markers. In more detail, the intent is to leverage the domain
knowledge to define a set of rules that an expert BCI system
can use to recognize different ERPs and perform the corre-
sponding action. Additionally, these studies can provide insight
into the cognitive processes underlying perception and provide
a better understanding of this phenomenon. For example, in

a recent work [10], researchers analyzed ERPs generated by
10 stimuli categories from both visual and auditory domains
to extract reliable markers for the perception process. By
interpreting the spatio-temporal coordinates of the brain ac-
tivity, they identified relevant voltage peaks and statistically
investigated their relationship to the specific stimulus category.
Despite the interpretability benefits provided by an expert BCI
system, the definition of hard rules can be challenging due to
the complexity of EEG data. Indeed, EEG typically contains
multiple channels, which refer to different brain regions. More-
over, the morphology and amplitude of brain waves varies
across individuals, requiring a time-consuming fine-tuning
procedure for each new user. To address these challenges,
research has been conducted to leverage machine- and deep-
learning techniques to automatically identify ERPs, assessing
promising results [11]. The advantage of these techniques is
that they do not need any prior knowledge concerning the in-
vestigated domain. A significant machine-learning approach is
presented in [12], [13], where ERPs are recognized belonging
to 14 different semantic categories of stimuli. The proposed
approach largely overcame the accuracy threshold of 70% for
each category of stimulus, which is considered as the minimum
requirement to guarantee a meaningful BCI communication
[14].

In addition to perceived stimuli, the use of imagined stimuli
in BCI has been also explored for patients who are unable to
produce observable responses, such as those in a coma or se-
vere locked-in state. Indeed, mind-reading applications would
considerably expand the BCI potential in clinical field. Again,
studies have been conducted that demonstrate the potential of
motor imagery-based BCI systems in enabling communication
and control of external devices. For instance, in [15] a BCI
system based on motor imagery was developed to allow
patients to control robots. Similarly, in [16], a motor imagery-
based BCI system was designed to control a wheelchair. These
studies highlight the potential of motor imagery-based BCI
systems in improving the quality of life for individuals with
severe motor disabilities. Despite being effective at moving
objects, motor imagery BCIs still provide a reduced pool of
additional functionalities. Therefore, researchers investigated
ERP-based BCIs using imagined stimuli as an alternative
to provide a wider set of possible actions for the patients.
These works have been inspired by evidence reported by
recent studies that have found an overlap in neural processing
related to perceived and imagined stimuli [17]. In more detail,
studies demonstrated that similar brain regions activate in
response to the same stimulus, whether it is perceived or
imagined [18]. Furthermore, multi-voxel approach revealed
that similar sensory visual features can be identified in both
perceived and imagined stimuli, with additional activity in
the anterior fronto-temporal region during imagery tasks due
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to attention and memory processes [19]. For auditory stim-
uli, the secondary auditory cortex activates similarly in both
perceived and imagined stimuli, while the primary auditory
cortex tends to be more active in response to perceived stimuli
[20]. However, recent findings have provided evidence of an
activation of the Heschl gyri (A1) during music imagery [21].
To further explore these findings, a recent study has identified
reliable markers in imagery ERPs to develop a robust set of
hard rules for implementing a mind-reading BCI system [22].
Despite the promising results assessed by neuroscientists at
identifying a reliable set of marker to distinguish imagery
ERPs, few approaches have been proposed that resort to
machine- and deep-learning techniques. Prior works, such
as those presented in [23] and [24], leverage deep-learning
techniques to distinguish between ERPs elicited by imagery
of different stimuli. Specifically, the former focused on dis-
tinguishing between ERPs related to the imagery of homes
and human faces, achieving an accuracy of 68%. On the other
hand, the latter study combined the potential of convolution
neural networks and genetic algorithms to distinguish between
ERPs that are associated with imagery of dogs, airplanes, and
houses, achieving 60% accuracy. However, these performances
are not enough to create a reliable BCI system.

In this study, we introduce a novel machine learning-based
BCI system that can learn characteristic patterns to accurately
classify ERPs associated with different semantic categories
of stimuli. To assess the performance of the approach, we
conducted an extensive experimental campaign involving 20
volunteers, who were presented with 40 stimuli belonging
to 10 semantic categories and asked to both perceive and
imagine them. The proposed system demonstrates a very
high accuracy, largely exceeding the 70% threshold for both
perception and imagery ERPs. To reduce the number of
electrodes needed, we also investigate how the number of
considered channels affects the classifier’s performance. Our
findings indicate that several electrodes can be neglected,
allowing to improve the patient comfort. These promising
results lay the groundwork for the development of effective
mind-reading BCI systems relying on stimuli imagery only.
MIRACLE offers three main contributions over the existing
literature. To the best of the authors’ knowledge, it represents
the first attempt to use Functional Data Analysis (FDA) for
the ERP recognition problem. This tool is crucial to retain the
time information and reduce data dimensionality by means of
Functional Principal Component Analysis (fPCA). Secondly,
we propose a hierarchical classifier architecture that simplifies
the multi-category stimuli classification problem as a series of
binary classifications, thus enhancing the stimuli recognition
performance and exceeding those obtained so far for mind
reading, reaching them over a wider set of stimuli. Last,
we contribute to BCI technology by presenting an approach
to quantify the importance of each channel in the decision-
making process of the hierarchical classifier. This approach
calculates the Kendall τ correlation coefficient between each
EEG channel and the first principal component identified by
fPCA, providing an effective tool to reduce the number of elec-
trodes embedded in the acquisition cap and improve patients’
comfort. Furthermore, it enables the automatic identification
of relevant brain areas involved in stimuli classification, which
turns out to be consistent with neuroscientific knowledge. To
validate MIRACLE, grand averaged ERPs triggered by 10
semantic categories of stimuli, both visual and auditory, were
collected during an extensive experimental campaign involving

20 volunteers. Performance is evaluated through k-fold cross-
validation to ensure robustness when considering new ERPs
belonging to the same subjects analyzed during training, and
leave-one-out validation to investigate the impact of BCI
illiteracy on the hierarchical classifier’s accuracy. The results
showed that the proposed BCI system reaches outstanding
performance on both perception and imagery ERPs, vastly
exceeding the 70% threshold for effective communication.
Summarizing, the most significant achievement of this work is
demonstrating the ability to recognize the imagined stimulus
that triggers an ERPs, which represents a significant step
forward in the field of mind-reading applications that can be
effective even in patients who are in a coma or affected by
locked-in syndrome.

The rest of the paper is organized as follows: Section II
provides insights concerning the experimental procedure used
to collect the ERPs data considered in this work. Then, Section
III presents the method designed to associate each ERPs to the
semantic category of the stimulus that has elicited it. Section
IV discusses the system’s performance. Section V explains the
approach designed to investigate EEG channels’ importance
and presents the obtained results.

II. EXPERIMENTAL SETUP

This Section outlines the experimental methodology de-
signed for ERPs data collection. For additional information,
please refer to [10], [22], where further neuroscientific insights
into the collected ERPs’ components are provided.

The data collection process involved a group of 20 vol-
unteers (13 females and 7 males) with an average age of
23.9±3.34 years. All participants were right-handed according
to the Edinburgh Inventory Questionnaire [25]. Furthermore,
they had normal or corrected-to-normal vision and hearing
and did not experience deficits in language comprehension,
reading, or spelling. None of the volunteers had previously
been diagnosed with a psychological or psychiatric disorder
or drug abuse. The experimental protocol adhered to the
Helsinki Declaration of 1964 and was approved by the Ethics
Committee of Bicocca University (protocol number RM-432).
Each participant provided written informed consent before
participating in the data collection process.

Each participant was given instructions regarding the stan-
dardized experimental protocol. Firstly, an high-density elec-
trodes cap was carefully applied to the volunteer’s scalp. Then
the participant was instructed to wear Sennheiser electronic
gmbH headphones and sit inside an anaechoic and faradized
cabinet, located 114cm away from a HR VGA color mon-
itor positioned outside. All the volunteers were specifically
instructed to remain still and avoid any eye or body movements
while focusing their gaze on a central point displayed on the
screen. The stimuli were organized into 12 runs, consisting of
8 runs with visual stimuli and 4 runs with auditory stimuli.
Each visual run lasted for 3 minutes, while each auditory
run lasted for 2 minutes and 30 seconds. The allocation of
stimuli to the runs was randomized within their respective
sensory domains. In total, there were 40 stimuli instances
for each category, encompassing 10 categories, with 7 visual
and 3 auditory categories. Consequently, there were a total
of 280 visual stimuli and 120 auditory stimuli. Although all
subjects perceived the same stimuli, the order of presentation
varied between participants. The visual stimuli consisted of
images measuring 18.5 × 13.5cm, presented at the center of
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TABLE I: Experimental Campaign: Semantic Categories of
Stimuli. This Table presents the categories of the stimuli
employed in the experiment; 40 different stimuli are collected
for each category.

Domain Category Composition

Visual

Infant Face Faces of baby males and females
Adult Face Faces of adult males and females

Animal Heads of differ
Bodies Dressed bodies of males and females

Written Words Italian words
Objects Manipulable and familiar objects

Checkerboards Colored checkerboards

Auditory
Music Different piano recordings

Vocalization Voices of crying, fear and laughter
Spoken Words Italian words by male and female

the monitor for 1500ms, accompanied by a white background.
On the other hand, the auditory stimuli consisted of 1500ms
recordings played through the headphones from an iPhone 7
and a Huawei P10. The visual stimuli were carefully matched
in terms of sensory properties such as luminance, color, and
size. Likewise, the human-related visual and auditory stimuli
were matched based on perceptual properties like sex and
age, while written and spoken words were matched based on
linguistic properties. Specifically, a set of 40 common Italian
words was selected. The auditory stimuli were normalized and
adjusted to intensity levels ranging from 20 to 30 dB, ensuring
consistency in intensity and volume. For what concerns the
choice of the specific categories of stimuli, which are detailed
in Table I, they represent the 10 most distinctive categories of
sensory and perceptual stimuli for which human display innate
and devoted neural mechanisms, which have been studied
both in terms of both anatomical localization and timing of
activation. When a run started, the first stimulus was presented.
The presentation of the stimuli to the volunteers leveraged Ee-
voke Software for audiovisual presentation (ANT, Enschede,
The Netherlands). Following the removal of the stimulus, a
gray screen was displayed for an intra-stimulus interval of
500± 100ms. Subsequently, a yellow frame appeared on the
screen, signaling to the participant to imagine the picture
or sound that had just been presented. After a designated
2000ms duration for performing the imagery task, the yellow
frame disappeared, and the participant was provided with an
inter-trial interval of 900 ± 100ms before the next stimulus
was presented. It is important to note that the decision to
allocate 2000ms to the volunteers for imaging each stimulus
is supported by evidence in the literature that at least 500ms
are required to figure an alphabet letter, and this interval
considerably increases considering auditory stimuli [26]. To
foster concentrations, volunteers were informed beforehand
that at the end of the experiment they would be asked to
complete a questionnaire related to the presented stimuli.

During the experiment, EEG data was continuously
recorded by a cap embedding 126 electrodes sampling at
512Hz and placed according to the 10/5% system by Oost-
enveld and Praamstra [27]. The electrodes’ impedance was
kept below 5kΩ. The electrodes record both EEG and elec-
trooculogram (EOG), and use the linked mastoids (M1, M2)
as reference leads. ANT software was used to acquire and
clean the data. In detail, it applies a band-pass filter between
0.016 and 30Hz to all the EEG channels, and between 0.016
and 70Hz for the EOG channels. Artifacts caused by eye
movements, blinks, or excessive muscle potential were also re-
moved by leveraging peak-to-peak amplitude exceeding 50µV

Imagery
Perception

Fig. 1: Perception vs Imagery: CPz Trend.
This Figure refers to Subject 1 and shows the trends measured
by CPz channel for all the semantic categories of stimuli,
comparing perception and imagery ERPs. Please notice that,
to ease the comparison, the plotted trends have been subjected
to baseline correction.

as criterion, leading to a rejection rate of 5%. Furthermore,
ANT acquisition software performs ERPs grand averaging to
improve the signal-to-noise ratio of the potential elicited by
each stimulus [28]. Specifically, for both the perception and
imagery recordings, the 40 responses of each subject asso-
ciated with stimuli belonging to the same semantic category
were first synchronized based on the trigger onset and then
averaged. The resulting collections of averaged ERPs for per-
ception and imagery stimuli constitute the datasets produced
at the end of the experimental procedure. Both perception and
imagery datasets consisted of 200 ERPs, 10 per subject, one
for each category of stimulus. In the perception dataset, each
ERP lasted 1500ms, with 100ms pre-stimulus baseline; In the
imagery dataset, each ERP lasts 2000ms, with a 100ms pre-
stimulus baseline. An example of the ERPs collected in the
perception and imagery datasets is reported in Figure 1, where
Subject 1’s trends for the CPz channel are presented for all the
stimulus categories. It is interesting to notice that, as reported
in Section I, P300 component was reduced and delayed in the
imagery datasets. This result further suggests how imagery is
a weaker and noisier imaginative experience, as opposed to
the more vivid and detailed perceptual one [22].

III. PROPOSED METHOD

This Section details MIRACLE’s pipeline, tailored to rec-
ognize the semantic category of the stimulus related to the
measured ERPs, and presents the performance metrics used for
its evaluation. A comprehensive set of metrics has been con-
sidered, to provide a reliable understanding of MIRACLE’S
performance and enable comparison with other methods in the
literature.

A. Pre-Processing

The first step of the MIRACLE classification pipeline is
pre-processing. It consists of two stages: baseline correction
and frame selection. As grand averaged ERPs are affected
by noise, baseline correction is essential. Indeed, this step
aims to remove the resting-state activity from the signal, and
guarantees that any measured voltage changes are due to the
stimulus rather than to the ongoing brain processes [29]. For
each grand averaged ERP, its mean voltage recorded before
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the onset of the stimulus is subtracted channel by channel.
After this procedure, the unnecessary channels, i.e., the ones
related to the ocular (vEOG, hEOG) and mastoids (M1, M2)
are removed.

Then, frame selection is performed, to improve the signal-
to-noise ratio [29]. Considering imagery stimuli categories,
we consider as relevant the 400 to 1000ms range, while for
perception stimuli categories, we maintain the grand averaged
ERP’s portion included in 100 to 1000ms range. The choice of
considering a smaller interval in imagery ERPs is due to the
lack of P300 component. Indeed, as reported in Section I, it is
related to attention processes, so it is not typically observed in
potentials that are not evoked by an external stimulation [30].

B. Windowing

Windowing is a technique widely used in machine learning
to enhance model training and provide robustness to time shifts
in data collection. It involves dividing the pre-processed sig-
nals into smaller segments of fixed length leveraging a window
that slides of a specific factor, defined as slope. Windowing is
also essential when designing an online BCI to enable real-
time ERPs classification. Indeed, the window and the slope
determine the time required to get the first prediction and
the update rate, respectively. It follows that window size is a
crucial parameter that must be properly fine-tuned. Wider win-
dows correspond to a reduced number of instances and longer
wait to get the first prediction, while smaller windows may not
accurately represent the grand averaged ERP behavior, leading
to inconsistent results. In the design of MIRACLE, we tuned
the window size according to an a posteriori approach, which
relies on the performance of the classifier in recognizing the
classes from the extracted features while varying the window
size, and evaluated different sizes ranging from 100ms to
600ms. For each evaluated window size, we extracted the
corresponding set of features, using the 75% of the data to train
the classifier, and the remaining 25% for testing purposes. The
train-test split was performed according to a stratified split.
To evaluate the classifier’s performance in recognizing the
semantic category of the stimuli, we computed the F1-Score
using k-fold cross-validation. Fine-tuning of the classifier was
conducted separately for the perception and imagery datasets.
In both cases, we determined the optimal window size to be
500ms, while setting the slope to 1s.

C. Features Extraction

After the windowing stage, the perception and imagery
datasets consist of two collections of grand averaged ERPs’
windows. In more detail, they are composed of a set of 6600
and 9300 windows 500ms long, respectively. It follows that
each window collects the samples measured in the window
time frame by the 122 channels. Formally, we can define the
perception and the imagery datasets as χpro and χfig , where
each χ is a collection of on the windows ERPi,j,w extracted
from the grand averaged ERP recorded for the ith subject
when triggered by the jth stimulus, i.e.,

χ = {ERP1,1,1, . . . , ERPi,j,w, . . . , ERPSu,St,W },

where St is the number of stimuli categories in the dataset, i.e.,
10, Su the number of volunteers, i.e., 20, and W the number of
overall windows extracted from all the grand averaged ERP.

Moreover, each ERPi,j,w contains all the discrete samples
collected in the wth window frame, that is

ERPi,j,w = [ERPi,j,w(1, a), . . . , ERPi,j,w(k, t),

. . . , ERPi,j,w(K, b)]

where K is the number of channels, i.e., 122, while a and b
are the extremes of the grand averaged ERP window’s domain,
i.e., ERPi,j,w : [a, b] and b− a = 500ms.

The large number of channels can cause a decrease in clas-
sifier performance due to the curse of dimensionality problem
[31]. This occurs because as more features are added, the
dimension of the space in which the instances are represented
enlarges, making it more challenging for the classifier to learn
a robust decision function without overfitting. One common
technique used to address this problem is Principal Component
Analysis (PCA), which reduces the instances dimensionality
while preserving most of the information [32]. However,
PCA does not account for the temporal dependency of grand
averaged ERPs, for which the shape of the curves is a critical
factor that cannot be neglected in their classification. To
overcome this issue, we decided to represent the data using
FDA, which allows us to use fPCA. fPCA is an extension of
PCA that accounts for the time dimension and is specifically
designed to handle data where observations can be represented
as functions, such as EEG time-series [33].

Therefore, we transform our data resorting to FDA tech-
niques. According to this representation, each window is
composed of a set of 122 functions fitted to the discrete
samples provided by each EEG channel. To fit the functions,
B-splines are used, which are piece-wise polynomial functions
defined over a sequence of knots that partition the function
domain in intervals. Within each interval, the B-spline is
a polynomial of a fixed degree. The degree of smoothness
is determined by the number and location of the knots, as
well as the order of the B-splines. B-splines were preferred
over Fourier or other options because they allow for flexible
modeling of complex functions. Additionally, the use of B-
splines can help to maintain important features of the original
data, such as peaks and troughs, while removing noise [34].

In MIRACLE, the EEG channels’ functions are approxi-
mated using 5 knots (m) and a polynomial of order (r) equal
to 2. In more detail, let ERPi,j,w(k, t), t = [a, b], be the
set of Nw discrete samples associated to the kth channel of
the grand averaged ERP window referred to the jth subject
elicited by the ith stimulus. Let also τn, n = 1, 2, . . . ,m be
a set of m knots equally spaced in the function domain. The
knots divide the window interval [a, b] into m+1 sub-intervals,
where a = τ1 ≤ τ2 ≤ · · · ≤ τm ≤ τm+1 = b. It follows that
the basis smoothing of the grand averaged ERP window’s data
can be defined by a linear combination of the fitted splines as

ÊRP i,j,w(k, t) =

m+2r−1∑
n=1

ωnBn,r(k, τ) (1)

where ÊRP i,j,w(k, t) is the smoothed function, Bn,r(k, τ)
is the B-spline of order r associated to the nth knot, and
ωn are the weights attributed to each B-spline in the linear
combination, estimated by least squares. As reported in Figure
2, at the end of this step, the window consists of a set of 122
functions.
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As previously mentioned, FDA representation enables us
to leverage fPCA to reduce instances dimensionality, while
preserving temporal information [35]. In fPCA, the objective is
to decompose the data into a set of orthogonal functions known
as principal components, which capture the main sources of
variability in the data. Each functional principal component is
associated with a score that represents the amount of explained
data variance. Usually, the first few principal components
capture the largest sources of variability, so that the others
can be neglected. To perform fPCA, we first center and scale
the windows to have zero mean and unit variance. Then, we
compute the eigenfunctions and eigenvalues of the covariance
operator, which describes the variation in the data over time
and is defined as

Cov[ÊRP i,j,w(k, t), ÊRP i,j,w(l, t)] =

1

Nw − 1

Nw∑
t=1

[ (
ÊRP i,j,w(k, t)− µ

ÊRP i,j,w(k,t)

)
(
ÊRP i,j,w(l, t)− µ

ÊRP i,j,w(l,t)

) ]
,

where ÊRP i,j,w(k, t) represents the kth channel function of
the w window at time t, µ

ÊRP i,j,w(k,t)
is its mean across all

time points, and Nw is the number of time points for each
channel in the window. As we are considering functions, the
functional covariance must also be computed from the sample
covariance by solving∫ b

a

Cov[ÊRP i,j,w(k, t), I(ÊRP i,j,w(l, t))]dt

= λ

∫ b

a

I(ÊRP i,j,w(k, t))I(ÊRP i,j,w(l, t))dt,

where λ is the eigenvalue associated with each eigenfunction
and I(·) is the integral operator. The solution to this problem
can be expressed as a series expansion in the form

I(t) =

∞∑
p=1

√
λpϕp(t)ξp, (2)

where ϕp(t) are the eigenfunctions of the covariance operator,
λp are the corresponding eigenvalues, and ξp are the coeffi-
cients of the expansion. Then we can project each window onto
the fPCA space to obtain a lower-dimensional representation
by retaining only the information provided by a reduced set
of the principal components.

The first functional principal component captures most of
the variance (over 95%) in both perception and imagery
datasets; therefore this is the only one retained. It follows that
fPCA reduces each window dimensionality from 122 channels
to 1 functional principal component. To highlight its variations
within the window, we also calculate the first derivative of
the component. Finally, we extract statistical features, i.e.,
mean, standard deviation, minimum, and maximum from both
the component and its first derivative. By extracting these 8
features for each window, we can provide a concise summary
of the available information to the machine-learning classifier,
guaranteeing robust training performance.

D. Classifier Learning and Evaluation

After the features extraction process, each window of the
grand averaged ERPs is represented by eight features, includ-

Fig. 2: fPCA Computation. Each 500ms window
is composed of the samples collected for the
the 122 channels in that time range. To com-
pute fPCA, the first step is to estimate from the
samples of each channel the respective function.
Then, fPCA computes the functional principal
components that best explains the variance in the
window. As in each window the first component
explains more than 95% of the variance, it is the
only one considered.

ing the mean, standard deviation, minimum, and maximum
of the first functional principal component and its derivative.
These instances are presented to the hierarchical classifier for
training and evaluation purposes. The evaluation procedure
was first conducted considering k-fold cross-validation with
a stratified split, where 25% of the data is used for testing
purposes. This enables us to assess the model’s predictive
capabilities when presented with grand averaged ERPs belong-
ing to the same subjects considered in training. Additionally,
we investigated the model’s performance on new users by
resorting to leave-one-out validation, where the classifier is
trained on all the instances in the dataset except for those
belonging to one user, which constitute the test set. We repeat
this procedure for all subjects, and the average evaluation
metrics are considered.

All Stimuli

Picture

Living
Humans

Faces
Infant

Adult
Bodies

Animals

Not Living
Tool

Object

Checker-
board

Word

Audio

Human 
Speech

Emotiv

Words
Music

Infant
Face

Adult
Face

Written
Word

Spoken
Word

Emotional
Vocalization

Fig. 3: Hierarchical Classifier Architecture.
This Figure shows the hierarchical classification architecture
designed to identify the grand averaged ERPs. Each binary
split is performed by a machine-learning model, ad-hoc trained
to distinguish the two classes.

To design the hierarchical classification structure, stimuli
categories are grouped into fictional macro-categories accord-
ing to a semantic perspective to create a tree structure, whose
architecture is reported in Figure 3. Grouping similar cate-

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3301507

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE II: Classification Report for Binary Classifiers: Per-
ception. This Table reports the precision, recall, and F1-Score
assessed by each binary classifier independently at predicting
the grand averaged ERPs in perception dataset. The support
is equal to 660 samples for each class.

Stimulus Evaluation Metrics
Precision Recall F1-Score

Infant Face 76.22 92.51 83.18
Adult Face 92.71 94.53 93.13

Animal 99.99 85.12 92.05
Body 99.99 93.71 96.02

Checkerboard 91.81 94.34 92.97
Object 94.52 90.21 92.72

Written Word 99.99 99.99 99.99
Emotional Vocalization 95.51 97.76 96.24

Spoken Word 99.99 99.99 99.99
Music 97.31 95.52 96.33

gories together improves model interpretability and, depending
on the requirements of the end user, it allows for high-level
predictions while maintaining a correct semantic. Each binary
classification is performed by a k-Nearest Neighbours (k-
NN) machine-learning model. k-NN identifies the k nearest
neighbors to a new data point in the training set and classifies
it based on the most commonly represented class among the
neighbors [36]. One of the advantages of k-NN is that it is
a non-parametric algorithm that makes no assumptions about
the underlying data distribution. The key parameter in this
model is the number of neighbors considered, k, which we
fine-tuned and set to 5. Each k-NN in the tree is trained and
evaluated individually, and overall architecture performance is
also estimated.

The F1-Score is considered as the main evaluation metric,
due to its ability to provide a balanced view of performance,
unlike accuracy, which can be misleading in datasets with
unbalanced class distribution. It is defined as the harmonic
mean of precision and recall.

IV. EXPERIMENTAL RESULTS: EVALUATION AND
DISCUSSION

To evaluate MIRACLE ability to recognize new grand aver-
aged ERPs belonging to the same subjects as those in the train-
ing set, we utilized 10-fold cross-validation. This approach is
widely adopted in machine-learning as it ensures reliable and
consistent estimation of the classifier’s performance [37]. In
each of the 10 iterations, the dataset was partitioned into two
subsets: a training set that contained 75% of the instances and
a test set including the remaining 25%. Stratified sampling was
used to ensure a similar class distribution in the training and
test sets, which is crucial in case of imbalanced datasets. The
performance metrics were computed as the average assessed
in the test set for each iteration. We evaluated the classifiers
both individually and within the hierarchical architecture.
In the former case, we evaluated each classifier’s ability to
distinguish between classes on which it was trained. In the
latter, we evaluated the performance of the entire hierarchical
architecture, where each binary classifier predicted all the
samples provided to the previous nodes. As a result, in case of
misclassifications, the samples provided to a binary classifier
may not belong to any of the classes on which it was trained.

TABLE III: Classification Report for Binary Classifiers: Im-
agery. This Table reports the precision, recall, and F1-Score
assessed by each binary classifier at predicting the imagery
dataset. The support is equal to 930 samples for each class.

Stimulus Evaluation Metrics
Precision Recall F1-Score

Infant Face 87.15 98.58 92.57
Adult Face 98.23 96.36 97.65

Animal 99.99 95.63 97.97
Body 99.99 95.12 97.83

Checkerboard 98.71 97.31 98.24
Object 97.15 98.29 98.43

Written Word 99.99 99.99 99.99
Emotional Vocalization 94.62 96.16 95.41

Spoken Word 99.99 99.99 99.99
Music 96.31 94.22 95.34

TABLE IV: Classification Report for Hierarchical Classifier:
Perception. This Table reports the precision, recall, and F1-
Score for the perception dataset when predicted by the hierar-
chical classifier. The support is equal to 660 samples for each
class.

Stimulus Evaluation Metrics
Precision Recall F1-Score

Infant Face 97.12 80.34 88.84
Adult Face 90.56 93.64 91.42

Animal 93.54 83.26 88.88
Body 91.33 90.47 91.18

Checkerboard 91.69 93.32 92.15
Object 80.63 95.85 87.87

Written Word 96.68 96.13 94.23
Emotional Vocalization 94.34 94.5 94.72

Spoken Word 89.94 92.35 91.42
Music 93.92 96.15 94.43

We applied the same procedure to both perception and
imagery datasets. Tables II and III present the precision, recall,
and resulting F1-Score of each binary k-NN classifier on the
perception and imagery datasets, respectively. The classifiers
achieved an average F1-Score of 94.26% and 97.34%, with
both datasets performing best for written and spoken words.
The most frequently misclassified stimulus was the infant face.
Upon further investigation, it was discovered that 7.63% and
1.89% of the grand averaged ERPs windows associated with
infant face were incorrectly attributed to adult face during the
split considering perception and imagery datasets, respectively.
Clearly, the reaction process to the perception or imagination
of faces share commonalities, so the specific error does not
pose particular harm to the overall performance of the system.

Then, we evaluated the performance of the binary k-NN
classifiers within the hierarchical structure. To this extent, we
provided all instances in the dataset to the first binary classifier,
which aimed to distinguish between visual and auditory stimuli
categories. The instances were then passed on to the following
binary classifiers according to the predicted category, until a
leave of the hierarchical structure is reached. Table IV and
V show the resulting precision, recall, and F1-Scores for
the perception and imagery datasets, respectively. The F1-
Score assessed to 91.10% and 94.13% for the perception and
imagery datasets, respectively. The infant face was the least
recognized class, and a higher percentage of wrongly predicted
windows should be attributed to the animal stimulus. This
could be due to the baby schema, i.e., some animals sharing
physical characteristics with babies, as suggested by ethologist
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TABLE V: Classification Report for Hierarchical Classifier:
Imagery. This Table reports the precision, recall, and F1-Score
for the imagery dataset when predicted by the hierarchical
classifier. The support is equal to 930 samples for each class.

Stimulus Evaluation Metrics
Precision Recall F1-Score

Infant Face 99.99 93.24 90.79
Adult Face 93.17 96.81 94.95

Animal 96.59 94.74 95.48
Body 95.29 93.43 94.24

Checkerboard 94.78 97.36 95.21
Object 93.31 96.67 94.14

Written Word 97.11 96.96 96.15
Emotional Vocalization 91.86 98.15 94.93

Spoken Word 93.52 95.33 94.65
Music 99.99 89.14 94.51

TABLE VI: Classification Performance According to k-fold
Cross-Validation and Leave-One-Out Validation: Perception.
This Table compares the F1-Score assessed at recognizing the
perception stimuli categories.

Split Node k-Fold Leave-One-Out

Audio vs Picture 95.50 81.36
Living vs Not Living 91.00 74.03

Human Speech vs Music 97.35 83.33
Humans vs Animals 94.24 82.95

Tool vs Written Word 92.32 89.39
Emotional Vocalization vs Spoken Word 96.67 90.91

Faces vs Body 90.91 89.39
Object vs Checkerboard 94.85 90.91

Infant Face vs Adult Face 90.61 90.91

Konrad Lorenz’s research in 1943, eliciting similar responses
in humans [38], [39].

The purpose of leave-one-out validation is to assess the
performance of a BCI system at classifying ERP windows be-
longing to a new subject. Despite high leave-one-out validation
performance would be desired, as it would guarantee that the
system is effective on new patients without requiring classifier
re-training, it is well known in the literature that differences
in human physiology and brain patterns cause BCI illiteracy
[40]. To evaluate the performance of MIRACLE on new
users, we trained the hierarchical architecture on all but one
user and repeated the procedure for all subjects, considering
the average performance. The results for the perception and
imagery datasets at each split level are reported in Tables
VI and VII, which also provide a comparison with k-fold
cross-validation outcomes. Despite MIRACLE assesses high
F1-Score, even on new users, in both perception and imagery
datasets, the classifier proves to perform better on the same
subjects considered in the training phase rather than on new
ones.

Additionally, Figure 4 shows the F1-Score obtained by the
hierarchical classifier according to leave-one-out validation for
each subject, considering the perception and imagery datasets.
The results demonstrate inter-subject variability in perfor-
mance, with some subjects achieving a higher recognition
accuracy than others. This finding is consistent with previous
studies indicating that similarity in cortical organization or
patterns of brain activity can influence BCI performance [41].
Similarly, evidence is reported in literature that individuals
who had similar EEG patterns in the training set achieved
higher classification accuracy in BCI tasks [42].

Finally, the trend in predictions over time for Subject 1 was

TABLE VII: Classification Performance According to k-
fold Cross-Validation and Leave-One-Out Validation: Imagery.
This Table compares the F1-Score assessed at recognizing the
imagery stimuli categories.

Split Node k-Fold Leave-One-Out

Audio vs Picture 95.99 79.35
Living vs Not Living 96.31 68.20

Human Speech vs Music 96.52 77.42
Humans vs Animals 96.67 87.90

Tool vs Written Word 97.56 90.32
Emotional Vocalization vs Spoken Word 95.27 83.87

Faces vs Body 94.99 90.32
Object vs Checkerboard 97.63 83.87

Infant Face vs Adult Face 96.54 86.79

Imagery
Perception

Fig. 4: Leave-One-Out Validation Results.
This Figure shows the average F1-Score assessed by each
subject according to leave-one-out validation procedure.

investigated and reported in Figure 5 for the imagery dataset;
perception dataset shows similar results. The left subplots
show the predictions made when the hierarchical classifier
was trained on 75% of the instances, equally distributed by
stimuli categories and subjects. The right subplots show the
predictions made by the hierarchical classifier when trained
on the instances of all the subjects, except for Subject 1, who
constituted the test set. Little classification error occurred for
both perception and imagery stimuli categories according to k-
fold cross-validation. Furthermore, by performing a majority
voting and attributing to the grand averaged ERP the label
most attributed to its windows, the performance can be en-
hanced. The same applies to the hierarchical classifier trained
according to leave-one-out validation. However, in this case,
more errors occur, mostly in discriminating adult and infant
faces or music and emotional vocalization stimuli categories.

V. EEG CHANNELS REDUCTION

It is known in the literature that PCA prevents to interpret
the contributions of each input attribute in the predictive
process, as the principal components are computed as a linear
combination of the inputs. Similarly, fPCA can have similar
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Emotional Voc.

(a) k-Fold (b) Leave-One-Out

Fig. 5: Predictions for Subject 1. This Figure compares the stimuli categories predicted for Subject 1’s data by the hierarchical
classifier when trained on imagery dataset and evaluated according to k-fold cross-validation (left) and leave-one-out validation
(right).

interpretability issues. To address this problem, we embed
in MIRACLE an approach to estimate the contribution of
each channel in determining the first functional principal
component. Specifically, for each grand averaged ERP related
to the same stimulus we compute the correlation between each
channel and the first functional principal component. Despite
several formulations are provided to estimate correlation, we
use Kendall τ coefficient, as it is non-parametric and more
robust to noise [43]. The channels that are most correlated
with the first principal component, considering all subjects, are
considered the most relevant. Indeed, those channels are the
most correlated to the first principal component, which is the
one employed to extract the features proposed to the classifier
to identify relevant patterns on which rely its predictive pro-
cess. This procedure is repeated for each grand averaged ERPs
in both perception and imagery datasets separately. Figure 6
shows the outcomes of the process, reporting the channels as
colored dots, with size that increases with importance. It turns
out that, regardless the specific stimulus, central, dorsolateral
and centro-parietal brain area are the most considered by the
hierarchical classifier to perform the recognition task. Finally,
it is also possible to see that the prefrontal cortex is considered
more in perception than in imagery stimuli categories, where
the centro-parietal is most involved. It is worth mentioning
that the correlation is computed over the whole frame of
the grand averaged ERP considered, i.e., between 100ms and
1000ms for the perception dataset and 400ms to 1000ms for
the imagery one. Therefore, the preponderance of frontal and
central activity is also due to the cognitive processes related to
the perception of the stimulus. We can state that is possible to
reduce the acquisition setup. Therefore, we first averaged the
Kendall τ coefficient computed for each ERP. Then, according
to the average correlation coefficient, we sort the channels,
from the most to the least important. Table VIII reports the 10
most important channels in perception and imagery datasets.
In both datasets the most important channels’ set includes
electrodes of central, dorsolateral prefrontal/frontocentral and
centro/parietal brain areas, e.g., C1, C2, and Cz, CCP1h and
CCP2h, FC2, and FFC1h, FFC2h, and FFC4h. The results
of our study align with the physiological findings reported
in [10], [22]. This result proves that our approach is able
to identify important channels located in brain areas that are
known to be involved in stimulus processing, without relying
on prior knowledge. In more detail, many of the channels that

TABLE VIII: Channels’ Importance. This Table reports the 10
channels that, one average, are most important to recognize
the stimuli categories associated to the grand averaged ERPs
in perception and imagery datasets.

Perception Imagery
Channel’s Name Kendall τ Channel’s Name Kendall τ

FC2 76.72 CCP2h 77.27
FFC3h 77.68 C2 77.02
CCP1h 78.30 C1 76.87
FFC4h 78.44 Cz 76.58
FFC1h 78.63 CCP1h 76.03
FFC2h 78.75 FFC2h 75.25
CCP2h 79.17 FFC4h 75.07

Cz 79.62 FFC1h 74.33
C1 79.79 FC2 74.01
C2 79.90 CCP3h 73.86

are known to contain relevant markers according to previous
studies were reported as important according to the presented
approach. This is the case of C1, C2, Cz, CPz, FFC1h, FFC2h,
AF2, AF3, AF4, AFz, Fz, FPz, P3, and P4. Exceptions are
channels in the midline occipital and left occipitotemporal
regions, including Oz, Iz, P7, P8, PPO9h, and PPO10h, which
are known to be relevant for distinguishing between word,
checkerboard, object, human, and animal face stimuli, but
were among the least important for the hierarchical classifier.
Nevertheless, MIRACLE was still able to accurately distin-
guish among these stimuli categories, even with the limited
contribution of these channels.

At this point, the hierarchical classifier has been iteratively
re-trained and evaluated according to k-fold cross-validation
by removing one channel at time, from the least to the
most important one. Figure 7 reports the F1-Score assessed
by the hierarchical classifier on the perception and imagery
datasets according to the number of channels considered.
It turns out that, in perception dataset, the first important
channel alone, provides 74.32% F1-Score; in imagery 80.09%.
Also, in perception dataset to provide 90% F1-Score 93
electrodes are required; in imagery 37 electrodes are enough
to assess the same performance. According to the performance
requirements of the specific application, this analysis provides
valuable insights to design a cap which embeds only the
minimum number of important electrodes.
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Centro/parietalCentral Dorsolateral prefrontal/frontocentral

INFANT ADULT ANIMAL BODY OBJECT

CHECKERBOARD WRITTEN WORD MUSIC EMOTIV WORD

(a) Perception

Centro/parietalCentral Dorsolateral prefrontal/frontocentral
CHECKERBOARD WRITTEN WORD MUSIC EMOTIV WORD

INFANT ADULT ANIMAL BODY OBJECT

(b) Imagery

Fig. 6: Channels Importance.
This Figure shows, for each considered stimulus, the channels that, on average, are most correlated to the first fPCA component,
i.e., that are most considered in the classification process.

(a) Perception (b) Imagery

Fig. 7: Setup Simplification. This Figure shows the average F1-Score assessed on grand averaged ERPs classification as a
function of the number of considered channels.

VI. CONCLUDING REMARKS AND OUTLOOK

This study represents an FDA and machine learning-based
approach that demonstrated the feasibility of developing a pas-
sive BCI that recognizes specific semantic categories of stimuli

based on grand averaged EEG data. Specifically, we recognize
imagery stimuli categories, which has not been addressed by
previous studies. MIRACLE’s classification performance for
both perceived and imagery stimuli categories is remarkable,
surpassing the 70% threshold for effective communication.
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With accuracy rates of 96.37% and 83.11% in k-fold cross-
validation and hold-out validation, respectively, MIRACLE
shows great potential for clinical applications, particularly
considering the realm of mind-reading and communication
with locked-in patients. Moving forward, our future work will
focus on refining the hierarchical classification architecture,
broadening the scope of stimuli categories, and assessing real-
time performance.
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