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Finite transitive groups having many
suborbits of cardinality at most 2 and
an application to the enumeration of
Cayley graphs
Pablo Spiga
Abstract. Let G be a finite transitive group on a set Ω, let α ∈ Ω, and let Gα be the stabilizer of the
point α in G. In this paper, we are interested in the proportion

∣{ω ∈ Ω ∣ ω lies in a Gα -orbit of cardinality at most 2}∣
∣Ω∣

,

that is, the proportion of elements of Ω lying in a suborbit of cardinality at most 2. We show that, if
this proportion is greater than 5/6, then each element of Ω lies in a suborbit of cardinality at most
2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation
groups attaining the bound 5/6.

We use these results to answer a question concerning the enumeration of Cayley graphs. Given
a transitive group G containing a regular subgroup R, we determine an upper bound on the number
of Cayley graphs on R containing G in their automorphism groups.

1 Introduction

This paper is part of a series [17–19, 24] aiming to obtain an asymptotic enumeration
of finite Cayley graphs. However, the main players in this paper are not finite Cayley
graphs, but finite transitive groups. Our results on finite transitive groups can then be
used to make a considerable step toward the enumeration problem of Cayley graphs
and thus getting closer to solving an outstanding question of Babai and Godsil (see [2]
or [8, Conjecture 3.13]).

Let G be a finite transitive group on Ω, let α ∈ Ω, and let Gα be the stabilizer in
G of the point α. The orbits of Gα on Ω are said to be the suborbits of G and their
cardinalities are said to be the subdegrees of G. In this paper, we are concerned in
finite transitive groups having many subdegrees equal to 1 or 2. In particular, we are
interested in the ratio

IΩ(G) ∶=
∣{ω ∈ Ω ∣ ω lies in a Gα-orbit of cardinality at most 2}∣

∣Ω∣ .

Received by the editors September 27, 2021; revised June 16, 2022; accepted July 10, 2022.
Published online on Cambridge Core January 30, 2023.
AMS subject classification: 05C25, 05C30, 20B25, 20B15.
Keywords: Suborbits, Cayley graph, automorphism group, asymptotic enumeration, graphical

regular representation.

https://doi.org/10.4153/S0008414X23000093 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X23000093
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X23000093&domain=pdf
https://doi.org/10.4153/S0008414X23000093


2 P. Spiga

As G is transitive on Ω, the value of IΩ(G) does not depend on α. Clearly,
0 < IΩ(G) ≤ 1.

Theorem 1.1 Let G be a finite transitive group on Ω, let α ∈ Ω, and let Gα be the
stabilizer in G of the point α. If IΩ(G) > 5

6 , then IG(Gα) = 1, that is, each suborbit of G
has cardinality at most 2.

It turns out that finite transitive groups G with IΩ(G) = 1 are classified by a classical
result of Bergman and Lenstra [3]. The result of Bergman and Lenstra is rather general
and applies to arbitrary (i.e., not necessarily finite) groups. The proof of [3, Theorem 1]
is very beautiful and it is based on certain equivalence relations; also the strengthening
of Isaacs [14] of the theorem of Bergman and Lenstra has a remarkably ingenious
proof.

From [3, Theorem 1], finite transitive groups with IΩ(G) = 1 can be partitioned in
three families:
(a) finite transitive groups G where the stabilizer Gα has order 1,
(b) finite transitive groups G where the stabilizer Gα has order 2,
(c) finite transitive groups G admitting an elementary abelian normal 2-subgroup N

with ∣N ∶ Gα ∣ = 2.
In the first family, each suborbit of G has cardinality 1, that is, G acts regularly on Ω. In
the second family, since Gα has cardinality 2, each orbit of Gα has cardinality at most 2.
In the third family, since N ⊴ G, the orbits of N on Ω form a system of imprimitivity
for the action of G; as ∣N ∶ Gα ∣ = 2, the blocks of this system of imprimitivity have
cardinality 2 and hence all orbits of Gα have cardinality at most 2.

Theorem 1.1 shows that, with respect to the operator IΩ(G), there is a gap between
5/6 and 1. The value 5/6 is special: there exist finite transitive groups attaining the value
5/6.

Theorem 1.2 Let G be a finite transitive group on Ω, let α ∈ Ω, and let Gα be the
stabilizer in G of the point α. If IΩ(G) = 5

6 , then there exists an elementary abelian
normal 2-subgroup V of G with ∣V ∶ Gα ∣ = ∣Gα ∣ = 4.

Moreover, let e1 , e2 , e3 , e4 be a basis of V, regarded as a four-dimensional vector space
over the field with two elements, with Gα = ⟨e1 , e2⟩, let H ∶= G/CG(V)where CG(V) is
the centralizer of V in G, and let K be the stabilizer of the subspace Gα in GL(V). Then,
H is K-conjugate to one of the following two groups:

⟨
⎛
⎜⎜⎜
⎝

0 0 0 1
1 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎟
⎠

,
⎛
⎜⎜⎜
⎝

1 1 1 1
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
⟩ , ⟨

⎛
⎜⎜⎜
⎝

0 0 0 1
1 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎟
⎠

,
⎛
⎜⎜⎜
⎝

1 1 1 1
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

,
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
1 1 0 1
1 1 1 0

⎞
⎟⎟⎟
⎠
⟩ .

The first group has order 12 and is isomorphic to the alternating group of degree 4 and
the second group has order 24 and is isomorphic to the symmetric group of degree 4.

Conversely, if G is a finite group containing an elementary abelian normal 2-subgroup
V ∶= ⟨e1 , e2 , e3 , e4⟩ of order 16 and H ∶= G/CG(V) is as above, then the action of G on
the set Ω of the right cosets of ⟨e1 , e2⟩ gives rise to a finite permutation group of degree
4∣G ∶ V ∣ with IΩ(G) = 5/6.

Theorem 1.2 classifies the finite transitive groups attaining the bound 5/6.
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Many suborbits of size at most 2 3

Before discussing our motivation for proving Theorems 1.1 and 1.2, we make some
speculations. A computer search among the transitive groups G of degree at most
48 with the computer algebra system magma [5] reveals that, if IΩ(G) > 1/2, then
IΩ(G) = (q + 1)/2q, for some q ∈ Q with 2q ∈ N. We pose this as a conjecture.

Conjecture 1.3 Let G be a finite transitive group on Ω. If IΩ(G) > 1/2, then IΩ(G) =
(q + 1)/2q, for some q ∈ Q with 2q ∈ N.

If true, Conjecture 1.3 establishes a permutation analog with a classical problem in
finite group theory. Let G be a finite group, and let

I(G) ∶= {x ∈ G ∣ x has order at most 2}.

Miller [16] in 1905 has shown that, if I(G) > 3/4, then each element of G has order at
most 2 and hence G is an elementary abelian 2-group. In this regard, Theorem 1.1 can
be seen as a permutation analog of the theorem of Miller, with the only difference that
the ratio 3/4 in the context of abstract groups has to bump up to 5/6 in the context
of permutation groups. Miller has also classified the finite groups G with I(G) = 3/4.
Therefore, Theorem 1.2 can be seen as a permutation analog of the classification of
Miller. The theorem of Miller has stimulated a lot of research; for instance, Wall [26]
has classified all finite groups G with I(G) > 1/2. In his proof, Wall uses the Frobenius–
Schur formula for counting involutions. An application of this classification shows
that, if I(G) > 1/2, then I(G) = (q + 1)/2q, for some positive integer q. Therefore, in
Conjecture 1.3, we believe that the same type of result holds for the permutation analog
IΩ(G), but allowing q to be an element of {x/2 ∣ x ∈ N}. As a wishful thinking, we also
pose the following problem.

Problem 1.4 Classify the finite transitive groups G acting on Ω with IΩ(G) > 1/2.

Liebeck and MacHale [15] have generalized the results of Miller and Wall in yet
another direction. Indeed, Liebeck and MacHale have classified the finite groups G
admitting an automorphism inverting more than half of the elements of G. (The
classical results of Miller and Wall can be recovered by considering the identity
automorphism.) Then, this classification has been pushed even further by Fitzpatrick
[7] and Hegarty and MacHale [10], by classifying the finite groups G admitting an
automorphism inverting exactly half of the elements of G. An application of this
classification shows that, if α is an automorphism of G inverting more than half of
the elements of G, then the proportion of elements inverted by α is (q + 1)/2q, for
some positive integer q. Yet again, another analog with Theorems 1.1 and 1.2, with
Conjecture 1.3 and with Problem 1.4. We observe that a partial generalization of this
type of results in the context of association schemes is in [20].

We now discuss our original motivation for proving Theorems 1.1 and 1.2. A digraph
Γ is an ordered pair (V , E), where V a finite nonempty set of vertices, and E is a
subset of V × V , representing the arcs. A graph Γ is a digraph (V , E), where the binary
relation E is symmetric. An automorphism of a (di)graph is a permutation on V that
preserves the set E.

Definition 1.5 Let R be a group, and let S be a subset of R. The Cayley digraph Γ(R, S)
is the digraph with V = R and (r, t) ∈ E if and only if tr−1 ∈ S.
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4 P. Spiga

The Cayley digraph is a graph if and only if S = S−1, that is, S is an inverse-closed
subset of R.

The problem of finding graphical regular representations (GRRs) for groups has
a long history. Mathematicians have studied graphs with specified automorphism
groups at least as far back as the 1930s, and in the 1970s there were many papers
devoted to the topic of finding GRRs (see, for example, [1, 11–13, 21–23, 27]), although
the “GRR” terminology was coined somewhat later.

Definition 1.6 A digraphical regular representation (DRR) for a group R is a digraph
whose full automorphism group is the group R acting regularly on the vertices of the
digraph.

Similarly, a GRR for a group R is a graph whose full automorphism group is the
group R acting regularly on the vertices of the graph.

It is an easy observation that when Γ(R, S) is a Cayley digraph (graph), the group
R acts regularly on the vertices as a group of graph automorphisms. A DRR (or GRR)
for R is therefore a Cayley digraph (graph) on R that admits no other automorphisms.

The main thrust of much of the work through the 1970s was to determine which
groups admit GRRs. This question was ultimately answered by Godsil in [9]. The
corresponding result for DRRs was proved by a much simpler argument by Babai [1].

Babai and Godsil made the following conjecture. (Given a finite group R, 2c(R)

denotes the number of inverse-closed subsets of R. See Definition 1.10 for the definition
of generalized dicyclic group.)

Conjecture 1.7 ([2]; Conjecture 3.13 [8]) If R is not generalized dicyclic or abelian of
exponent greater than 2, then for almost all inverse-closed subsets S of R, Γ(R, S) is a
GRR. In other words,

lim
∣R∣→∞

min{∣{S ⊆ R ∶ S = S−1 , Aut(Γ(R, S)) = R}∣
2c(R) ∶ R admits a GRR} = 1.

From Godsil’s theorem [9], as ∣R∣ → ∞, the condition “R admits a GRR” is equiv-
alent to “R is neither a generalized dicyclic group, nor abelian of exponent greater
than 2.”

The corresponding conjecture for Cayley digraphs (which does not require any
families of groups to be excluded) was proved by Morris and the author in [18]. Our
current strategy for proving the conjecture of Babai and Godsil is to use the proof of
the corresponding conjecture for Cayley digraphs as a template and extend the work
in [18] in the context of undirected Cayley graphs. This strategy so far has been rather
successful and in [17, 24] the authors have already adapted some of the arguments in
[18] for undirected graphs.

One key tool in [18] is an elementary observation of Babai.

Lemma 1.8 Let G be a finite transitive group acting on a set Ω and properly containing
a regular subgroup R. Then there are at most 2

3∣Ω∣
4 = 2

3∣R∣
4 Cayley digraphs Γ on R with

G ≤ Aut(Γ).
The proof of this fact is elementary (see, for instance, [18, Lemma 3.1]). Observe

that the number of Cayley digraphs on R is the number of subsets of R, that is, 2∣R∣.
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Many suborbits of size at most 2 5

Therefore, Lemma 1.8 says that, given G properly containing R, only at most 2∣R∣−
∣R∣
4 of

these Cayley digraphs admit G as a group of automorphisms. This gain of ∣R∣/4 is one
of the tools in [18] for proving the Babai–Godsil conjecture on Cayley digraphs.

To continue our project of proving the Babai–Godsil conjecture for Cayley graphs,
we need an analog of Lemma 1.8 for Cayley graphs. Observe that the number of Cayley
graphs on R is the number of inverse-closed subsets of R. We denote this number with
2c(R). It is not hard to prove (see, for instance, [17, Lemma 1.12]) that

c(R) = ∣R∣ + ∣I(R)∣
2

,

where I(R) = {x ∈ R ∣ x2 = 1}. To obtain this analog, one needs to investigate finite
transitive groups having many suborbits of cardinality at most 2. Therefore, our
investigation leads to the following result.

Theorem 1.9 Let G be a finite transitive group properly containing a regular subgroup
R. Then one of the following holds:

(a) The number of Cayley graphs Γ on R with G ≤ Aut(Γ) is at most 2c(R)− ∣R∣96 .
(b) R is abelian of exponent greater than 2.
(c) R is generalized dicyclic (see Definition 1.10).

1.1 Notation

In this section, we establish some notation that we use throughout the rest of the paper.
Given a subset X of permutations from Ω, we use an exponential notation for the

action on Ω and hence, in particular, given ω ∈ Ω, we let

ωX ∶= {ωx ∣ x ∈ X},

where ωx is the image of ω under the permutation x. Similarly, we let

FixΩ(X) ∶= {ω ∈ Ω ∣ ωx = ω, ∀x ∈ X}.

Let G be a transitive permutation group on Ω. Recall that a nonempty subset Δ of
Ω is said to be a block of imprimitivity if, for every g ∈ G, either Δg = Δ or Δg ∩ Δ = ∅.
Observe that, when Δ is a block of imprimitivity, {Δg ∣ g ∈ G} is a partition of the set
Ω and hence ∣Δ∣ divides ∣Ω∣.

For each positive integer i and for each ω ∈ Ω, we let

Ωω , i ∶= {δ ∈ Ω ∣ ∣δGω ∣ = i}.(1)

Observe that, δ ∈ Ωω , i if and only if i = ∣δGω ∣ = ∣Gω ∶ Gω ∩Gδ ∣. In particular, since G
is transitive on Ω, we have ∣Gω ∣ = ∣Gδ ∣ and hence ∣δGω ∣ = ∣Gω ∶ Gω ∩Gδ ∣ = ∣Gδ ∶ Gω ∩
Gδ ∣ = ∣ωGδ ∣. Therefore,

δ ∈ Ωω , i if and only if ω ∈ Ωδ , i .(2)

We use often (2) in what follows.
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6 P. Spiga

Clearly,

Ω = Ωω ,1 ∪Ωω ,2 ∪Ωω ,3 ∪⋯(3)

and the nonempty sets in this union form a partition of Ω.
When i ∶= 1, we have

Ωω ,1 = {δ ∈ Ω ∣ Gω fixes δ},
that is, Ωω ,1 is the set of fixed points of Gω on Ω. It is well known that Ωω ,1 is a block
of imprimitivity for the action of G on Ω (see, for instance, [6, 1.6.5]). Since this fact
will play a role in what follows, we prove it here; this will also be helpful for setting
up some additional notation. Let NG(Gω) be the normalizer of Gω in G. As NG(Gω)
contains Gω , the NG(Gω)-orbit containing ω is a block of imprimitivity for the action
of G on Ω. Therefore, it suffices to prove that Ωω ,1 is the NG(Gω)-orbit containing
ω, that is, Ωω ,1 = ωNG(Gω) = {ωg ∣ g ∈ NG(Gω)}. If g ∈ NG(Gω), then Gω = G g

ω = Gωg

and hence Gω fixes ωg , that is, ωg ∈ Ωω ,1. Conversely, let α ∈ Ωω ,1. As G is transitive
on Ω, there exists g ∈ G with α = ωg . Thus ωg ∈ Ωω ,1 and Gω fixes ωg . This yields
Gω = Gωg = G g

ω and g ∈ NG(Gω). Therefore, α = ωg lies in the NG(Gω)-orbit con-
taining ω.

We let

d ∶= ∣Ωω ,1∣.

As G is transitive on Ω, d does not depend on ω. We claim that, if g ∈ G and Ωg
ω ,1 ∩

Ωω , i ≠ ∅, then Ωg
ω ,1 ⊆ Ωω , i . To this end, let α ∈ Ωg

ω ,1 ∩Ωω , i . As α ∈ Ωg
ω ,1 = Ωωg ,1, we

deduce that Gωg fixes α and hence Gωg ≤ Gα . Since G is transitive on Ω, the subgroups
Gωg and Gα have the same cardinality and hence Gωg = Gα . From this, it follows that
Ωωg ,1 = Ωα ,1 and hence we need to show that Ωα ,1 ⊆ Ωω , i . Let β ∈ Ωα ,1; in particular,
Ωα , i = Ωβ , i because Gα = Gβ . As α ∈ Ωω , i , from (2), we deduce ω ∈ Ωα , i = Ωβ , i .
Another application of (2) gives β ∈ Ωω , i . Since β is an arbitrary element of Ωα ,1, we
deduce Ωα ,1 ⊆ Ωω , i .

Since Ωω ,1 is a block of imprimitivity for the action of G on Ω, {Ωg
ω ,1 ∣ g ∈ G} is a

partition of Ω into subsets of cardinality ∣Ωω ,1∣ = d. In particular, from the previous
claim, we deduce that d divides ∣Ωω , i ∣, for each positive integer i. We define

x i ∶=
∣Ωω , i ∣
∣Ωω ,1∣

= ∣Ωω , i ∣
d
∈ N.(4)

In particular, x1 ∶= 1 and, from (3) and (4), we have

∣Ω∣ = d∑
i

x i .

Observe that, as G is transitive on Ω, ∣Ωω , i ∣ does not depend on the choice of ω ∈ Ω.
Thus x i does not depend on the choice of ω ∈ Ω.
Definition 1.10 Let A be an abelian group of even order and of exponent greater
than 2, and let y be an involution of A. The generalized dicyclic group Dic(A, y, x) is
the group ⟨A, x ∣ x2 = y, ax = a−1 ,∀a ∈ A⟩. A group is called generalized dicyclic if it
is isomorphic to some Dic(A, y, x). When A is cyclic, Dic(A, y, x) is called a dicyclic
or generalized quaternion group.
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Gα Gβ

Gα ∩Gβ

> 2 > 2

Figure 1: Auxiliary picture for the proof of Lemma 2.1.

2 Lemmata

In this section, we use the notation established in Section 1.1.

Lemma 2.1 Let G be a finite transitive permutation group on a set Ω, and let α ∈ Ω. If

∣Ω∣
2
< ∣Ωα ,1∣ + ∣Ωα ,2∣ < ∣Ω∣,

then:
(a) Ω = Ωα ,1 ∪Ωα ,2 ∪Ωα ,4 (in particular, Ωα , i = ∅, for every positive integer i with

i ∉ {1, 2, 4}).
(b) For every β ∈ Ωα ,4, Ωα ,2 ∩Ωβ ,2 ≠ ∅.
(c) For every β ∈ Ωα ,4 and for every ω ∈ Ωα ,2 ∩Ωβ ,2, we have Gω = (Gα ∩Gω)
(Gβ ∩Gω).

Proof As ∣Ωα ,1∣ + ∣Ωα ,2∣ < ∣Ω∣, by (3), we get that Ωα ,1 ∪Ωα ,2 is strictly contained
in Ω. Therefore, let β ∈ Ω/(Ωα ,1 ∪Ωα ,2).

Since β ∉ Ωα ,1 ∪Ωα ,2 and since the action of G on Ω is transitive, we have

∣Gα ∶ Gα ∩Gβ ∣ = ∣Gβ ∶ Gα ∩Gβ ∣ > 2.(5)

See Figure 1.
From this, we deduce

Ωα ,1 ∩Ωβ ,1 = Ωα ,2 ∩Ωβ ,1 = Ωα ,1 ∩Ωβ ,2 = ∅.(6)

Indeed, if, for instance, ω ∈ Ωα ,1 ∩Ωβ ,2, then ∣ωGα ∣ = 1 and ∣ωGβ ∣ = 2. Therefore, ∣Gα ∶
Gα ∩Gω ∣ = 1 and ∣Gβ ∶ Gβ ∩Gω ∣ = 2. As ∣Gα ∶ Gα ∩Gω ∣ = 1, we get Gα = Gω . Now, as
∣Gβ ∶ Gβ ∩Gω ∣ = 2 and Gα = Gω , we get 2 = ∣Gβ ∶ Gβ ∩Gω ∣ = ∣Gβ ∶ Gβ ∩Gα ∣, which
contradicts (5). Therefore, Ωα ,1 ∩Ωβ ,2 = ∅. The proof for all other equalities in (6)
is similar.

From (6), we obtain

(Ωα ,1 ∪Ωα ,2) ∩ (Ωβ ,1 ∪Ωβ ,2) = Ωα ,2 ∩Ωβ ,2 .(7)

Recall that, by hypothesis, ∣Ωα ,1 ∪Ωα ,2∣ > ∣Ω∣/2. Using this together with (7), we get

∣Ωα ,2 ∩Ωβ ,2∣ = ∣(Ωα ,1 ∪Ωα ,2) ∩ (Ωβ ,1 ∪Ωβ ,2)∣(8)
= ∣Ωα ,1 ∪Ωα ,2∣ + ∣Ωβ ,1 ∪Ωβ ,2∣ − ∣(Ωα ,1 ∪Ωα ,2) ∪ (Ωβ ,1 ∪Ωβ ,2)∣
≥ ∣Ωα ,1 ∪Ωα ,2∣ + ∣Ωβ ,1 ∪Ωβ ,2∣ − ∣Ω∣

> ∣Ω∣
2
+ ∣Ω∣

2
− ∣Ω∣ = 0.
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Gω = (Gα ∩Gω)(Gβ ∩Gω)Gα Gβ

Gα ∩Gω Gβ ∩Gω

Gα ∩Gβ

22 2 2

2 2

Figure 2: Auxiliary picture for the proof of Lemma 2.1.

From (8), we deduce Ωα ,2 ∩Ωβ ,2 ≠ ∅. Let ω ∈ Ωα ,2 ∩Ωβ ,2. In particular,
∣ωGα ∣ = ∣ωGβ ∣ = 2. This means that ∣Gα ∶ Gα ∩Gω ∣ = ∣Gβ ∶ Gβ ∩Gω ∣ = 2. Since ∣Gα ∣ =
∣Gβ ∣ = ∣Gω ∣, we get that Gα ∩Gω and Gβ ∩Gω have both index 2 in Gω . Suppose
Gα ∩Gω = Gβ ∩Gω . Then

Gα ∩Gω = Gβ ∩Gω = Gα ∩Gβ ∩Gω ≤ Gα ∩Gβ ,

and hence

∣Gα ∶ Gα ∩Gβ ∣ ≤ ∣Gα ∶ Gα ∩Gω ∣ = 2.

However, this contradicts (5). Therefore, Gα ∩Gω and Gβ ∩Gω are two distinct
subgroups of Gω having index 2. This yields

Gω = (Gα ∩Gω)(Gβ ∩Gω),(9)

for each ω ∈ Ωα ,2 ∩Ωβ ,2.
From (9) and from the fact that ∣Gω ∶ Gα ∩Gω ∣ = ∣Gω ∶ Gβ ∩Gω ∣ = 2, we see that

(Gα ∩Gω) ∩ (Gβ ∩Gω) = Gα ∩Gβ ∩Gω has index 4 in Gω . Since ∣Gω ∣ = ∣Gα ∣ = ∣Gβ ∣,
we get that Gα ∩Gβ ∩Gω has also index 4 in Gα and in Gβ . Since Gα ∩Gβ ∩Gω ≤
Gα ∩Gβ , we get that ∣Gα ∶ Gα ∩Gβ ∣ = ∣Gβ ∶ Gα ∩Gβ ∣ divides ∣Gα ∶ Gα ∩Gβ ∩Gω ∣ = 4.
As ∣Gα ∶ Gα ∩Gβ ∣ = ∣Gβ ∶ Gα ∩Gβ ∣ > 2, we get Gα ∩Gβ ∩Gω = Gα ∩Gβ and

∣Gα ∶ Gα ∩Gβ ∣ = ∣Gβ ∶ Gα ∩Gβ ∣ = 4.

We have summarized this paragraph in Figure 2. In other words, β ∈ Ωα ,4.
Since β is an arbitrary element in Ω/(Ωα ,1 ∪Ωα ,2), we have proven part (a). Now,

as Ωα ,4 = Ω/(Ωα ,1 ∪Ωα ,2), part (b) follows from (8) and part (c) follows from (9). ∎

Lemma 2.2 Let G be a finite transitive permutation group on a set Ω, and let α ∈ Ω. If
Ω = Ωα ,1 ∪Ωα ,2 ∪Ωα ,4 and ∣Ωα ,1∣ = ∣Ωα ,4∣, then Ωα ,1 ∪Ωα ,4 is a block of imprimitivity
for G. Moreover, for every β ∈ Ωα ,4, we have NG(Gα) = NG(Gβ).
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Proof Let β ∈ Ωα ,4. As Ωβ ,1 ⊆ Ωα ,4 and as Ωβ ,1 and Ωα ,4 have the same cardinality,
we deduce Ωα ,4 = Ωβ ,1. Analogously, Ωβ ,4 = Ωα ,1.

Let g ∈ G with β = αg . Now, we have

(Ωα ,4)g = Ωα g ,4 = Ωβ ,4 = Ωα ,1 .

Analogously, Ωg
α ,1 = Ωα ,4. So,

Ωg
α ,1 = Ωα ,4 and Ωg

α ,4 = Ωα ,1 .

Therefore, (Ωα ,1 ∪Ωα ,4)g = Ωα ,1 ∪Ωα ,4 and g2 fixes setwise Ωα ,1 and Ωα ,4.
Since Ωα ,1 is a block of imprimitivity for G with setwise stabilizer NG(Gα), we

deduce g2 ∈ NG(Gα). Set T ∶= ⟨NG(Gα), g⟩.
Since Gα fixes setwise Ωα ,1 ∪Ωα ,4, we deduce that Gα fixes setwise also

Ωα ,4 = Ωβ ,1. Now, for every x ∈ NG(Gα), we have

Ωg−1 α g
α ,1 = (Ωg−1

α ,1)x g = Ωx g
β ,1 = (Ω

x
β ,1)g = Ωg

β ,1 = Ωα ,1 .

Thus, g−1x g fixes setwise Ωα ,1 and hence g−1x g ∈ NG(Gα). This yields

NG(Gβ) = NG(Gα g) = (NG(Gα))g = NG(Gα).

As g normalizes NG(Gα), we have T = NG(Gα)⟨g⟩ and

αT = (αNG(Gα))⟨g⟩ = Ω⟨g⟩α ,1 = Ωα ,1 ∪Ωα ,4 .

Now, since T is an overgroup of Gα and since Ωα ,1 ∪Ωα ,4 is the T-orbit containing α,
we deduce that Ωα ,1 ∪Ωα ,4 is a block of imprimitivity for G. ∎

We now need two rather technical lemmas, at first they seem out of context, but
their relevance is pivotal in the proof of Lemma 2.5. We could phrase Lemma 2.3 in a
purely group theoretic terminology, but it is easier to state in our opinion using some
terminology from graph theory.

Lemma 2.3 Let G be a group, let X be an elementary abelian 2-subgroup of G,
and let Y be a G-conjugate of X with Z ∶= X ∩ Y having index 4 in X and in Y. Let
ΛX ∶= {X1 , X2 , X3} and ΛY ∶= {Y1 , Y2 , Y3} be the collection of the proper subgroups of
X and Y, respectively, properly containing Z.

Let Γ be the bipartite graph having vertex set ΛX ∪ ΛY , where a pair {X i , Yj} is
declared to be adjacent if X i Yj is a subgroup of G conjugate to X via an element of G. If
Γ has at least six edges, then X commutes with Y.

Proof Suppose that
(*) there exist two distinct vertices of Γ having valency at least 2.
By symmetry, without loss of generality, we suppose that these two vertices are in ΛX .
Thus, suppose that X i , X j ∈ ΛX have valency at least 2 in Γ.

Let Yi1 and Yi2 be two neighbors of X i in Γ. Then, by definition, X i Yi1 and X i Yi2

are both subgroups of G conjugate to X. Therefore, X i Yi1 and X i Yi2 are elementary
abelian 2-groups and hence X i commutes with both Yi1 and Yi2 . Since ⟨Yi1 , Yi2⟩ = Y ,
we deduce that X i commutes with Y.
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Arguing as in the paragraph above with X i replaced by X j , we deduce that X j
commutes with Y. Therefore, X = ⟨X i , X j⟩ commutes with Y.

Now, it is elementary to see that every bipartite graph on six vertices, with parts
having cardinality 3 and having at least six edges has the property (∗). ∎

Recall that a graph Γ is said to be vertex-transitive if its automorphism group
acts transitively on the vertices of Γ. Given a vertex ω of Γ, we denote by Γ(ω) the
neighborhood of ω in Γ.

Lemma 2.4 Let Γ be a finite vertex-transitive graph with all vertices of valency 2, let V
be the set of vertices of Γ, let ω1 , ω2 be two adjacent vertices of Γ, and let W be a subset
of V containing ω1 and ω2 and with the property that, for any two distinct vertices δ1 , δ2
in W, V/(Γ(δ1) ∪ Γ(δ2)) ⊆W. Then either W = V or ∣V ∣ ≤ 6.

Proof Since Γ is vertex-transitive of valency 2, Γ is a disjoint union of s cycles of the
same length �. If � ≥ 7 or if Γ is disconnected, that is, s ≥ 2, it can be easily checked that
W = V . ∎

Lemma 2.5 Let G be a finite transitive permutation group on a set Ω, and let α ∈ Ω. If

∣Ω∣
2
< ∣Ωα ,1∣ + ∣Ωα ,2∣ < ∣Ω∣,

then one of the following holds:
(a) ∣Ωα ,1∣ + ∣Ωα ,2∣ < 5∣Ω∣/6, or
(b) (i) ∣Ωα ,4∣ ≤ 2∣Ωα ,1∣,

(ii) Gα is an elementary abelian 2-group,
(iii) Gα commutes with Gβ , for every β ∈ Ωα ,4, and
(iv) ⟨Gα , Gβ⟩ = Gα ×Gβ is an elementary abelian normal 2-subgroup of G of order

16, for every β ∈ Ωα ,4.

Proof From Lemma 2.1, Ω = Ωα ,1 ∪Ωα ,2 ∪Ωα ,4. Moreover, for each β ∈ Ωα ,4,
we have shown that Gα contains a proper subgroup (namely, Gα ∩Gω , for each
ω ∈ Ωα ,2 ∩Ωβ ,2) strictly containing Gα ∩Gβ . This implies that the permutation
group, P say, induced by Gα in its action on the suborbit βGα is a 2-group. (Indeed,
if Gα induces the alternating group Alt(4) or the symmetric group Sym(4) on βGα ,
then Gα acts primitively on βGα and hence Gα ∩Gβ is maximal in Gα .) Clearly, this 2-
group P must be either cyclic of order 4, or elementary abelian of order 4, or dihedral
of order 8.

We have drawn in Figure 3, the lattice of subgroups of the cyclic group of order 4,
the elementary abelian group of order 4 and the dihedral group of order 8: the dark
colored nodes indicate the lattice of subgroups between the whole group and the
stabilizer of a point.

Figure 3 shows that, given Gα and Gα ∩Gβ , we only have one choice for Gα ∩Gω
when P is cyclic of order 4 or dihedral of order 8, whereas, we have at most three
choices for Gα ∩Gω when P is elementary abelian of order 4.

Given β ∈ Ωα ,4, let

Sα ,β ∶= {Gω ∣ ω ∈ Ωα ,2 ∩Ωβ ,2}.
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Figure 3: Auxiliary picture for the proof of Lemma 2.5.

Observe that in the set Sα ,β , we are collecting point stabilizers and not elements of
Ω and hence different elements ω1 , ω2 of Ω can give rise to the same element of Sα ,β
when Gω1 = Gω2 .

We claim that

∣Sα ,β ∣ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3, when the permutation group induced by Gα on βGα or by Gβ on αGβ

is not an elementary abelian 2-group of order 4,
9, otherwise.

(10)

This claim follows from the paragraphs above and from Figure 3. Indeed, from
Lemma 2.1 part (c), for each X ∈ Sα ,β , there exist a proper subgroup A of Gα and a
proper subgroup B of Gβ with Gα ∩Gβ < A, Gα ∩Gβ < B and X = AB. Observe that
we have at most three choices for A and at most three choices for B and hence at
most nine choices for X. Moreover, as long as the permutation group induced on the
corresponding orbit is not elementary abelian, we actually have only one choice for
either A or B yielding at most three choices for X.

For each X ∈ Sα ,β , letSX ∶= {ω ∈ Ωα ,2 ∩Ωβ ,2 ∣ Gω = X}. From Section 1.1 and from
the notation therein, we have ∣SX ∣ = ∣Ωω ,1∣ = d. From this and from the definition of
Sα ,β , we obtain

∣Ωα ,2 ∩Ωβ ,2∣ =
������������
⋃

X∈Sα ,β

SX

������������
= ∑

X∈Sα ,β

∣SX ∣ = ∣Sα ,β ∣d .(11)

From part (a) of Lemma 2.1, we have Ω = Ωα ,1 ∪Ωα ,2 ∪Ωα ,4. From this, we
immediately get Ωβ ,2 ⊆ Ω/Ωα ,1 = Ωα ,2 ∪Ωα ,4 and hence Ωα ,2 ∪Ωβ ,2 ⊆ Ωα ,2 ∪Ωα ,4.
Therefore,

∣Ωα ,2 ∩Ωβ ,2∣ = ∣Ωα ,2∣ + ∣Ωβ ,2∣ − ∣Ωα ,2 ∪Ωβ ,2∣(12)
≥ ∣Ωα ,2∣ + ∣Ωβ ,2∣ − ∣Ωα ,2 ∪Ωα ,4∣
= ∣Ωα ,2∣ + ∣Ωβ ,2∣ − ∣Ωα ,2∣ − ∣Ωα ,4∣
= ∣Ωα ,2∣ − ∣Ωα ,4∣.
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Now, dividing both sides of (11) and (12) by ∣Ωα ,1∣ = d, by recalling (4) and by
rearranging the terms, we obtain

x2 ≤ ∣Sα ,β ∣ + x4 .(13)

We now suppose that part (a) does not hold and we show that part (bi), (bii), (biii),
and (biv) are satisfied. In particular, we work under the assumption that

∣Ωα ,1∣ + ∣Ωα ,2∣ ≥
5∣Ω∣

6
.

As ∣Ω∣ = d(x1 + x2 + x4), ∣Ωα ,1∣ + ∣Ωα ,2∣ = d(x1 + x2) and x1 = 1, the inequality
∣Ωα ,1∣ + ∣Ωα ,2∣ ≥ 5∣Ω∣/6 gives

5x4 ≤ 1 + x2 .

Now, (13) yields 5x4 ≤ 1 + x2 ≤ 1 + ∣Sα ,β ∣ + x4, that is, 4x4 ≤ 1 + ∣Sα ,β ∣. From (10), we
deduce that x4 ≤ 2. This already shows part (bi).

When x4 = 2, we deduce ∣Sα ,β ∣ ≥ 7 and hence (10) yields that the permutation
groups induced by Gα on βGα and by Gβ on αGβ are both elementary abelian 2-groups
of order 4. Since this argument does not depend upon β ∈ Ωα ,4, we have shown that Gα
acts as an elementary abelian group on each of its orbits of cardinality 4. Since all other
orbits of Gα have cardinality 1 or 2, we deduce that Gα acts as an elementary abelian
2-group on each of its orbits and hence Gα is an elementary abelian 2-group. This
shows part (bii), under the additional assumption that x4 = 2. Moreover, as ∣Sα ,β ∣ ≥
7, Lemma 2.3 applied with X ∶= Gα and Y ∶= Gβ gives that Gα and Gβ commute
with each other. This shows that part (biii) is satisfied. To prove part (biv), we use
Lemma 2.4. Let Γ be the graph having vertex set V, the set of conjugates of Gα in G,
that is,

V ∶= {Gω ∣ ω ∈ Ω}.

Then ∣V ∣ = 1 + x2 + x4. We declare two vertices Gω1 and Gω2 of Γ adjacent if Gω1 ∩Gω2

has index 4 in Gω1 (and hence also in Gω2 ). Clearly, the action of G by conjugation gives
rise to a vertex-transitive action of G on Γ. As x4 = 2, Γ has valency 2. Let W be the
collection of all vertices Gω of Γ with Gα ∩Gβ ≤ Gω . Clearly, Gα , Gβ ∈W and, from
Lemma 2.1 part (c), for any two distinct vertices Gδ1 and Gδ2 of Γ contained in W, we
have that

Ωδ1 ,2 ∩Ωδ2 ,2 = V/(Γ(Gδ1) ∪ Γ(Gδ2)) ⊆W .

From this, Lemma 2.4 gives that either W = V or ∣V ∣ ≤ 6. The second alternative
gives x2 = ∣V ∣ − 1 − x4 ≤ 3, which contradicts the fact that 5x4 ≤ 1 + x2. Therefore,
W = V and hence Gα ∩Gβ ≤ Gω , for every ω ∈ Ω. Thus Gα ∩Gβ = 1 and hence
GαGβ = Gα ×Gβ is an elementary abelian 2-group of order 16. To prove that
Gα ×Gβ ⊴ G it suffices to apply again this argument to the collection W of all vertices
Gω of Γ with Gω ≤ Gα ×Gβ .

In particular, in the rest of the proof we work under the assumption x4 = 1.
When x4 = 1, we may refine some of the inequalities above. Indeed, when x4 = 1, we

have Ωα ,4 = Ωβ ,1, because both sets have the same cardinality and Ωβ ,1 ⊆ Ωα ,4. From
this it follows Ωα ,2 = Ωβ ,2. Therefore, from (11), we get
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dx2 = ∣Ωα ,2∣ = ∣Ωα ,2 ∩Ωβ ,2∣ = d∣Sα ,β ∣.

Now, the inequality 5 = 5x4 ≤ 1 + x2 implies ∣Sα ,β ∣ = x2 ≥ 4. Again, we may use (10) to
deduce that the permutation groups induced by Gα on βGα and by Gβ on αGβ are both
elementary abelian 2-groups of order 4. This, as above, yields that Gα is an elementary
abelian 2-group, that is, part (bii) holds.

From Lemma 2.1 part (c), Gα ∩Gβ ≤ Gω , for every ω ∈ Ωα ,2 ∩Ωβ ,2. In particular,
Gα ∩Gβ fixes pointwise Ωα ,2 ∩Ωβ ,2. As Ωα ,2 ∩Ωβ ,2 = Ωα ,2, we deduce that Gα ∩Gβ
fixes pointwise Ωα ,2. Since Gα ∩Gβ fixes pointwise also Ωα ,1 and Ωβ ,1 = Ωα ,4, we
obtain that Gα ∩Gβ fixes pointwise Ωα ,1 ∪Ωα ,2 ∪Ωα ,4 = Ω. Thus Gα ∩Gβ = 1 and
∣Gα ∣ = 4. Observe also that when x4 = 1, the hypothesis of Lemma 2.2 is satisfied
and hence NG(Gα) = NG(Gβ). Therefore, Gβ normalizes Gα . This gives that the
commutator subgroup [Gα , Gβ] lies in Gα ∩Gβ = 1, that is, Gα commutes with Gβ .
This shows that part (biii) is satisfied. Now, as Ωα ,2 = Ωβ ,2, Lemma 2.1 part (c) yields
Gω ≤ Gα ×Gβ , for every ω ∈ Ωα ,2. Therefore, Gα ×Gβ contains Gω , for every ω ∈ Ω.
Thus,

Gα ×Gβ = ⟨Gω ∣ ω ∈ Ω⟩ ⊴ G ,

and Gα ×Gβ has order 16. Thus, part (biv) is satisfied. ∎

We need one final preliminary lemma, with a somehow different flavor. We denote
by C2 and C4 the cyclic groups of order 2 and 4, respectively, we denote by Q8 the
quaternion group of order 8 and we denote by D8 the dihedral group of order 4.

Lemma 2.6 Let R be a finite group, let U be a proper subgroup of R, and let 1 ≠ r ∈ U
be a central involution of R. Let τ ∶ R → R be the permutation defined by

x ↦ xτ ∶=
⎧⎪⎪⎨⎪⎪⎩

x , when x ∈ U ,
xr, when x ∈ R/U .

Then one of the following holds:

(a) The number of inverse-closed subsets S of R with Sτ = S is at most 2c(R)− ∣R∣48 .
(b) R is generalized dicyclic.
(c) R ≅ C4 × C�

2, for some nonnegative integer �.

Proof Let ι ∶ R → R be the permutation defined by x ι = x−1, for every x ∈ R, and let

T ∶= ⟨ι, τ⟩.

Observe that ιτ = τι and ι2 = τ2 = 1. Therefore, T is an elementary abelian 2-group of
order at most 4.

Now, a subset S of R is inverse-closed and τ-invariant if and only if S is T-invariant.
In particular, the number of inverse-closed subsets S of R with Sτ = S is 2κ, where κ
is the number of orbits of T on R. To compute κ, we use the orbit-counting lemma,
which says that

κ = 1
∣T ∣ ∑t∈T

∣FixR(t)∣.(14)
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Observe that
FixR(1) ∶= R,(15)
FixR(ι) ∶= I(R),
FixR(τ) ∶= U ,

FixR(ιτ) ∶= I(U) ∪ {x ∈ R/U ∣ x2 = r}.
Observe that τ ≠ 1 because U is a proper subgroup of R and r ≠ 1. If ι = 1, then R is

an elementary abelian 2-group and T = ⟨τ⟩. Thus, (14) and (15) yield

κ = 1
2
(∣R∣ + ∣U ∣) ≤ ∣R∣

2
+ ∣R∣

4
= 3∣R∣

4

= ∣R∣ − ∣R∣
4
= c(R) − ∣R∣

4
.

Therefore, part (a) holds and the proof follows in this case. Suppose now ι = τ. This
means that U is an elementary abelian 2-subgroup of R and x−1 = xr, for every
x ∈ R/U . In other words, all elements in U square to 1 and all elements in R/U square
to r. Let R̄ ∶= R/⟨r⟩ and let us use the “bar” notation for the subgroups and for the
elements of R̄. Consider the function

(⋅, ⋅) ∶ R̄ × R̄ → ⟨r⟩
defined by (x⟨r⟩, y⟨r⟩) = x−1 y−1x y, for every x , y ∈ R. Similarly, consider the function

q ∶ R̄ → ⟨r⟩
defined by q(x⟨r⟩) = x2. It is not hard to see that, regarding R̄ as a vector space
over the field with two elements, (⋅, ⋅) is a bilinear form and q is a quadratic form
polarizing to (⋅, ⋅), that is,

q(x̄ ȳ)q(x̄)q( ȳ) = (x̄ , ȳ),
for every x̄ , ȳ ∈ R̄. Using this terminology, we have that each element of Ū is totally
singular and each element of R̄/Ū is nondegenerate. From the classification of the
quadratic forms over finite fields, we have ∣R̄ ∶ Ū ∣ ∈ {2, 4}. When ∣R̄ ∶ Ū ∣ = 2, we
deduce that R is an abelian group isomorphic to the direct product C4 × C�

2, for some
� ≥ 0. In particular, part (c) holds. When ∣R̄ ∶ Ū ∣ = 4, we deduce that R ≅ Q8 × C�

2, for
some � ≥ 0. In particular, R is generalized dicyclic and part (b) holds. For the rest of
our argument, we may suppose that τ ≠ ι ≠ 1.

Set S ∶= {x ∈ R/U ∣ x2 = r}. In the present situation, T = ⟨ι, τ⟩ has order 4 and
hence, from (15), (14) becomes

κ = 1
4
(∣FixR(1)∣ + ∣FixR(ι)∣ + ∣FixR(τ)∣ + ∣FixR(τι)∣)(16)

= 1
4
(∣R∣ + ∣I(R)∣ + ∣U ∣ + ∣I(U)∣ + ∣{x ∈ R/U ∣ x2 = r}∣)

≤ 1
4
(∣R∣ + ∣I(R)∣ + ∣U ∣ + ∣I(R)∣ + ∣S∣)

= ∣R∣ + ∣I(R)∣
2

− (∣R∣
4
− ∣U ∣

4
− ∣S∣

4
) = c(R) − ( ∣R∣

4
− ∣U ∣

4
− ∣S∣

4
) .
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If S = ∅, then the proof follows immediately from (16), indeed, part (a) holds true.
Therefore, for the rest of the proof, we suppose

S ≠ ∅.

To conclude, we divide the proof in various cases.
Suppose that ∣R ∶ U ∣ = 2. Let x ∈ S and observe that R = U ∪Ux. Now, a

computation yields

S = {ux ∣ u ∈ U , ux = u−1}.

When S = Ux, the action of x on U by conjugation is an automorphism of U
inverting each element of U. Therefore, U is abelian and R is generalized dicyclic.
Hence part (b) holds. When S ⊊ Ux, the result of Liebeck and MacHale [15] shows
that the automorphism x can invert at most 3/4 of the elements of U and hence
∣S∣ ≤ 3∣U ∣/4 = 3∣R∣/8. Now, (16) gives κ ≤ c(R) − ∣R∣/32; hence, part (a) holds and the
proof in this case follows. ∎

Therefore, for the rest of the proof, we may suppose

∣R ∶ U ∣ ≥ 3.(17)

Suppose that ∣S∣ ≤ 3∣R∣/4 − ∣U ∣/2. From (16) and (17), we deduce

κ ≤ c(R) − ( ∣R∣
4
− ∣U ∣

4
− 3∣R∣

16
+ ∣U ∣

8
)

= c(R) − ( ∣R∣
16
− ∣U ∣

8
)

≤ c(R) − ( ∣R∣
16
− ∣R∣

24
) = c(R) − ∣R∣

48

and the proof in this case follows. ∎
Therefore, for the rest of the proof, we suppose

∣S∣ > 3∣R∣/4 − ∣U ∣/2.

To introduce the next case, we first need to make some general observations.
Let u be an arbitrary element of U. Then uS ⊆ R/U and hence S ∪ uS ⊆ R/U .

Therefore,

∣S ∩ uS∣ = ∣S∣ + ∣uS∣ − ∣S ∪ uS∣ = 2∣S∣ − ∣S ∪ uS∣(18)

≥ 2∣S∣ − (∣R∣ − ∣U ∣) > 3∣R∣
2
− ∣U ∣ − (∣R∣ − ∣U ∣) = ∣R∣

2
.

Now, let ux ∈ S ∩ uS. Then x ∈ S, and hence

r = (ux)2 = uxux = uux x2 = uux r.

Therefore, ux = u−1. Now, repeating the argument above with y ∈ S ∩ uS, we deduce
uy = u−1 and hence x y−1 ∈ CR(u). Since we have ∣S ∩ uS∣ choices for y, (18) implies
∣CR(u)∣ > ∣R∣/2 and hence R = CR(u). Since u is an arbitrary element of U, we deduce
that U is a central subgroup of R.
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Since ux = u−1, for every u ∈ U and for every ux ∈ S ∩ uS, and since U is contained
in the center of R, we deduce that U has exponent 2. Since U is a central subgroup of
R of exponent 2, we now have an easier description for S, that is,

S = {x ∈ R ∣ x2 = r}.
Now that we know that U has exponent 2, we consider the quotient group

R̄ ∶= R/⟨r⟩. Observe that each element of Ū is an involution.
Suppose that R̄ is not an elementary abelian 2 -group. The theorem of Miller [16]

yields ∣I(R̄)∣ ≤ 3∣R̄∣/4. In particular, the number of involutions in R̄/Ū is at most
3∣R̄∣/4 − ∣Ū ∣. Since each element in S̄ is an involution and since S̄ ⊆ R̄/Ū , we deduce
∣S∣ ≤ 3∣R∣/4 − ∣U ∣. Using this inequality in (16), we get

κ ≤ c(R) − ∣R∣
16

,

part (a) holds and the proof follows in this case. It remains to consider the case that
R̄ is an elementary abelian 2-group.

Suppose that R̄ is an elementary abelian 2 -group. Recall that the Frattini subgroup
Φ(X) of a finite group X is the intersection of all the maximal subgroups of X. Recall
also that, if X is a p-group for some prime p, then Φ(X) = X p[X , X], where [X , X]
is the commutator subgroup of X and X p ∶= ⟨x p ∣ x ∈ X⟩. When p = 2, [X , X] ≤ X2

because X/X2 is abelian. Therefore, Φ(X) = X2.
Since the Frattini subgroup Φ(R̄) of R̄ is the identity and since r ∈ Φ(R), we

deduce Φ(R) = ⟨r⟩. Now, if R is abelian, then from the structure theorem of finitely
generated abelian groups, we deduce that R is isomorphic to
(i) C4 × C�

2 for some � ≥ 0.
If R is non-abelian, then 1 ≠ [R, R] ≤ ⟨r⟩ and hence [R, R] = Φ(R) = ⟨r⟩. Now, from
[4, Lemmas 4.2 and 4.3 and Remark 1, p. 74], we obtain that R = E × A, where E
is an extraspecial 2-group and A is an elementary abelian 2-group. Now, from the
structure theorem of extraspecial 2-groups [25, Theorem 4.18(ii)], we deduce that R
is isomorphic to one of the following groups:
(ii) D8 ○ D8 ○ ⋯ ○ D8
-.........................................../............................................0

t times

×C�
2, for some � ≥ 0 and t ≥ 1.

(iii) Q8 ○ D8 ○ D8 ○ ⋯ ○ D8
-.........................................../............................................0

(t−1) times

×C�
2, for some � ≥ 0 and some t ≥ 1.

(iv) C4 ○ D8 ○ D8 ○ ⋯ ○ D8
-.........................................../............................................0

t times

×C�
2, for some � ≥ 0 and some t ≥ 1.

Therefore, the case that R̄ is elementary abelian splits naturally into four cases. To
conclude the proof of this lemma, we look at each case in detail.

In Case (i), an explicit computation gives ∣S∣ = ∣R∣/2. Hence, (16) gives

κ ≤ c(R) − ( ∣R∣
4
− ∣U ∣

4
− ∣R∣

8
) = c(R) − ( ∣R∣

8
− ∣U ∣

4
)

≤ c(R) − ( ∣R∣
8
− ∣R∣

16
) = c(R) − ∣R∣

16

and part (a) holds.
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In Case (ii), an explicit computation gives ∣S∣ = (2t − 1)∣R∣/2t+1 ≤ ∣R∣/2. Therefore,
we may argue as in the previous case and we obtain that part (a) holds.

In Case (iii), an explicit computation gives ∣S∣ = (2t + 1)∣R∣/2t+1. When t = 1,
R ≅ Q8 × C�

2 is generalized dicyclic and hence part (b) hods. When t ≥ 2, we have
∣S∣ ≤ 5∣R∣/8 and hence (16) gives

κ ≤ c(R) − ( ∣R∣
4
− ∣U ∣

4
− 5∣R∣

32
) = c(R) − (3∣R∣

32
− ∣U ∣

4
)

≤ c(R) − (3∣R∣
32
− ∣R∣

16
) = c(R) − ∣R∣

32
.

Thus, we obtain that part (a) holds.
In Case (iv), an explicit computation gives ∣S∣ = ∣R∣/2. Therefore, we may argue as

in the first case and we obtain that part (a) holds. ∎

3 Proof of Theorems 1.1 and 1.2

In this section, using Section 2, we prove both Theorems 1.1 and 1.2. Thus, let G be a
finite transitive permutation group on Ω with

IΩ(G) ≥
5
6

.

If IΩ(G) = 1, then there is nothing to prove and hence we may suppose that IΩ(G) < 1.
Let α ∈ Ω. From Lemma 2.1, we have

Ω = Ωα ,1 ∪Ωα ,2 ∪Ωα ,4 .

Since IΩ(G) < 1, Ωα ,4 ≠ ∅. Let β ∈ Ωα ,4. From Lemma 2.5,

V ∶= Gα ×Gβ

is an elementary abelian normal 2-subgroup of G of order 16. Let e1 , e2 , e3 , e4 be a
basis of V, regarded as a vector space over the field with two elements, and with
Gα = ⟨e1 , e2⟩. Let H ∶= G/CG(V) and W ∶= Gα . Clearly, H ≤ GL(V) ≅ GL4(2). Now,
consider the action of H on the two-dimensional subspaces of V and consider
O ∶= {W h ∣ h ∈ H}, the H-orbit containing W. Clearly,

∣Ωα ,1 ∪Ωα ,2∣
∣Ω∣ = ∣{U ∈ O ∣ ∣W ∶W ∩U ∣ ≤ 2}∣

∣O∣ .

Observe that the right-hand side of this equality can be easily computed with the help
of a computer. With the computer algebra systemmagma [5], we have computed all the
subgroups of GL4(2). Then, we have selected only the subgroups H with the property
that

V = ⟨W h ∣ h ∈ H⟩ and ⋂
h∈H

W h = 0.

(This selection is due to the fact that V = ⟨G g
α ∣ g ∈ G⟩ and that Gα is core-free in G.)

Then, for each such subgroup H, we have computed the orbit O =W H and we have
computed the ratio ∣{U∈O∣∣W ∶W∩U ∣≤2}∣

∣O∣ . We have checked that in all cases, this ratio is
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at most 5/6. In particular, Theorem 1.1 is proved. Moreover, we have checked that this
ratio is 5/6 if and only if H is given in the statement of Theorem 1.2. (We are including
in the Appendix, the code required to perform this computation with the computer
algebra system magma.) Since this construction can be reversed, we also obtain the
converse implication for Theorem 1.2.

4 Proof of Theorem 1.9

Let G be a finite transitive group properly containing a regular subgroup R. Since R
acts regularly, we may identify the domain of G with R. Now, the number of Cayley
graphs Γ(R, S) on R with G ≤ Aut(Γ(R, S)) is the number of inverse-closed subsets S
of R left invariant by G1, where G1 is the stabilizer of the point 1 ∈ R in G. In particular,
to prove Theorem 1.9, we need to estimate the number of inverse-closed subsets of R
that are union of G1-orbits.

Suppose first that

IR(G) = 1.

Since R is properly contained in G, from the theorem of Bergman and Lenstra
mentioned in Section 1, we have two cases to consider:
• ∣G1∣ = 2.
• G contains an elementary abelian normal 2-subgroup N with ∣N ∶ G1∣ = 2.
Assume first that ∣G1∣ = 2. Let φ ∈ G1/{1}. From the Frattini argument, G = RG1 and
hence ∣G ∶ R∣ = 2. This gives R ⊴ G and hence φ acts by conjugation on R as a group
automorphism. Now, from [24, Lemma 2.7] or [17, Theorem 1.13], we have that:

(a) The number of φ-invariant inverse-closed subsets of R is at most 2c(R)− ∣R∣96 , or
(b) R is abelian of exponent greater than 2 and φ is the automorphism of R mapping

each element to its inverse, or
(c) R is generalized dicyclic and φ is an automorphism of R with xφ ∈ {x , x−1}, for

every x ∈ R.
In particular, the proof of Theorem 1.9 follows in this case.

Assume next that G contains an elementary abelian normal 2-subgroup N with ∣N ∶
G1∣ = 2. Since R acts transitively, G = RN . Moreover, since R acts regularly, G = RG1
and R ∩G1 = 1. Thus ∣R ∩ N ∣ = ∣N ∣/∣G1∣ = 2. Let r be a generator of R ∩ N . Since
⟨r⟩ = R ∩ N ⊴ R, r is a central involution of R. Let U ∶= NR(G1). Since NR(G1) is
a block of imprimitivity for G, U = NR(G1) is also a block of imprimitivity for the
regular action of R and hence U is a subgroup of R. As G1 ≠ 1 because R is properly
contained in G, we deduce that U is a proper subgroup of R. Now, G1 fixes pointwise
U and, for every x ∈ R/U , we have

xG1 = {x , xr}.

Let τ ∶ R → R be the permutation defined by

x ↦ xτ ∶=
⎧⎪⎪⎨⎪⎪⎩

x , when x ∈ U ,
xr, when x ∈ R/U .
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We have shown that S ⊆ R is G1-invariant if and only if S is ⟨τ⟩-invariant. Therefore,
the proof of this case follows from Lemma 2.6.

To conclude the proof of Theorem 1.9, it remains to consider the case that

IR(G) ≠ 1.

From Theorem 1.1, we have IR(G) ≤ 5/6. Recall that I(R) = {x ∈ R ∣ x2 = 1}. We define

a ∶= ∣ΩR ,1 ∩ I(R)∣, b ∶= ∣ΩR ,1 ∩ (R/I(R))∣,
c ∶= ∣ΩR ,2 ∩ I(R)∣, d ∶= ∣ΩR ,2 ∩ (R/I(R))∣,

e ∶= ∣(R/(ΩR ,1 ∪ΩR ,2)) ∩ I(R)∣, f ∶= ∣(R/(ΩR ,1 ∪ΩR ,2)) ∩ (R/I(R))∣.

As IR(G) ≤ 5/6, we deduce

∣R∣
6
≤ ∣R/(ΩR ,1 ∪ΩR ,2)∣ = e + f .(19)

Let ι ∶ R → R be the permutation defined by x ι ∶= x−1, for every x ∈ R, and let
T ∶= ⟨ι, G1⟩. Now, the number of G1-invariant inverse-closed subsets of R is exactly
the number of T-invariant subsets of R. Moreover, the number of T-invariant subsets
of R is 2κ, where κ is the number of orbits of T on R.

The group T has:

• Orbits of cardinality 1 on ΩR ,1 ∩ I(R).
• Orbits of cardinality 2 on ΩR ,1 ∩ (R/I(R)).
• Orbits of cardinality 2 on ΩR ,2 ∩ I(R).
• Orbits of cardinality at least 2 on ΩR ,2 ∩ (R/I(R)).
• Orbits of cardinality at least 3 on (R/(ΩR ,1 ∪ΩR ,2)) ∩ I(R).
• Orbits of cardinality at least 4 on (R/(ΩR ,1 ∪ΩR ,2)) ∩ (R/I(R)).
All of these assertions are trivial except, possibly, the last one. Indeed, if x ∈ (R/(ΩR ,1 ∪
ΩR ,2)) ∩ (R/I(R)), then x is not an involution and the G1-orbit xG1 has cardinality at
least 3. As

(xG1)−1 = (x−1)G1 ,

we deduce that ∣xT ∣ has even cardinality and hence ∣xT ∣ is at least 4.
Summing up, we have

κ ≤ a + b
2
+ c

2
+ d

2
+ e

3
+ f

4
= a + c + e + b

2
+ d

2
+ f

2
− ( c

2
+ 2e

3
+ f

4
)

= ∣R∣ + ∣I(R)∣
2

− ( c
2
+ 2e

3
+ f

4
) = c(R) − ( c

2
+ 2e

3
+ f

4
)

≤ c(R) − (2e
3
+ f

4
) ≤ c(R) − ( e

4
+ f

4
)

≤ c(R) − ∣R∣
24

,

where in the last inequality we have used (19). This concludes the proof of Theorem 1.9.
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A Appendix

We report here the code used in the last paragraph of the proof of Theorem 1.2. We
have performed the computations in the computer algebra system magma, and hence
we present the code in this language. The code runs just under 4 minutes in the author’s
personal laptop.

G:=GL(4,2); /*we construct the group GL(4 ,2)*/
Sub:= Subgroups(G); /*We construct the subgroups of G*/
V:= VectorSpace(GF(2) ,4); /*We construct the natural

G-module */
W:=sub <V|V.1,V.2>; /*W is the subspace of V spanned by

the first two basis vectors */
K:= Stabilizer(G,W); /*K is the stabilizer of W in G*/
/*we save in Subb , the elements H of Sub with
V=<W^h\mid h\in H> and 0=\ cap_{h\in H}W^h*/
Subb :={};
for h in Sub do
H0:=h‘subgroup;
for g in Transversal(G,Normalizer(G,H0)) do

H:=H0^g;
if V eq sub <V|[W^h:h in H]> and

#(& meet[W^h:h in H]) eq 1 then
Include (~Subb ,H);

end if;
end for;

end for;

/*for each H in Subb , we compute the orbit O:=W^H; then ,
we compute and save in Subbb the ratio
|\{U\in O\mid |W:W\cap U|\le 2\}|/|O| and we save in
SubbbSpecial the groups H where this ratio is 5/6*/
Subbb :={};
SubbbSpecial :={};
for H in Subb do

O:={W^h:h in H};
sz:=#{U:U in O|(#W div #(W meet U)) le 2}/#O;
Include (~Subbb ,sz);
if sz eq 5/6 then Include (~ SubbbSpecial ,H);end if;

end for;

Maximum(Subbb ); /*the output is 5/6*/

/*H1 and H2 are the groups introduced in the statement
of Theorem 1.2*/
H1:=sub <G|G![0,0,0,1,1,1,0,0,0,0,1,0,1,0,0,1],

G![1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,1]>;
H2:=sub <G|G![0,0,0,1,1,1,0,0,0,0,1,0,1,0,0,1],

G![1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,1],
G![1,0,0,0,0,1,0,0,1,1,0,1,1,1,1,0]>;
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/*we check that elements in SubbbSpecial are K-conjugate
to H1 or H2. The output is yes*/

SubbbSpecial eq ({H1^k:k in K} join {H2^k:k in K});
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