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Abstract— Patients with Disorder of Consciousness
(DoC) entering Intensive Rehabilitation Units after a severe
Acquired Brain Injury have a highly variable evolution of
the state of consciousness which is a complex aspect to
predict. Besides clinical factors, electroencephalography
has clearly shown its potential into the identification of
prognostic biomarkers of consciousness recovery. In this
retrospective study, with a dataset of 271 patients with
DoC, we proposed three different Elastic-Net regressors
trained on different datasets to predict the Coma Recovery
Scale-Revised value at discharge based on data collected
at admission. One dataset was completely EEG-based, one
solely clinical data-based and the last was composed by
the union of the two. Each model was optimized, validated
and tested with a robust nested cross-validation pipeline.
The best models resulted in a median absolute test error of
4.54 [IQR = 4.56], 3.39 [IQR = 4.36], 3.16 [IQR = 4.13] for
respectively the EEG, clinical and hybrid model. Further-

Manuscript received 20 October 2021; revised 26 April 2022 and
19 May 2022; accepted 24 May 2022. Date of publication 30 May
2022; date of current version 8 June 2022. This work was supported
by the Italian Ministry of Health within the Italian Neuroscience and
Neurorehabilitation Research Hospitals Network (Rete IRCCS delle
Neuroscienze e della Neuroriabilitazione), within the “Ricerca corrente
RC2020-RC2021 Programs” and by the 5× mille funds AF2018: “Data
Science in Rehabilitation Medicine” AF2019: “Study and development
of biomedical data science and machine learning methods to support
the appropriateness and the decision-making process in rehabilitation
medicine.” (Corresponding author: Bahia Hakiki.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Institutional Review Board and Ethics Committees of the IRCCS Fon-
dazione Don Carlo Gnocchi under Approval No. R17505, and performed
in line with the Declaration of Helsinki.

Piergiuseppe Liuzzi and Silvia Campagnini are with the BioRobotics
Institute, Scuola Superiore Sant’Anna, Pontedera, 56025 Pisa, Italy, and
also with the IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze,
Italy (e-mail: pliuzzi@dongnocchi.it; scampagnini@dongnocchi.it).

Antonello Grippo, Maenia Scarpino, Francesca Draghi, Annamaria
Romoli, Bahia Hakiki, Raisa Sterpu, Antonio Maiorelli, and
Andrea Mannini are with the IRCCS Fondazione Don Carlo
Gnocchi, 50143 Firenze, Italy (e-mail: agrippo@dongnocchi.it;
fdraghi@dongnocchi.it; bhakiki@dongnocchi.it; rsterpu@dongnocchi.it;
amannini@dongnocchi.it).

Claudio Macchi and Francesca Cecchi are with the IRCCS Fondazione
Don Carlo Gnocchi, 50143 Firenze, Italy, and also with the Department
of Experimental and Clinical Medicine, University of Florence, 50121
Florence, Italy (e-mail: cmacchi@dongnocchi.it; fcecchi@dongnocchi.it).

Maria Chiara Carrozza is with the BioRobotics Institute, Scuola
Superiore Sant’Anna, Pontedera, 56025 Pisa, Italy (e-mail:
chiara.carrozza@santannapisa.it).

Digital Object Identifier 10.1109/TNSRE.2022.3178801

more, the hybrid model for what concerns overcoming an
unresponsive wakefulness state and exiting a DoC results
in an AUC of 0.91 and 0.88 respectively. Small but useful
improvements are added by the EEG dataset to the clin-
ical model for what concerns overcoming an unrespon-
sive wakefulness state. Data-driven techniques and namely,
machine learning models are hereby shown to be capable
of supporting the complex decision-making process the
practitioners must face.

Index Terms— Electroencephalography, disorder
of consciousness, machine learning, coma recovery
scale—revised, prognostic models.

I. INTRODUCTION

SEVERE Acquired Brain Injuries (sABIs) are defined as
traumatic, post-anoxic, vascular or other brain damages

that cause coma for at least 24 hours. These patients, after
the coma phase, can transit to a state of prolonged Disorder
of Consciousness (DoC) which includes the Unresponsive
Waking State (UWS, previously referred as vegetative state)
and the minimal conscious state (MCS). This condition may
persist or cease achieving a full recovery emerging from the
MCS (EMCS) [1].

The mechanisms underlying recovery from a DoC are
currently unknown and are strongly dependent on etiology, age
and injury severity [2]. Furthermore, the patients’ rehabilitative
paths have a high inter-individual variability. For this reason,
prognostication on neurological outcomes in patients with
DoC remains a challenging task. A conspicuous number of
predictive parameters in rehabilitation of patients with DoC
have been reported both from the clinical world [3]–[5] and
the instrumental world [6]–[8]. Multiple electroencephalogra-
phy (EEG) descriptors as reactivity, alpha waves and an antero-
posterior gradient (APG) have been shown to be predictive of a
possible consciousness recovery [9]–[12]. Many are also brain-
computer interfaces application with embedded EEG-based
prognostic models [13]–[15]. However, researchers reported
some limitations in using the EEG as a prognostic instru-
ment for DoC given a substantial lack of standardized ter-
minology. Recently, the American Clinical Neurophysiology
Society (ACNS) attempted a standardization in nomenclature
and assessment techniques of EEG biomarkers in patients
in critical care. The latter has proven to be a valid starting
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point in the systematic evaluation of an EEG signal in critical
patients [16]–[19].

At the same time, the latest international guidelines for
diagnosis of patients with DoC have recommended the use of
both clinical and instrumental evaluations to minimize the risk
of misdiagnosis [20], [21]. In the context, EEG assessments
must show its potential in improving prognosis accuracy and
precision.

Data-driven approaches have been proved to be effectively
helping practitioners in the clinical decision-making processes
as reported in systematic reviews in this field [22]. Namely,
when evaluating outcomes in patients with DoC, authors tar-
geted specific rehabilitation milestones as visual pursuit [23],
command following [24] or decannulation [25]. For what
concerns predicting consciousness recovery different multi-
modal based machine learning models have implemented,
although often lacking of rigorous cross-validation or suffering
from low sample size [6], [26].

For this reason and to estimate the extent to which a
qualitative, but standardized, inspection of the EEG signal
can improve the prognosis of consciousness changes in DoC,
we proposed three different Machine Learning (ML) models
internally cross-validated and tested using data from 271 sABI
patients entering the Intensive Rehabilitation Unit (IRU) with
a DoC.

First, we targeted the estimation of the Coma Recovery
Scale revised (CRS-R) total score [27] at discharge via an
Elastic Net regressor with three different input datasets (one
based only on EEG, one based only on clinical evaluation,
and one based on the union of the two, namely “hybrid”).
Secondly, we evaluated classification accuracies of overcom-
ing boundary values in the CRS-R at discharge, most likely
indicating a significant change of consciousness state.

II. METHODS

A. Study Design and Participants

A retrospective observational study was performed includ-
ing 271 patients who were admitted to IRCCS Fondazione
Don Carlo Gnocchi from August 1, 2012 to January 31, 2019.
Inclusion criteria were diagnosis of DoC after a sABI, adults
(age > 18). Approval from the local Ethical Committee was
obtained (N. R17505) and enrollment was done following
the Helsinki Declaration. Patients have been included after
obtaining a written consent signed by a legal guardian (ethical
committee waived the necessity of a consent for retrospective
observational studies if unable to contact or reach the patient
due to negligible risk).

B. Data Collection

1) Clinical Data: Data concerning demographical (age, gen-
der), clinical and functional aspects were recorded. Functional
evaluations were performed by skilled operators (neurologist,
neuropsychologists and speech therapists) at the IRUs admis-
sion. Based on the repetitive assessment of at least 3 con-
secutive CRS-R administrations (in three consecutive days)
a clinical diagnosis of consciousness was formulated (UWS,
MCS or EMCS) both at admission and at discharge. The latter

was based on the CRS-R subscales following international
guidelines [28]. The repeated CRS-R administration in three
consecutive days, is known to notably reduce the possibility of
misdiagnosis [29]. Besides, the following clinical scales were
added to the dataset: Level of Cognitive Function (LCF, [30]),
Glasgow Coma Scale (GCS, [31]), Food Oral Intake Scale
(FOIS, [32]) and Functional Independence Measure (FIM,
[33]). The time between the event and the admission to the IRU
was also recorded (time post-onset). Lastly, epileptic seizures
during the acute phase have been recorded. All features
retained for the subsequent ML model were collected within
one week from admission.

2) EEG Recordings: Standard 30-min EEG recordings were
performed using a digital machine (Gal NT, EBNeuro) and
an EEG prewired head cap, with 19 electrodes (Fp1-Fp2-F7-
F8-F3-F4-C3-C4-T3-T4-P3-P4-T5-T6-O1-O2-Fz-Cz-Pz) set
according to the 10-20 International Standard System [34]
adopting previously proposed EEG recording parameters.
[11]. In particular, recordings were acquired with a sampling
rate of 128 Hz and filtered with a low-pass filter (cut-off
frequency in the 30-70 Hz), a high pass filter (with time
constant 0.1-0.3s) adjusted according to interpretation needs
(standard gain set to 7V/mm, sensitivity gain 2-10V/mm) as
in Scarpino et al. [11]. EEG labeling was performed by the
agreement of two expert neurologists according to the ACNS
terminology [16]. The descriptors included were frequency
bands, presence of an anterior/posterior gradient (APG) in
the background activity, reactivity, variability (spontaneous),
detectable sleep spindles (stage II) and lastly, epileptic
discharges.

Furthermore, we added two predictive scores derived from
the ACNS labeling. The first, by Estraneo et al. classifies EEG
background activity in five groups: normal, mildly and moder-
ately abnormal, diffuse slowing (symmetric or not symmetric
diffuse theta/delta rhythm, > 20 μV, with no APG) and low
voltage (<20 μV, theta/delta in most brain regions) [35]. The
second is a score by Bagnato et al. [36], going from 3 to 7,
composed by assigning a score of 1, 2 or 3 to delta, theta and
alpha frequency plus a score of 1 or 2 for both present/not
present reactivity and reduced/normal voltage respectively.

3) Outcome Assessment: the CRS-R revised scale was
assessed at discharge in absence of drug sedation by skilled
operators. The thresholds used to evaluate a meaningful out-
come in the discharge consciousness state were set to the
maximum value of the CRS-R at discharge in respectively
the UWS discharge group (C RS − Rdis = 16) and the MCS
discharge group (C RS − Rdis = 23). These thresholds were
obtained after a sensitivity-specificity analysis on the actual
CRS-R discharge values within the discharge clinical state.
Results for this preliminary analysis are shown in (Table II)
confirming that from C RSdis = 16 upwards no UWS is found
and that patients reaching C RSdis = 23 are certainly EMCS.

C. Model Implementation

1) Statistical Analysis: The features used for the CRS-R
prediction were first analyzed with univariate statistical analy-
ses on SPSS (Vs 26, Chicago, SPSS Inc.). After testing for
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normality with the Shapiro-Wilk test, Spearman correlations
were computed to verify associations between continuous
independent variables and the CRS-R at discharge, whereas
Kruskall-Wallis (KW) test was applied for categorical inde-
pendent variables. Conditioned to KW significance, Dunn-
Bonferroni post-hoc tests assessed differences between groups.
To compare prediction accuracies across the three different
ML models, a Friedman test was conducted between the test
absolute errors followed by Dunn-Bonferroni post-hoc tests.
In all analyses, a p-value <0.05 was considered statistically
significant. Furthermore, to evaluate improvements of the
models with respect to the chance level, we defined a Median
Guess estimator (MG) which constantly predicts the median
of the CRS-R values at discharge. Then, the MG absolute
errors are compared via Wilcoxon-Signed Rank Test with the
developed ML models’ absolute errors.

2) Elastic-Net Regression: In order to avoid any sort of
train-test contamination and minimize the risk of bias in
the performances, all features, independently from univariate
statistics analyses results, were retained for the multivariate
prediction model. The Elastic-Net (EN) regression model is a
regularized method which linearly combines the penalties of
the LASSO and Ridge regression [37] overcoming respective
implementation problems. Ridge adds to linear regression
models quadratic regularization via L2 penalties. On the other
hand, Ridge always assigns a non-zero coefficient to all
features in the model, consequently failing in eliminating
coefficients even if the corresponding independent variable
is irrelevant to the prediction. Conversely, LASSO regression
is known to suffer when the dimensionality of the dataset is
higher than the number of the available examples or when
multicollinear independent variables are present [38], [39], but
foster the neglection of specific features.

Hence, Elastic-Net combines feature elimination of LASSO
and coefficient reduction from Ridge improving on either
LASSO or Ridge modifying the regression parameter esti-
mates as follows:

β̂ = argminβ ||y − Xβ||2 + λ2 ||β||2 + λ1 ||β||1
with the special cases λ2 = 0, λ1 �= 0 and λ1 = 0, λ2 �= 0 cor-
responding to the LASSO and Ridge regression respectively,
therefore including in the EN model hypothesis space both
LASSO and Ridge. This reflects in the Sklearn implementation
of the parameters estimate equation being defined as:

β̂ = argminβ
1

(
2 · Nsamples

) ||y − Xβ||2

+ α · l1rat io ||β||1 + 1

2
α · (1 − l1rat io) ||β||22

where l1ratio describes the tendency toward a LASSO regu-
larization (l1ratio ∼ 1) or the Ridge regularization (l1ratio ∼
0).

3) Training, Cross-Validation, Optimization and Testing: The
algorithms implementation was carried out separately and
individually for each of the three models (EEG, CLIN and
HYB) using Python custom code, the Scikit-Learn and the
Optuna [40], [41] libraries. All multiclass categorical features
were first converted into dummy variables (one-hot encoded).

Fig. 1. Nested cross-validation approach used embedding hyperpara-
meters optimization. A subsampling is performed in each outer training
set, reducing the instances having discharge CRS-R = 23 to 1/23
and consequently balancing the regression problem. Each indentation
corresponds to a for loop in the code.

A nested-cross validation approach was implemented [23].
In brief, such approach consists in two k-fold cross-validation
loops: an outer loop identifies the test set for each of its folds
while the inner loop implements the further split of the dataset
for training and validation.

The outer loop was designed as a k-fold cross-validation
(k = 7), obtaining 7 combinations of train and test set (Fig. 1).
Four of them were composed by 231 patients and three by
232 patients. Missing values in each of train and test set were
substituted with the mean/mode of the respective train set.
Then, the train and test sets were normalized by subtracting
the train set mean and dividing by its standard deviation.

Due to the discharge CRS-R ceiling effect, we limited
instances in the training sets with CRS-Rdis = 23, to an overall
frequency of 1/23 with respect to the full dataset.

In each fold of the outer loop, a hyperparameter optimiza-
tion was performed. The optimized parameters were α and
the l1rat io in the ranges [10−4 – 10] and [10−4 – 1] respec-
tively. The optimization was obtained by an iterative pruning
algorithm based on successive halving of the hyperparameter
value within the prefixed range for a predefined number of
trials. In each trial, hence for each evaluated hyperparameter
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Fig. 2. Violin plots of the CRS-R distribution among groups of categorical variables. Thick continuous black lines indicate CRS-R group median,
whilst thinner dotted black lines are the first and third quartile levels. Capital letters above the box indicate significant differences in the post-hoc tests
of the Kruskal-Wallis test (Dunn-Bonferroni with Bonferroni correction, adjusted p-value considered significant for padj < 0.05). Specifically, groups
sharing the same letter have significantly different discharge CRS-R.

combination, data were further split in the actual train and
validation sets implementing the inner n-fold cross-validation
(n = 5) of the proposed nested approach. (Fig. 1).

Validation set predictions from the inner 5 folds were
computed and aggregated. From here, the validation Median
Absolute Error (MAE) of the n models included in the kth

outer split was computed according to the following:

M AE =
∑Mk

i=1 |C RS_R pred − C RS_Ractual|
Mk

with Mk being the number of patients in the kth outer split train
set before the inner split. The hyperparameter combination
minimizing the validation MAE was then chosen for training
the final kth model with all Mk samples. This process was
repeated for the K outer folds and all models were tested
with the respective outer test set. Again, test results were
aggregated, and the overall dataset MAE was calculated.
Furthermore, R2 was also included among test evaluation
metrics.

4) Regression Post-Processing: As a final processing step,
classification accuracies were computed by discretizing the
CRS-R value at discharge. Two thresholds CRS-Rdis = 16 and
CRS-Rdis = 23 were considered, resulting in two different
classification problems.

The performance of the three proposed regressions models
in both problems was verified by means of ROC curves. The
Area under the Curve (AUC) was finally computed using the
Simpson integration rule.

III. RESULTS

A. Univariate Analysis

Age and gender did not appear to be significant predictors of
discharge CRS-R, while etiology (p < 0.001, Table I) resulted
to influence the outcome in a negative manner if anoxic
(significantly different from all other etiologies in the post-
hoc analysis) and in a positive manner if traumatic (Fig. 2).
Higher values on all the examined scales at admission were
found to be predictive of a more prompt recovery on the
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TABLE I
DESCRIPTIVE STATISTICS AND PREDICTORS UNIVARIATE ANALYSIS

CRS-R scale (p < 0.001), with the most correlated being the
CRS-R (R2 = 0.651) and the GCS (R2 = 0.533). Furthermore,
a strong correlation between consciousness state at admission
and CRS-R at discharge (p < 0.001) was found from the
KW test. The post-hoc test with a p < 0.001 indicated that
patients in EMCS state at admission have a significantly
higher discharge total CRS-R score than the MCS and UWS.
Same holds for the MCS patients compared to the UWS ones
(p < 0.001).

For what concerns the EEG variables of the ACNS clas-
sification, we confirmed that a theta and delta background
frequency lead to a smaller CRS-R total score at discharge
with respect to an alpha background. Same holds for the
absence of reactivity, with respect to both its clear (p < 0.001)
and unclear (p < 0.001) presence. Furthermore, significant
improvements were found in patients with a clear reactivity
compared to the ones with an unclear reactivity response
(p < 0.001).

Patients with unclear (p < 0.05) or clear (p < 0.001)
variability reached a higher CRS-R than patients with no
spontaneous variability. The presence of a clear variability
w.r.t. an unclear one is associated with a higher outcome value.

A clear inverse relationship between the discharge CRS-R
and the amount of epileptic activity recorded was observed
(Fig. 2), where a worse outcome is expected as the amount of
epileptic activity increases. On the other hand, post-hoc test
showed a significance only between the pair no epileptic activ-
ity – frequent epileptic activity (p < 0.001). Sleep spindles and

Fig. 3. Box-plot of absolute errors of agglomerated outer testing results
for the three models. Superimposed on the boxes, the individual samples
error is plotted showing the underlying error distribution of the predictions.
Significative improvements (p< 0.05) were found between the EEG and
both the CLIN and the HYB models. R2 between actual and predicted
values resulted equal to 0.49, 0.71 and 0.73 for respectively the EEG,
CLIN and HYB models.

symmetrical brain organization was found to be uncorrelated
with CRS-R at discharge.

A strong correlation was found between voltage and dis-
charge CRS-R (p < 0.001). Namely, a suppressed (p < 0.001)
and a low voltage (p < 0.01) resulted to be predictors of a
lower CRS-R (Fig. 2). Additionally, the presence of an APG
was found to be indicative of better consciousness recovery
(p < 0.001).
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Fig. 4. Elastic-Net regression coefficients for the EEG (red), the CLIN (blue) and the HYB (green) models. The height of each colored bar is the
average value of the regression coefficients of the models trained in the outer folds. The black bar indicates the standard deviation of the regression
coefficients of the outer folds.

For what concerns derived scores, both Estraneo’s and
Bagnato’s score resulted in strongly significant associations
with the CRS-R in the KW test (p < 0.001). Specifically, for
the Estraneo’s score, a background activity with low voltage
or with a diffuse slowing pattern is a predictor of significantly
lower discharge CRS-R if compared to normal and mildly
abnormal EEG activity. Furthermore, patients with low voltage
EEG were also found to be associated with a worse outcome
than patients with moderately abnormal background activity.
Conversely, patients with Bagnato’s score of 6 or 7 were sig-
nificantly worse in all the possible pairings and no difference
was found between the groups with a score 3, 4 and 5.

B. CRS-R Regression Models

All features from Table I were included in the model
after conversion of categorical variables in dummy variables
resulting in 43 features (Fig. 4). In each of the kth Elastic-
Net models optimization paths, 250 trials resulted to be
sufficient to converge to a constant optimum. Specifically,
the α parameter resulted in a median of 0.018, 0.082 and
0.049 respectively for the EEG, CLIN and HYB models.

On the other hand, the l1ratio, showed that the use of the
clinical features strongly shifts the amount of regularization
toward the LASSO approach. In particular, the CLIN and the
HYB have respectively a median l1ratio of 0.952 and of 0.539,
whilst EEG median l1ratio resulted in 0.069 points.

For the validation set, the median between the inner folds
MAE values resulted equal to 4.33 points [IQR = 0.66], 3.49
[IQR = 0.67] and 3.18 [IQR = 0.64].

The optimal solutions test MAE resulted equal to
4.6 points [IQR = 11.6] for the EEG, to 3.5 points
[IQR = 10.2] for the CLIN and to 3.3 points [IQR =
11.9] for the HYB model. Models absolute errors resulted

significantly different in the Friedman Test (p <0.01) with
pair-wise Dunn-Bonferroni post-hoc comparisons showed a
significant improvement in prediction of both the CLIN
(p < 0.05) and the HYB (p < 0.05) models with respect to
the EEG. The MG estimator resulted in a MAE of 6.05 points
[IQR = 1.21]. All the developed models showed a significant
improvement with respect to the MG estimator (p < 0.001).
Test statistics resulted equal to W = 13.211, W = 7.624 and
W = 8.321 for respectively the EEG, CLIN and HYB
estimator.

In all three multivariate models, a negative influence on the
CRS-R score at discharge was found for an anoxic etiology
and an older age whilst an admission state of MCS or EMCS
contributed to an improved outcome with respect to UWS
(Fig 4.) The coefficients β of the EEG model showed how
the presence of spontaneous variability, reactivity and APG
are predictive of a better CRS-R at discharge, coherently
with findings from univariate analysis. Also, for frequent
epileptic activity and a low background voltage, a strong
negative regression coefficient was found. Conversely, in the
multivariate EEG, a moderate or severe asymmetry seems
associated with a worst CRS-R.

Classes (4-7) of Bagnato’s score may be related to a worst
outcome (negative regression coefficient), with a lowering of
the negative effect with an increasing value on the scale..

Except for the FOIS and FIM, all clinical scales in the
CLIN and in the HYB models resulted in a positive regression
coefficient, with the CRS-R having the highest importance in
both models.

Generally, even if with a wider distribution of cumu-
lative weights for the models with higher dimensional-
ity, the independent variables relative contributions to the
predictions resulted consistent across the three models
(Fig. 4).
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C. Regression Post-Processing

The binary classification with respect to the CRS-Rthr =
16 threshold showed high sensitivity for all three models,
with an AUC of 0.78, 0.86, and 0.91 for respectively the
EEG, the CLIN and the HYB model. For what concerns
the best model in predicting the emergence from a DoC
(CRS-Rthr = 23), the HYB algorithm showed an AUC of 0.88,
with no improvements on the clinical based classification. For
the latter, maximizing sensitivity keeping specificity within
an acceptable limit yields a point in the ROC curve with
sensitivity 0.85 and specificity 0.78.

IV. DISCUSSIONS

In literature, many findings assert that prognosticating
neurological outcomes in sABI patients is a complex task.
Its improvement would facilitate the communication process
with relatives and allow for a precise individualized reha-
bilitation management. The accuracy of the consciousness
assessment may be compromised by a number of confound-
ing factors (presence of consciousness fluctuations, paralysis,
aphasia) [43].

For this reason, we should believe that the underlying
level of consciousness must be assessed via a multifactorial
approach, both evaluating the clinical data and interpreting
the internal physiological patterns as recommended by the
latest international guidelines. Such multifactorial techniques
allow to convey two different sources of information and
analyze the interaction between them. Authors analyzed and
combined EEG descriptors in predictive scores for conscious-
ness improvement prediction [10], [35], [36], [44]. We extend
their previous work in three main directions. Firstly, we use
prognostic factors and in general patient characteristics to
predict punctually the value of the discharge CRS-R. Secondly,
we cross-validate and test our model with a robust technique
(nested cross-validation) allowing for inference on a larger
population. Lastly, we explicitly provide to the trained models
different data sources (clinical only, neurophysiological only
and hybrid) and evaluate how an appropriate feature combi-
nation can result in an accurate prediction.

Reasonably, a prospective validation of the models is
required to confirm the validity of obtained results, even if
the nested cross-validation approach simulates a prospective
assessment by separating patients used to optimize hyperpa-
rameters and patients used to test the algorithms. This point,
jointly with the low variability on inner folds validation errors,
suggests that the model is robust and generalizes well on new
data.

Previous studies, already evaluated whether a model with
different sources can better identify prognostic factors for
the recovery of consciousness [6]. Specifically, Yu et al.
classifies with a k-fold cross-validated binary Support Vector
Machine trained on 51 patients the presence of consciousness.
The latter was diagnosed with the Glasgow Outcome Scale-
Expanded (GOS-E) score, only suitable for a dichotomous
subdivision of consciousness levels in persistent vegetative
state (GOS-E<=2) and conscious (GOS-E>2). Such classi-
fication does not allow for the fundamental distinction which

must be made between minimally consciousness state and
unresponsive waking state [1] and it is not a recommended
evaluation tool for DoC diagnosis [46]. Furthermore, the
model proposed by Yu et al. suggests that fMRI data and
laboratory parameters can be combined successfully reaching
an accuracy of 73% (with a non-stratified cohort composed by
34 conscious patients and 17 unconscious), [42]. Song et al.
predicts both the CRS-R score and a dichotomized version
of the GOS-E at one year from the fMRI and the clinical
data extraction with an innerly cross-validated and tested
SVM (160 patients) [46]. Their CRS-R test prediction root
mean squared error is declared equal to 5.07 points with
an R2 = 0.35. Despite the significant difference in the
source of instrumental data, our HYB model achieved a
more promising validation median absolute error of 3.185
[IQR = 0.642] and an R2 = 0.79. Overall, we confirmed
previous findings and our hypotheses concerning the positive
influence of admission clinical scales as the CRS-R, GCS,
LCF, FOIS and FIM onto discharge CRS-R. On the other
hand, FOIS and FIM were the only two scales which showed
a considerably lower relevance in predicting discharge CRS-R
total score in ML models (Fig. 4). Reasonably, this may be
justified from the fact that most patients of our dataset were
admitted to the IRU with similar FOIS and FIM scale values.
Specifically, due to the impossibility from patients with a DoC
of intaking food via oral means, the majority of FOIS values
stands around 1. Similarly, for motor independence, the same
flooring effect was found (∼18). Still, due to the non-zero
standard deviation of these features we included them in the
model.

In our work, previous results were extended by accurately
predicting a three-level consciousness stratification on a large
enough dataset to allow the nested cross-validation of methods.
Achieved results enable us to envision a decision support
tool for its clinical use. In this regard, the use of the EEG
signal instead of imaging techniques (fMRI) fosters a quicker
and less expensive use of the algorithm and reduces the
required steps into a Point-of-Care Test. Given the easy mon-
tage and the less expensive characteristics, EEG examinations
are already performed daily in hospitals, making their cost
routinely implemented within budgets.

In this optic, despite EEG data did not significantly improve
the prediction obtained by the clinical data, our results show
how EEG data only (with the EEG model) can already offer
a support to the neurological prognosis of DoC patients
with an AUC of 0.78 for both the considered classification
problems (Fig. 5). Lastly, we showed how the interactions
between neurophysiological patterns and clinical evidence can
merge in the hybrid model providing an increase in prediction
accuracy based on the CRS-R = 16 threshold. Such increase
in accuracy can be attributed to the type of information that
EEG provides, thus its expression of a reorganization of a
cortical network modulated by thalamo-cortical afferents, nec-
essary condition for the presence of intentional (non-reflexive)
behavioral responses. In this optic, such cortical behavior
(alpha background frequency and cortical reactivity) result
fundamentally more important in transiting from a UWS to
MCS state. Furthermore, the evolution of the CRS-R scores
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Fig. 5. Receiver-Operating Curve (ROC) of the three models with outcome: overcoming the CRS-R threshold (equal or bigger than 16 or 23).
Respectively, the EEG, CLIN and HYB model are represented in panel A,B,C.

is also conditioned by the etiology of sABI and by the lesion
topography that may involve selective cognitive deficits (apha-
sia, frontal syndromes) that may “mask” the clinical evolution
and that cannot be identified by the EEG with consequent
falsely optimistic predictions. Henceforth, we speculate that
to fruitfully exploit interactions between EEG patterns and
clinical variables, models targeting etiology-specific cohorts
would maximize the information gain. Lastly, including EEG
biomarkers as event-related potentials, somatosensory evoked-
and visual evoked- potentials as well as quantitative EEG
measures (e.g., functional, source connectivity, etc…) may
provide additional prognostic markers to increase significantly
the prediction accuracy.

Regarding the outcome selection, we acknowledge that the
cumulative CRS-R score, may suffer from missing points
in motor sub-domains for some patients [43], hence it can
underestimate the actual consciousness level. Furthermore, it is
reported how finding precise cut-offs separating consciousness
levels is difficult [47]. Still, the CRS-R scale, allows for a
good consciousness stratification, remaining the actual gold
standard [45]. Hence, to evaluate in the most precise way the
consciousness level, consciousness states as UWS, MCS and
EMCS have to be considered. For these reasons, we propose
here a classification of patients by a variable threshold on
CRS-R, reporting specific results for two specific thresholds.
Such binarized classification is performed using boundaries
(16 and 23) that in our case resulted from the observation of
available data to achieve 100% specificity in detecting UWS
patients and 100% sensitivity concerning EMCS detection.
However, given that the model estimates the continuous value
of CRS-R, different values in terms of sensitivity-specificity
couple for the identification of the consciousness state can be
selected in order to fit different clinical requests or hypotheses
(Fig. 6). Still, the retrospective nature of the data has to be
reported within the study limitations. Consciousness assess-
ment at the time of the neurological diagnosis was formulated
based on the individual CRS-R subscales. Nevertheless, due
to the retrospective nature of the study, it was not possible
to retrieve from patients’ health records the subscales values

Fig. 6. Scatter-plot of actual (x-axis) versus predicted (y-axis) CRS-R
values for the three models.

since it was not often annotated within the available infor-
mation. This will be tackled by a prospective study currently
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TABLE II
SENSITIVITY-SPECIFICITY COUPLES INDICATING THE OVERCOMING A

SPECIFIC CLINICAL GROUP (UWS, MCS) ON OUR DATASET. THESE

ARE OBTAINED BY EVALUATING SENSITIVITY AND SPECIFICITY

BETWEEN THE ACTUAL CLINICAL STATE AT DISCHARGE AND

THE DICHOTOMIZED CRS-R AT DIFFERENT THRESHOLD.
MAXIMAL SENSITIVITY FOR OVERCOMING AN UNRESPONSIVE

STATE IS OBTAINED FOR A CRS-R > 16 WHILST MAXIMAL

SENSITIVITY FOR EXITING A DOC IS FOUND FOR

CRS-R > 23 (INDICATED IN BOLD).

ongoing (Clin. Trial. Gov. N. NCT04495192) via the collection
of the individual sub-domains of the CRS-R scale, allowing
for the development of prediction models targeting individual
subscales scores and for a finer definition of the mutual
influence between the EEG signal and the clinical status in
predicting DoC neurological outcomes. Predicting individual
sub-items would investigate how and to what extent clinical
functions and brain patterns influence individual consciousness
domains. In particular, whether EEG signals can be useful for
the prediction of lowest values on each subscale (representa-
tive of reflexive activity) or higher values on each subscale
(representative of cognitively-driven activity). Additionally,
the prospective and new experimental data will allow for a
deeper analysis of the role of joint clinical and EEG features
for prognostic purposes, as well as a confirmation of the
hypotheses raised for the explanation of the results obtained
in this study.

V. CONCLUSION

The study investigates predictors of consciousness improve-
ments via the use of CRS-R at discharge and ML methods
comparing three approaches: with a clinical dataset only,
an EEG-based dataset only and with a combination of the
two. Setting threshold on predicted CRS-R, overcoming an

unresponsive state is successfully predicted with an AUC of
0.91 and exiting from a DoC is assessed with an AUC of
0.88. EEG resulted to be slightly improving the prediction
of overcoming an UWS, whilst no improvements are seen in
differentiating patients emerging from a MCS. Results will
be confirmed with a prospective validation and compared to
the ‘skilled guess’ of a pool of experienced doctors in future
works to come.

Our findings confirms that ML algorithms, which already
proven to improve decision accuracy in many fields, may
support the neurological prognosis in DoC patients and the
communication with the patients’ relatives.
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