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Abstract: Iron gall inks have been among the most used writing materials after carbon black, thus
representing an important element of the historical and artistic heritage of our society. Crucially, the
preservation of manuscripts and drawings is influenced by the presence of these inks, leading to
conservation issues related to paper degradation and text fading. Besides all the advances obtained
in paper conservation, the study of iron gall ink’s behaviour and ageing is still an important topic,
which requires investigation through an accurate molecular characterisation to produce reliable
models. In the present work a micro-destructive method based on liquid chromatography techniques
(HPLC-DAD and HPLC-ESI-Q-ToF) has been optimised starting from a model gallic acid-based ink.
An in-depth study of the behaviour of the ink in time was performed by natural and artificial ageing
tests, monitored by colorimetry, showing the autoxidation of gallic acid to ellagic acid in the prepared
mock-ups. The effect of relative humidity on ageing processes was also evaluated, allowing us to
determine different intermediates depending on the environmental conditions. Finally, the analytical
method developed was then successfully applied for investigating 19th–20th century historical ink
samples, where one of the identified ageing markers was detected, besides the expected gallic and
ellagic acids.

Keywords: iron gall inks; gallic acid; liquid chromatography; tandem mass spectrometry; ageing

1. Introduction

Inks are liquid, semi liquid or solid materials used for writing, painting or draw-
ing on a support [1]. Chemically, they can be classified as complex mixtures composed
of a liquid vehicle, dyes and/or pigments and numerous additives [2,3]. Starting from
the Middle Ages and up to the last century (12th–20th century) [4–6], iron gall inks were
elected as the inks par excellence given their intense black colour. Recipes for obtaining
these inks are widely described in ancient treatises, which mention the use of polyphe-
nols extracted from oak galls, containing hydrolysable gallotannins in combination with
green vitriol (FeSO4·7H2O) and gum arabic, and extensively reported upon in the scientific
literature [7,8]. Over the centuries, ink’s recipes have undergone changes, leading to the
introduction of new materials and procedures in the late 19th and early 20th century. The
chemical knowledge acquired through fundamental and applied research allowed the
manufacturers to improve polyphenols-based inks, developing the so-called “unoxidised”
and “oxidised” iron gall formulations. Amongst the several recipes published, particu-
lar attention was paid to the gallic acid ink, introduced by Reid and Dieterich in the 19th
century. In this recipe, the ink was prepared from an oxidised gall’s decoction in order
to promote the hydrolysis of gallotannins to gallic acid and obtain a molecular profile
mainly characterised by gallic acid [9]. Gallic acid (3,4,5-trihydroxy-benzoic acid) is a
polyphenol widely present in plants and fruits [10]. Besides its use as a dye, this phenolic
acid is extensively applied in the pharmaceutical and food industries for its anti-oxidant,
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anti-microbial, anti-inflammatory and anti-cancer properties [10–14]. Conversely, many
conservation issues arise from the presence of iron gall inks in manuscripts and drawings,
such as a conspicuous fading of the text and paper acidification and degradation [7]. The
influence of iron gall inks on paper degradation has been widely investigated in the last
years, mainly taking into account the role of iron in catalysing Fenton-type reactions [15–19].
X-Ray Fluorescence [20] and Proton Induced X-Ray Emission spectroscopies [19,21] were
useful for investigating the spatial distribution of iron compounds in relation to the degra-
dation of ancient manuscripts. Furthermore, Mossbauer [22,23] and X-Ray Absorption
Near Edge Structure spectroscopies [24–26] enabled the determination of Fe2+/Fe3+ ratio
in iron gall inks, providing a powerful tool for evaluating the damage potential of the
ink on manuscripts and drawings. Meanwhile, Fourier-Transform Infrared spectroscopy
enabled a foregrounding of the effect of different parameters (e.g., gallic acid concentration,
catalytic effect of iron and copper ions) on paper degradation [27–29]. The fading issue
of iron gall inks has been widely discussed over the years: micro-fading [30] and colour
measurements [31] proved the low photosensitivity of these inks. Recent advances have
been made by Liu Y. et al. [32], who have demonstrated that the environmental parameters
that most influence the discoloration of iron gall inks are the relative humidity and the
oxygen concentration.

In spite of wide interest in the topic, to date the effects of ageing and of environmen-
tal parameters on iron gall ink’s molecular profile have not yet been fully investigated.
There is a general consensus on the main ageing mechanism involving the hydrolysis of
gallotannins and ellagitannins [9]. However, the complexity of the whole tannin profile
and the many variables related to the use of different raw materials or recipes complicates
any in-depth study of ageing processes involving gallic acid, as demonstrated by the recent
paper by Teixeira et al. [5]. In the present work an analytical procedure based on High
Performance Liquid Chromatography coupled with diode array and tandem mass spec-
trometric detectors (HPLC-DAD-MS2) for analysing iron gall inks has been developed. In
order to establish the best experimental conditions, both the sample pre-treatment and the
chromatographic method were optimised starting from a simplified iron gall ink’s formula-
tion, prepared using standard gallic acid and iron (II) only and gum arabic as vehicle [33].
The optimised protocol was applied to an in-depth study of the role played by gallic acid
in the iron gall ink’s ageing, considering both natural and artificial ageing in different
environmental conditions. The analytical method developed was then successfully applied
for determining the composition of historical ink formulations, dated to the 19th–20th
century, starting from micro-quantities of the sample.

2. Results and Discussion
2.1. Method Optimisation
2.1.1. Chromatographic Method Optimisation

The optimisation of the chromatographic method for HPLC-DAD and HPLC-ESI-
Q-ToF analyses was carried out on a standard solution of gallic and ellagic acid. Three
different methods were tested, in which the initial percentage of eluents was changed
between 85% A and 15% B, 90% A and 10% B, 95% A and 5% B (A: H2O + 0.1% FA, B:
ACN + 0.1% FA). In all the conditions tested (Figure 1), the peak due to ellagic acid is
well resolved, and eluted at times quite distinct from the dead time (5.9 min, 12.6 min and
13.2 min, respectively).

Nevertheless, an efficient chromatographic separation of gallic acid can be achieved
by selecting a starting gradient with higher polarity. Therefore, the chromatographic
method using an initial gradient of 95% of A and 5% of B was chosen as the optimal
chromatographic method for the analysis of iron gall inks.
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tion obtained with an initial gradient of: 85% A—15% B (blue gradient), 90% A—10% B (fuchsia 
gradient), 95% A—5% B (purple profile). A: H2O + 0.1% FA, B: ACN + 0.1% FA. The initial gradient 
is hold for 2.6 min, then to 50% B in 13.0 min, to 70% B in 5.2 min, to 100% B in 6.2 min and then 
hold for 8.0 min; re-equilibration took 11 min. All chromatograms are presented in the same scale 
and are stacked for purposes of clarity. 
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method using an initial gradient of 95% of A and 5% of B was chosen as the optimal chro-
matographic method for the analysis of iron gall inks. 

2.1.2. Extraction Method Optimisation 
The optimisation of the extraction method was performed by HPLC-DAD analysis. 

Samples of the reference mock-ups of model gallic acid ink were collected and subjected 
to five different extraction methods, as reported in Section 3.5. The chromatograms ob-
tained (Figure 2) indicate that all the treatments tested guarantee the extraction of gallic 
acid. 

Figure 1. HPLC-DAD chromatograms (extracted at 275 nm) of standard gallic and ellagic acid
solution obtained with an initial gradient of: 85% A—15% B (blue gradient), 90% A—10% B (fuchsia
gradient), 95% A—5% B (purple profile). A: H2O + 0.1% FA, B: ACN + 0.1% FA. The initial gradient
is hold for 2.6 min, then to 50% B in 13.0 min, to 70% B in 5.2 min, to 100% B in 6.2 min and then hold
for 8.0 min; re-equilibration took 11 min. All chromatograms are presented in the same scale and are
stacked for purposes of clarity.

2.1.2. Extraction Method Optimisation

The optimisation of the extraction method was performed by HPLC-DAD analysis.
Samples of the reference mock-ups of model gallic acid ink were collected and subjected to
five different extraction methods, as reported in Section 3.5. The chromatograms obtained
(Figure 2) indicate that all the treatments tested guarantee the extraction of gallic acid.

Furthermore, methyl-gallate (confirmed by HPLC-ESI-Q-ToF analysis and interpre-
tation of the tandem mass spectrum) was detected in the methanolysis extracts as a by-
product due to the hardness of the extraction method used [34,35]. The extraction yield
(expressed as mg of dye extracted on g of sample collected) was calculated for each sam-
ple pre-treatment (Table S1, Supplementary Materials). The results obtained allow us to
identify the EDTA-DMF method and methanolysis with redissolution with MeOH/H2O
one as the best soft and hard extraction methods, respectively. Nevertheless, the EDTA-
DMF treatment shows a higher extraction yield and reproducibility (calculated as CV% on
triplicate measurements) than the methanolysis extraction (Table 1). For this reason, the
EDTA-DMF treatment was selected as the extraction method for the analysis of iron gall
inks on paper support.
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redissolved in H2O/MeOH 

2.7 0.6 23 

  

Figure 2. HPLC-DAD chromatograms (275 nm) of the extract obtained from the reference mock-up
of model gallic acid ink. EDTA-DMF (blue profile), Methanolysis redissolved in MeOH-H2O (lilac
profile), Formic acid (green profile), DMSO (purple profile) and Oxalic acid extract (fuchsia profile).
All chromatograms are presented in the same scale and are stacked for purposes of clarity.

Table 1. Extraction yields (mg/g), standard deviation (S) and coefficient of variability (CV%) obtained
for the EDTA-DMF and the Methanolysis (H2O/MeOH) extract of model gallic acid ink.

Extraction Method mg/g (Average)
of Gallic Acid S (mg/g) CV %

EDTA-DMF
(0.1% of EDTA in H2O/DMF 1:1) 10.4 0.4 4

Methanolysis (HCl/MeOH 1:30)
redissolved in H2O/MeOH 2.7 0.6 23

2.2. Model Gallic Acid Ink

The model iron gall ink was prepared on the basis of a simplified recipe [33], in-
spired by historical recipes and using analytical grade reagents such as standard gallic
acid and iron sulphate. The HPLC-DAD (Figure 2) and HPLC-ESI-Q-ToF (Figure 3) anal-
yses performed on the EDTA-DMF extracts show that the main component of the ink is
gallic acid.
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Figure 3. HPLC-ESI-Q-ToF Extract Ion Chromatograms (EIC) of gallic and ellagic acid obtained
for the EDTA-DMF extract of the unaged and aged model gallic acid ink. Fresh reference mock-up
(orange profile, t0), natural light ageing for six months (light blue profile, LN 6M), natural light ageing
for twelve months (blue profile, LN 12M), natural ageing in the dark for twelve months (green profile,
Dark 12 M), artificial ageing at RH 30% (fuchsia profile, SB RH 30%), artificial ageing at RH 50%
(violet profile, Dark+ SB RH 50%). Negative acquisition mode.

Additional peaks, absent from the standard solution and corresponding to ellagic acid
and m- and p-digallic acids, are also present (in HPLC-DAD ellagic acid is at traces level,
visible at 13.1 min in the EDTA-DMF chromatogram in Figure 2). Both isomers of digallic
acid have been already determined in iron gall ink formulations [5] or in textiles dyed with
oak gall’s polyphenols [9], but never as products of the ageing of standard iron gall ink.
Extract Ion Chromatograms (EICs) of gallic and ellagic acid are reported in Figure 3 for
the extracts of the ink’s mock-ups unaged and aged in different conditions, normalised
towards gallic acid. While gallic acid and ellagic acid were detected in all samples, the
isomers of digallic acid were observed only in the mock-up artificially aged at the lowest
relative humidity (RH 30%). This is the first instance when ageing products, which were
formed starting from gallic acid only, are determined. Ellagic acid may be formed by the
auto-oxidation of gallic acid catalysed by iron (III) [36].

Two mechanisms can be hypothesised (Figure 4):

• the dimerisation of gallic acid proceeds through the formation of a C-C bond and
subsequent elimination of two water molecules, as already reported in the litera-
ture [10,37];

• the dimerisation promotes the formation of digallic acids intermediates, and subse-
quently the C-C bond is formed and a dehydration reaction takes place.
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Figure 4. Auto-oxidation of gallic acid to ellagic acid.

The experimental evidence suggests two different auto-oxidation mechanisms, whose
course is influenced by the relative humidity present in the ageing chamber or in the
environment for natural ageing. Indeed, lower humidity promotes the auto-oxidation of
gallic acid to digallic acid intermediate, as observed in the chromatogram of artificial ageing
at 30% humidity (Figure 3). Instead, higher humidity possibly fosters the auto-oxidation of
gallic acid to the C-C dimer intermediate, preventing the formation of digallic acid and its
identification in the ageing conditions with RH 50%. Since the presence of iron is clearly
a catalyst in the photo-oxidation reaction, the mechanism may be further influenced by
other parameters, such as the concentration and oxidation state of iron ions, the presence
of other metal ions, and the availability of oxygen and the diffusion of reactive oxygen
species (ROS) (i.e., hydroxyl radical (OH−), hydrogen peroxide (H2O2) and superoxide
radical (O2

−2)) in the solid sample. Moreover, an increase in the content of ellagic acid was
observed with ageing (Figure 3). However, gallic acid does not decrease proportionally to
ellagic acid. This may be explained by the parallel formation of different ageing products
besides ellagic acid in time, which will be discussed in the next paragraph.

2.3. Ageing Degradation Markers

The analytical procedure optimised allowed us to identify numerous ageing and/or
degradation products of gallic acid never detected before in the literature for iron-gall inks
analysis. Given the ink composition, it is possible to assume that they derive from radical
precursors obtained photochemically from gallic acid or ellagic acid or from intermediates
of the auto-oxidation mechanism of gallic acid. Specifically, the production of radical
precursors could be promoted by sulphate anion [38] (introduced in iron gall inks as
green vitriol) or by Fenton-type reactions involving iron(II)-iron(III) redox couple. The
characterisation of these compounds was performed starting from the exact mass of their
molecular ions and from the interpretation of the respective tandem mass spectra obtained
with HPLC-ESI-Q-ToF in negative ionisation mode (Figures S3–S15). Table 2 shows the
markers identified in the aged reference mock-ups and their hypothesised structures, while
the occurrence of each compound in the differently aged ink mock-ups are summarised in
Table S2.
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Table 2. List of compounds identified in the aged reference mock-ups of model gallic acid ink (n.a. =
not assigned). The most intense product ions are highlighted in bold.

Ageing
Marker tR (min) [M-H]− MS2 Raw Formula

(ppm) Hypothesised Structure

m1 2.9 213.0041 151.002, 123.007,
107.014

C8H6O7
−0.3
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107.013 
C9H8O6 

−1.7 
n.a. 

m7 8.2 221.0093 
177.015, 166.859, 148.012, 133.025, 

123.008, 115.016, 103.016 
C10H6O6 

0.1 

 

m8 8.9 221.0088 
177.015, 160.014, 149.021, 133.025, 

121.029, 105.031 
C10H6O6 

−1.8 

m4 4.6 211.0254
167.032, 150.915,
139.040, 124.016,

109.028

C9H8O6
3.2 n.a.

m5 6.2 181.0139 137.022, 109.029 C8H6O5
−1.4

Molecules 2022, 27, x FOR PEER REVIEW 7 of 17 
 

 

HPLC-ESI-Q-ToF in negative ionisation mode (Figures S3–S15). Table 2 shows the mark-
ers identified in the aged reference mock-ups and their hypothesised structures, while the 
occurrence of each compound in the differently aged ink mock-ups are summarised in 
Table S2. 

The EIC profiles corresponding to the molecular markers reported in Table 2 and 
ellagic acid, obtained for the reference ink mock-ups aged under different conditions, are 
shown in Figure 5. 

Table 2. List of compounds identified in the aged reference mock-ups of model gallic acid ink (n.a. 
= not assigned). The most intense product ions are highlighted in bold. 

Ageing 
Marker  

tR (min) [M-H]- MS2 
Raw Formula 

(ppm)  
Hypothesised Structure 

m1 2.9 213.0041 151.002, 123.007, 107.014 
C8H6O7 

−0.3 

 

m2 3.9 221.0094 
177.016, 149.023, 132.018, 121.026, 

109.029, 105.031 
C10H6O6 

1.2 

 

m3 4.4 197.0097 152.010, 125.024, 107.013 
C8H6O6 

3.1 

 

m4 4.6 211.0254 
167.032, 150.915, 139.040, 124.016, 

109.028 
C9H8O6 

3.2 
n.a. 

m5 6.2 181.0139 137.022, 109.029 
C8H6O5 

−1.4 
 

m6 7.3 211.0245 
167.032, 150.920, 132.904, 124.015, 

107.013 
C9H8O6 

−1.7 
n.a. 

m7 8.2 221.0093 
177.015, 166.859, 148.012, 133.025, 

123.008, 115.016, 103.016 
C10H6O6 

0.1 

 

m8 8.9 221.0088 
177.015, 160.014, 149.021, 133.025, 

121.029, 105.031 
C10H6O6 
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m6 7.3 211.0245
167.032, 150.920,
132.904, 124.015,

107.013

C9H8O6
−1.7 n.a.

m7 8.2 221.0093

177.015, 166.859,
148.012, 133.025,
123.008, 115.016,

103.016

C10H6O6
0.1
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Table 2. Cont.

Ageing
Marker tR (min) [M-H]− MS2 Raw Formula

(ppm) Hypothesised Structure

m10 9.7 195.0303 150.031, 136.017,
123.044, 108.021

C9H8O5
1.9
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−3.5
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The EIC profiles corresponding to the molecular markers reported in Table 2 and
ellagic acid, obtained for the reference ink mock-ups aged under different conditions, are
shown in Figure 5.

For all the aged samples, the molecular profile relative to the degradation markers is
qualitatively similar but semi-quantitatively different, suggesting that a common degra-
dation mechanism is occurring. Nevertheless, the different ageing condition selected may
be responsible for the different relative amounts of the degradation products. Moreover,
the ageing conducted in dark conditions allows us to identify four markers not identified
in the other mock-ups: C15H8O10, C17H10O11, C14H8O7 and C15H8O8. The hypothesised
structures of the degradation markers range from hydroxy and carboxyl substituted gallic
acid to two-ring aromatic and heteroaromatic species such as urolithins, which are known
metabolic products resulting from the bioconversion of ellagic acid [39–41]. Most of these
species can be interpreted as intermediate products in the autoxidation of gallic acid to
ellagic acid, or as side products of the reactions reported in Figure 4, but they can also be
ascribed to the further degradation of ellagic acid under ageing conditions.
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Figure 5. HPLC-ESI-Q-ToF Extract Ion Chromatograms (EIC) of model gallic acid ink degra-
dation products: C8H6O7 (m1), C10H6O6 (m2,m7,m8), C8H6O6 (m3), C9H8O6 (m4,m6), C8H6O5

(m5), C15H8O10 (m9), C9H8O5 (m10), C10H8O7 (m11), C17H10O11 (m12), C14H6O8 (EA, ellagic acid),
C14H8O7 (m13), C15H8O8 (m14) from the extracted aged at: (a) Natural light six months; (b) Natural
light twelve months; (c) Solarbox RH 30%; (d) Dark + Solarbox RH 50%; and (e) Dark twelve months.
Negative acquisition mode.
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2.4. Colorimetric Measurements

Colorimetric measurements enabled us to evaluate the impact of fading mechanism
on the aged ink’s mock-ups. The results obtained (Figure 6) show a significant increase in
b* in all the tested ageing conditions with respect to t0, proving that yellowing occurs in
relation to iron gall inks, as already reported in the literature [42,43].
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Figure 6. Results of the colorimetric analysis performed on the unaged (t0) and aged ink’s reference
mock-ups (Dark 12M, LN 6M, LN 12M, SB RH 30%, Dark + SB RH 50%). CIELAB coordinates values
are shown in black (L*), grey (a*), dark grey (b*) and fuchsia (∆E*, calculated respect to t0).

Moreover, a decrease in a* was also determined; however, it does not change signifi-
cantly if compared to the trends exhibited by the other chromatic coordinates. Concerning
the L* parameter, two different trends were observed depending on the ageing conditions.
On one side, natural light and solarbox RH 30% ageing caused an increase in brightness,
consistent with the light-fading visible to the naked eye. On the other side, natural dark and
solarbox RH 50% ageing did not impart significative variations in brightness. The two sets
of mock-ups displaying different behaviours in terms of L* changes correspond indeed to
references characterised by qualitatively similar molecular profiles of degradation markers,
as shown in Section 2.3 and Figure 5. The same trend is observed for ∆E*, calculated
with respect to t0. In detail, the extracts of the mock-ups aged in solarbox RH 50% and
in the dark show ageing markers (m9, m12, m13 and m14) that were not identified in the
other ageing conditions. Since these degradation products have been characterised as
compounds featuring three conjugated cycles, it is possible to hypothesise that they con-
tribute to providing a darker colour to the aged ink’s mock-ups. This could counteract the
light-fading mechanism observed under the other ageing conditions. Indeed, the observed
∆E* are all perceptible to the human eye (threshold c.a. 0.8). However, further studies are
needed in order to confirm this hypothesis, and to verify whether it applies to traditional
iron gall ink’s formulations.

2.5. Cases Studies

The HPLC-ESI-Q-ToF analysis performed on Priest’s document and on Iron’s Duke
postcard (Figure 7) highlighted the presence of gallic, ellagic and digallic acids, along with
dihydroxybenzoic acid ([M-H]− = 153.019), suggesting the use of an iron gall-based ink.
The latter is a known component of tannin materials [9].
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Figure 7. HPLC-ESI-Q-ToF Extracted Ion Chromatogram (EICs) of gallic acid (GA, C7H6O5), digallic
acid (DGA, C14H10O9), ellagic acid (EA, C14H6O8), m11 (C10H8O7) and dihydroxybenzoic acid
(C7H6O4) for Priest’s document (Figure (a)) and Iron’s Duke postcard (Figure (b)).

Furthermore, the ageing marker of iron gall ink m11 ([M-H]− = 239.020) was deter-
mined in both samples.

3. Materials and Methods
3.1. Reagents and Solvents

Gallic acid and ellagic acid were purchased respectively from LabService Analytica
(Italy) and Lancaster (UK). The solvents and reagents used for the extraction methods were:
ethylenediaminetetraacetic acid disodium salt (EDTA, Fluka, USA), dimethylformamide
(DMF; 99.8% purity, J.T. Baker, USA), dimethyl sulfoxide (DMSO; 99.8% purity, J.T. Baker,
USA), acetonitrile (ACN; HPLC grade, Sigma Aldrich, St. Louis, MO, USA), oxalic acid
dehydrate (99.8% purity, Carlo Erba, Milan, Italy), methanol (MeOH; 99.9% purity, Sigma
Aldrich, St. Louis, MO, USA), acetone (Sigma Aldrich, St. Louis, MO, USA), hydrochloric
acid (HCl; 37%, Merck, Darmstated, Germany) and formic acid (FA; J.T. Baker, USA). The
eluents used for HPLC-DAD and HPLC-ESI-Q-ToF were: water and acetonitrile, both
HPLC grade (Sigma Aldrich, St. Louis, MO, USA) for HPLC-DAD analysis and both
LC-MS grade (Sigma Aldrich, St. Louis, MO, USA) for HPLC-ESI-Q-ToF analysis. All
eluents were added with 0.1% v/v FA.

3.2. Reference Model Ink

In the present work a model iron gall ink was studied, prepared following the recipe
used for the model gallic acid ink in [33]. The solvents and materials used for the model
ink’s production were: ferrous sulphate heptahydrate (FeSO4·7H2O; Analyticals, Carlo
Erba, Italy), gum arabic (Kremer-pigmente, Germany) and deionised water. The reference
model ink was prepared as follows [33]: 1.2 g of gallic acid and 2.0 g of ferrous sulphate
heptahydrate were solubilised in 150 mL and in 5 mL of deionised water, respectively.
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The two solutions were mixed, and the resulting solution was kept in the dark at room
temperature for one week. Afterwards, any solid was filtered from the solution, and 3.0 g
of milled gum arabic were added to obtain the final ink.

3.3. Reference Mock-Ups and Ageing Tests

Reference mock-ups were prepared casting the model iron gall ink on Whatman filter
paper (USA, grade 42, diameter 110 mm, pure cellulose), selected in accordance with the
literature as pure cellulose support without any additives [6,17,43]. Each reference mock-up
was a semicircle with 4.5 cm radius (approx.). The ink was applied on filter paper with
a Pasteur pipette and spread with a spatula, twice (corresponding to c.a. 30 µL/cm2).
Five mock-ups were prepared: one was used as a starting (t0) reference, one was subjected
to natural ageing indoor and in the dark, and two were artificially aged (Test 1 and Test 2).
Natural light ageing was performed exposing mock-ups to natural indoor light in laboratory
conditions (T = 25 ± 1 ◦C, RH 50%). In order to monitor the ageing steps, samples were
collected after six and twelve months from the beginning of the experiment. Instead,
natural ageing in the dark was carried out storing the reference mock-up in the dark in
laboratory conditions. Artificial ageing was performed using a SolarBox (CO.FO.ME.GRA.
Srl, Milan, Italy) equipped with a Xe lamp and an indoor filter. To evaluate the impact of
humidity on artificial ageing, two tests were carried out: one with the relative humidity
(RH%) at 30% and the other at 50% RH. The values of the selected parameters for artificial
ageing are listed in Table S3 (Supplementary Materials).

3.4. Historical Samples of Ink Handwriting

The optimised method was used to analyse two historical ink samples. The Iron’s
Duke postcard is a postcard written by an Italian soldier to his family with a black ink and
dated 1943; for the analysis, 30 µg of sample were collected. The Priest’s document is a
document from 1820 (kindly provided by Dr. Giovanni Casini) written with a black-brown
ink. The entire document is characterised by numerous faded spots due to humidity; the
non-pristine state of the document allowed us to collect a higher quantity of sample (300 µg)
without impairing the readability or the overall appearance of the text. Photos of Iron’s
Duke and Priest’s document are shown in Figure 8.
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3.5. Sample Treatments

Five sample pre-treatments, already reported in the literature mainly for the analysis
of dyes in historical textiles, were tested on a few mg of reference samples: (i) addition
of 500 µL of DMSO, sonication (ultrasonic bath Sonorex Supra 10P, Bandelin Electronics,
Germany) for 30 min at 60 ◦C; (ii) addition of 500 µL of 0.1% EDTA aqueous solution-DMF
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(EDTA-DMF, 1:1, v/v), sonication for 1 h at 60 ◦C; (iii) addition of 500 µL of 0.5 M oxalic acid
aqueous solution/MeOH/acetone/H2O solution (oxalic acid solution, 1:30:40:40, v/v/v/v),
sonication for 30 min at 60 ◦C, drying and re-dissolution in 500 µL of DMSO; (iv) addition
of 500 µL of formic acid/MeOH solution (1:19, v/v), sonication for 30 min at 60 ◦C, drying
and re-dissolution in 500 µL of DMSO; (v) addition of 500 µL of HCl 37%/MeOH solution
(1:30, v/v), sonication for 60 min at 60 ◦C, drying and re-dissolution in 500 µL of solvents.
For the re-dissolution step of the acidic methanolic treatment, five solvents were tested:
DMF, DMSO, MeOH, MeOH/H2O (1:1, v/v) and ACN/H2O (1:1, v/v). Prior to HPLC
analysis, the supernatant was purified with PTFE syringe filters (4 mm thickness and
0.45 µm pore diameter, Agilent), and then injected in the chromatographic system. For the
analysis of the reference inks, 3 mg of reference mock-ups were collected using a micro-
hole hand-held paper puncher. The collection step was performed in different points of
the surface, to minimise variability due to the inhomogeneity of casting. To evaluate the
reproducibility of the detected molecular profiles, some selected reference samples were
analysed in duplicates. For the analysis of historical ink samples, 30–300 µg of sample were
collected by scratching the surface with a scalpel, where the manuscript showed defects
(e.g., ink drops, lacunae in the manuscript, etc.), and treated with 50 µL of 0.1% EDTA
aqueous solution-DMF in ultrasonic bath for 1 h at 60 ◦C. The extracts were filtered and
injected in the chromatographic system.

3.6. Colorimetric Measurements

A Konica-Minolta Mod. CM-700d with 3 mm spot (diameter), wavelength range
400–700 nm and d:8◦ geometry for the illuminant/observer was employed. Specular
component excluded (SCE) readings were recorded. Three measurements on three different
spots were averaged for each unaged and aged ink’s mock-up, converted to CIE 1976 L*a*b*
space and processed with Microsoft Excel. The CV% of the three replicates in terms of
∆E was below 5%. The colour difference (∆E) was calculated by comparing the values
obtained for unaged and aged ink’s mock-ups and using the colour difference equation
developed by the Society of Dyers and Colourists, Color Measurement Committee (CMC).
Colorimetric measurements were also performed on the unaged and aged paper supports;
however, no significant variation in terms of ∆E was observed.

3.7. HPLC-DAD-MS2 Analysis

The HPLC system consists of a PU-2089 quaternary pump (Jasco International Co.,
Tokyo, Japan) equipped with a degasser, an AS-950 autosampler (Jasco International
Co., Tokyo, Japan), an MD-2010 spectrophotometric diode array detector (DAD) (Jasco
International Co., Tokyo, Japan). ChromNav software was used to carry out data acquisition
and data analysis. The DAD detector operated with spectra acquisition in the range of
200–650 nm every 0.2 s with 4 nm resolution.

For HPLC-ESI-Q-ToF analysis, an HPLC 1200 Infinity, coupled to a Jet Stream ESI-
Q-ToF 6530 Infinity detector and equipped with an Agilent Infinity autosampler (Agilent
Technologies, Palo Alto, CA, USA), was used. MassHunter® Workstation Software (B.04.00)
was used to carry out mass spectrometer control, data acquisition and data analysis. The
mass spectrometer operated in ESI ionisation in negative mode and the working conditions
were: drying gas N2 (purity>98%) temperature 350 ◦C and 10 L/min flow; capillary voltage
4.5 KV; nebuliser gas pressure 35 psig; sheath gas temperature 375 ◦C and 11 L/min
flow; fragmentor voltage 175 V. High resolution MS and MS/MS spectra were acquired in
negative mode in the range 100–1700 m/z at a scan rate of 1.04 spectra/sec (CID voltage 30
V, collision gas N2, purity 99.999%). Auto-calibration was performed daily using Agilent
tuning mix HP0321 (Agilent Technologies) prepared in acetonitrile.

The chromatographic separation was performed in both systems on an analytical
reversed-phase column Poroshell 120 EC-C18 (3.0 × 75 mm, particle size 2.7 µm,) with a
pre-column Zorbax (4.6 × 12.5 mm, particle size 5 µm) both Agilent Technologies (Palo
Alto, CA, USA). The eluents were A: formic acid (FA 0.1% v/v) in LC-MS grade water and B:
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formic acid (FA 0.1% v/v) in LC-MS grade acetonitrile. The flow rate was 0.4 mL/min and
the program was 5% B for 2.6 min, then to 50% B in 13.0 min, to 70% B in 5.2 min, to 100%
B in 6.2 min and then hold for 8.0 min; re-equilibration took 11 min. During the separation,
in both systems, the column was thermostated at 30 ◦C. The injection volume was 10 µL
and 4 µL for the HPLC-DAD and HPLC-MS/MS analysis, respectively.

3.8. Quantitative Analysis

Quantitative analysis was performed by HPLC-DAD. Stock and working solutions of
gallic and ellagic acid were prepared in DMSO. The concentrations used were 2.5, 5, 10,
20 and 25 ppm. The calibration curves were obtained by integrating the gallic and ellagic
acid peak in the HPLC-DAD chromatogram acquired at 275 nm and 365 nm respectively.
The calibration curves coefficients obtained by linear regression fitting (y = mx + q) are
reported in Table S4 (Supplementary Materials). The standard solutions were analysed by
both HPLC instrumentations. Table 3 shows all the parameters useful for the identification
of gallic and ellagic acid by HPLC-DAD and HPLC-ESI-Q-ToF analysis.

Table 3. Parameter for HPLC-DAD and HPLC-ESI-Q-ToF identification of gallic and ellagic acid. The
most intense product ions are highlighted in bold.

Analyte Chemical
Structure

tR (min)
HPLC-DAD

λmax
(nm)

tR (Min)
HPLC-MS

MS
([M-H]−) MS2

Gallic acid
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4. Conclusions

In the present work both the chromatographic method and the sample treatment
protocol for the analysis of iron gall inks on paper support have been optimised. The
devised methodology, based on ultra-sensitive chromatographic and mass spectrometric
methods, guarantees the identification of the molecular marker of the dye and its ageing
products in ink mock-ups. To the best of our knowledge this is the first time that a model
iron gall ink has been used to perform an in-depth study of the ageing mechanism of
gallic acid. Regarding our studies, there are two remarkable results that could bring
new information to the literature. First, this research enabled us to demonstrate that the
auto-oxidation of gallic acid to ellagic acid occurs with the ageing of the model iron gall
ink. Furthermore, we verified that the entire mechanism is influenced by environmental
parameters during ageing. The impact of relative humidity was evaluated, showing that
lower RH% fosters the auto-oxidation mechanism through digallic acid intermediates,
while higher RH% favours the mechanism through dimer C-C intermediate. To date, only
the hydrolysis of gallotannins and ellagitannins has been taken into account to model the
ageing mechanism of iron gall inks. Therefore, our studies could provide the springboard
for a new way to investigate ageing phenomena in these inks’ formulations. Second, high
resolution tandem mass spectrometry enabled us to identify numerous ageing and/or
degradation products of gallic acid never detected before for iron gall inks. Most of these
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markers can be interpreted as intermediate or side products in the autoxidation of gallic
acid to ellagic acid, but they can also be ascribed to the further degradation of ellagic acid.
However, these results allow us to widen the database of molecular markers available for
the identification of iron gall inks in manuscripts and drawings. Furthermore, colorimetric
measurements enabled us to show that four degradation markers (m9, m12, m13 and m14)
could cause a darkening, which in turn reduces the visible fading of iron gall inks.

The developed protocol was applied to two case studies and, indeed, the marker m11
was detected in both, confirming the validity of this compound as an ageing marker of
iron gall inks. None of the other markers described were detected in the historical samples,
suggesting that their presence was below the detection limit or that they are intermediate
ageing products whose fate may be further investigated by prolonging the ageing time of
the model ink.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238603/s1, Table S1: Extraction yields obtained for
gallic acid extract from model gallic acid inks mock-ups; Table S2: Molecular markers identified in
the aged and unaged model gallic acid ink mock-ups.; Table S3: Parameters used for artificial ageing
tests; Table S4: Calibration curves parameters for gallic and ellagic acid in the HPLC-DAD system;
Figure S1: Tandem mass spectrum of gallic acid; Figure S2: Tandem mass spectrum of ellagic acid;
Figure S3–S15: Tandem mass spectra of m1–m14 with hypothesised structures.
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17. Kolar, J.; Strlič, M.; Budnar, M.; Malešič, J.; Šelih, V.S.; Simčič, J. Stabilisation of Corrosive Iron Gall Inks. Acta Chim. Slov. 2003, 50,
763–770.
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