CORRIGENDUM

Hydrodynamics of a quantum vortex in the presence of twist - CORRIGENDUM

Matteo Foresti ${ }^{1}$ and Renzo L. Ricca ${ }^{2,3, \dagger}$
${ }^{1}$ Department of Management, Information and Production Engineering, University of Bergamo, via Marconi 5, 24044 Dalmine, Bergamo, Italy
${ }^{2}$ Department of Mathematics and Its Applications, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
${ }^{3}$ BDIC, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, PR China

doi:10.1017/jfm.2020.695, Published by Cambridge University Press, 12 October 2020

In Foresti \& Ricca (2020) (hereafter referred to as FR20) we derived a modified form of the Gross-Pitaevskii equation for a defect subject to twist. A mistake was introduced by the wrong use of the operator $\widetilde{\nabla}=\nabla-\mathrm{i} \nabla \theta_{t w}$. By repeating the same calculations we can see that the mGPE (2.6) must be replaced by the following equation:

$$
\begin{align*}
\partial_{t} \psi_{1}= & \frac{\mathrm{i}}{2} \nabla^{2} \psi_{1}+\frac{\mathrm{i}}{2}\left(1-\left|\psi_{t w}\right|^{2}-\left|\nabla \theta_{t w}\right|^{2}\right) \psi_{1}+\mathrm{i}\left(\partial_{t} \theta_{t w}\right) \psi_{1} \\
& +\frac{1}{2} \nabla^{2} \theta_{t w} \psi_{1}+\nabla \theta_{t w} \cdot \nabla \psi_{1} \tag{0.1}
\end{align*}
$$

Note the extra terms that come from the broken symmetry of the theory under superposition of a local phase.

The Hamiltonian (3.1) then becomes

$$
\begin{equation*}
H_{t w}=\frac{1}{2} p^{2}-\frac{1}{2}\left(1-\left|\psi_{t w}\right|^{2}\right)+V_{t w} \tag{0.2}
\end{equation*}
$$

where $\boldsymbol{p}=-\mathrm{i} \nabla$ is the momentum operator, and

$$
\begin{equation*}
V_{t w}=\frac{\mathrm{i}}{2} \nabla^{2} \theta_{t w}+\frac{1}{2}\left|\nabla \theta_{1}\right|^{2}-\partial_{t} \theta_{t w}-\nabla \theta_{t w} \cdot \boldsymbol{p} \tag{0.3}
\end{equation*}
$$

is the twist potential. It can be directly verified that the above Hamiltonian is also non-Hermitian.

The energy expectation value $E_{t w}$ is given by the contribution of the unperturbed state ψ_{0} and twist. Since the twist contribution is linear in ψ_{1}, it can be obtained from the expectation value of $V_{t w}$ and the kinetic part that depends on $\theta_{t w}$; thus, (3.5) must be
replaced by

$$
\begin{align*}
E_{t w}= & \int\left[\left(\frac{1}{2}\left|\nabla \theta_{t w}\right|^{2}-\partial_{t} \theta_{t w}+\frac{\mathrm{i}}{2} \nabla^{2} \theta_{t w}\right)\left|\psi_{1}\right|^{2}+\mathrm{i} \nabla \theta_{t w} \cdot \nabla \psi_{1}\right. \\
& \left.+\frac{1}{2}\left|\nabla \psi_{1}\right|^{2}-\frac{1}{2}\left|\psi_{1}\right|^{2}+\frac{1}{4}\left|\psi_{1}\right|^{4}\right] \mathrm{d} V . \tag{0.4}
\end{align*}
$$

Upon application of the Madelung transform $\psi_{1}=\sqrt{\rho} \exp \left(\mathrm{i} \chi_{1}\right)$, taking $\nabla \theta_{t w} \cdot \nabla \rho=0$ in the neighborhood of the defect, we have

$$
\begin{align*}
E_{t w}= & \int\left[\left(\frac{1}{2}\left|\nabla \theta_{t w}\right|^{2}-\partial_{t} \theta_{t w}-\nabla \theta_{t w} \cdot \nabla \chi_{1}+\frac{1}{2}\left|\nabla \psi_{1}\right|^{2}-\frac{1}{2}+\frac{1}{4}\left|\psi_{1}\right|^{2}\right)\right. \\
& \left.+\frac{\mathrm{i}}{2} \nabla^{2} \theta_{t w}\right]\left|\psi_{1}\right|^{2} \mathrm{~d} V \tag{0.5}
\end{align*}
$$

As in FR20, the imaginary term above makes the Hamiltonian non-Hermitian, and the twisted state remains unstable. Following what is done in FR20 (§3), by the same procedure we obtain the correct dispersion relation

$$
\begin{equation*}
v=\frac{1}{2}\left[\left(|\boldsymbol{k}|^{2}-2 \nabla \theta_{t w} \cdot \boldsymbol{k}+\left|\nabla \theta_{t w}\right|^{2}-1-2 \partial_{t} \theta_{t w}\right)+\frac{\mathrm{i}}{2} \nabla^{2} \theta_{t w}\right] . \tag{0.6}
\end{equation*}
$$

The instability criterion of § 3 remains unaltered.
Since injection of negative twist is given by a rotation of the twist phase opposite to the vortex orientation, if we replace $\theta_{t w} \rightarrow-\theta_{t w}$ we evidently have instability when $\nabla^{2} \theta_{t w}<0$ as $t \rightarrow \infty$.

Acknowledgements. We are grateful to A. Roitberg, who pointed out an error in the derivation of (2.6) of FR20.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.

(0) Renzo L. Ricca https://orcid.org/0000-0002-7304-4042.

Reference

Foresti, M. \& Ricca, R.L. 2020 Hydrodynamics of a quantum vortex in the presence of twist. J. Fluid Mech. 904, A25.

