
Nash Equilibria, Variational Inequalities and Dynamical Systems∗

Ennio Cavazzuti† Massimo Pappalardo‡ Mauro Passacantando§

Abstract. In this paper we introduce some relationships between Nash equilibria, variational equilibria and

dynamical equilibria for noncooperative games.

Key words. Nash Equilibria, Variational and Quasi-Variational Inequalities, Dynamical Systems, Perfor-

mance and Gap Functions.

1 Introduction

In this paper we investigate some basic relations among the three equilibrium concepts for three different

mathematical models which are referred in the title. The first one is Nash-type equilibrium solution for

game model, the second one is connected with variational formulation of the problem and the third one

arises from dynamical approach to the problem. Some material that we expose has already appeared in the

literature; here we deepen some basic relations and we give comments on the topics. Because this field is

largely open, we don’t achieve definitive results, but, on the contrary, we try to convince the reader that some

progress in one field may help to solve problems for the others. In section 4 we study also the relationships

between performance functions for Nash equilibria and merit functions for variational inequalities. Recall,

in fact, that to optimize performance functions gives Nash equilibria, whereas to optimize merit functions

gives variational equilibria.

2 Optimization

Here we expose two basic known lemmas that are essential for further results. Let f : X → R be a Gateaux

differentiable function, X ⊆ E a closed convex subset of the topological vector space E.

Lemma 2.1. (Ref. 1) Let x∗ ∈ arg min(f,X), i.e.

x∗ ∈ X and f(x∗) ≤ f(x) ∀ x ∈ X,

then

〈f ′(x∗), x− x∗〉 ≥ 0 ∀ x ∈ X. (1)

If f is pseudoconvex then (1) is also sufficient for optimality.
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In other words (1) constitutes the N.O.C. (necessary optimality condition) for a constrained minimum

x∗, for each Gateaux differentiable function. If we replace f ′ with an operator A : E → E∗, then (1) is called

SVI (Stampacchia type variational inequality)

Lemma 2.2. If there is x∗ ∈ X such that

〈f ′(x), x− x∗〉 ≥ 0 ∀ x ∈ X, (2)

then x∗ ∈ arg min(f,X). If f is quasiconvex, then (2) is also necessary for optimality.

Proof. Condition (2) is a well known sufficient optimality condition (S.O.C.) for each Gateaux differentiable

function on a convex set X (Ref. 1). When f is quasiconvex and x∗ ∈ arg min(f,X), then

〈f ′(x), x− x∗〉 = −∂f(x)/∂(x∗ − x) = lim
t→0+

[f(x)− f(x+ t(x∗ − x))]/t ≥ 0,

because

f(x+ t(x∗ − x)) ≤ f(x) ∀ x ∈ X, ∀ t ∈ [0, 1],

being f quasiconvex, thus (2) is a necessary condition. �

If we replace f ′ with an operator A : E → E∗, then (2) is called MVI (Minty type variational inequality).

Lemma 2.3. Let f be convex and Gateaux differentiable on X, then the following statements are equivalent:

x∗ ∈ arg min(f,X);

〈f ′(x∗), x− x∗〉 ≥ 0 ∀ x ∈ X (SV I);

〈f ′(x), x− x∗〉 ≥ 0 ∀ x ∈ X (MV I).

Furthermore the following inequalities hold true

〈f ′(x), x− y〉 ≥ f(x)− f(y) ≥ 〈f ′(y), x− y〉 ∀ x, y ∈ X. (3)

3 Noncooperative Games

In what follows we always consider noncooperative games in normal form, with a finite set I = {1, . . . , n} of

players (Refs 2-3). Every player i ∈ I has a set Σi of moves (or actions, pure strategies), which is supposed a

closed convex subset of an Hilbert space Hi. The ambient space H =
∏
i∈I

Hi is endowed with the customary

inner product 〈, 〉 inherited from its factor spaces Hi. The constrained set Σi are often specified by individual

(technological) constraints. Every player i ∈ I has a payoff function Ji :
∏
i∈I

Σi → R. When all these are

specified we have a game in normal (strategic) form.

When the sets of pure strategies Σi are not closed and convex, then it is better to consider a whole plane

of moves for each player.

Definition 3.1. We call mixed strategies for player i ∈ I, the set

Si = {p : p is a probability measure on Σi}.

In this way we assure that Si are convex subset of Hi, moreover payoff functions are naturally extended

to the space
∏
i∈I

Si by

J̃i(pi, p−i) =

∫
∏

i∈I Si

Ji(xi, x−i) dpi dp−i,
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to obtain a new game in normal form on the space of mixed strategies
∏
i∈I

Si. Furthermore we may consider

the possibility to have a set K ⊆
∏
i∈I

Σi (or K ⊆
∏
i∈I

Si) often specified by a social restrictions imposed

on the set of all players. It will be assumed closed and convex.

The aim of each player (unless we specify the contrary) will be

min
{xi: (xi,x−i)∈K}

Ji(xi, x−i),

that is to minimize his own utility with respect to the only variable xi under his control, given the pattern

of actions of his adversaries x−i = (xj)j∈I\{i}.

When a game in normal form is given, with a social constraint, and played without any agreement or

cooperation among players, one of the most frequently used concept of equilibrium is that of Nash.

Definition 3.2. We say that x∗ ∈ K is a Nash equilibrium of the game (J,K) if for all i ∈ I

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i) ∀ (xi, x

∗
−i) ∈ K.

We remark that in the case K =
∏
i∈I

Σi we simply have for all i ∈ I:

Ji(x
∗
i , x
∗
−i) = min

xi∈Σi

Ji(xi, x
∗
−i).

It is possible and easy to state necessary and sufficient conditions, for Nash equilibria of a game in normal

form, in terms of the optimization problems that it generates. We omit to do this and expose new conditions

in a more compact form. We need some concepts and notations that we now explain.

Definition 3.3. We call the i-th section of K ⊆
∏
i∈I

Hi at x∗ the set

Si(x
∗) = {wi ∈ Ei : (x∗i + wi, x

∗
−i) ∈ K},

i.e. it is the translation of the usual section to the origin.

We call sections of K at x∗ the set

S(x∗) =
⋃
i∈I

Si(x
∗).

We call internal cone or inner cone to K at x∗, and we denote it IK(x∗), the smallest pointed, closed,

convex cone which contains sections S(x∗). With TK(x∗), we will denote the tangent cone to K at x∗.

To produce a compact form of necessary and sufficient conditions we introduce an operator that we call

“gradient” of a game in normal form which has the formal expression of a gradient but it is not.

Definition 3.4. We call “gradient” of a game in normal form, with Gateaux differentiable costs w.r.t. the

actions of players, at a point x ∈ K, the vector

∇J(x) = (∂J1(x)/∂x1, . . . , ∂Jn(x)/∂xn) .

Theorem 3.1. (Ref. 4) Let (J,K) be a noncooperative game and x∗ a Nash equilibrium, then

〈∇J(x∗), x− x∗〉 ≥ 0 ∀ x ∈ x∗ + IK(x∗) ∩K. (4)

When Ji(·, x−i) is pseudoconvex for all i ∈ I, then (4) is also sufficient.
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The condition (4) is a necessary optimality condition in the form of a Stampacchia type quasi variational

inequality for a noncooperative game in normal form. We remark that the quasi-variational inequality (4)

is equivalent to the following equation

PIK(x∗)(−∇J(x∗)) = 0,

where PIK(x∗) denotes the orthogonal projection onto the internal cone IK(x∗) of K at x∗ ∈ K.

Theorem 3.2. Let x∗ satisfy

〈∇J(x), x− x∗〉 ≥ 0 ∀ x ∈ x∗ + S(x∗), (5)

then x∗ is a Nash equilibrium. When Ji(·, x−i) is quasiconvex for all i ∈ I, then the sufficient condition (5)

is also necessary.

Proof. It is a direct consequence of Lemma 2.2. �

The condition (5) is a first order sufficient condition in the form of a Minty type quasi variational

inequality for the Nash equilibrium of a noncooperative game in normal form.

Theorem 3.3. In addition to the usual K closed convex and Ji Gateaux differentiable with respect to xi
for all i ∈ I, assume that, for all i ∈ I, Ji(·, x−i) is pseudoconvex, then (4) and (5) are equivalent and any

solution of both of them is a Nash equilibrium, i.e. (4) and (5) are both necessary and sufficient for x∗ to be

a Nash equilibrium.

Remark 3.1. We have written the necessary and sufficient conditions for a Nash equilibrium in the form of

quasi variational inequalities, but in a simple and important case in which social restriction are not considered,

i.e. when K =
∏
i∈I

Σi, inequalities (4) and (5) take the more usual form of a variational inequality and they

are equivalent when ∇J is a pseudomonotone operator, i.e.

〈∇J(x∗), x− x∗〉 ≥ 0 ∀ x ∈ K,
〈∇J(x), x− x∗〉 ≥ 0 ∀ x ∈ K.

A short summary of the results is shown in the Figure 1.

If we consider solutions of (4) in which the domain is the feasible set K, we obtain an other important

type of equilibria of the game, the so-called variational equilibria.

Definition 3.5. A point x∗ ∈ K is said a variational equilibrium of the game (J,K) if

〈∇J(x∗), x− x∗〉 ≥ 0 ∀ x ∈ K. (6)

We now expose a uniqueness result for Nash and variational equilibria under strict monotonicity assump-

tion.

Theorem 3.4. Let (J,K) be a game in normal form with the usual conditions and∇J be a strictly monotone

operator, then we have

(i) (J,K) has at most one variational equilibrium.

(ii) (J,K) has at most one Nash equilibrium in the relative interior of K.
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Pseudo−convex case

General case Quasi−convex case

M SM = NENE S

M = NE = S

Figure 1: M = set of solutions to Minty type quasi variational inequality (5); NE = set of Nash equilibria of

the game; S = set of solutions to Stampacchia type quasi variational inequality (4).

(iii) If K =
∏
i∈I

Σi then (J,K) has at most one Nash equilibrium.

Proof.

(i) Suppose, by contradiction, the game has two variational equilibria x1 and x2, with x1 6= x2. Then we

have
〈∇J(x1), x2 − x1〉 ≥ 0,

〈∇J(x2), x1 − x2〉 ≥ 0.

By strict monotonicity assumption we have

0 ≤ 〈∇J(x1)−∇J(x2), x2 − x1〉 < 0,

which is absurd.

(ii) It follows from (i) because each Nash equilibrium in the relative interior ofK is a variational equilibrium.

(iii) It follows from (i) because, in this case, each Nash equilibrium is a variational equilibrium.

�

When the assumption of pseudo-convexity on functions Ji holds true, then a variational equilibrium is

a sufficient but, in general, not necessary condition for a Nash equilibrium. The difference between Nash

equilibria and variational equilibria is explained, as we will see in what follows, by the inclusion of the

internal cone IK(x∗) in the tangent cone TK(x∗) of K at x∗. If x∗ is a Nash equilibrium then no deviation
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from x∗ in the internal cone will be accepted by players; whereas if x∗ is a variational equilibrium, then no

deviations from x∗ in the tangent cone will be accepted by players. Thus variational equilibria have greater

social stability than Nash equilibria. Obviously, in the particular case in which there is no social constraint,

that is K =
∏
i∈I

Σi, then Nash equilibria and variational equilibria coincide (the internal cone IK(x) coincides

with TK(x) for all x ∈ K). It may happen that there are infinitely many Nash equilibria but only one of

them is a variational one, as the following example shows.

Example 3.1. (Ref. 5) (To locate a post office) This is a two-person noncooperative game: player i

select the coordinate xi ∈ R subject to the private restriction Σi = {xi ≤ 0}, and the social constraint

is x1 + x2 ≤ −1. The aim of player i is to minimize the distance between (x1, x2) and his favourite goal

Pi ∈ R2, with P1 = (1, 0) and P2 = (0, 1); thus we have

J1(x) = [(1− x1)2 + x2
2]/2, J2(x) = [x2

1 + (1− x2)2]/2,

∇J(x1, x2) = (x1 − 1, x2 − 1).

The gradient of the game is strictly monotone, the set of Nash equilibria equals the closed line segment

between (−1, 0) and (0,−1), whereas the only variational equilibrium is (−1/2,−1/2) (see Figure 2).

(−1,0)

(0,−1)

K

P =(1,0)

P =(0,1)

1

2

(−1/2,−1/2)

x

x

1

2

Figure 2: Example of infinitely many Nash equilibria but only one variational equilibrium.
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4 The Convex Case. Ky Fan, Performance and Merit Functions

Given a game in normal form, we consider the following function that we call the Ky Fan function of the

game:

φ(x, y) =

n∑
i=1

[Ji(yi, x−i)− Ji(xi, x−i)], where x, y ∈
∏
i∈I

Σi.

The performance function of the game represent the loss of the society of players when they deviate from

the planned x to another strategy y. It was introduced in (Ref. 6-7) with a slightly different definition from

that considered here.

Definition 4.1. We call performance function of a game in normal form the function

φ](x) = infy∈x+S(x) φ(x, y) =

= infy∈x+S(x)

∑
i∈I [Ji(yi, x−i)− Ji(xi, x−i)] =

= mini∈I infyi∈xi+Si(x)[Ji(yi, x−i)− Ji(xi, x−i)] ∀ x ∈ K.

The main properties of the performance function are here recalled shortly. They are:

• φ](x) ≤ 0 for all x ∈ K;

• φ](x∗) = 0 with x∗ ∈ K ⇐⇒ x∗ is a Nash equilibrium of the game;

• the set of Nash equilibria is non empty ⇐⇒ max
x∈K

φ](x) = 0;

Thus Nash equilibria of the game are maximizers of the performance function. We want to show that the

performance function is related to some merit functions for the quasi variational inequality (4) and Minty

quasi variational inequality (5) associated to the game.

Define:

U(x) = inf
y∈x+S(x)

〈∇J(y), y − x〉

L(x) = inf
y∈x+IK(x)

〈∇J(x), y − x〉

It easy to see that L and U are merit functions for the quasi variational inequality (4) and the Minty

quasi variational inequality (5), respectively, i.e.:

• L(x) ≤ 0 for all x ∈ K and U(x) ≤ 0 for all x ∈ K;

• L(x∗) = 0 with x∗ ∈ K ⇐⇒ x∗ is a solution to quasi variational inequality (4);

• U(x∗) = 0 with x∗ ∈ K ⇐⇒ x∗ is a solution to Minty quasi variational inequality (5).

Therefore we prove the following:

Theorem 4.1. Assume that Ji(·, x−i) are convex for all i ∈ I. We have:

U(x) ≥ φ](x) ≥ L(x) ∀ x ∈ K. (7)

Proof. Taking into account convexity we have: for all x ∈ K, for all yi ∈ xi +Si(x) and for all i ∈ I:

〈∂Ji(yi, x−i)/∂xi, yi − xi〉 ≥ Ji(yi, x−i)− Ji(xi, x−i);
Ji(yi, x−i)− Ji(xi, x−i) ≥ 〈∂Ji(xi, x−i)/∂xi, yi − xi〉.
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Finally we obtain the following relationship

U(x) = infy∈x+S(x)〈∇J(y), y − x〉 =

= infy∈x+S(x)

∑
i∈I〈∂Ji(yi, x−i)/∂xi, yi − xi〉 ≥

≥ infy∈x+S(x)

∑
i∈I [Ji(yi, x−i)− Ji(xi, x−i)] = φ](x) ≥

≥ infy∈x+S(x)〈∇J(x), y − x〉 =

= infy∈x+IK(x)〈∇J(x), y − x〉 = L(x).

and therefore we have the thesis. �

(7) allows us to give the following three equivalent formulations of the equilibrium problem in the convex

case:

• maxx∈K infy∈x+S(x)〈∇J(y), y − x〉 = 0;

• maxx∈K infy∈x+S(x) φ(x, y) = 0;

• maxx∈K infy∈x+IK(x)〈∇J(x), y − x〉 = 0.

We discuss briefly the well posedness of Nash equilibrium problem in a special, but significant case, in

which things are easily obtained.

Definition 4.2. We say that {xn}, with n ∈ N, is an approximating sequence for a Nash equilibrium when

lim
n→+∞

φ](xn) = lim
n→+∞

inf
y∈ xn+S(xn)

φ(xn, y) = 0

and we call xε, with ε > 0, an ε-approximate Nash equilibrium if

φ](xε) ≥ −ε.

Definition 4.3. We say that a Nash equilibrium problem (J,K) is Tykhonov well posed (Ref. 6) if

(i) (J,K) has a unique Nash equilibrium;

(ii) every approximating sequence converges to the unique Nash equilibrium.

Definition 4.4. (Ref. 6) Let us call a game (J,K) coercive if there is an ε > 0 such that

{x ∈ K : φ](x) ≥ ε} = Lε

is compact.

With these definitions, we have the following result.

Theorem 4.2. Any coercive game (J,K), with K =
∏

i∈I Σi, with continuous payoff Ji and strictly mono-

tone gradient ∇J , is Tykhonov well posed.

Proof. The game has equilibria and because of Theorem 3.4 there is only one, let us call it x∗. We take any

approximating sequence xn and we observe that it must belong to a compact set, by coercivity. We consider

a convergent subsequence xkn
→ x, and it is again an approximating sequence and

φ](x) ≥ lim sup
n→+∞

φ](xkn) = 0,

so that x is a Nash equilibrium. We have x = x∗ and this for all converging subsequences, so lim
n→+∞

xn = x∗.

�
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Remark 4.1. We recall that well posedness is important because any method for generating

approximating sequences is a method to approximate the equilibrium. For example any bimatrix game with

strictly monotone gradient is well posed. Strictly monotonicity of the gradient is no more sufficient for well

posedness when social constraints are considered, as the Example 3.1 shows.

5 Dynamical Systems

After we defined equilibria of the game, we are interested to dynamical systems which describe the evolution

of the game from a disequilibrium starting point. One of the natural ways to define the adjustment process

is the following: we suppose that all the n players are in the state x ∈ K at starting point t0, then each

player i wish to move along the antigradient −∇J(x), because this direction offers him the steepest cost

reduction. If x is an internal point of K, then we can consider this motion direction without problems.

However if x stays on the boundary of the feasible set K, the antigradient of the game −∇J(x) may have a

normal component to K at x, thus we have to project this direction in such a way that obtaining a feasible

direction. We can do it in three different ways.

The first one is to use the projection on the tangent cone of K, that is we consider the dynamical system

ẋ(t) = PTK(x)(−∇J(x)). (8)

It would be possible to prove that the steady states of (8) equal the solutions to variational inequality (6),

that is the variational equilibria of the game.

The second one is to exploit the projection on the whole set K, and we study the dynamical system

ẋ(t) = PK(x− α∇J(x))− x, (9)

where α is a fixed positive constant. It is trivial to check that also the steady states of (9) coincide with

variational equilibria of the game.

Finally, the third one is to use the projection on the internal cone of K, thus we have the third dynamical

system

ẋ(t) = PIK(x)(−∇J(x)). (10)

In this case we remark that its steady states coincide with the solutions to the quasi variational inequality (4),

and when the assumption of pseudo-convexity on Ji holds true, they equals Nash equilibria of the game.

We remark that the third dynamical system gives a better interpretation of the adjustment process of

the game than two others, in fact in the dynamical systems (8) and (9) a Nash equilibrium is not necessarily

a steady state. We can explain this behaviour if we assume an authority unattached to players controlling

the evolution of the game. We can see this same situation in the previous example: if we consider (0,−1) as

starting point, then the solutions of (8) and (9) move along the set of Nash equilibria and converge to the

only variational equilibrium (−1/2,−1/2).

Moreover, we observe that in the dynamical system (9) the vector PK(x− α∇J(x))− x is, in a

certain sense, an approximation of the projection of −∇J(x) on the tangent cone TK(x). Hence on the one

hand dynamical system (9) gives a worse interpretation of the adjustment process of the game than (8), on

the other hand (9) is, in general, more smooth than (8) (PK is Lipschitz continuous everywhere on K, but

PTK
is not).

We now pass to outline some convergence results for dynamical systems (8).

Theorem 5.1. Let x∗ ∈ K be a stationary point of (8). If the gradient of the game is strictly monotone

with modulus ψ on K, that is

〈∇J(x)−∇J(y), x− y〉 ≥ ψ(‖x− y‖), ∀ x, y ∈ K,
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where ψ : R+ → R+ is a forcing function, namely lower semicontinuous and

ψ(x) = 0 ⇐⇒ x = 0,

lim
n→+∞

ψ(xn) = 0 =⇒ lim
n→+∞

xn = 0,

then for every trajectory x(t) solving (8), with x(0) ∈ K, we have

lim
t→+∞

x(t) = x∗.

Proof. We denote NK(x) the normal cone to K at x, and we consider the squared distance function

λ(t) = ‖x(t)− x∗‖2/2. Its derivative is

λ̇(t) = 〈x(t)− x∗, PTK(x(t))(−∇J(x(t)))〉 =

= 〈x(t)− x∗,−∇J(x(t))− PNK(x(t))(−∇J(x(t)))〉 ≤
≤ 〈x(t)− x∗,−∇J(x(t))〉 ≤
≤ −〈x(t)− x∗,−∇J(x(t))−∇J(x∗)〉 ≤
≤ −ψ(‖x(t)− x∗‖) < 0.

Thus λ is a decreasing function of t and there exists lim
t→+∞

λ(t) = l ≥ 0. We suppose by contradiction that

l > 0, then ‖x(t) − x∗‖ >
√

2l > 0 for all t ≥ 0, hence there is m > 0 such that ψ(‖x(t) − x∗‖) ≥ m > 0,

because ψ is a forcing function. Therefore ˙λ(t) ≤ −m for all t ≥ 0 and lim
t→+∞

λ(t) = −∞, but this is

impossible, thus l = 0 and the proof is complete. �
For the dynamical system (9) we achieve the following result (Ref. 8).

Theorem 5.2. Let x∗ ∈ K be a stationary point of (9). If ∇J is strongly monotone on K with constant

η > 0 and Lipschitz continuous on K with constant L > 0, then there is α0 > 0 such that for each α ∈ (0, α0)

there exists a constant C > 0 such that for each solution x(t) of (9), with x(0) ∈ K, we have

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖ exp (−C t), ∀ t ≥ 0,

that is x(t) converges exponentially to x∗.

Proof. First we remark that for all x ∈ K the following holds:

‖PK(x− α∇J(x))− x∗‖2 =

= ‖PK(x− α∇J(x))− PK(x∗ − α∇J(x∗))‖2
≤ ‖x− x∗ − α (∇J(x)−∇J(x∗))‖2
= ‖x− x∗‖2 − 2α 〈∇J(x)−∇J(x∗), x− x∗〉+ α2 ‖∇J(x)−∇J(x∗)‖2
≤ (1− 2αη + α2 L2)‖x− x∗‖2.

We denote α0 = 2η/L2 and let 0 < α < α0. Taking into account (Ref. 8) the fact that the solutions of (9)

remain in K ∀t, for any solution x(t) with x(0) ∈ K we can consider λ(t) = ‖x(t)− x∗‖2/2, thus we have:

λ̇(t) = 〈x(t)− x∗, PK(x(t)− αF (x(t)))− x(t)〉
= 〈x(t)− x∗, PK(x(t)− α∇J(x(t)))− x∗〉 − ‖x(t)− x∗‖2
≤ ‖x(t)− x∗‖ ‖PK(x(t)− α∇J(x(t)))− x∗‖ − ‖x(t)− x∗‖2

≤ (
√

1− 2αη + α2 L2 − 1) ‖x(t)− x∗‖2
= −2C λ(t)

where C = 1−
√

1− 2αη + α2 L2 = 1−
√

1− L2 α(α0 − α) > 0. Thus

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖ exp(−C t), ∀ t ≥ 0.
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