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Abstract In this paper we propose an approximation procedure for a class of mono-
tone variational inequalities in probabilistic Lebesgue spaces. The implementation
of the functional approximation in Lp, with p> 2, leads to a finite dimensional varia-
tional inequality whose structure is different from the one obtained in the case p= 2,
already treated in the literature. The proposed computational scheme is applied to
the random traffic equilibrium problem with polynomial cost functions.

1 Introduction

In many equilibrium problems arising in applied sciences, the data are often not
known with precision and this uncertainty can be modeled by using some probabil-
ity distributions. In this paper we are interested in the variational inequality approach
to equilibrium problems which has been very fruitful in the last decades. Motivated
by the need to cope with uncertain data, many authors have developed various ap-
proaches to the theory of random variational inequalities (the term stochastic vari-
ational inequalities is also used by numerous authors). Our contribution falls in the
so called Lp approach to random variational inequalities introduced in [6, 7] and
subsequently developed in a series of papers [4, 5, 8, 10, 11, 12]. A comparison of
the rigorous Lp approach with a sample-path approach has been carried out in [9].
In this last paper, the authors also proposed a regularization method to deal with
the case where the operator is monotone but not strictly monotone and applied their
results to the traffic equilibrium problem with linear cost functions, which is mod-
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eled by a variational inequality in L2. In this case, the regularization term is the
identity operator, i.e., the Riesz isometry, and after a discretization procedure the
original infinite dimensional variational inequality is transformed in a large num-
ber of independent finite dimensional variational inequalities. To the best of our
knowledge, the above mentioned abstract regularization procedure has not yet been
applied to random variational inequalities in Lp, with p > 2. In this paper, we show
that when p > 2 the structure of the regularizing duality operator does not allow to
split the Lp variational inequality into a large number of finite dimensional varia-
tional inequalities. Instead, it can be approximated by a single variational inequality
whose operator F : RL→ RL has a special structure such that all the summands in
F , excepted the regularization term, depend on a number of variables which is much
smaller than L. As an application of our results, we investigate the random traffic
equilibrium problem with polynomial cost functions.

The paper is organized as follows. First, we give an overview of the Lp approach
for random variational inequalities in Section 2.1. Then, in Section 2 we describe
a functional approximation scheme combined with a regularization procedure to
find approximated solutions of a random monotone variational inequality, while its
implementation in Lp spaces, with p > 2, is analyzed in detail in Section 2.3. In
Section 3 we apply the results illustrated in Section 2 to the random traffic network
equilibrium problem with polynomial cost functions. The deterministic version of
the problem and its variational inequality formulation are recall in Section 3.1. Sec-
tion 3.2 is devoted to the stochastic version of the problem, where both the traf-
fic demand and the travel cost functions may include random perturbations, and
a stochastic variational inequality formulation is given. Finally, the regularization
and approximation procedures described in Section 2 have been applied to some
instances of the random traffic network equilibrium problem in order to show the
impact of different probability distributions of the random data on the average cost
at equilibrium.

2 Regularization of random variational inequalities

This Section is devoted to the regularization and approximation procedures for ran-
dom monotone variational inequalities. In particular, Section 2.1 is an overview of
the Lp approach for random variational inequalities; Section 2.2 describes a func-
tional approximation scheme combined with a regularization procedure to find ap-
proximated solutions of a random monotone variational inequality, while in Sec-
tion 2.3 we discuss in detail the implementation of the regularization and approxi-
mation procedures in Lp spaces with p > 2.
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2.1 Random variational inequalities in probabilistic Lebesgue
spaces

Let (Ω ,A ,P) be a probability space, A,B : Rk→Rk two given mappings and b,c ∈
Rk two given vectors. Moreover, let R and S be two real-valued random variables
defined on Ω , D a random vector in Rm and G ∈ Rm×k a given matrix. For any
ω ∈Ω we define a random set

M(ω) := {x ∈ Rk : Gx≤ D(ω)}.

Consider the following random variational inequality: for almost every ω ∈Ω , find
x̂ := x̂(ω) ∈M(ω) such that

(S(ω)A(x̂)+B(x̂))>(z− x̂)≥ (R(ω)c+b)>(z− x̂), ∀ z ∈M(ω). (1)

To facilitate the foregoing discussion, we set

T (ω,x) := S(ω)A(x)+B(x).

We assume that A,B and S are such that the map T : Ω×Rk 7→Rk is a Carathéodory
function, that is, for each fixed x∈Rk the function T (·,x) is measurable with respect
to the σ -algebra A , whereas for almost every ω ∈ Ω the function T (ω, ·) is con-
tinuous. We also assume that T (ω, ·) is monotone for every ω ∈Ω , i.e.,

(T (ω,x)−T (ω,y))>(x− y)≥ 0, ∀ x,y ∈ Rk, ∀ ω ∈Ω . (2)

If (1) is uniquely solvable, then conditions can be given to ensure that the solu-
tion belongs to an Lp space for some p ≥ 2. This allows us to compute statistical
quantities such as mean values and variances of the solution. Since we are only in-
terested in solutions with finite first- and second-order moments, another approach
is to consider an integral variational inequality instead of the parametric variational
inequality (1).

Thus, for a fixed p≥ 2, consider the Banach space Lp(Ω ,P,Rk) of random vec-
tors V from Ω to Rk such that the expectation (p-moment) is given by

EP(‖V‖p) =
∫

Ω

‖V (ω)‖pdP(ω)< ∞.

For subsequent developments, we assume the following growth condition:

‖T (ω,z)‖ ≤ α(ω)+β (ω)‖z‖p−1, ∀ z ∈ Rk, for some p≥ 2, (3)

where α ∈ Lq(Ω ,P) and β ∈ L∞(Ω ,P). Due to the above growth condition, the
Nemytskii operator T̂ associated to T acts from Lp(Ω ,P,Rk) to Lq(Ω ,P,Rk), where
p−1 +q−1 = 1, and is defined by

T̂ (V )(ω) := T (ω,V (ω)), ω ∈Ω . (4)
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It will be useful to notice that if T (ω, ·) is monotone for each ω , then T̂ is monotone
form Lp(Ω ,P,Rk) to Lq(Ω ,P,Rk), i.e.,∫

[T (ω,V (ω))−T (ω,U(ω)) ]> (V (ω)−U(ω))dP(ω)≥ 0

holds for all U,V ∈ Lp(Ω ,P,Rk). Assuming D ∈ Lp
m(Ω) := Lp(Ω ,P,Rm), we intro-

duce the following nonempty, closed and convex subset of Lp
k (Ω):

MP := {V ∈ Lp
k (Ω) : GV (ω)≤ D(ω), P−a.s.}.

Let S(ω)∈ L∞, 0 < s < S(ω)< s, and R(ω)∈ Lq. Equipped with these notations,
we consider the following Lp formulation of (1): find Û ∈ MP such that for every
V ∈MP we have∫

Ω

(S(ω)A[Û(ω)]+B[Û(ω))]>(V (ω)−Û(ω))dP(ω)

≥
∫

Ω

(b+R(ω)c)>(V (ω)−Û(ω))dP(ω).
(5)

If problems (1) and (5) are uniquely solvable, then they are equivalent provided that
the solution of (1) belongs to Lp.

To get rid of the abstract sample space Ω , we consider the joint distribution
P of the random vector (R,S,D) and work with the special probability space
(Rd ,B(Rd),P), where d := 2+m and B is the Borel σ -algebra on Rd . For sim-
plicity, we assume that R, S and D are independent random vectors and we set

r = R(ω), s = S(ω), t = D(ω), y = (r,s, t).

For each y ∈ Rd , we define the set

M(y) := {x ∈ Rk : Gx≤ t}.

The pointwise formulation of the variational inequality reads: find x̂ such that x̂(y)∈
M(y), P-a.s., and for P-almost every y ∈ Rd and for every x ∈M(y), we have

(sA[x̂(y)]+B[x̂(y)])>(x− x̂(y))≥ (rc+b)>(x− x̂(y)) . (6)

In order to obtain the integral formulation of (6), consider the space Lp(Rd ,P,Rk)
and introduce the closed and convex set

MP := {v ∈ Lp(Rd ,P,Rk) : Gv(r,s, t)≤ t, P−a.s.}.

Without any loss of generality, we assume that R ∈ Lq(Ω ,P) and D ∈ Lp(Ω ,P,Rm)
are nonnegative (otherwise we can use the standard decomposition in the positive
part and the negative part). Moreover, we assume that the support (i.e., the set of
possible outcomes) of S ∈ L∞(Ω ,P) is the interval [s,s[⊂ (0,∞).
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With these ingredients, we consider the variational inequality problem of finding
û ∈MP such that for every v ∈MP we have∫

∞

0

∫ s

s

∫
Rm
+

(sA[û(y)]+B[û(y)])>(v(y)− û(y))dP(y)

≥
∫

∞

0

∫ s

s

∫
Rm
+

(b+ r c)>(v(y)− û(y))dP(y).
(7)

We conclude this section by recalling the following general result that ensures the
solvability of an infinite dimensional variational inequality like (5) or (7) (see [13]
for a recent survey on existence results for variational inequalities).

Theorem 1. Let E be a reflexive Banach space and let E∗ denote its topological
dual space. We denote the duality pairing between E and E∗ by 〈·, ·〉E,E∗ . Let K be
a nonempty, closed, and convex subset of E, and A : K→ E∗ be monotone and con-
tinuous on finite dimensional subspaces of K. Consider the variational inequality
problem of finding u ∈ K such that

〈Au,v−u〉E,E∗ ≥ 0, ∀ v ∈ K.

Then, a necessary and sufficient condition for the above problem to be solvable is
the existence of δ > 0 such that at least a solution of the variational inequality:

find uδ ∈ Kδ such that 〈Auδ ,v−uδ 〉E,E∗ ≥ 0, ∀ v ∈ Kδ

satisfies ‖uδ‖< δ , where Kδ = {v ∈ K : ‖v‖ ≤ δ}.

In the next section, we show how the set MP can be approximated by a sequence
{Mn

P} of finite dimensional sets, and the functions r and s can be approximated by
the sequences {ρn} and {σn} of step functions, with ρn→ ρ in Lp and σn→ σ in
L∞, respectively, where ρ(r,s, t) = r and σ(r,s, t) = s. When the solution of (7) is
unique, we can compute a sequence of step functions ûn which converges strongly
to û under suitable hypotheses.

2.2 A functional approximation scheme for the random variational
inequality

We start with a discretization of the space X := Lp(Rd ,P,Rk). We introduce a se-
quence {πn} of partitions of the support

ϒ := [0,∞[×[s,s[×Rm
+

of the probability measure P induced by the random elements R,S, and D. For this,
we set

πn = (πR
n ,π

S
n ,π

D
n ),
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where

π
R
n := (r0

n, . . . ,r
NR

n
n ), π

S
n := (s0

n, . . . ,s
NS

n
n ), π

Di
n := (t0

n,i, . . . , t
N

Di
n

n,i ),

0 = r0
n < r1

n < .. .rNR
n

n = n,

s = s0
n < s1

n < .. .sNS
n

n = s,

0 = t0
n,i < t1

n,i < .. . tN
Di
n

n,i = n (i = 1, . . . ,m),

|πR
n | := max{r j

n− r j−1
n : j = 1, . . . ,NR

n }→ 0 (n→ ∞),

|πS
n | := max{sk

n− sk−1
n : k = 1, . . . ,NS

n}→ 0 (n→ ∞),

|πDi
n | := max{thi

n,i− thi−1
n,i : hi = 1, . . . ,NDi

n }→ 0 (i = 1, . . . ,m; n→ ∞).

These partitions give rise to an exhausting sequence {ϒn} of subsets of ϒ , where
each ϒn is given by the finite disjoint union of the intervals:

In
jkh := [r j−1

n ,r j
n[×[sk−1

n ,sk
n[×In

h ,

where we use the multi-index h = (h1, · · · ,hm) and

In
h :=

m

∏
i=1

[thi−1
n,i , thi

n,i[.

For each n ∈ N, we consider the space of the Rl-valued step functions on ϒn, ex-
tended by 0 outside of ϒn:

X l
n :=

{
vn : vn(r,s, t) = ∑

j
∑
k

∑
h

vn
jkh1In

jkh
(r,s, t), vn

jkh ∈ Rl

}
,

where 1I denotes the {0,1}-valued characteristic function of a subset I. To approxi-
mate an arbitrary function w ∈ Lp(Rd ,P,R), we employ the mean value truncation
operator µn

0 associated to the partition πn given by

µ
n
0 w :=

NR
n

∑
j=1

NS
n

∑
k=1

∑
h
(µn

jkhw)1In
jkh
, (8)

where

µ
n
jkhw :=


1

P(I jkh)

∫
In

jkh

w(y)dP(y), if P(In
jkh)> 0,

0, otherwise.

Analogously, for a Lp vector function v = (v1, . . . ,vl), we define

µ
n
0 v := (µn

0 v1, . . . ,µ
n
0 vl),
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for which one can prove that µn
0 v converges to v in Lp(Rd ,P,Rl).

To construct approximations for the set

MP =
{

v ∈ Lp(Rd ,P,Rk) : Gv(r,s, t)≤ t , P− a.s.
}
,

we introduce the orthogonal projector q : (r,s, t)∈Rd 7→ t ∈Rm and define, for each
elementary cell In

jkh, the quantities

qn
jkh = (µn

jkhq) ∈ Rm and (µn
0 q) = ∑

jkh
qn

jkh 1In
jkh
∈ Xm

n .

This leads to the following sequence of polyhedra

Mn
P := {v ∈ Xk

n : Gvn
jkh ≤ qn

jkh, ∀ j,k,h}.

Since our objective is to approximate the random variables R and S, we introduce

ρn =
NR

n

∑
j=1

r j−1
n 1

[r j−1
n ,r j

n[
∈ Xn and σn =

NS
n

∑
k=1

sk−1
n 1

[sk−1
n ,sk

n[
∈ Xn.

Notice that

σn(r,s, t)→ σ(r,s, t) = s in L∞(Rd ,P), ρn(r,s, t)→ ρ(r,s, t) = r in Lp(Rd ,P).

Combining the above ingredients, for any n ∈ N we consider the following dis-
cretized variational inequality: find ûn := ûn(y) ∈Mn

P such that, for every vn ∈Mn
P,

we have ∫
∞

0

∫ s

s

∫
Rd
[σn(y)A(ûn)+B(ûn)]

>[vn− ûn]dP(y)

≥
∫

∞

0

∫ s

s

∫
Rd
[b+ρn(y)c]>[vn− ûn]dP(y).

(9)

We also assume that the probability measures PR, PS and PDi have the probability
densities ϕR, ϕS and ϕDi , with i = 1, . . . ,m, respectively. Therefore, for i = 1, . . . ,m,
we have

dPR(r) = ϕR(r)dr, dPS(s) = ϕS(s)ds, dPDi(ti) = ϕDi(ti)dti.

In absence of strict monotonicity, the solution of (5) and (7) is not unique. In this
case (which often occurs in our application) the previous approximation procedure
must be coupled with a regularization scheme as follows. We choose a sequence
{εn} of regularization parameters and choose the regularization map to be the dual-
ity map J : Lp(Rd ,P,Rk)→ Lq(Rd ,P,Rk). We assume that εn > 0 for every n ∈ N
and that εn ↓ 0 as n→ ∞.
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We can then consider, for any n ∈ N, the following regularized stochastic varia-
tional inequality: find wn = wεn

n (y) ∈Mn
P such that, for every vn ∈Mn

P, we have∫
∞

0

∫ s

s

∫
Rm
+

(
σn(y)A[wn(y)]+B[wn(y)]+ εnJ(wn(y))

)>
(vn(y)−wn(y))dP(y)

≥
∫

∞

0

∫ s

s

∫
Rm
+

(b+ρn(y)c)>(vn(y)−wn(y))dP(y).

(10)

As usual, the solution wn will be referred to as the regularized solution. Weak and
strong convergence of wn to the minimal-norm solution of (7) can be proved under
suitable hypotheses (see below). We also recall (see e.g. [1]) that in Lp we have

J(u) = ‖u‖2−p
Lp |u|p−2 u.

We recall the following convergence result (see [8]).

Theorem 2. Assume that the growth condition (3) holds and T (ω, ·) is strongly
monotone, uniformly with respect to ω ∈Ω , that is there exists τ > 0 such that

(T (ω,x)−T (ω,y))>(x− y)≥ τ‖x− y‖2 ∀ x, y, a.e. ω ∈Ω .

Then the sequence {ûn}, where ûn is the unique solution of (9), converges strongly
in Lp(Rd ,P,Rk) to the unique solution û of (7).

The following results (see [9]) highlight some of the features of the regularized
solutions.

Theorem 3. The following statements hold.

1. For every n ∈ N, the regularized stochastic variational inequality (10) has the
unique solution wn.

2. Any weak limit of the sequence of regularized solutions {wn} is a solution of (7).
3. The sequence of regularized solutions {wn} is bounded provided that the fol-

lowing coercivity condition holds: there exists a bounded sequence {δn}, with
δn ∈Mn

P, such that∫
∞

0
∫ s

s
∫
Rm
+
[σn(y)A(un(y))+B(un(y))]>(un(y)−δn(y))dP(y)

‖un‖
→ ∞

as ‖un‖→ ∞.

To obtain strong convergence, we need to use the concept of fast Mosco conver-
gence [14], as given by the following definition.

Definition 1. Let X be a normed space, let {Kn} be a sequence of closed and convex
subsets of X and let K ⊂ X be closed and convex. Let {εn} be a a sequence of
positive real numbers such that εn→ 0. The sequence {Kn} is said to converge to K
in the fast Mosco sense, related to εn, if
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1. For each x ∈ K, ∃{xn} ∈ Kn such that ε−1
n ‖xn− x‖→ 0;

2. For {xm} ⊂ X , if {xm} weakly converges to x ∈ K, then ∃{zm} ∈ K such that
ε−1

m (zm− xm) weakly converges to 0.

Theorem 4. Assume that Mn
P converges to MP in the fast Mosco sense related to εn.

Moreover, assume that ε−1
n ‖σn−σ‖ → 0 and ε−1

n ‖ρn− ρ‖ → 0 as n→ ∞. Then
the sequence of regularized solutions {wn} converges strongly to the minimal-norm
solution of the stochastic variational inequality (7), provided that {wn} is bounded.

2.3 Implementation

In this section, we derive an equivalent form of the regularized stochastic variational
inequality (10) suitable for being solved on a computer. We first rewrite (10) for the
reader convenience: given any n ∈ N, find wn = wεn

n (y) ∈ Mn
P such that, for every

vn ∈Mn
P, we have∫

∞

0

∫ s

s

∫
Rm
+

(
σn(y)A[wn]+B[wn]+ εnJ(wn)

)>
(vn−wn)dP(y)

≥
∫

∞

0

∫ s

s

∫
Rm
+

(b+ρn(y)c)>(vn−wn)dP(y).

The solution of (10) is a step function which is determined by its constant (vector)
values in each elementary cell In

jlh. Since for each partition of the support of P we
have

[0,∞[×[s, s̄[×Rm
+ =

⋃
j,l,h

In
jlh,

we can write (10) as

∑
j
∑

l
∑
h

∫
In

jlh

(
σn(y)A[wn]+B[wn]+ εnJ(wn)

)>
(vn−wn)dP(y)

≥∑
j
∑

l
∑
h

∫
In

jlh

(b+ρn(y)c)>(vn−wn)dP(y).
(11)

Bearing in mind that the components of A[w] and B[w] are multivariate polynomials
in w2, . . . ,wn, and that vn

jlh denotes the constant vector value of vn(y) in the cell In
jlh,

the value of A[w] in In
jlh can be written as Avn

jlh and, analougously, the value of B[w]
in In

jlh can be written as Bvn
jlh.

For the subsequent development it is useful to notice that for a step function
w ∈ Xk

n , we have:

‖w‖Lp =

[
∑

j
∑

l
∑
h

(√
(w1 jlh)2 + . . .+(wk jlh)2

)p

P(In
jlh)

]1/p

.
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Let us denote with Ln the total number of the cells In
jlh induced by the partition

πn and group all the values wn
jlh, for any j, l,h, in a vector which, with abuse of

notation, we denote (wn
1, . . . ,w

n
Ln
) ∈ Rk×Ln , i.e., we use the same symbol for both a

step function of Xk
n and its associated vector of Rk×Ln which describes its constant

values on each cell. Moreover, we make the position

‖w‖2−p
Lp = f (wn

1, . . . ,w
n
Ln).

A way of ordering the elements wn
jlh into a vector (wn

α)α ∈ Rk×Ln will be specified
later and is fundamental for the implementation of our approximation procedure.
We can thus associate to the set of step functions Mn

P, the set

Mn = {vn ∈ Rk×Ln : vn
jlh ∈Mn

jlh, ∀ j, l,h}

where
Mn

jlh = {vn
jlh ∈ Rk : Gvn

jlh ≤ q̄n
jlh}, ∀ j, l,h.

Equipped with these notations, (11) can be equivalently written as

∑
j
∑

l
∑
h

sl−1
n A[wn

jlh]
>(vn

jlh−wn
jlh)P(I

n
jlh)+∑

j
∑

l
∑
h

B[wn
jlh]
>(vn

jlh−wn
jlh)P(I

n
jlh)

+εn ∑
j
∑

l
∑
h

f (wn
1, . . . ,w

n
Ln)|w

n
jlh|p−2 (wn

jlh)
>(vn

jlh−wn
jlh)P(I

n
jlh)

≥∑
j
∑

l
∑
h
(b>+ r j−1

n c>)(vn
jlh−wn

jlh)P(I
n
jlh).

(12)

In (12) we can choose vn
jlh = wn

jlh for all the cells excepted one, so as to simplify
the factor P(In

jlh). However, the resulting inequality cannot be interpreted as a vari-
ational inequality on a single cell, because the term f involves the variables of all
the cells. We can then sum again the resulting expression over the indices j, l,h and
obtain

∑
j
∑

l
∑
h

sl−1
n A[wn

jlh]
>(vn

jlh− vn
jlh)+∑

j
∑

l
∑
h

B[wn
jlh]
>(vn

jlh− vn
jlh)

+εn ∑
j
∑

l
∑
h

f (wn
1, . . . ,w

n
Ln)|w

n
jlh|p−2 (wn

jlh)
>(vn

jlh− vn
jlh)

≥∑
j
∑

l
∑
h
(b>+ r j−1

n c>)(vn
jlh− vn

jlh).

(13)

Let us notice that if p = 2 the variational inequality above can be split into a large
number of independent variational inequalities in Rk, one for each elementary cell
I jlh (see e.g. [9]). This decomposition is not possible for p > 2 but, in this case, the
last expression represents a variational inequality in Rk×Ln with a special structure.
In order to specify the structure of the operator of (13), as well as the constant term in
the right hand side, so as to obtain a computational scheme that can be implemented
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in a straightforward manner, we need to specify a way in which the two (scalar)
indices j, l and the multi-index h are mapped into a single index α . Thus, remember
that:

j = 1, . . . ,NR
n , l = 1, . . . ,NS

n , hi = 1, . . . ,NDi
n , i = 1, . . . ,m,

and define

α = 1+( j−1)+(l−1)NR
n +(h1−1)NR

n NS
n + · · ·+(hm−1)NR

n NS
n

m−1

∏
i=1

NDi
n . (14)

On the other hand, from any given value of α ∈ {1,2, . . . ,Ln}, we can derive the
corresponding indices j, l,h. This can be done in various ways and here we describe
a sequential algorithm. We recall that ba/bc denotes the result of the integer division
of a divided by b while a mod b denotes the remainder. Define α1 = α − 1 and
compute 

j = (α1 mod NR
n )+1, α2 =

⌊
α1/NR

n
⌋
,

l = (α2 mod NS
n )+1, α3 =

⌊
α2/NS

n
⌋
,

h1 = (α3 mod ND1
n )+1, α4 =

⌊
α3/ND1

n

⌋
,

...
...

hm = (αm+2 mod Nm
n )+1.

If we denote
T n

l = sl−1
n A+B and en

j = b+ r j−1
n c, (15)

then (13) can be written as

∑
α

[T n
α (w

n
α)]
>(vn

α −wn
α)+ εn ∑

α

f (wn)|wn
α |p−2(wn

α)
>(vn

α −wn
α)

≥∑
α

(en
α)
>(vn

α −wn
α).

(16)

Notice that the expressions for T n
α and en

α can be derived from (15) by using the
inversion of formula (14) given above. Finally, we remark that any of the numer-
ous algorithms for finite dimensional variational inequalities can be exploited for
solving (16).

3 Application to the traffic network equilibrium problem with
random data

In this section we apply the results shown in Section 2 to the traffic network equi-
librium problem with random data. First, we recall the deterministic version of the
problem and its variational inequality formulation (Section 3.1). Section 3.2 deals
with the problem where both the traffic demand and the travel cost functions include
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random perturbations and a stochastic variational inequality formulation is given.
Moreover, we prove a convergence result for the average cost at equilibrium by ex-
ploiting the approximation and regularization procedure described in Section 2.2.
Finally, Section 3.3 is devoted to some numerical experiments showing the impact
of different probability distributions of the random data on the average cost at equi-
librium.

3.1 An outline of the traffic network equilibrium problem

We now recall the basic definitions and the variational inequality formulation of a
network equilibrium flow (see, e.g. [3, 17]). For a comprehensive treatment of all
the mathematical aspects of the traffic network equilibrium problem, we refer the in-
terested reader to the classical book of Patriksson [16]. A traffic network consists of
a triple G = (N,A,W ), where N = {N1, . . . ,Np} is the set of nodes, A = {a1, . . . ,an}
represents the set of direct arcs (also called links) connecting pairs of nodes and
W = {W1, . . . ,Wm} ⊆ N ×N is the set of the origin-destination (O-D) pairs. The
flow on the link ai is denoted by fi and we group all the link flows in a vector
f = ( f1, . . . , fn). A path (or route) is defined as a set of consecutive links and we
assume that each O-D pair Wj is connected by r j paths whose set is denoted by
Pj. All the paths in the network are grouped into a vector (R1, . . . ,Rk). The link
structure of the paths can be described by using the link-path incidence matrix
∆ = (δir), i = 1, . . . ,n, r = 1, . . . ,k, with entries δir = 1, if ai ∈ Rr, and 0 other-
wise. To each path Rr it is associated a flow Fr. The path flows are grouped into
a vector (F1, . . . ,Fk) which is called the network path flow (or simply, the network
flow if it is clear that we refer to paths). The flow fi on the link ai is equal to the
sum of the flows on the paths containing ai, so that f = ∆F . The unit cost of trav-
eling through ai is a real function ci( f ) ≥ 0 of the flows on the network, so that
c( f ) = (c1( f ), . . . ,cn( f )) denotes the link cost vector on the network. The meaning
of the cost is usually that of travel time and, in the simplest case, the generic com-
ponent ci only depends on fi. A very popular link cost function was introduced by
the Bureau of Public Roads [2] and explicitly take into account the link capacities.
More precisely, the travel cost for link ai is given by

ci( fi) = t0
i

[
1+ γ

(
fi

ui

)β
]
, (17)

where ui describes the capacity of link ai, t0
i is the free flow travel time on link ai,

while β and γ are positive parameters. Analogously, one can define a cost on the
paths as C(F) = (C1(F), . . . ,Ck(F)). Usually, Cr(F) is just the sum of the costs on
the links which build that path:

Cr(F) =
n

∑
i=1

δirci( f ),



On the approximation of monotone variational inequalities in Lp spaces 13

or in compact form C(F) = ∆>c(∆F). For each pair Wj, there is a given traffic
demand D j > 0, so that D = (D1, . . . ,Dm) is the demand vector of the network.
Feasible path flows are nonnegative and satisfy the demands, i.e., belong to the set

K = {F ∈ Rk : F ≥ 0 and ΦF = D}, (18)

where Φ is the pair-path incidence matrix whose entries, for j = 1, . . . ,m, r =
1, . . . ,k, are

ϕ jr =

{
1, if the path Rr connects the pair Wj,

0, elsewhere.

The notion of a user traffic equilibrium is given by the following definition.

Definition 2. A network flow H ∈ K is a Wardrop equilibrium if, for each O-D pair
Wj and for each pair of paths Rr,Rs which connect Wj, the following implication
holds:

Cr(H)>Cs(H) =⇒ Hr = 0;

that is, if traveling along the path Rr takes more time than traveling along Rs, then
the flow along Rr vanishes.

Remark 1. Among the various paths which connect a given O-D pair Wj some will
carry a positive flow and others zero flow. It follows from the previous definition
that, for a given O-D pair, the travel cost is the same for all nonzero flow paths,
otherwise users would choose a path with a lower cost. Hence, H is a Wardrop
equilibrium if for each O-D pair Wj there exists λ j ∈ R such that

Cr(H)

{
= λ j, if Hr > 0,
≥ λ j, if Hr = 0.

(19)

Hence, λ j denotes the equilibrium cost shared by all the used paths connecting Wj.
The variational inequality formulation of the Wardrop equilibrium is given by the
following result (see, e.g., [3]).

Theorem 5. A network flow H ∈ K is a Wardrop equilibrium iff it satisfies the vari-
ational inequality

C(H)>(F−H)≥ 0, ∀ F ∈ K. (20)

Sometimes it is useful to decompose the scalar product in (20) according to the
various O-D pairs Wj:

m

∑
j=1

∑
r∈Pj

Cr(H)(Fr−Hr)≥ 0, ∀ F ∈ K.

For the subsequent development the monotonicity properties of the cost operators
will be exploited. We recall them in this section for the reader convenience.
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Definition 3. A map T : Rk→ Rk is said monotone if

((T (x)−T (y))>(x− y)≥ 0, ∀ x,y ∈ Rk,

and strictly monotone if the equality holds only for x = y. T is said strongly mono-
tone if there exists τ > 0 such that

((T (x)−T (y))>(x− y)≥ τ‖x− y‖2, ∀ x,y ∈ Rk.

The strict monotonicity assumption of the link cost functions is commonly used
because it models the congestion effect. However, this does not necessarily implies
the strict monotonicity of the path cost functions, as the following lemma shows.

Lemma 1.

1. If c is monotone, then C is monotone.
2. If c is strictly monotone and ∆ has full column rank, then C is strictly monotone.
3. If c is strongly monotone and ∆ has full column rank, then C is strongly mono-

tone.

Proof.

1. If F1,F2 ∈ K, then

[F1−F2]>[C(F1)−C(F2)] = [F1−F2]>∆>[c(∆ F1)− c(∆ F2)]

= [∆F1−∆F2]>[c(∆ F1)− c(∆ F2)]

≥ 0.

2. If F1 6= F2, then ∆F1 6= ∆F2 since ∆ has full column rank, hence

[F1−F2]>[C(F1)−C(F2)] = [F1−F2]>∆>[c(∆ F1)− c(∆ F2)]

= [∆F1−∆F2]>[c(∆ F1)− c(∆ F2)]

> 0.

3. Let F1,F2 ∈K. The strong monotonicity of c implies that there exists τ > 0 such
that

[F1−F2]>[C(F1)−C(F2)] = [F1−F2]>∆
>[c(∆ F1)− (∆ F2)]

= [∆F1−∆F2]>[c(∆ F1)− c(∆ F2)]

≥ τ‖∆F1−∆F2‖2

= τ(F1−F2)>∆
>

∆(F1−F2)

≥ τλmin(∆
>

∆)‖F1−F2‖2,

where λmin(∆
>∆), which denotes the minimum eigenvalue of ∆>∆ , is positive

since ∆ has full column rank. ut
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3.2 The stochastic VI formulation of the traffic network
equilibrium problem

We now consider the traffic network equilibrium problem where both the demand
and the costs are affected by random perturbations.

Let Ω be a sample space and P be a probability measure on Ω , and consider
the following feasible set which takes into consideration random fluctuations of the
demand:

K(ω) = {F ∈ Rk : F ≥ 0, ΦF = D(ω)}, ω ∈Ω .

Moreover, let C : Ω ×Rk 7→ Rk be the random cost function. We can thus intro-
duce ω as a random parameter in (20) and consider the problem of finding a vector
H(ω) ∈ K(ω) such that, P− a.s:

C(ω,H(ω))>(F−H(ω))≥ 0, ∀ F ∈ K(ω). (21)

Definition 4. A random vector H ∈ K(ω) is a random Wardrop equilibrium if for
P-almost every ω ∈Ω , for each O-D pair Wj and for each pair of paths Rr,Rs which
connect Wj, the following implication holds:

Cr(ω,(H(ω))>Cs(ω,(H(ω))) =⇒ Hr(ω) = 0. (22)

Consider then the set

KP = {F ∈ Lp(Ω ,P,Rk) : Fr(ω)≥ 0, P.− a.s., ∀ r = 1, . . . ,k,

ΦF(ω) = D(ω), P.− a.s.},

which is convex, closed and bounded, hence weakly compact. Furthermore, assume
that the cost function C satisfies the growth condition:

‖C(ω,z)‖ ≤ α(ω)+β (ω)‖z‖p−1, ∀ z ∈ Rk, P.− a.s., (23)

for some α ∈ Lq(Ω ,P),β ∈ L∞(Ω ,P), p−1 +q−1 = 1.

Remark 2. We note that polynomial cost functions are often used to model the net-
work congestion, e.g., the BPR cost functions (17), hence condition (23) is naturally
satisfied. In particular, with linear costs the functional setting is the Hilbert space L2.

The Carathéodory function C gives rise to a Nemytskii map Ĉ : Lp(Ω ,P,Rk)→
Lq(Ω ,P,Rk) defined through the usual position

Ĉ(F)(ω) =C(ω,F((ω)), (24)

and, with abuse of a notation, instead of Ĉ, the same symbol C is often used for both
the Carathéodory function and the Nemytskii map that it induces. We thus consider
the following integral variational inequality: find H ∈ KP such that
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Ω

C(ω,H(ω))>(F−H(ω))dP(ω)≥ 0, ∀ F ∈ KP. (25)

A solution of (25) satisfies the random Wardrop conditions in the sense shown by
the following lemma (see [12] for the proof).

Lemma 2. If H ∈KP is a solution of (25), then H is a random Wardrop equilibrium.

As a consequence of the previous lemma, we get that there exists a vector func-
tion λ ∈ Lp(Ω ,P,Rm) such that

Cl(ω,H(ω)) = λ j(ω) (26)

for any O-D pair Wj and any path Rl connecting Wj, with Hl(ω) > 0, P-almost
surely.

In order to better address the modeling and computational aspects, we specify
how the deterministic and the random variables appear in the operator structure.
More precisely, we assume that the operator is the sum of a purely deterministic term
and of a random term, where randomness act as a modulation. With the specifying
of the constant term in the operator explicitly, we have

C(ω,H(ω)) = S(ω)A[H(ω)]+B[H(ω)]−b−R(ω)c, (27)

where S ∈ L∞(Ω ,P),R ∈ Lq(Ω), A,B : Lp(Ω ,P,Rk)→ Lq(Ω ,P,Rk),b,c ∈ Rk. The
integral variational inequality (25) now reads∫

Ω

(S(ω)(A[H(ω)])>+(B[H(ω)])> )(F−H(ω))dP(ω)

≥
∫

Ω

(b>+R(ω)c>)(F−H(ω))dP(ω), ∀ F ∈ KP.
(28)

The average cost at equilibrium is defined as

EP[λ ] =
∫

Ω

λ (ω)dP(ω), (29)

where λ = λ (ω) = (λ1(ω), . . . ,λm(ω)) is defined as in (26).

Remark 3. Let us note that the integral in (29) is different from zero under the natural
assumption that in each path Rr there is a link where the cost is bounded from
below by a positive number (uniformly in ω ∈ Ω ). This hypothesis is fulfilled in
real networks because the cost is positive for positive flows, but also the cost at
zero flow (called the free flow time) is positive, because it represents the travel time
without congestion.

As already explained in the previous Section, the random vector t = D(ω) and
the two random variables r = R(ω) and s = S(ω) generate a probability P in the
image space R2+m of (r,s, t) from the probability P on the abstract sample space Ω .
Hence, we can express the earlier defined quantities in terms of the image space vari-
ables, thus obtaining functions which can be approximated through a discretization
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procedure. The integration now runs over the image space variables, but to keep no-
tation simple we just write

∫
instead of

∫
∞

0
∫ s

s
∫
Rm
+

. The transformed expression read
as follows:

EP[λ ] =
∫

λ (r,s, t)dP(r,s, t), (30)

Let us recall that the solution H =H(r,s, t) of the stochastic variational inequality
which describes the network equilibrium can be approximated using the procedure
explained in Section 2.2 by a sequence {Hn} of step functions such that Hn → H
in Lp, as n→ ∞. In the next result we give converging approximations for the mean
values defined previously.

Theorem 6. For any n ∈ N, we denote

Cn[ρn,σn,Hn(r,s, t)] = σnA[Hn(r,s, t)]+B[H(r,s, t)]−b−ρnc

and
λ

n(r,s, t) = (λ n
1 (r,s, t), . . . ,λ

n
m(r,s, t)),

where λ n
j (r,s, t) = Cn

l [ρn,σn,Hn(r,s, t)] for all paths Rl connecting Wj, for which
Hn

l (r,s, t)> 0, P-a.s.. Let ρ(r,s, t)= r, σ(r,s, t)= s. If ρn→ ρ strongly in Lq, σn→σ

strongly in L∞, and Hn→ H strongly in Lp, then the sequence

{EP[λ
n]}n =

{∫
λ

n(r,s, t)dP(r,s, t)
}

n

converges to EP[λ ], as n→ ∞. Moreover, Var(λ n)→ Var(λ ).

Proof. Since Hn → H strongly in Lp, it follows that A[Hn]→ A[H] and B[Hn]→
B[H], strongly in Lq = L

p
p−1 because of the continuity of the Nemytskii operators A

and B. Moreover, ρn → ρ strongly in Lq and σn → σ strongly in L∞. As a conse-
quence,

σnA[Hn]+B[Hn]−b−ρnc → σA[H]+B[H]−b−ρc

strongly in Lq, and also strongly in L1 because P is a probability measure. Hence,
for each i = 1, . . . ,k, we get Cn

i [ρn,σn,Hn]→ Ci[r,s,H] strongly in L1. Moreover,
since q > 2 strong convergence in Lq also implies convergence of variances and, by
the definitions of λ and λ n, the thesis is proved. ut

3.3 Numerical experiments

We now report some numerical tests obtained by implementing the approximation
and regularization procedures described in the previous sections. We consider a
stochastic framework where both the traffic demands and the cost functions are af-
fected by random perturbations. In particular, we assume that the random Wardrop
equilibria depend on random vectors r = R(ω) and t = D(ω). The numerical com-
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putation of random Wardrop equilibria has been performed by implementing in Mat-
lab 2018a the approximation and regularization procedures described in Section 2.2
combined with the algorithm designed in [15] for deterministic Wardrop equilibria.

Example 1. We consider the network consisting of 5 nodes and 6 links shown
in Fig. 1. We assume that (1,5) is the only O-D pair and the traffic demand is
D = 100+ δ , where δ is a random variable which varies in the interval [−10,10]
with either uniform distribution or truncated normal distribution with mean 0 and
standard deviation 2.5.

1

2

3

4

5

1

2

3 4

5

6

Fig. 1 Test network of Example 1.

The deterministic link cost functions are of the BPR form (17) defined as follows:

c1 = 0.5
[
1+0.15( f1/5)4

]
, c2 = 1+0.15( f2/10)4 ,

c3 = 0.5
[
1+0.15( f3/5)4

]
, c4 = 0.5

[
1+0.15( f4/5)4

]
,

c5 = 1+0.15( f5/10)4 , c6 = 0.5
[
1+0.15( f6/10)4

]
.

The O-D pair is connected by four paths. We assume that the path cost operator is
defined as in (27), where S = 0, B(H)−b represents the deterministic path costs cor-
responding to the above link cost functions, while c =−(1, . . . ,1) and r = R(ω) is a
random variable which varies in the interval [0,200] with either uniform distribution
or truncated normal distribution with mean 100 and standard deviation 25.

Notice that in this case the link-path incidence matrix ∆ has not full column rank
and the path cost operator is monotone but not strongly monotone. Moreover, since
the deterministic part of the path cost operator is polynomial with degree 4, the op-
erator C satisfies the growth condition (23) with p = 5. Therefore, the approximated
regularized variational inequality (13) cannot be decomposed into a large number
of small size variational inequalities.

Both the intervals [−10,10] and [0,200] have been partitioned into NI subinter-
vals in the approximation procedure and the regularization parameter ε has been
chosen equal to 1/(NI)

6.

Table 1 shows the convergence of the mean values and standard deviations of the
cost at equilibrium λ for increasing values of NI , assuming that the random variables
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Cost at equilibrium
NI Mean Value Std Deviation

5 545.825 121.69
10 546.146 123.68
15 546.205 124.04
20 546.226 124.17
25 546.236 124.23
30 546.241 124.26

Table 1 Mean values and standard deviation of the cost at equilibrium when the random variables
vary with uniform distribution.

Cost at equilibrium
NI Mean Value Std Deviation

5 537.218 48.54
10 537.469 52.12
15 537.524 52.87
20 537.544 53.15
25 537.553 53.27
30 537.559 53.34

Table 2 Mean values and standard deviation of the cost at equilibrium when the random variables
vary with truncated normal distribution.

δ and r vary with uniform distribution. Similarly, Table 2 shows the mean values
and standard deviations of λ , when δ and r vary with truncated normal distribution.

Example 2. We now consider the grid network shown in Fig. 2 consisting of 36
nodes and 60 links. We assume that there are three O-D pairs: (1,18), (13,30),
(19,36) with traffic demands equal to D = d +δ (1,1,1), where d = (150,100,200)
and δ is a random variable which varies in the interval [−50,50] with either uniform
distribution or truncated normal distribution with mean 0 and standard deviation 10.

The deterministic link cost functions are of the BPR form (17) with γ = 0.15 and
β = 4 for all the links, while t0

i = 1 and ui = 50 for any i = 1, . . . ,30, and t0
i = 5 and

ui = 100 for any i = 31, . . . ,60.
We assume that the path cost operator is defined as in (27), where S= 0, B(H)−b

represents the deterministic path costs corresponding to the above link cost func-
tions, while c = −(1, . . . ,1) and r = R(ω) is a random variable which varies in the
interval [0,20] with either uniform distribution or truncated normal distribution with
mean 10 and standard deviation 2.

Notice that the link-path incidence matrix ∆ has not full column rank since the
total number of paths is greater than the number of links. Hence, the path cost oper-
ator is monotone but not strongly monotone. Moreover, similarly to Example 1, the
cost operator satisfies the growth condition (23) with p = 5.
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Fig. 2 Topology of the network
of Example 5.2

and Ii contains the indexes of the arcs ending in the starting node of the arc i. The O-D
pairs are 1–12, 7–18, 13–24, 19–30, 25–36, each connected by 6 paths. The demand
vector is (150,200,100,200,100). We remark that the strict monotonicity in the link
variables does not imply the strict monotonicity in the path variables, but our network
has been designed in order to preserve it. For each O-D pair, the paths are made up
of six horizontal arcs and a vertical arc; they are ordered so that the first path is the
one ending with the vertical arc, and the last path is the one starting with the vertical
arc. It is noteworthy that, even if the number of variables involved is only 30, the
number of possible systems is about 109. The equilibrium solution has 6 vanishing
flows (F5,F6,F13,F20,F25,F26). By implementing the algorithm of [1], we got the
solution after solving about 5 ·105 systems. Our strategy results in a drastic reduction
of the computational effort. In particular, by following the horizontal search, we reach
the solution after solving 36 systems, while the vertical search yields to the solution
after solving only 7 systems.

We also tested our algorithm on other networks of similar size, and, although we
cannot a priori estimate the reduction of the computational effort, our numerical tests
have shown that this reduction is huge. Furthermore, we point out that our selection
rules do not lead to a unique search strategy and that the study of an optimal strategy
as well as the extension of the method to not strictly monotone operators are left for
future research.
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Both the intervals [−50,50] and [0,20] have been partitioned into NI subintervals
in the approximation procedure and the regularization parameter ε has been chosen
equal to 1/(NI)

6.

Costs at equilibrium
Mean Values Std Deviations

NI (1,18) (13,30) (19,36) (1,18) (13,30) (19,36)

5 19.860 22.011 22.735 3.366 4.869 5.080
10 19.940 22.044 22.833 3.456 4.942 5.229
15 19.970 22.073 22.867 3.476 4.997 5.251
20 19.974 22.078 22.871 3.481 5.012 5.256
25 19.976 22.080 22.873 3.483 5.018 5.259

Table 3 Mean values and standard deviations of the costs at equilibrium when the random vari-
ables vary with uniform distribution.

Tables 3 and 4 show the convergence of the mean values and standard deviations
of the costs at equilibrium λ of the three O-D pairs, assuming that the random vari-
ables δ and r vary with uniform distribution or with truncated normal distribution,
respectively.
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Costs at equilibrium
Mean Values Std Deviations

NI (1,18) (13,30) (19,36) (1,18) (13,30) (19,36)

5 19.089 20.854 21.574 0.973 1.335 1.513
10 19.112 20.901 21.626 1.082 1.534 1.653
15 19.121 20.907 21.633 1.106 1.563 1.692
20 19.134 20.911 21.639 1.112 1.573 1.705
25 19.140 20.913 21.644 1.114 1.589 1.708

Table 4 Mean values and standard deviations of the costs at equilibrium when the random vari-
ables vary with truncated normal distribution.
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