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Abstract. We extend the framework introduced in “Collective Arbitrage and
the Value of Cooperation” by F. Biagini, A. Doldi, J.-P. Fouque, M. Frittelli,

and T. Meyer-Brandis (arXiv:2306.11599v2, 2024) in order to analyze collec-

tive dynamic risk measures. In segmented markets, we explore the implications
of cooperation on dynamic risk measurement, focusing particularly on aggre-

gation and time consistency.

1. Introduction. This paper is inspired by the recent work [6] on collective arbi-
trage and collective super-replication and extends the framework elaborated there
to the analysis of collective dynamic risk measures. In order to describe our contri-
bution we first provide a short summary of the setting and concepts developed in
[6]. In the aforementioned paper, a No Arbitrage theory is established in a global
market where several agents may trade in individual submarkets and are allowed to
cooperate by engaging a risk exchange mechanism with no external capital injections
or withdrawals.

As mentioned in [6], the decision to cooperate and participate in an exchange may
be driven by factors such as: Individual agent rationality, mandates imposed by a
parent organization (e.g., collaborating trading desks within a financial institution),
regulatory directives compelling cross-subsidization among financial institutions, or
taxation policies.

Markets segmentation can be justified in several ways. As pointed out in [10],
one can think of a financial institution comprising multiple trading desks special-
ized in distinct financial products or market segments such as stocks, currencies,
commodities, or bonds. As posited by [27], cognitive constraints necessitate traders
to focus on a limited set of assets. While each desk operates independently, the
institution’s overall profit and loss is the aggregate of the profit and loss generated
by individual desks.

To be more specific, consider N ≥ 1 agents investing in a frictionless stochastic
security market. Each agent is allowed to invest in a subset of the available risky
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assets and in a common riskless asset. Let Ki be the market of agent i, that is
the vector space of all the possible terminal time payoffs that agent i can obtain by
using admissible trading strategies in his/her allowed investments and having zero
initial cost.

The N agents not only participate in their respective markets but may also
collaborate to optimize their positions by exploiting risk exchange opportunities.
Consider the set of all zero-sum risk exchanges defined as

Y0 =

{
Y ∈ (L0(Ω,F , P ))N |

N∑
i=1

Y i = 0 P -a.s.

}
, (1)

and the convex cone Y of possible/allowed exchanges Y ⊆ Y0.
Notably, while the aggregate sum of the components of Y ∈ Y is P -almost

surely zero, individual components Y i are generally random variables. Positive
values of Y i on a given event signify a capital inflow for agent i from the collective,
whereas negative values represent an outflow. Consequently, Y ∈ Y encapsulates
the potential capital transfers among agents subject to the constraint of zero net
transfer.

In [6] a Collective Arbitrage consists of vectors (k1, . . . , kN ) ∈ K1×· · ·×KN and
Y = (Y 1, . . . , Y N ) ∈ Y satisfying

ki + Y i ≥ 0 P -a.s. ∀ i ∈ 1, . . . , N

and P (kj + Y j > 0) > 0 for at least one j ∈ 1, . . . , N.

The interdependence among agents, induced by the exchange vector Y ∈ Y,
may generate a collective arbitrage even in the absence of individual arbitrage op-
portunities. Similar to the case of classical arbitrage, efficient markets with risk
exchanges should not allow for the possibility of collective arbitrage, and one of the
main objectives of [6] is the study and characterization of markets without collective
arbitrage, thus providing a collective formulation of the Fundamental Theorem of
Asset Pricing. We defer to the cited reference for more details on this topic and for
the economic motivation behind the No Collective Arbitrage assumption.

Furthermore, the problem of hedging simultaneously N given (suitably inte-
grable) contingent claims X = (X1, . . . , XN ) was thoroughly analyzed in [6]. The
(static) collective super-replication cost (or price) was defined as

ρY0 (X) := inf

{
N∑
i=1

mi | m ∈ RN ∃ki ∈ Ki,∃Y ∈ Y s.t. mi + ki + Y i ≥ Xi ∀i

}
.

(2)
Several of its properties were studied. Among these, it was proved that ρY0 is well-

posed under the No Collective Arbitrage assumption. Both ρY0 (X) and the (static)
classical super-replication price

ρN0 (X) := inf

{
N∑
i=1

mi | m ∈ RN ∃ki ∈ Ki s.t. m
i + ki ≥ Xi ∀i

}
(3)

=

N∑
i=1

inf
{
m ∈ R | ∃ki ∈ Ki s.t. m+ ki ≥ Xi

}
:=

N∑
i=1

ρ0,i(X
i) (4)
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represents the minimal aggregate capital required to simultaneously super-replicate
all claims (X1, . . . , XN ) = X. However, ρY0 (X) incorporates the possibility of inter-

agent exchanges through Y, leading to ρY0 ≤ ρN0 . This implies that the collective

super-replication ρY0 is more cost-effective than the classical super-replication ρN0 ,

with the difference ρN0 (X)−ρY0 (X) ≥ 0 quantifying the value of cooperation for the
given claims X. One of the main message from [6] is that cooperation may help the
system of the N agents to save money when facing several risks.

The present paper builds upon this idea and investigates the consequences, in
dynamic risk measurement, of the cooperation among several agents in the presence
of segmented markets. In a companion paper we treat the case of static collective
risk measures, while in the present paper we analyze dynamic collective risk mea-
sures with special focus on the properties of the aggregation of several individual
conditional risk measurements ρi, i = 1, . . . , N, with particular emphasis on the
time consistency property that such resulting aggregation ρ may possess.

We now describe the main objectives and findings of this work, deferring the
description of the precise setup, definitions and mathematically rigorous claims to
the subsequent sections. For unexplained terminology concerning risk measures we
defer the reader to [26]. Let T > 0 be a fixed expiration date, (Ω,F , {Ft}t∈[0,T ], P )

be a filtered probability space with FT = F , L be a subspace of L0(Ω,F , P ) and set
L(Ft) := L∩L0(Ω,Ft, P ) and L(F) := L(FT ). Consider N families ρi = (ρit)t∈[0,T ],

i = 1, . . . N , where each ρit : L(F) → L0(Ft), is an individual conditional risk
measure. We are interested in maps ρ = (ρt)t∈[0,T ], with ρt : (L(F))N → L0(Ft),
that aggregate the individual risk measures ρi, i = 1, . . . N , and assess the overall
risk of (X1, . . . , XN ) = X with the property of being conservative, namely

ρt(X
1, . . . , XN ) ≤

N∑
i=1

ρit(X
i), X ∈ (L(F))N .

Conservativity reads: The overall risk expressed by ρt does not exceed the sum of
the individual risks. One obvious but extreme choice would be to take ρ as the
sum of each individual map. Just to mention a simple example where this simplest
aggregation makes sense, when one considers as (static) risk measures the individual
super-replication costs ρ0,i(X

i) defined in (4), in the previously described segmented
markets setup, the (static) classical super-replication price ρN0 (X) defined in (3) is

precisely equal to
∑N
i=1 ρ0,i(X

i).
As observed in Remark 2.2 below, if each ρi = (ρit)t∈[0,T ] is cash additive and time

consistent then the only conservative, cash additive and time consistent aggregator
(see Definition 2.1 item 4) is

ρt(X) =

N∑
i=1

ρit(X
i).

However, by introducing cooperation among the agents, as e.g. in the above defi-
nition of the collective super-replication cost ρY0 (X), the question on which aggre-
gation functionals one could consider is not any more so trivial. Indeed, admissible
exchanges Y ∈ Y can be exploited, as already stressed before, to reduce the overall
risk while keeping some natural features inherited by each ρi, such as cash additivity
and time consistency.

We thus introduce a properly defined notion (see Definition 2.4) of time Y-
consistency for maps ρ = (ρt)t∈[0,T ] defined on (L(F))N and show (see Propositions
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2.6 and 3.6) that if each individual ρi = (ρit)t∈[0,T ] is cash additive and time consis-
tent, then the only cash additive, time Y-consistent, conservative and compatible
(see Definition 2.3) aggregator ρ of the N maps ρi is

ρt(X) = ess inf

{
N∑
i=1

ρit(X
i + Y i) | Y ∈ Y

}
, X ∈ (L(F))N .

The relevance of the map in the right hand side of the above equation, which will
be denoted by ρ1t♢Y . . .♢Yρ

N
t (X) (see Definition 2.7), can be understood also from

the following considerations.
First, recall that if Ai ⊆ L(F) is a monotone acceptance set of agent i then the

monetary conditional risk measures induced byAi is ρt,Ai(Xi) := ess inf {α ∈ L(Ft)
| α+Xi ∈ Ai

}
.Now, as a natural extension of the static collective super-replication

price ρY0 defined in (2), we introduce the concept of a conditional collective risk mea-
sure, namely the map

ρt,A,Y(X
1, . . . , XN )

:= ess inf

{
N∑
i=1

αi | αi ∈ L(Ft) and ∃Y ∈ Y s.t. αi + Y i +Xi ∈ Ai ∀i

}
,

where A := A1 × · · · × AN . Some example of collective risk measures arising in
financial markets are presented in Example 4.5. In analogy to the discussion on
the collective super-replication price, cooperation among the agents contributes to
reduce the capital requirement of the overall risk, that is

ρt,A,Y(X) ≤
N∑
i=1

ρt,Ai(Xi),

so that ρt,A,Y is a conservative aggregator. Furthermore, as showed in Section 4,

ρt,A,Y(X) = ρt,A1♢Y . . .♢Yρt,AN (X)

and thus the properties of ρt,A,Y can be obtained from the corresponding ones of
the ρ1t♢Y . . .♢Yρ

N
t operator (see Proposition 2.8 and 3.4), whenever ρit := ρt,Ai .

For any s ∈ [0, T ], a relevant example of allowed exchanges is the vector subspace
of (L(Fs))N , assigned by

Y(s) =

{
(Y 1, . . . , Y N ) ∈ (L(Fs))N |

N∑
i=1

Y i = 0 P -a.s.

}
. (5)

In this case, the zero-sum risk exchanges are additionally constrained to be Fs
measurable. The choice Y(s) for admissible exchanges models the fact that agents
might only be allowed to cooperate/exchange up to a certain fixed date prior to the
“horizon” of the underlying risky positions (X1, . . . , XN ), say by regulatory con-
straints or by modelling choices determined by partial common information known
to each of the agents in the system.

For this specific selection Y = Y(s) of the set of exchanges, we additionally prove:

1. Time consistency properties of (ρ1t♢Y . . .♢Yρ
N
t )t∈[0,T ], see Proposition 3.4

item 4.
2. The dual representation of ρ1t♢Y . . .♢Yρ

N
t , see Corollary 3.10.

3. In Section 3.2, the characterization of the time Y-consistency of (ρ1t♢Y . . .
♢Yρ

N
t )t∈[0,T ] in terms of

• Decompositions of the acceptance sets
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• Cocycle type properties for the penalty functions in the dual representa-
tion.

4. In Proposition 3.4 item 3, the formula

ρ1t♢Y . . .♢Yρ
N
t (X1, . . . , XN ) =

{
ρ1t□s . . .□sρ

N
t

(
−
∑N
i=1 ρ

i
s(X

i)
)
, if t ≤ s∑N

i=1 ρ
i
t(X

i) if s ≤ t,

which enlights the connection between the ♢Y operator and the s-inf-
convolution operator □s introduced in (12).

5. In Section 4.1, an explicit formula for the dynamic collective entropic risk
measure.

As pointed out in item 4 above, there is an evident link between the newly defined
aggregators and well known inf-convolutions. Indeed the former can be seen as an
extension/generalization of the latter to a larger space.

Keeping in mind the measurability constraint enforced by the set Y(s), we con-
clude from item 4 above that the valuation ρ1t♢Y . . .♢Yρ

N
t (X1, . . . , XN ) at time t

of the overall risk is simply the sum of the time t individual risks ρit(X
i) if no risk

sharing is yet possible in [t, T ], that is if s ≤ t. Instead, if risk sharing is possible in
[t, T ] (that is if t ≤ s), it corresponds to the inf-convolution of (minus) the sum of
the time s individual risks ρis(X

i).
In the non conditional setup, the seminal paper by [4], which introduced inf-

convolutions in the context of (convex) risk measures, has spawned a substantial
body of literature. Existence of optima, among several other properties, was studied
e.g. in the law-invariant case by [30]. For instance, [1] and [25] investigated cases
without monotonicity assumptions on the underlying risk measures, while [11] ad-
dressed multivariate risks. Further analysis was carried over in [34], [21], [22], [33],
[9]. For an overview of the early developments of the topic, see [38]. The conditional
case was considered in [31] which is a main reference for the present work, especially
on technical aspects. In our paper we mainly consider the theory of risk measures
(convex, monetary) originated from the seminal paper [2] but many other ramifi-
cations can be found in the literature, e.g. conic finance and acceptability indices
as in [12], [35], [7]. Our work is also related to conditional systemic risk measures.
We refer to [26] Chapter 11 for a good overview on univariate dynamic/conditional
Risk Measures, to [18] for further references and discussion, and to [19] linking con-
volution operations to systemic risk measures. Time consistency for risk measure
has long been studied in the literature, with a particular focus on the BSDE ap-
proach. To this end, we cite [3] where inf-convolutions are also considered, and [37],
[15] investigating time consistency of convex risk measures in a BSDE approach,
with the entropic risk measure as a special case. [36] explored cash-subadditive
and quasi-convex functionals, and [17] has further developed the BSDE approach.
Existence of conditional means, related to scalarization and time consistency prop-
erties, was also explored in [20] and [5]. Regarding (time) consistency properties in
the systemic framework, the papers [28], [29], as well as [32], consider conditional
extension of (static) Systemic Risk Measures of the “first aggregate, then allocate”
type and study related consistency issues. Multivariate/Systemic and set-valued
conditional Risk Measures, and related time consistency aspects, have also been
analyzed in [23], [24], [13].
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2. Dynamic aggregation rules.

2.1. Notations and definitions. Let T > 0 be a fixed expiration date and let
(Ω,F , {Ft}t∈[0,T ], P ) be a filtered probability space, with F0 the trivial sigma-

algebra and FT = F . We let L be a subspace of L0(Ω,F , P ) and set L(Ft) := L ∩
L0(Ω,Ft, P ) and L(F) := L(FT ). Some typical examples for L are the Lp(Ω,F , P )
spaces, p ∈ [1,∞], the Orlicz spaces Lψ(Ω,F , P ) and Orlicz Heart Mψ(Ω,F , P ),
for a Young function ψ. For any N ≥ 1 we denote the cartesian product L(F) ×
· · · ×L(F) by (L(F))N . We will denote with E[Z] the expectation of some random
variable Z under the probability P , while we explicitly write EQ[Z] for any proba-
bility Q different from P . It is also understood that all inequalities among random
variables holds P -a.s..

Definition 2.1. Let t, u, s ∈ [0, T ], N ≥ 1 and i ∈ {1, . . . , N}.
1. A family ρ = (ρt)t∈[0,T ], with ρt : (L(F))N → L0(Ft) is cash additive on [0, s]

if for each t ∈ [0, s]

ρt
(
X1 +W 1, . . . , XN +WN

)
= ρt(X

1, . . . , XN )−
N∑
i=1

W i

for W ∈ (L(Ft))N and X ∈ (L(F))N .
We write ρ(0) = 0 if ρt(0) = 0 for all t ∈ [0, T ].

2. A family ρ = (ρt)t∈[0,T ], with ρt : (L(F))N → L0(Ft) is:
Convex on [0, s] if for each t ∈ [0, s]

ρt(λX + (1− λ)W ) ≤ λρt(X) + (1− λ)ρt(W )

for 0 ≤ λ ≤ 1, λ ∈ L(Ft) and X,W ∈ (L(F))N ;
Monotone decreasing if so is each functional ρt (w.r.t. the componentwise

a.s. order).
3. A family ρ = (ρt)t∈[0,T ], with ρt : L(F) → L0(Ft) is time consistent on [0, s]

if, for all t ≤ u ≤ s, Range(ρu) ⊆ L(F) and

ρt(Z) = ρt(−ρu(Z)), Z ∈ L(F).

4. Consider N families ρi = (ρit)t∈[0,T ], i = 1, . . . N , with ρit : L(F) → L0(Ft).
We say that ρ = (ρt)t∈[0,T ], with ρt : (L(F))N → L0(Ft), is:

A conservative aggregation of the N maps ρ1, . . . , ρN on [0, s] if for all t ≤ s

ρt(X
1, . . . , XN ) ≤

N∑
i=1

ρit(X
i), X ∈ (L(F))N ;

A time consistent aggregation of the N maps ρ1, . . . , ρN on [0, s] if, for all
t ≤ u ≤ s and for all i, Range(ρiu) ⊆ L(F) and

ρt(X
1, . . . , XN ) = ρt(−ρ1u(X1), . . . ,−ρNu (XN )), X ∈ (L(F))N . (6)

A conservative aggregator always reduces the overall risk, compared to the sum
of the individual risks. The notion of time consistent aggregation is an immediate
multivariate counterpart to the time consistency of maps ρt : L(F) → L0(Ft).

Observe that if ρ = (ρt)t∈[0,T ], with ρt : (L(F))N → L0(Ft), is cash additive on
[0, T ] and ρ(0) = 0 then

ρT (X) = −
N∑
i=1

Xi, X ∈ (L(F))N . (7)
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In the rest of the paper, we denote with ρi = (ρit)t∈[0,T ], i = 1, . . . N , N families

of maps with ρit : L(F) → L0(Ft).

Remark 2.2. Suppose that each ρi is cash additive, time consistent and satisfies
ρi(0) = 0. The only cash additive and time consistent aggregator ρ = (ρt)t∈[0,T ],

ρt : (L(F))N → L0(Ft), satisfying ρ(0) = 0, is the aggregator

ρt(X) =

N∑
i=1

ρit(X
i),

which is also conservative. Indeed, the sum of the components inherits cash addi-
tivity and time consistency from each component. Moreover, if ρ is cash additive
and time consistent then

ρt(X
1, . . . , XN ) = ρt(−ρ1t (X1), . . . ,−ρNt (XN )) = ρt(0) +

N∑
i=1

ρit(X
i).

Thus in this case ρ is nothing else but the sum of the individual risk.

As stated in the Introduction, the key feature in this paper is the possibility that
agents may cooperate through the exchange of the random amounts described by
vectors Y belonging to a convex cone Y ⊆ (L(F))N . When we introduce exchanges
in the picture, some more interesting features can be analyzed.

First, it is reasonable to assume that it is not possible to decrease the overall risk
ρt(·) by adding an exchange element Y ∈ Y. Thus we introduce the following

Definition 2.3. The class of functionals ρ = (ρt)t∈[0,T ], with ρt : (L(F))N →
L0(Ft) is compatible with the risk exchange set Y ⊆ (L(F))N if

ρt(X) ≤ ρt(X + Y ), ∀Y ∈ Y, ∀X ∈ (L(F))N , ∀t ∈ [0, T ]. (8)

When ρ(0) = 0, the condition (8) in particular implies that the risk of each ex-
change vector is non negative: ρt(Y ) ≥ 0 for all Y ∈ Y and t ∈ [0, T ].

Second, a more elaborated type of time consistency can be considered.

Definition 2.4. For a given exchange set Y ⊆ (L(F))N , we say that ρ = (ρt)t∈[0,T ],

with ρt : (L(F))N → L(Ft), is a time Y-consistent aggregation of the N maps
ρ1, . . . , ρN if for every X ∈ (L(F))N and every pair of times 0 ≤ t ≤ u ≤ T there
exists Y ∈ Y (possibly depending on X) satisfying

ρt(X
1, . . . , XN ) = ρt

(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
. (9)

Remark 2.5. If Y is a vector space, then (9) is equivalent to:

ρt(X
1 + Ŷ 1, . . . , XN + Ŷ N ) = ρt

(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
, (10)

for some Y ∈ Y and Ŷ ∈ Y. The interpretation of a time Y-consistent aggregation
is then immediate: The rationale rests on the possibility for the agents to find

allowable exchanges Y ∈ Y, Ŷ ∈ Y for which the aggregation is time consistent.

Proposition 2.6. Suppose that each ρi = (ρit)t∈[0,T ] is cash additive and time

consistent. If an aggregator ρ = (ρt)t∈[0,T ], with ρt : (L(F))N → L0(Ft) and
ρ(0) = 0, is cash additive, time Y-consistent, conservative and compatible then

ρt(X) = ess inf

{
N∑
i=1

ρit(X
i + Y i) | Y ∈ Y

}
, X ∈ (L(F))N ,
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and the ess inf is attained.

Proof. Suppose that ρ satisfies all the assumptions. For notational simplicity we
take N = 2. Applying time Y-consistency, letting in (9) u = t, we have for any

X ∈ (L(F))N and for some Ŷ ∈ Y

ρt(X
1, X2) = ρt

(
−ρ1t (X1 + Ŷ 1),−ρ2t (X2 + Ŷ 2)

)
= ρ1t (X

1 + Ŷ 1) + ρ2t (X
2 + Ŷ 2)

≥ ess inf
Y ∈Y

(
ρ1t (X

1 + Y 1) + ρ2t (X
2 + Y 2)

)
,

where we used in the second equality the cash additivity of ρ and ρ(0) = 0. On the
other hand

ess inf
Y ∈Y

(
ρ1t (X

1 + Y 1) + ρ2t (X
2 + Y 2)

)
≥ ess inf

Y ∈Y
ρt(X

1 + Y 1, X2 + Y 2) ≥ ρt(X
1, X2)

where we used the assumption that ρ is conservative in the first inequality and the
compatibility condition (8) in the second one. This also shows that the ess inf is

attained at Ŷ .

Proposition 2.6 motivates introducing the following inf-convolution type func-
tional on the product space (L(F))N and in the following sections we will focus on
exploring some of its key features.

Definition 2.7. Given the exchange set Y ⊆ (L(F))N , we define on (L(F))N the
aggregator ρ1♢ . . .♢ρN = (ρ1t♢ . . .♢ρ

N
t )t∈[0,T ] of the N families ρi = (ρit)t∈[0,T ] as

the Ft-measurable random variable

ρ1t♢ . . .♢ρ
N
t (X) := ess inf

{
N∑
i=1

ρit(X
i + Y i) | Y ∈ Y

}
,

for X = (X1, . . . , XN ) ∈ (L(F))N . We use the notation ρ1♢Y . . .♢Yρ
N when the

reference to the set Y is relevant.

The functional ρ1♢ . . .♢ρN enjoys some rather natural properties, some of them
directly inherited from the corresponding ones of the initial families ρi. We list
them below, providing short proofs for the less evident ones.

Proposition 2.8. Suppose that each ρi = (ρit)t∈[0,T ], i = 1, . . . , N , is cash additive

on [0, T ] and let X ∈ (L(F))N . Then

1. ρ1t♢Y . . .♢Yρ
N
t (X1, . . . , XN ) ≤

∑N
i=1 ρ

i
t(X

i), for all t ∈ [0, T ], namely ρ1♢Y . . .
♢Yρ

N is conservative.

2. Fix s ∈ [0, T ] and suppose that Y ⊆ (L(Fs))N and ess supY ∈Y{
∑N
i=1 Y

i} ≤ 0.
Then
ρ1t♢Y . . .♢Yρ

N
t (X1, . . . , XN ) =

∑N
i=1 ρ

i
t(X

i) for all s ≤ t ≤ T .
3. ρ1♢Y . . .♢Yρ

N is cash additive on [0, T ]. If ρi is monotone decreasing for each
i = 1, . . . , N , so is ρ1♢Y . . .♢Yρ

N (w.r.t. the componentwise order).
4. ρ1t♢Y . . .♢Yρ

N
t (X1 + Y 1, . . . , XN + Y N ) = ρ1t♢Y . . .♢Yρ

N
t (X1, . . . , XN ), for

all t ∈ [0, T ], if (Y 1, . . . , Y N ) ∈ Y. Thus in particular ρ1♢Y . . .♢Yρ
N is a

compatible aggregator.
5. Suppose in addition that ρi is time consistent for each i = 1, . . . , N , take

s ∈ [0, T ] and suppose that Y ⊆ (L(Fs))N . If u ≥ s, then for all 0 ≤ t ≤ u ≤ T
we have

ρ1t♢Y . . .♢Yρ
N
t (X1, . . . , XN ) = ρ1t♢Y . . .♢Yρ

N
t (−ρ1u(X1), . . . ,−ρNu (XN )). (11)
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Proof. To simplify the exposition, we prove the properties in the case N = 2.

1. It follows from 0 ∈ Y.
2. Since Y ∈ Y is Ft-measurable, by cash additivity ρit(X

i + Y i) = ρit(X
i)− Y i.

The property follows by using the inequality in item 1 and the assumption.
3. By definition of ρ1t♢Yρ

2
t .

4. ρ1t♢Yρ
2
t (X

1+Y 1, X2+Y 2) = ess inf
{
ρ1t (X

1 + Y 1 + Ŷ 1) + ρ2t (X
2 + Y 2 + Ŷ 2)

| Ŷ ∈ Y
}
= ρ1t♢Yρ

2
t (X

1, X2), as Y + Ŷ ∈ Y.

5. In the first equality below we apply the definition of ♢Y and the time con-
sistency of ρi, and in the second one the cash additivity of ρi, using the fact
that Y is Fu-measurable.

ρ1t♢Yρ
2
t (X

1, X2) = ess inf{ρ1t
(
−ρ1u(X1 + Y 1)

)
+ ρ2t

(
−ρ2u(X2 + Y 2)

)
| Y ∈ Y }

= ess inf{ρ1t
(
−ρ1u(X1) + Y 1

)
+ ρ2t

(
−ρ2u(X2) + Y 2

)
| Y ∈ Y}

= ρ1t♢Yρ
2
t

(
−ρ1u(X1),−ρ2u(X2)

)
.

Remark 2.9. Suppose that each ρi is cash additive and time consistent. Proposi-
tion 2.6 shows that the only possible cash additive, time Y-consistent, conservative
and compatible aggregator ρ = (ρt)t∈[0,T ], of the families ρi, with ρ(0) = 0, is

ρ = ρ1♢Y . . .♢Yρ
N , even if the existence of such aggregator is not guaranteed.

Moreover, from Proposition 2.8 we know that ρ1♢Y . . .♢Yρ
N is cash additive, con-

servative and compatible. Under the assumption that ρ1♢Y . . .♢Yρ
N (0) = 0, it is

desirable to identify conditions guaranteeing that ρ1♢Y . . .♢Yρ
N is also time Y-

consistent. Given Proposition 2.6, a necessary condition is that ρ1♢Y . . .♢Yρ
N is

attained. For the choices L = L∞ and Y = Y(s) as in (5) and a technical condi-
tion, as detailed in the following Section, this turns out to be also sufficient, thus
showing existence and uniqueness of an aggregator having all the stated properties,
see Proposition 3.6.

3. The aggregation for a particular choice of Y = Y(s). In this section
we choose the vector space Y = Y(s), as in (5), we analyze the consequences of
this choice and in particular we compare the diamond operator ♢Y(s) with the

s-convolution □s of the maps ρi. Let us first recall the definition of the latter.

Definition 3.1. Let s ∈ [0, T ] and consider N families ρi = (ρit)t∈[0,T ] with

ρit : L(F) → L0(Ft). We define on L(Fs) the s-convolution ρ1□s . . .□sρN =
(ρ1t□s . . .□sρ

N
t )t∈[0,T ] of the N families ρi as the Ft-measurable random variable

ρ1t□s . . .□sρ
N
t (Z)

= ess inf

{
N∑
i=1

ρit(Y
i) | Y i ∈ L(Fs), i = 1, . . . , N, s.t.

N∑
i=1

Y i = Z

}
, Z ∈ L(Fs).

(12)

If s = T then ρ1t□T . . .□T ρ
N
t is the usual inf-convolution of the N maps ρit.

Note that ρ1t□s . . .□sρ
N
t is defined on the space (L(Fs)). This accounts for

the fact that, when considering usual inf-convolutions, exchanges have (informally
speaking) the same measurability as the initial positions. Moreover, such functional
are defined on random variables rather than random vectors. This is motivated by
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the measurability requirement we just pointed out. Indeed, if one would define
the s-convolution for a vector, then that would turn out to solely depend on the
componentwise sum of that vector. A mathematically precise statement of what we
just informally mentioned can be found in Proposition 3.4 item 1 and 2 below.

We list some simple properties of ρ1t□s . . .□sρ
N
t which will be needed in the

following.

Proposition 3.2. We suppose L = L∞ and Y = Y(s). We assume that each
ρi is cash additive, monotone decreasing and time consistent on [0, s], and that

for each time t, ρjt is continuous from below for some j. Finally, we assume that
ρi(0) = 0, i = 1, . . . , N and ρ1□s . . .□sρN (0) = 0. Then ρ1□s . . .□sρN is monotone
decreasing and

1. For 0 ≤ s ≤ t, ρ1t□s . . .□sρ
N
t (ξ) = −ξ if ξ ∈ L(Fs), while ρ1t□s . . .□sρNt (ξ) =

+∞ otherwise.
2. ρ1□s . . .□sρN is time consistent on [0, s], namely: For every 0 ≤ t ≤ u ≤ s ≤

T and ξ ∈ L(Fs) we have

ρ1t□s . . .□sρ
N
t

(
−ρ1u□s . . .□sρNu (ξ)

)
= ρ1t□s . . .□sρ

N
t (ξ).

Proof. We only provide details for the case N = 2 for the sake of simplicity. Mono-
tonicity follows from the definition. Item 1 follows observing that if ξ is not Fs-
mesaurable it cannot be written as the sum of two Fs-measurable random variables,
so that the defining infimum (over an empty set) is +∞ by convention. Item 2
follows from [31] Theorem 4.1.(d), together with [26] Lemma 11.11 and Exercise
11.2.1.

For the particular choice Y = Y(s) the definition of the ♢Y aggregator becomes:

Definition 3.3. Let s ∈ [0, T ]. We define on (L(F))N the aggregator ρ1♢s . . .♢sρN

= (ρ1t♢s . . .♢sρ
N
t )t∈[0,T ], of the N families ρi = (ρit)t∈[0,T ] as the Ft-measurable

random variable

ρ1t♢s . . .♢sρ
N
t (X) := ess inf

{
N∑
i=1

ρit(X
i + Y i) | Y i ∈ L(Fs)∀i s.t.

N∑
i=1

Y i = 0

}
,

for X = (X1, . . . , XN ) ∈ (L(F))N .

We begin by listing some features of such a functional, which are clearly more
specific and detailed than those of the general ♢Y -aggregator, given the peculiar
choice of the underlying set of exchanges. We emphasize that ρ1♢s . . .♢sρN extends
to a wider space the convolution functional, as will become apparent once we detail
the properties of the former which involve the latter at key points (see e.g. (13)
below) .

Proposition 3.4. Let s, t, u ∈ [0, T ] and (X1, . . . , XN ) ∈ (L(F))N and suppose
that ρi = (ρit)t∈[0,T ] is cash additive on [0, T ] for each i = 1, . . . , N . Then the
properties in items 1 to 5 in Proposition 2.8 hold true. In addition:

1. ρ1t♢T . . .♢T ρ
N
t (X1, . . . , XN ) = ρ1t□T . . .□T ρ

N
t (X1 + · · ·+XN ) (s = T ).

2. ρ1t♢s . . .♢sρ
N
t (X1, . . . , XN ) = ρ1t□s . . .□sρ

N
t (X1 + · · · + XN ) if Xi is Fs-

measurable, i = 1, . . . , N .
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3. Suppose in addition that ρi is time consistent on [0, T ] for each i. We have

ρ1t♢s . . .♢sρ
N
t (X1, . . . , XN ) =

{
ρ1t□s . . .□sρ

N
t

(
−
∑N
i=1 ρ

i
s(X

i)
)
, if t ≤ s∑N

i=1 ρ
i
t(X

i) if t ≥ s.

(13)
4. Suppose L = L∞. Assume that each ρi is cash additive, monotone decreas-

ing and time consistent on [0, T ], and that for each time t, ρjt is continuous
from below for some j. Finally, assume that ρi(0) = 0, i = 1, . . . , N and
ρ1♢s . . .♢sρN (0) = 0. The following types of time consistency conditions
hold:

ρ1t♢s . . .♢sρ
N
t (X1, . . . , XN )

= ρ1t♢s . . .♢sρ
N
t (−ρ1u(X1), . . . ,−ρNu (XN )) if t ≤ s ≤ u. (14)

ρ1t♢s . . .♢sρ
N
t (X1, . . . , XN )

= ρ1t□s . . .□sρ
N
t (−ρ1u♢s . . .♢sρNu (X1, . . . , XN )) if t ≤ u ≤ s. (15)

ρ1u♢s . . .♢sρ
N
u (X1, . . . , XN )

= ρ1u□s . . .□sρ
N
u (−ρ1t♢s . . .♢sρNt (X1, . . . , XN )) if u ≤ t ≤ s. (16)

Proof. Again, we take N = 2 to simplify the notation. The assumptions stated on
Y in Proposition 2.8 item 2 hold true when Y = Y(s).

1. It follows directly from the definition, by replacing the FT -measurable random
variable Xi + Y i with Zi, and noticing that Z1 + Z2 = X1 +X2.

2. Same proof of item 1.
3. The case s ≤ t is item 2 in Proposition 2.8. If on the other hand t ≤ s, then

ρ1t♢sρ
2
t (X

1, X2)

= ess inf{ρ1t (X1 + Y 1) + ρ2t (X
2 + Y 2) | Y i ∈ L(Fs), i = 1, 2, , Y 1 + Y 2 = 0}

= ess inf{ρ1t
(
−ρ1s(X1 + Y 1)

)
+ ρ2t

(
−ρ2s(X2 + Y 2)

)
| Y i ∈ L(Fs),

i = 1, 2, , Y 1 + Y 2 = 0}
= ess inf{ρ1t

(
−ρ1s(X1) + Y 1

)
+ ρ2t

(
−ρ2s(X2) + Y 2

)
| Y i ∈ L(Fs),

i = 1, 2, , Y 1 + Y 2 = 0}
= ρ1t□sρ

2
t (−[ρ1s(X

1) + ρ2s(X
2)]).

The second equality above is a consequence of the time consistency of ρi and
the third one of the cash additivity of ρi, while the last one follows from the
definition 3.1.

4. When t ≤ s ≤ u this case was proven in (11). If t ≤ u ≤ s we get from item 3
that 0 = ρ1t♢sρ

2
t (0) = ρ1t□sρ

2
t (0), so that all the assumptions in Proposition

3.2 hold true. Then

ρ1t♢sρ
2
t (X

1, X2) = ρ1t□sρ
2
t (−[ρ1s(X

1) + ρ2s(X
2)])

= ρ1t□sρ
2
t

(
−ρ1u□sρ2u(−[ρ1s(X

1) + ρ2s(X
2)])
)
= ρ1t□sρ

2
t (−ρ1u♢sρ2u(X1, X2)),

where we used in the first and third equality the formula (13), and the time
consistency of the convolution in the second equality (see Proposition 3.2).
The case u ≤ t ≤ s is exactly as the case t ≤ u ≤ s, interchanging u and t.
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We are now ready to investigate some more specific and interesting properties of
the aggregation functional we have just defined above, with a specific focus on the
consistency properties previously introduced for aggregators.

Assumption 3.5. We consider L = L∞ and Y = Y(s) . We suppose that
each ρi = (ρit)t∈[0,T ] is monotone decreasing, convex, cash additive, time consis-

tent on [0, T ] and that for each time t, ρit is continuous from below for every i.
We also assume that ρi(0) = 0, i = 1, . . . , N , ρ1♢s . . .♢sρN (0) = 0 and that
ρ1t♢s . . .♢sρ

N
t (X1, . . . , XN ) is attained for every t ∈ [0, T ] and (X1, . . . , XN ) ∈

(L∞(F))N .

Proposition 3.6. Under assumption 3.5, ρ1♢s . . .♢sρN is time Y(s)-consistent.

Proof. Equation (14) trivially covers the case 0 ≤ t ≤ s ≤ u ≤ T (take Y = 0 in
the time consistency requirement (9)). For 0 ≤ t ≤ u ≤ s ≤ T instead use the
hypothesis of attainment to guarantee that ρ1u♢s . . .♢sρ

N
u (X1, . . . , XN ) = ρ1u(X

1 +
Y 1) + · · ·+ ρNu (XN + Y N ) for some Y ∈ Y(s), and plug in (15) to obtain

ρ1t♢s . . .♢sρ
N
t (X1, . . . , XN )

= ρ1t□s . . .□sρ
N
t (−ρ1u♢s . . .♢sρNu (X1, . . . , XN ))

= ρ1t□s . . .□sρ
N
t

(
−
(
ρ1u(X

1 + Y 1) + · · ·+ ρNu (XN + Y N )
))

= ρ1t♢s . . .♢sρ
N
t

(
− ρ1u(X

1 + Y 1), . . . ,−ρNu (XN + Y N )
)
,

where the last equality is due to item 2 in Proposition 3.4, since ρiu(X
i + Y i) ∈

L(Fu) ⊆ L(Fs).

In the following Lemma we describe an additional property of the ♢s operator
that will be crucial to prove the equivalences in Proposition 3.11.

Lemma 3.7. Under Assumption 3.5, ρ = ρ1♢s . . .♢sρN satisfies for all 0 ≤ t ≤
u ≤ T and X1, . . . , XN ∈ L∞(F)

ρt(X
1, . . . , XN ) ≤ ρt

(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
∀Y ∈ Y. (17)

Proof. We start with the simplest case, namely s ≤ u. By the attainment hypothesis
for some Y ∈ Y we have

ρt
(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
=

N∑
i=1

ρit(−ρiu(Xi + Y i) + Y
i
).

Continuing from RHS of this equality, we first apply cash additivity (as Y
i ∈

L(Fs) ⊆ L(Fu)) and then the time consistency of ρi to obtain

ρt
(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
=

N∑
i=1

ρit(−ρiu(Xi + Y i + Y
i
)) =

N∑
i=1

ρit(X
i + Y i + Y

i
) ≥ ρt(X),

by definition of ρ = ρ1♢s . . .♢sρN .

Now, for u ≤ s instead, we have ρit(X
i + Y i) ∈ L(Ft) ⊆ L(Fu) ⊆ L(Fs) so that

ρt
(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
= ρ1t□s . . .□sρ

N
t

(
−

N∑
i=1

ρiu(X
i + Y i)

)
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≥ ρ1t□s . . .□sρ
N
t

(
−ρ1u♢s . . .♢sρNu (X)

)
(18)

using Proposition 3.4 item 2 for the first equality, decreasing monotonicity of □s
and the fact that ρ1u♢s . . .♢sρ

N
u (X) ≤

∑N
i=1 ρ

i
u(X

i + Y i) for every Y ∈ Y for the
last inequality. By selecting in (15) t = u, we have

ρ1u♢s . . .♢sρ
N
u (X) = ρ1u□s . . .□sρ

N
u (−ρ1u♢s . . .♢sρNu (X)). (19)

Thus from the inequality (18) we obtain

ρt
(
−ρ1u(X1 + Y 1), . . . ,−ρNu (XN + Y N )

)
≥ ρ1t□s . . .□sρ

N
t

(
−ρ1u♢s . . .♢sρNu (X)

)
= ρ1t□s . . .□sρ

N
t

(
−ρ1u□s . . .□sρNu (−ρ1u♢s . . .♢sρNu (X))

)
= ρ1t□s . . .□sρ

N
t

(
−ρ1u♢s . . .♢sρNu (X)

)
= ρ1t♢s . . .♢sρ

N
t (X) = ρt(X),

where we applied (19) in the first equality, the time consistency of the □s operator
in the second equality (see Proposition 3.2 item 2) and (15) in the third equality.

Remark 3.8. Suppose that ρi are cash additive and ρi(0) = 0 for all i. Then
any aggregator ρ satisfying the condition (17) is also compatible. To check the
compatibility condition (equation (8)), just take u = T in (17) and recall from
(7) that ρiT (X

i) = −Xi. Moreover, any cash additive aggregator ρ satisfying the
condition (17) and ρ(0) = 0 is also conservative. Indeed, take Y = 0 and u = t in
(17) and apply the cash additivity of ρ.

3.1. The dual representation of ρ1t♢s . . .♢sρ
N
t . As the title of this Section sub-

tly suggest, we investigate how to specialize the conditional Fenchel-Moreau type
dual representation of conditional (systemic) risk measures to the functional we
are studying. This essentially revolves around two key points. On the one hand,
we want to provide sufficient conditions to ensure that such a dual representation
can actually be achieved. One expects intuitively that this involves some lower-
semicontinuity type requirements. On the other hand, once a general duality result
can be applied, we look for the specific shape taken by the penalty function and the
set of (probability) measures appearing in the duality. Throughout this Section
we use the notation introduced in [18] Section 2 and 3. We assume that
(L(F))N ⊆ (L1(F))N is Ft-decomposable and that L∗ ⊆ (L1(F))N is a vector
space such that

∑
j X

jZj ∈ L1(F) whenever X ∈ (L(F))N , Z ∈ L∗. We recall

that a convex, monotone decreasing, cash additive, real valued map (i.e. a convex
systemic risk measure) ρ0 : (L(F))N → R is nicely representable (with respect to
the σ(L(F), L∗) topology) if

ρ0(X) = max
Q∈Q

(
N∑
i=1

EQi
[−Xi]− α0(Q)

)
, X ∈ (L(F))N , (20)

where for Q = (Q1, . . . , QN )

α0(Q) := ρ∗0

(
−dQ

dP

)
= sup
X∈(L(FT ))N

(
N∑
i=1

EQi [−Xi]− ρ0(X)

)
, Q ∈ Q, (21)

Q :=

{
Q = (Q1, . . . , QN ) ≪ P

∣∣∣∣ dQdP ∈ L∗
}
,

and ρ∗0 is the convex conjugate of ρ0. Sufficient conditions for nice representability
involve continuity conditions (order upper semicontinuity or continuity from below)
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and structural properties of the vector spaces L and L∗. These are, at least in the
one dimensional case, well known and studied, see for example [18] Remark 2.3.
With the additional assumptions stated in Corollary 3.10, the nice representability
of the real valued map E

[
ρ1t
]
♢s . . .♢sE

[
ρNt
]
will be a sufficient condition for the

dual representation of the conditional map ρ1t♢s . . .♢sρ
N
t .

Proposition 3.9. Suppose that ρi is monotone decreasing, cash additive and convex
on [0, T ], and that ρi(0) = 0 for every i = 1, . . . , N . Then

E
[
ρ1t♢s . . .♢sρ

N
t (X1, . . . , XN )

]
= E

[
ρ1t
]
♢s . . .♢sE

[
ρNt
]
(X1, . . . , XN ) ∀X ∈ (L(F))N .

(22)

Proof. We show the result for N = 2. We start with a simple observation: Fix
X1, X2 ∈ L(F). Then for every t ≤ s the set

Θst :=
{
ρ1t (X

1 +W 1) + ρ2t (X
2 +W 2) |W i ∈ L(Fs), i = 1, 2, s.t. W 1 +W 2 = 0

}
is downward directed, that is whenever Z1, Z2 ∈ Θst there exists an element Z ∈ Θst
such that min(Z1, Z2) ≥ Z.

It is enough to show that ∀Z1, Z2 ∈ Θst and ∀A ∈ Ft there exists Z ∈ Θst such
that

Z11A + Z21Ac ≥ Z. (23)

Indeed, choosing A := {Z1 ≤ Z2} ∈ Ft, (23) yields the desired property.
We have that Zi = ρ1t (X

1 +W 1
i ) + ρ2t (X

2 +W 2
i ), i = 1, 2 where W1,W2 ∈ Y(s).

Now we compute Z11A + Z21Ac , for A ∈ Ft, and apply the convexity property:

Z11A + Z21Ac

= [ρ1t (X
1 +W 1

1 ) + ρ2t (X
2 +W 2

1 )]1A + [ρ1t (X
1 +W 1

2 ) + ρ2t (X
2 +W 2

2 )]1Ac

= [ρ1t (X
1 +W 1

1 )1A + ρ1t (X
1 +W 1

2 )1Ac ] + [ρ2t (X
2 +W 2

1 )1A + ρ2t (X
2 +W 2

2 )1Ac ]

≥ ρ1t

(
X1 +

(
W 1

1 1A +W 1
2 1Ac

))
+ ρ2t

(
X2 +

(
W 2

1 1A +W 2
2 1Ac

))
= ρ1t (X

1 +W 1) + ρ2t (X
2 +W 2) ∈ Θst ,

where we defined W :=W11A +W21Ac ∈ Y(s).
We now prove (22). Observe that the claim is trivial if t > s by Proposition 3.4

item 3. For t ≤ s, since Θst ̸= ∅ we have max(ρ1t♢sρ
2
t (X

1, X2), 0) ∈ L1. It is also im-
mediate to verify that E

[
ρ1t♢sρ

2
t (X

1, X2)
]
≤ E

[
ρ1t
]
♢sE

[
ρ2t
]
(X1, X2) since when-

everW ∈ Y(s), E
[
ρ1t♢sρ

2
t (X

1, X2)
]
≤ E

[
ρ1t (X

1 +W 1)
]
+E

[
ρ2t (X

2 +W 2)
]
. At the

same time by downward directedness ρ1t♢sρ
2
t (X

1, X2) = infn Zn for a (a.s. mono-
tone decreasing) sequence (Zn)n ⊆ Θst . Observe that, since one sees E

[
ρ1t
]
♢sE

[
ρ2t
]

(X1, X2) = infZ∈Θs
t
E [Z] by definition, it holds that

E [Zn] ≥ E
[
ρ1t
]
♢sE

[
ρ2t
]
(X1, X2).

By monotone convergence we have

E
[
ρ1t♢sρ

2
t (X

1, X2)
]
= lim

n
E [Zn] ≥ E

[
ρ1t
]
♢sE

[
ρ2t
]
(X1, X2)

which concludes the proof.

Corollary 3.10. Take L ⊆ L∞. Suppose that ρ1t♢s . . .♢sρ
N
t (0, . . . , 0) = 0, that

ρi(0) = 0, and that on [0, T ] ρi is cash additive, monotone decreasing, convex for
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each i = 1, . . . , N . (i) If E
[
ρ1t
]
♢s . . .♢sE

[
ρNt
]
is (L(F), L∗)-nicely representable,

then

ρ1t♢s . . .♢sρ
N
t (X1, . . . , X

N )

= ess sup
Q∈Qs

t

(
N∑
i=1

EQi

[
−Xi

∣∣Ft]− N∑
i=1

αi(Q
i)

)
∀X ∈ (L(F))N ,

(24)

for

Qs
t :=

{
Q = (Q1, . . . , QN ) ≪ P∣∣∣∣∣∣∣∣∣
dQ

dP
∈ L∗, E

[
dQi

dP

∣∣∣∣Ft] = 1 and

E
[
dQi

dP

∣∣∣∣Fs] = E
[
dQj

dP

∣∣∣∣Fs] for all i, j = 1, . . . , N

 (25)

αit(Q
i) := ess sup

{
EQi

[
−Xi

∣∣Ft] | Xi ∈ L(FT ), ρit(Xi) ≤ 0
}

i = 1, . . . , N .
(26)

Moreover the essential supremum in (24) is attained. (ii) Under the Assumption
3.5, the functional E

[
ρ1t
]
♢s . . .♢sE

[
ρNt
]
is (L∞(F), L1(F))-nicely representable.

Proof. As usual we provide the proof for N = 2. (i): note that ρ1t♢sρ
2
t (X

1, X2) ∈
L∞ for every X1, X2 ∈ L(F) since ρ1t♢sρ

2
t (0, 0) = 0, ρ1t♢sρ

2
t is monotone and cash

additive. One can apply [18] Theorem 3.9. This yields

ρ1t♢sρ
2
t (X1, X

2) = ess sup
Q∈Qt

 2∑
j=1

EQj

[
−Xj

∣∣Ft]− α(Q)

 ∀X1, X2 ∈ L(FT )

for

α(Q) := ess sup


2∑
j=1

EQj

[
−Xj

∣∣Ft] | X1, X2 ∈ L(FT ), ρ1t♢sρ2t (X1, X
2) ≤ 0


Qt :=

{
Q = (Q1, Q2) ≪ P | dQ

dP
∈ L∗, E

[
dQj

dP

∣∣∣∣Ft] = 1∀ j = 1, 2

}
(27)

and the attainment in the dual representation. When t > s, Qt = Qs
t . When t ≤ s,

whenever E
[
dQj

dP

∣∣∣Ft] = 1∀ j = 1, 2, we have

ess sup


2∑
j=1

EQj

[
−Xj

∣∣Ft] | X1, X2 ∈ L(FT ), ρ1t♢sρ2t (X1, X
2) ≤ 0


≥ ess sup

λ∈R

(
EQ1 [λ1A|Ft] + EQ2 [−λ1A|Ft]

)
= ess sup

λ∈R
E
[
λ1A

dQ1

dP

∣∣∣∣Ft]+ E
[
−λ1A

dQ2

dP

∣∣∣∣Ft]
= ess sup

λ∈R
E
[
λ1A

(
E
[
dQ1

dP

∣∣∣∣Fs]− E
[
dQ2

dP

∣∣∣∣Fs])∣∣∣∣Ft]
for every A ∈ Fs since for such an event A, ρ1t♢sρ

2
t (λ1A,−λ1A) = ρ1t♢sρ

2
t (0, 0)= 0.

Then, α(Q) < +∞ a.s. implies E
[
dQ1

dP

∣∣∣Fs] = E
[
dQ2

dP

∣∣∣Fs], so that again Qt can
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be replaced with Qs
t . Finally we show that for Q ∈ Qs

t we have α(Q) = α1(Q
1) +

α2(Q
2). By inspection of the proof of [18] Theorem 3.9 (Step 5) we have that

α(Q)

= ess sup
X1,X2∈L(F)

 2∑
j=1

EQj

[
−Xj

∣∣Ft]− ρ1t♢sρ
2
t (X1, X

2)


= ess sup
X1,X2∈L(F)

ess sup
Y ∈Y(s)

 2∑
j=1

EQj

[
−Xj

∣∣Ft]− ρ1t (X
1 + Y 1)−ρ2t (X2 + Y 2)


= ess sup
X1,X2∈L(F)

ess sup
Y ∈Y(s)

 2∑
j=1

EQj

[
−(Xj + Y j)

∣∣Ft]− (ρ1t (X
1 + Y 1) + ρ2t (X

2 + Y 2))


(28)

= ess sup
Z1,Z2∈L(F)

 2∑
j=1

EQj

[
−Zj

∣∣Ft]− (ρ1t (Z
1) + ρ2t (Z

2))


= ess sup
Z1∈L(F)

(
EQ1

[
−Z1

∣∣Ft]− ρ1t (Z
1)
)
+ ess sup
Z2∈L(F)

(
EQ2

[
−Z2

∣∣Ft]− ρ2t (Z
2)
)

(29)

= α1(Q
1) + α2(Q

2) (30)

where in (28) we used the fact that
∑2
j=1 EQj

[
Y j
∣∣Ft] = 0 whenever Q ∈ Qs

t .

We come to item (ii). Since E
[
ρ1t
]
♢sE

[
ρ2t
]
(0) = 0, the functional E

[
ρ1t
]
♢s

E
[
ρ2t
]
is cash additive, monotone, hence finite valued and norm continuous on

(L∞(F))2. By the Fenchel-Moreau theorem it can be represented by standard
arguments (see [26] Remark 4.18) as

E
[
ρ1t
]
♢sE

[
ρ2t
]
(X)

= max
(ξ1,ξ2)∈((L∞(F))∗)2

ξi≥0,ξi(1)=1,i=1,2

{
−ξ1(X1)− ξ2(X

2)− (E
[
ρ1t
]
♢sE

[
ρ2t
]
)∗(ξ1, ξ2)

}
(31)

where (E
[
ρ1t
]
♢sE

[
ρ2t
]
)∗ denotes the usual convex conjugate. A computation iden-

tical to the one in (30) shows that

(E
[
ρ1t
]
♢sE

[
ρ2t
]
)∗(ξ1, ξ2) = (E

[
ρ1t
]
)∗(ξ1)+(E

[
ρ2t
]
)∗(ξ2)+ sup

Y ∈Y

(
−ξ1(Y 1)− ξ2(Y 2)

)
for every (ξ1, ξ2) ∈ ((L∞(F))∗)2 with ξi ≥ 0, ξi(1) = 1, i = 1, 2. Since both
E
[
ρ1t
]
or E

[
ρ2t
]
, are continuous from below, by [26] Theorem 4.22 we have that

(E
[
ρit
]
)∗(ξi) < +∞ implies that ξi ∈ L1(F) with a self explaining abuse of no-

tation. Hence, by adding (with no effect on the value) the additional constraint
(E
[
ρ1t
]
♢sE

[
ρ2t
]
)∗(ξ1, ξ2) < +∞ in the maximum in RHS of (31) the (L∞(F),

L1(F))-nice representability follows.

3.2. Time consistency, acceptance sets and penalty functions. In this Sec-
tion we investigate the impact of time Y-consistency on acceptance sets and penalty
functions. For classical (non collective) dynamic risk measures we recall (see [14]
and [8]) that time consistency is equivalent to a cocycle property for the penalty
functions and to a decomposition property for the acceptance sets.
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Set

At = {X ∈ (L(FT ))N | ρt(X) ≤ 0} (32)

At,u = {X ∈ (L(Fu))N | ρt(X) ≤ 0} (33)

the acceptance sets of ρt and similarly define Ai
t ⊆ L(FT ),Ai

t,u ⊆ L(Fu) taking ρit
in place of ρt.

Set also, for Q = (Q1, . . . , QN ) ∈ Qt (see (27))

αt(Q) = ess sup
Xt∈At

N∑
i=1

EQi [−Xi

t | Ft] (34)

αt,u(Q) = ess sup
Xt,u∈At,u

N∑
i=1

EQi [−Xi

t,u | Ft] (35)

σY
t (Q) = ess sup

Y ∈Y

N∑
i=1

EQi [−Y i | Ft]. (36)

Proposition 3.11. Let Assumption 3.5 hold and assume that ρi(0) = 0, i =
1, . . . , N . Suppose that L∗ = L1(F) and that for every 0 ≤ t ≤ T and Qt de-
fined in (27) it holds

ρt(X) = ess sup
Q∈Qt

(
N∑
i=1

EQi

[
−Xi

∣∣Ft]− αt(Q)

)
∀X ∈ (L(F))N . (37)

The following are then equivalent:

1. ρt is time Y-consistent and satisfies (17).

2. At = At,u +
(∏N

i=1 Ai
u + Y

)
for every 0 ≤ t ≤ u ≤ T .

3. αt(Q) = αt,u(Q)+
∑N
i=1 EQi

[
αiu(Q

i) | Ft
]
+σY

t (Q) for any t ≤ u and Q ∈ Qt.

4. ρt(X) = ρ1t♢s . . .♢sρ
N
t (X) for any X ∈ (L(F))N .

We emphasize that equivalence among 1.-3. in Proposition 3.11 can be seen as
a counterpart to [8] Theorem 2.5 (see also [26] Proposition 11.15) in a collective
setting.

Proof. For notation simplicity we consider the case N = 2. The general case,
however, can be driven similarly. We write (Xi)i for X = (X1, X2) ∈ L(FT ) ×
L(FT ) and (ρit(X

i))i for ((ρ
1
t (X

1), ρ2t (X
2)) ∈ L(Ft)× L(Ft).

1. ⇐⇒ 2.

Step 1: We first show that

(Xi)i ∈ At,u +
(
A1
u ×A2

u

)
⇐⇒ −(ρiu(X

i))i ∈ At,u. (38)

Indeed to see (⇒) take X = Xt,u +Xu with obvious notation. Then(
ρiu(X

i)
)
i
=
(
ρiu(X

i

t,u +Xi
u)
)
i
=
(
ρiu(X

i
u)
)
i
−Xt,u ≤ −Xt,u

so that by monotonicity ρt(−
(
ρiu(X

i)
)
i
) ≤ ρt(Xt,u) ≤ 0, that is −(ρiu(X

i)
)
i
∈

At,u. Conversely to see (⇐) we note that X = X + (ρiu(X
i))i − (ρiu(X

i))i and

X + (ρiu(X
i))i ∈ A1

u ×A2
u by definition, while −(ρiu(X

i))i ∈ At,u by assumption.

Step 2: We show that

At ⊆ At,u+
(
A1
u×A2

u+Y
)
⇐⇒ ρt(X

1, X2) ≥ ρt(−(ρiu(X
i+Y i))i) for some Y ∈ Y.
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To see (⇒), take any X̂ ∈ L(Ft)×L(Ft) s.t.
∑
i X̂

i = ρt(X
1, X2) so that X + X̂ ∈

At. Hence, for some Y ∈ Y it must hold that X + X̂ + Y ∈ At,u + A1
u × A2

u. By
(38)

−(ρiu(X
i + Y i))i + X̂ = −(ρiu(X

i + X̂i + Y i))i ∈ At,u.

Consequently

ρt

(
− (ρiu(X

i + Y i))i

)
−
∑
i

X̂i = ρt

(
− (ρiu(X

i + Y i))i + X̂
)
≤ 0

which yields the desired inequality. The converse (⇐) is seen taking X ∈ At

and observing that for some Y ∈ Y, 0 ≥ ρt(X) ≥ ρt(−(ρiu(X
i + Y i))i). Hence,

−(ρiu(X
i+Y i))i ∈ At,u. Now, using (38) X+Y ∈ At,u+A1

u×A2
u and easily (since

Y is a vector space) X ∈ At,u +
(
A1
u ×A2

u + Y
)
.

Step 3: We show that

At ⊇ At,u+
(
A1
u×A2

u+Y
)
⇐⇒ ρt(X

1, X2) ≤ ρt(−(ρiu(X
i+Y i))i) for every Y ∈ Y.

We start with (⇒). Take any Y ∈ Y and X̂ ∈ L(Ft) × L(Ft) s.t.
∑
i X̂

i =
ρt(−(ρiu(X

i + Y i))i). Then

X + X̂ =
(
X̂ − (ρiu(X

i + Y i))i

)
+
(
X + Y + (ρiu(X

i + Y i))i

)
+ (−Y ).

By definition of X̂, X̂ − (ρiu(X
i + Y i))i ∈ At,u, while by cash additivity X + Y +

(ρiu(X
i + Y i))i ∈ A1

u × A2
u, and trivially −Y ∈ Y. Thus, X + X̂ ∈ At,u +

(
A1
u ×

A2
u + Y

)
. By assumption then

ρt(X + X̂) = ρt(X)− ρt(−(ρiu(X
i + Y i))i) ≤ 0

which yields the desired inequality. Conversely to get (⇐), observe that for X ∈
At,u +

(
A1
u × A2

u + Y) we have X + Ŷ ∈ At,u + A1
u × A2

u for some Ŷ ∈ Y. Then

using (38) −(ρiu(X
i + Ŷ i))i ∈ At,u. We conclude by assumption that ρt(X) ≤

ρt(−(ρiu(X
i + Ŷ i))i) ≤ 0, providing X ∈ At.

2. =⇒ 3. By the decomposition of acceptance sets in 2., we note that any X ∈ At

can be decomposed as X = Xt,u +Xu + Y with Xt,u ∈ At,u, Xu ∈ A1
u × A2

u and
Y ∈ Y. Then, for any Q = (Q1, Q2) ∈ Qt

αt(Q) = ess sup
X∈At

2∑
i=1

EQi [−Xi | Ft]

= ess sup
Xt,u∈At,u,Xu∈A1

u×A2
u,Y ∈Y

{EQ[−Xt,u | Ft] + EQ[−Xu | Ft] + EQ[−Y | Ft]}

= ess sup
Xt,u∈At,u

EQ[−Xt,u | Ft] + ess sup
Xu∈A1

u×A2
u

EQ[−Xu | Ft] + ess sup
Y ∈Y

EQ[−Y | Ft]

= ess sup
Xt,u∈At,u

2∑
i=1

EQi [−Xi

t,u | Ft]

+ ess sup
Xu∈A1

u×A2
u

2∑
i=1

EQi [−Xi
u | Ft] + ess sup

Y ∈Y

2∑
i=1

EQi [−Y i | Ft]

= αt,u(Q) + ess sup
Xu∈A1

u×A2
u

2∑
i=1

EQi [−Xi
u | Ft] + σY

t (Q). (39)
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The second term in the last line becomes

ess sup
Xu∈A1

u×A2
u

2∑
i=1

EQi [−Xi
u | Ft] = ess sup

(X1
u,X

2
u)∈A1

u×A2
u

2∑
i=1

EQi [EQi [−Xi
u | Fu] | Ft]

= ess sup
X1

u∈A1
u

EQ1 [EQ1 [−X1
u | Fu] | Ft] + ess sup

X2
u∈A2

u

EQ2 [EQ2 [−X2
u | Fu] | Ft]

= EQ1

[
ess sup
X1

u∈A1
u

EQ1 [−X1
u | Fu] | Ft

]
+ EQ2

[
ess sup
X2

u∈A2
u

EQ2 [−X2
u | Fu] | Ft

]
(40)

= EQ1

[
α1
u(Q

1) | Ft
]
+ EQ2

[
α2
u(Q

2) | Ft
]
, (41)

where (40) follows from the same arguments as in [16] Theorem 1, while the last
equality is due to cash additivity of ρit that guarantees that α

i
u(Q

i) = ess supXi
u∈Ai

u

EQi [−Xi
u | Fu] = ess supXi

u∈Ai
u
{EQi [−Xi

u | Fu] − ρiu(X
i)} (see [26]). Item 3. then

follows from (39).

3. =⇒ 4. Taking item 3. with t = u, we get for Q = (Q1, Q2) ∈ Qt

αt(Q
1, Q2) = αt,t(Q

1, Q2) +

2∑
i=1

EQi

[
αit(Q

i) | Ft
]
+ σY

t (Q
1, Q2)

=

2∑
i=1

αit(Q
i) + σY

t (Q
1, Q2).

We can then substitute in (37). Then, one observes that the supremum in such a
dual representation can be restricted to those Q ∈ Qt such that αt(Q) < +∞ a.s.,
which in turns yields that the supremum can be restricted to Qs

t . Then, one recovers
the dual representation (24). Noticing that we are working under Assumption 3.5,
Corollary 3.10 ensures that E

[
ρ1t
]
♢sE

[
ρ2t
]
is (L∞(F), L1(F))-nicely representable.

Hence, (24) holds and we conclude ρt(X
1, X2) = ρ1t♢sρ

2
t (X

1, X2) for any X1, X2 ∈
L∞(F).
4. =⇒ 1. It follows directly from Proposition 3.6 and Lemma 3.7.

4. On collective dynamic risk measures. We consider N agents in the market
and the risky vectorX := (X1, . . . , XN ) ∈ (L(F))N . We study the collective version
of conditional and dynamic risk measures. Let Ai ⊆ L(F) be the acceptance set of
agent i, that we assume to be a monotone set, namely it satisfies Xi ≥ Y i ∈ Ai and
Xi ∈ L(F) imply Xi ∈ Ai. We will use the notation A := A1×· · ·×AN . We recall
the following well known (see [16]) definition of monetary conditional risk measures
induced by acceptance sets

Definition 4.1. For each t ∈ [0, T ], each i and each Ai ⊆ L(F), the time-t condi-
tional risk measure ρt,Ai : L(F) → L0(Ft) is given by

ρt,Ai(Xi) := ess inf
{
α ∈ L(Ft) | α+Xi ∈ Ai

}
.

Thus ρAi = (ρt,Ai)t∈[0,T ] defines a dynamic risk measure induced by acceptance
sets.

As easily checked, for each i the dynamic risk measure ρAi is cash additive
and when each Ai is a (monotone) convex set then ρAi is convex and monotone
decreasing (see Definition 2.1).
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Assumption 4.2. Take L = L∞(F). Set

Ãi
t = {X ∈ L(Ft) | ρt,Ai(X) ≤ 0} (42)

Ãi
t,u = {X ∈ L(Fu) | ρt,Ai(X) ≤ 0}. (43)

We assume that ρt,Ai(0) = 0 and Ãi
t = Ãi

u + Ãi
t,u for every t ∈ [0, T ] and i =

1, . . . , N .

Proposition 4.3. Under the Assumption 4.2, for each i the dynamic risk measure
ρAi = (ρt,Ai)t∈[0,T ] is time consistent.

Proof. See [26] Lemma 11.14.

As explained in the introduction we aim to extend such concept to the collective
framework, where N agents may cooperate via exchanges that are modeled via
vectors Y = (Y 1, . . . , Y N ) ∈ Y ⊆ (L(F))N , where Y is an assigned convex cone of
vectors of allowable exchanges.

Definition 4.4. For any t ∈ [0, T ], the time-t collective conditional risk measure
given A and Y, is defined on (L(F))N as (the extended real-valued, Ft-measurable
random variable)

ρt,A,Y(X
1, . . . , XN )

:= ess inf

{
N∑
i=1

αi | αi ∈ L(Ft) and ∃Y ∈ Y s.t. αi + Y i +Xi ∈ Ai ∀i

}
and we call ρA,Y = (ρt,A,Y)t∈[0,T ] a collective dynamic risk measure.

Example 4.5 (Collective Conditional Risk Measures in Financial Markets). As
described in the Introduction, consider N agents investing in a frictionless stochastic
security market that are allowed to cooperate through suitable exchanges Y ∈ Y.
Let Ki be the market of agent i, that is the vector space of all the possible time-T
payoffs that agent i can obtain by using admissible trading strategies in his/her
allowed investments and having zero initial cost. In this example we take L =
L∞(Ω,F , P ). We now consider the problem of hedging simultaneously N given
claims X = (X1, . . . , XN ) ∈ (L(F))N .

1. Collective super-replication price from dynamic trading only. Let
Ai := (L0

+ − Ki) be the acceptance the agent i. The collective conditional
risk measures ρt,A,Y evaluated in −X and defined by

ρt,A,Y(−X)

= ess inf

{
N∑
i=1

αi | ∃αi ∈ L(Ft), ∃Y ∈ Y s.t. αi + Y i −Xi ∈ Ai ∀i

}

=ess inf

{
N∑
i=1

αi | ∃αi ∈ L(Ft), ∃Y ∈ Y,∃ki ∈ Ki s.t. α
i + ki + Y i ≥ Xi ∀i

}
is thus the conditional version of the static collective super-replication cost
from dynamic trading defined in (2). As discussed in [6] for the static case,
when super-replicating the N claims (X1, . . . , XN ), such collective notion
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allows to save money with respect to the classical super-replication without
cooperation, namely

ρt,A,Y(−X) ≤ ess inf

{
N∑
i=1

αi | ∃αi ∈ L(Ft), ∃ki ∈ Ki s.t. α
i + ki ≥ Xi ∀i

}
and the strict inequality holds in many cases.

2. Collective super-replication price from static and dynamic trading.

For each i fix a pricing measure Q̂i, that could be inferred by agent i by
several means. Consider the set LQ̂i := {ϕ ∈ L(F) | EQ̂i [ϕ] = 0} of time-

T contingent claims having, without loss of generality, price zero under the

pricing measure Q̂i. Agents i acceptance set is Ai = (L0
+ −Ki − LQ̂i). The

collective conditional risk measures ρt,A,Y evaluated in −X and defined by

ρt,A,Y(−X)

= ess inf

{
N∑
i=1

αi | ∃αi ∈ L(Ft), ∃Y ∈ Y : αi + Y i −Xi ∈ Ai ∀i

}

=ess inf
{ N∑
i=1

EQ̂i [ϕ
i] | ϕi ∈ L(F) : ∃αi ∈ L(Ft),∃Y ∈ Y,

∃ki ∈ Ki s.t. k
i + Y i + ϕi ≥ Xi ∀i

}
thus represents the conditional collective super replication from static and
dynamic hedging.

3. Collective Indifference Price
For each agent i consider a concave monotone increasing utility function ui :
R → R, normalized by ui(0) = 0, and the indirect utility function (from zero
initial wealth), defined by

Ui(X
i) := sup

k∈Ki

E[ui(k +Xi)] = sup
f∈(Ki−L0

+)∩L∞
E[ui(f +Xi)], Xi ∈ L(F).

Let Ai = {f ∈ L(F) | Ui(f) ≥ Ui(0)} be the acceptance set of agent i. The
collective conditional risk measures ρt,A,Y evaluated in −X and defined by

ρt,A,Y(−X)

= ess inf

{
N∑
i=1

αi | ∃αi ∈ L(Ft), ∃Y ∈ Y s.t. αi + Y i −Xi ∈ Ai ∀i

}

=ess inf

{
N∑
i=1

αi | ∃αi ∈ L(Ft),∃Y ∈ Y s.t. Ui(α
i + Y i −Xi) ≥ Ui(0) ∀i

}
.

thus represents the (seller) conditional collective Indifference Price.

Observe that we may write ρt,A,Y in the following way

ρt,A,Y(X) := ess inf
α∈(L(Ft))N

{
N∑
i=1

αi | ∃Y ∈ Y s.t. αi + Y i +Xi ∈ Ai ∀i

}

=ess inf
Y ∈Y

{
ess inf

α∈(L(Ft))N

{
N∑
i=1

αi | αi + Y i +Xi ∈ Ai ∀i

}}
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=ess inf
Y ∈Y

{
N∑
i=1

ess inf
αi∈L(Ft)

{
αi | αi + Y i +Xi ∈ Ai

}}

=ess inf
Y ∈Y

{
N∑
i=1

ρt,Ai(Xi + Y i)

}
:= ρt,A1♢Y . . .♢Yρt,AN (X).

Thus if we set ρit := ρt,Ai we conclude that collective dynamic risk measures
ρA,Y = (ρt,A,Y)t∈[0,T ] are particular examples of the ♢Y aggregator:

ρt,A,Y(X) = ρ1t♢Y . . .♢Yρ
N
t (X), ∀t ∈ [0, T ], (44)

and thus the study of collective risk measures ρA,Y reduces to the analysis of the
♢Y aggregator that was developed in the previous sections. In particular,

Proposition 4.6. Suppose that Y is a convex cone and each Ai is a (monotone)
convex set. Then the collective dynamic risk measure ρA,Y is cash additive, con-
vex, monotone decreasing, conservative and compatible. If the assumptions 4.2 and
3.5 hold true, then the collective dynamic risk measure ρA,Y(s) is also Y(s)-time
consistent.

4.1. On the collective entropic dynamic risk measure. Consider two agents
and two risky positions X = (X1, X2) ∈ (L∞(F))2. We now apply the collective
setting with exchange set Y = Y(s) to the case of two conditional entropic risk

measures ρit(X
i) = γi lnE[exp(−Xi

γi ) | Ft], associated to the acceptance set Ai ⊆
L∞(F) generated by the exponential utility function with risk tolerance parameter
γi > 0, i = 1, 2.

By the time consistency of any conditional entropic risk measure, by Proposition
3.4 item 3 and by (44) we get, for ρit := ρt,Ai ,

ρt,A,Y(s)(X
1, X2) = ρ1t♢sρ

2
t (X

1, X2) =

{
ρ1t□sρ

2
t (−[ρ1s(X

1) + ρ2s(X
2)]), if t ≤ s

ρ1t (X
1) + ρ2t (X

2) if t ≥ s.

(45)
Given the choice Y = Y(s) and since [ρ1s(X

1) + ρ2s(X
2)] is the argument of the

s-convolution □s and it is Fs-measurable, the expression for t ≤ s can be seen as a
classical inf-convolution of conditional risk measures with time horizon s. Hence by
(45) and [4] Theorem 3.9 we obtain the explicit formula for the collective entropic
conditional risk measure

ρ1t♢sρ
2
t (X

1, X2) =

=


(γ1 + γ2) lnE

[
exp

(
γ1

γ1+γ2
lnE[exp(−X1

γ1 )|Fs] +
γ2

γ1+γ2
lnE[exp(−X2

γ2 )|Fs]
)∣∣∣Ft

]
if t ≤ s

γ1 lnE[exp(−X1

γ1 )|Ft] + γ2 lnE[exp(−X2

γ2 )|Ft]

if t ≥ s

.

The previous expression, for t ≤ s, enchains the initial entropic risk measures via
a new entropic one with risk tolerance parameter (γ1 + γ2), while it reduces to a
sum of entropic risk measures for t ≥ s.
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