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Abstract

It is well known that many random graphs with infinite vari-
ance degrees are ultra-small. More precisely, for configuration
models and preferential attachment models where the propor-
tion of vertices of degree at least k is approximately k~—D
with 7 € (2,3), typical distances between pairs of vertices
in a graph of size n are asymptotic to —2£2" dloglogn
[log(z—2)| |log(z=2)|
respectively. In this paper, we investigate the behavior of the
diameter in such models. We show that the diameter is of order
loglogn precisely when the minimal forward degree dgyq of
vertices is at least 2. We identify the exact constant, which
equals that of the typical distances plus 2/ log dgyq. Interest-
ingly, the proof for both models follows identical steps, even

though the models are quite different in nature.
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1 | INTRODUCTION AND RESULTS

In this paper, we study the diameter of two different random graph models: the configuration model
and the preferential attachment model, when these two models have a power-law degree distribution
with exponent 7 € (2, 3), so that the degrees have finite mean but infinite variance. In this first section,
we give a brief introduction to the models, stating the main technical conditions required as well as
the two main results proved in the paper.

Throughout the paper, we write “with high probability” to mean “with probability 1 — o(1) as
n — oo, or as ¢t — oo,” where n and ¢ denote the number of vertices in the configuration model and in
the preferential attachment model, respectively.
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any medium, provided the original work is properly cited.
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1.1 | Configuration model and main result

The configuration model CM,, is a random graph with vertex set [n] := {1,2,...,n} and with pre-
scribed degrees. Let d = (dy, d>, ... ,d,) be a given degree sequence, that is, a sequence of n positive
integers with total degree

bo= ) d, (1.1

i€[n]

assumed to be even. The configuration model (CM) on n vertices with degree sequence d is constructed
as follows: Start with n vertices and d; half-edges adjacent to vertex i € [r]. Randomly choose pairs of
half-edges and match the chosen pairs together to form edges. Although self-loops may occur, these
become rare as n — oo (see eg, [2, Theorem 2.16], [19]). We denote the resulting multi-graph on [#]
by CM,,, with corresponding edge set £,. We often omit the dependence on the degree sequence d,
and write CM,, for CM,,(d).

1.1.1 | Regularity of vertex degrees

Let us now describe our regularity assumptions. For each n € N we have a degree sequence d” =
(d"”,...,d>). To lighten notation, we omit the superscript (n) and write d instead of d* or (d*),eN
and d; instead of dl(.'”. Let (px)ren be a probability mass function on N. We introduce the empirical
degree distribution of the graph as

1
W= = LTiy—iy- 1.2
Py = Z {d;=k} (1.2)

i€[n]
We can define now the degree regularity conditions:

Condition 1.1 (Degree regularity conditions) Let CM,, be a configuration model, then we say that
d satisfies the degrees regularity conditions (a), (b), with respect to (pr)ieN if:

(@) foreveryke N,asn - oo

p; — pr. (1.3)

(b) X, kpr < o0, and asn — o

3k — Y k. (1:4)

keN keN

As notation, we write that d satisfies the d.r.c. (a), (b).

Let F4,, be the distribution function of (p”)se, that is, for k € N,

1
Fan(k) = - Z Ta,<ty- (1.5)

i€[n]

We suppose that d satisfies the d.r.c. (a) and (b) with respect to some probability mass function (p)ieNs,
corresponding to a distribution function F.
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Condition 1.2 (Polynomial distribution condition) We say that d satisfies the polynomial distribu-
tion condition with exponent t € (2,3) if for all 6 > 0 there exist a = a(6) > %, c1(6) > 0 and
¢2(8) > 0 such that, for every n € N, the lower bound

1= Fyn(x) > e =149 (1.6)
holds for all x < n®, and the upper bound
1= Fau(x) < cx 179 (1.7)

holds for all x > 1.

There are two examples that explain Condition 1.2. Consider the case of i.i.d. degrees with
P (D; > x) = ex D, then the degree sequence satisfies Condition 1.2 a.s. A second case is when the
number of vertices of degree k is ny = [nF(k)] — [nF(k — 1)], and 1 — F(x) = cx~*~D. Condition 1.2
allows for more flexible degree sequences than just these examples.

If we fix f < min{a, r—i+ 5 }, the lower bound (1.6) ensures that the number of vertices of degree

higher than x = »” is at least n!#*~1*+% which diverges as a positive power of n. If we take f > %,
these vertices with high probability form a complete graph. This will be essential for proving our main
results. The precise value of f is irrelevant in the sequel of this paper.

For an asymptotic degree distribution with asymptotic probability mass function (py);en, We say
that

dmin = min {k € N: p;, > 0} (1.8)

is the minimal degree of the probability given by (px);en. With these technical requests, we can state
the main result for the configuration model:

Theorem 1.3 (Diameter of CM,, for 7 € (2,3)) Let d be a sequence satisfying Condition 1.1 with
asymptotic degree distribution (py)r with dmin > 3. Suppose that d satisfies Condition 1.2 with T €
2,3)and d; > dpin for all i € [n]. Then

diam(CM,) P 2 L2
loglogn n>e log(dmin — 1)  |log(z —2)|’

(1.9)

P
where —— denotes convergence in probability as n — oo.
n—-oo

In fact, the result turns out to be false when p; + p, > 0, as shown by Fernholz and Ramachandran
[12] (see also van der Hofstad and coworkers [17]), since then there are long strings of vertices with
low degrees that are of logarithmic length.

1.2 | Preferential attachment model and main result

The configuration model presented in the previous section is a static model, because the size n € N of
the graph was fixed.
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The preferential attachment model instead is a dynamic model, because, in this model, vertices are
added sequentially with a number of edges connected to them. These edges are attached to a receiving
vertex with a probability proportional to the degree of the receiving vertex at that time plus a constant,
thus favoring vertices with high degrees.

The idea of the preferential attachment model is simple, and we start by defining it informally. We
start with a single vertex with a self-loop, which is the graph at time 1. At every time ¢ > 2, we add
a vertex to the graph. This new vertex has an edge incident to it, and we attach this edge to a random
vertex already present in the graph, with probability proportional to the degree of the receiving vertex
plus a constant 6, which means that vertices with large degrees are favored. Clearly, at each time ¢ we
have a graph of size t with exactly ¢ edges.

We can modify this model by changing the number of edges incident to each new vertex we add. If
we start at time 1 with a single vertex with m € N self loops, and at every time ¢ > 2 we add a single
vertex with m edges, then at time ¢ we have a graph of size ¢ but with mt edges, that we call PA;(m, ).
When no confusion can arise, we omit the arguments (m, 6) and abbreviate PA; = PA,(m, 6). We now
give the explicit expression for the attachment probabilities.

Definition 1.4 (Preferential attachment model) Fix m € N, § € (—m, o). Denote by {¢ iR v} the
event that the jth edge of vertex ¢ € N is attached to vertex v € [7] (for 1 < j < m). The preferential
attachment model with parameters (m, 6) is defined by the attachment probabilities

Dt,/‘—l(v) +1 +]5/m

forv=t,

o
PA,J_1> = N (1.10)

P<ti>v D) + 6
_1(v
7 Te forv<t,

CIJ

where PA;;_; is the graph after the first j — 1 edges of vertex ¢ have been attached, and correspondingly
D, j_1(v) is the degree of vertex v. The normalizing constant c;; in (1.10) is

ey 1= mt=D+G=D]Q+8/m)+1+5/m. (1.11)
We refer to Section 4.1 for more details and explanations on the construction of the model (in

particular, for the reason behind the factor j§/m in the first line of (1.10)).

Consider, as in (1.2), the empirical degree distribution of the graph, which we denote by Py(?),
where in this case the degrees are random variables. It is known from the literature [5, 13] that, for
every k > m, as t - oo,

P
PeO—> pis (1.12)

where p; ~ ¢k, and 7 = 3 + 6/m. We focus on the case 6 € (—m, 0), so that PA, has a power-law
degree sequence with power-law exponent 7 € (2, 3).
For the preferential attachment model, our main result is the following:

Theorem 1.5 (Diameter of the preferential attachment model) Ler (PA,);»1 be a preferential
attachment model with m > 2 and 6 € (—m,0). Then

diam(PA,) P 2 4 4
loglogt 1~ logm |log(t —2)|’

(1.13)
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where T =3+ 6/m € (2,3).
In the proof of Theorem 1.5 we are also able to identify the typical distances in PA;:

Theorem 1.6 (Typical distance in the preferential attachment model) Let V{ and Vé be two inde-
pendent uniform random vertices in [t]. Denote the distance between Vi and Vé in PA, by H,.
Then

H, P 4

. 1.14
log logt: | log(z — 2)| (1.14)

Theorems 1.5 and 1.6 prove [17, Conjecture 1.8].

1.3 | Structure of the paper and heuristics

The proofs of our main results on the diameter in Theorems 1.3 and 1.5 have a surprisingly similar
structure. We present a detailed outline in Section 2 below, where we split the proof into a lower bound
(Section 2.1) and an upper bound (Section 2.2) on the diameter. Each of these bounds is then divided
into 3 statements, that hold for each model. In Sections 3 and 4 we prove the lower bound for the
configuration model and for the preferential attachment model, respectively, while in Sections 5 and 6
we prove the corresponding upper bounds. In Caravenna and coworkers [6, Appendix], some proofs
of technical results that are minor modifications of proofs in the literature are presented in detail.

Even though the configuration and preferential attachment models are quite different in nature, they
are locally similar, because for both models the attachment probabilities are roughly proportional to
the degrees. The core of our proof is a combination of conditioning arguments (which are particularly
subtle for the preferential attachment model), that allow to combine local estimates in order to derive
bounds on global quantities, such as the diameter.

Let us give a heuristic explanation of the proof (see Figure 1 for a graphical representation). For a
quantitative outline, we refer to Section 2. We write PA,, instead of PA; to simplify the exposition, and
denote by dswq the minimal forward degree, that is dgyq = dmin — 1 for the configuration model and
dgwa = m for the preferential attachment model.

e For the lower bound on the diameter, we prove that there are so-called minimally connected vertices.
These vertices are quite special, in that their neighborhoods up to distance &, = loglogn/ log diyq
are trees with the minimal possible degree, given by dgyq + 1. This explains the first term in the right
hand sides of (1.9) and (1.13).

Pairs of minimally connected vertices are good candidates for achieving the maximal possi-
ble distance, that is, the diameter. In fact, the boundaries of their tree-like neighborhoods turn
out to be at distance equal to the typical distance 2k, between vertices in the graph, that is
2k, ~ 2cgis loglogn/|log(r — 2)|, where cgix = 1 for the configuration model and cg; = 2 for
the preferential attachment model. This leads to the second term in the right hand sides of (1.9) and
(1.13).

In the proof, we split the possible paths between the boundaries of two minimally connected
vertices into bad paths, which are too short, and typical paths, which have the right number of edges
in them, and then show that the contribution due to bad paths vanishes. The degrees along the path
determine whether a path is bad or typical.

The strategy for the lower bound is depicted in the bottom part of Figure 1.
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FIGURE 1 Structure of the proof in a picture [Colour figure can be viewed at wileyonlinelibrary.com]

o For the upper bound on the diameter, we perform a lazy-exploration from every vertex in the graph
and realize that the neighborhood up to a distance k", which is roughly the same as k;;, contains at
least as many vertices as the tree-like neighborhood of a minimally connected vertex. All possible
other vertices in this neighborhood are ignored.

We then show that the vertices at the boundary of these lazy neighborhoods are with high proba-
bility quickly connected to the core, that is by a path of /,, = o(log log n) steps. By core we mean the
set of all vertices with large degrees, which is known to be highly connected, with a diameter close
to 2k, similar to the typical distances (see van der Hofstad and coworkers [17] for the configuration
model and Dommers and coworkers [9] for the preferential attachment model).

The proof strategy for the upper bound is depicted in the top part of Figure 1.

1.4 | Links to the literature and comments

This paper studies the diameter in CM,, and PA, when the degree power-law exponent 7 satisfies 7 €
(2, 3), which means the degrees have finite mean but infinite variance. Both in (1.9) and (1.13), the
explicit constant is the sum of two terms, one depending on 7, and the other depending on the minimal
forward degree (see (2.2)), which is dpi, — 1 for CM,, and m for PA,. We remark that the term depending
on 7 is related to the typical distances, while the other is related to the periphery of the graph.

There are several other works that have already studied typical distances and diameters of such
models. van der Hofstad and coworkers [16] analyze typical distances in CM,, for r € (2, 3), while van
der Hofstad and coworkers [15] study = > 3. They prove that for = € (2, 3) typical distances are of order
loglog n, while for 7 > 3 is of order log n, and it presents the explicit constants of asymptotic growth.
Van der Hofstad and coworkers [17] shows for 7 > 2 and when vertices of degree 1 or 2 are present,
that with high probability the diameter of CM,, is bounded from below by a constant times log n, while
when 7 € (2, 3) and the minimal degree is 3, the diameter is bounded from above by a constant times
loglogn. van der Hofstad and Komjathy [18] investigate typical distances for configuration models
and 7 € (2, 3) in great generality, extending the results in van der Hofstad and coworkers [17] beyond
the setting of i.i.d. degrees. Interestingly, they also investigate the effect of truncating the degrees at
nP for values of f, — 0. It would be of interest to also extend our diameter results to this setting.
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We significantly improve upon the result in van der Hofstad and coworkers [17] for 7 € (2, 3). We
do make use of similar ideas in our proof of the upper bound on the diameter. Indeed, we again define
a core consisting of vertices with high degrees, and use the fact that the diameter of this core can be
computed exactly (for a definition of the core, see (2.8)). The novelty of our current approach is that
we quantify precisely how far the further vertex is from this core in the configuration model. It is a
pair of such remote vertices that realizes the graph diameter.

Fernholz and Ramachandran [12] prove that the diameter of CM,, is equal to an explicit constant
times log n plus o(log n) when = € (2, 3) but there are vertices of degree 1 or 2 present in the graph, by
studying the longest paths in the configuration model that are not part of the 2-core (which is the part of
the graph for which all vertices have degree at least 2). Since our minimal degree is at least 3, the 2-core
is whp the entire graph, and thus this logarithmic phase vanishes. Dereich and coworkers [10] prove
that typical distances in PA; are asymptotically equal to an explicit constant times log log ¢, using path
counting techniques. We use such path counting techniques as well, now for the lower bound on the
diameters. Van der Hofstad [14] studies the diameter of PA; when m = 1, and proves that the diameter
still has logarithmic growth. Dommers and coworkers [9] prove an upper bound on the diameter of
PA,, but the explicit constant is not sharp.

Again, we significantly improve upon that result. Our proof uses ideas from Dommers and cowork-
ers [9], in the sense that we again rely on an appropriately chosen core for the preferential attachment
model, but our upper bound now quantifies precisely how the further vertex is from this core, as for
the configuration model, but now applied to the much harder preferential attachment model.

CM,, and PA, are two different models, in the sense that CM,, is a static model while PA, is a
dynamic model. It is interesting to notice that the main strategy to prove Theorems 1.3 and 1.5 is the
same. In fact, all the statements formulated in Section 2 are general and hold for both models. Also the
explicit constants appearing in (1.9) and (1.13) are highly similar, which reflects the same structure of
the proofs. The differences consist in a factor 2 in the terms containing 7 and in the presence of dp;, — 1
and m in the remaining term. The factor 2 can be understood by noting that in CM,, pairs of vertices
with high degree are likely to be at distance 1, while in PA, they are at distance 2. The difference in
dmin — 1 and m is due to the fact that d,;, — 1 and m play the same role in the two models, that is, they
are the minimal forward degree (or “number of children”) of a vertex that is part of a tree contained in
the graph. We refer to Section 2 for more details.

While the structures of the proofs for both models are identical, the details of the various steps are
significantly different. Pairings in the configuration model are uniform, making explicit computations
easy, even when already many edges have been paired. In the preferential attachment model, on the
other hand, the edge statuses are highly dependent, so that we have no rely on delicate conditioning
arguments. These conditioning arguments are arguably the most significant innovation in this paper.
This is formalized in the notion of factorizable events in Definition 4.4.

Typical distances and diameters have been studied for other random graphs models as well, show-
ing log log behavior. Bloznelis [1] investigates the typical distance in power-law intersection random
graphs, where such distance, conditioning on being finite, is of order log log n, while results on diame-
ter are missing. Chung and Lu [7, 8] present results respectively for random graphs with given expected
degrees and Erd6s and Rényi random graphs G(n, p), see also van den Esker, the last author and
Hooghiemstra [11] for the rank-1 setting. The setting of the configuration model with finite-variance
degrees is studied in Fernholz and Ramachandran [12]. In Chung and Lu [8], they prove that for the
power-law regime with exponent = € (2, 3), the diameter is ®(log ), while typical distances are of
order loglogn. This can be understood from the existence of a positive proportion of vertices with
degree 2, creating long, but thin, paths. In [7], the authors investigate the different behavior of the
diameter according to the parameter p.
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An interesting open problem is the study of fluctuations of the diameters in CM,, and PA, around
the asymptotic mean, that is, the study of the difference between the diameter of the graph and the
asymptotic behavior (for these two models, the difference between the diameter and the right multiple
of loglogn). In [16], the authors prove that in graphs with i.i.d. power-law degrees with = € (2, 3),
the difference A, between the typical distance and the asymptotic behavior 2 loglogn/|log(r — 2)|
does not converge in distribution, even though it is tight (ie, for every € > 0 there is M < oo such that
P(|A,| £ M) > 1—¢forall n € N). These results have been significantly improved in van der Hofstad
and Komjathym [18].

In the literature results on fluctuations for the diameter of random graph models are rare. Bol-
lobas in [3], and, later, Riordan and Wormald in [20] give precise estimates on the diameter of the
Erdos-Renyi random graph. It would be of interest to investigate whether the diameter has tight
fluctuations around c log log n for the appropriate c.

2 | GENERAL STRUCTURE OF THE PROOFS

We split the proof of Theorems 1.3 and 1.5 into a lower and an upper bound. Remarkably, the strategy
is the same for both models despite the inherent difference in the models. In this section we explain
the strategy in detail, formulating general statements that will be proved for each model separately in
the next sections.

Throughout this section, we assume that the assumptions of Theorems 1.3 and 1.5 are satisfied and,
to keep unified notation, we denote the size of the preferential attachment model by n € N, instead of
the more usual t € N.

Throughout the paper, we treat real numbers as integers when we consider graph distances. By
this, we mean that we round real numbers to the closest integer. To keep the notation light and make
the paper easier to read, we omit the rounding operation.

2.1 | Lower bound

We start with the structure of the proof of the lower bound in (1.9) and (1.13). The key notion is that
of a minimally k-connected vertex, defined as a vertex whose k-neighborhood (ie, the neighborhood
up to distance k) is essentially a regular tree with the smallest possible degree, equal to dy;, for the
configuration model and to m + 1 for the preferential attachment model. Due to technical reasons,
the precise definition of minimally k-connected vertex is slightly different for the two models (see
Definitions 3.2 and 4.2).

Henceforth we fix € > 0 and define, forn € N,

_ loglogn
ki =1 —e)———, 2.1)
" log(dfwa)

where dgyq denotes the forward degree, or “number of children”:

deos = dpin — 1  for CM,; 2.2)
fd m for PA,. '
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Our first goal is to prove that the number of minimally k; -connected vertices is large enough, as
formulated in the following statement:

Statement 2.1 (Moments of My-)  Denote by My~ the number of minimally k;; -connected vertices in
the graph (either CM,, or PA,)). Then, as n — o,

E[M] >0, Var(My)=o(E[Mc]"), 2.3)
where Var(X) := E[X?] — E[X]? denotes the variance of the random variable X.

The proof for the preferential attachment model makes use of conditioning arguments. Indeed, we
describe as much information as necessary to be able to bound probabilities that vertices are minimally
k connected. Particularly in the variance estimate, these arguments are quite delicate, and crucial for
our purposes.

The bounds in (2.3) show that M- i oo asn — oo. This will imply that there is a pair of minimally
k; -connected vertices with disjoint k;, -neighborhoods,' hence the diameter of the graph is at least 2k,
which explains the first term in (1.9) and (1.13). Our next aim is to prove that these minimally connected
trees are typically at distance 2cgi log logn/| log(z — 2)|, where cgisy = 1 for the configuration model
and cg;r = 2 for the preferential attachment model.

For this, let us now define

cgist loglogn

]_Cn = (1 - 5) s (24)
| log(z —2)|
where
1 for CM,; 2.5)
Cipier = .
7Y 2 for PA,.

The difference in the definition of cgiy is due to fact that in CM,, vertices with high degree are likely
at distance 1, while in PA,, are at distance 2. We explain the origin of this effect in more detail in the
proofs.

It turns out that the distance between the &, -neighborhoods of two minimally k; -connected vertices
is at least 2k,. More precisely, we have the following statement:

Statement 2.2 (Distance between neighborhoods)  Ler WY and W7 be two random vertices chosen
independently and uniformly among the minimally k;, -connected ones. Denoting by H, the distance
between the k;, -neighborhoods of W} and W7, we have H, > 2k, with high probability.

It follows immediately from Statement 2.2 that the distance between the vertices W' and W} is at
least 2k, + 2k, with high probability. This proves the lower bound in (1.9) and (1.13).

It is known from the literature that 2k,, see (2.4), represents the typical distance between two
vertices chosen independently and uniformly in the graph. In order to prove Statement 2.2, we collapse

' A justification for this fact is provided by the following Statement 2.2 (the randomly chosen vertices W} and W} have disjoint
k; -neighborhoods, because A, > 0 with high probability). For a more direct justification, see Remark 3.6 for the configuration
model and Remark 4.7 for the preferential attachment model.
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the k;, -neighborhoods of W} and W7 into single vertices and show that their distance is roughly equal
to the typical distance 2k,,. This is a delicate point, because the collapsed vertices have a relatively large
degree and thus could be closer than the typical distance. The crucial point why they are not closer is
that the degree of the boundary only grows polylogarithmically. The required justification is provided
by the next statement:

Statement 2.3 (Bound on distances) Let us introduce the set

{v €ln]: d, < logn} for CM,;

Vu 1= . (2.6)
{v €ln]: v> (1ogn)2} for PA,.
Then, denoting the distance in the graph of size n by dist,,
. - 1
< = . .
ar,ggé, P (dlstn(a, b) < 2k,,) 0 <(log 2 ) 2.7

The proof of Statement 2.3 is based on path counting techniques. These are different for the two
models, but the idea is the same: We split the possible paths between the vertices a and b into two sets,
called good paths and bad paths. Here good means that the degrees of vertices along the path increase,
but not too much. We then separately and directly estimate the contribution of each set. The details are
described in the proof.

2.2 | Upper bound

We now describe the structure of the proof for the upper bound, which is based on two key concepts:
the core of the graph and the k-exploration graph of a vertex.

We start by introducing some notation. First of all, fix a constant ¢ € (1/(3 — ), o). We define
Core, as the set of vertices in the graph of size n with degree larger than (logn)°. More precisely,
denoting by D,(v) = D, ,,(v) the degree of vertex v in the preferential attachment model after time ¢,
that is, in the graph PA, (see the discussion after (1.10)), we let

{{v € [n]: d, > (logn)’} for CM,;
Core, := (2.8)
{veln]: D,»n() > (logn)°} for PA,.

The fact that we evaluate the degrees at time n/2 for the PAM is quite crucial in the proof of Statement
2.4 below. In Section 6, we also give bounds on D,,(v) for v € Core,, as well as for v ¢ Core,,, that show
that the degrees cannot grow too much between time n/2 and n. The first statement, that we formulate
for completeness, upper bounds the diameter of Core, and is already known from the literature for
both models:

Statement 2.4  Define cqis as in (2.5). Then, for every € > 0, with high probability

diam(Core,,) <(+e) 2cdist

_ 29
loglogn | log(z —2)| 2:9)

Statement 2.4 for CM,, is van der Hofstad and coworkers [17, Proposition 3.1], for PA,, it is
Dommers and coworkers [9, Theorem 3.1].
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Next we bound the distance between a vertex and Core,. We define the k-exploration graph of a
vertex v as a suitable subgraph of its k-neighborhood, built as follows: We consider the usual explo-
ration process starting at v, but instead of exploring all the edges incident to a vertex, we only explore a
fixed number of them, namely dyyq defined in (2.2). (The choice of which edges to explore is a natural
one, and it will be explained in more detail in the proofs.)

We stress that it is possible to explore vertices that have already been explored, leading to what
we call a collision. If there are no collisions, then the k-exploration graph is a tree. In presence of
collisions, the k-exploration graph is not a tree, and it is clear that every collision reduces the number
of vertices in the k-exploration graph.

Henceforth we fix € > 0 and, in analogy with (2.1), we define, forn € N,

loglogn

+ _
K =(1+e) s’ (2.10)

Our second statement for the upper bound shows that the & -exploration graph of every vertex in the
graph either intersects Core,, or it has a bounded number of collisions:

Statement 2.5 (Bound on collisions) There is a constant ¢ < oo such that, with high probability,
the kf -exploration graph of every vertex in the graph has at most c collisions before hitting Core,,. As
a consequence, for some constant s > 0, the kf -exploration graph of every vertex in the graph either
intersects Core,, or its boundary has cardinality at least

$(diwa) = (log n)! <o), @2.11)

With a bounded number of collisions, the k' -exploration graph is not far from being a tree, which
explains the lower bound (2.11) on the cardinality of its boundary. Having enough vertices on its
boundary, the & -exploration is likely to be connected to Core, fast, which for our purpose means in
o(loglog n) steps. This is the content of our last statement:

Statement 2.6 There are constants B, C < oo such that, with high probability, the k} -exploration
graph of every vertex in the graph is at distance at most h, = [Blogloglogn + C] from Core,.

The proof for this is novel. For example, for the configuration model, we grow the &k + h, neigh-
borhood of a vertex, and then show that there are so many half-edges at its boundary that it is very
likely to connect immediately to the core. The proof for the preferential attachment model is slightly
different, but the conclusion is the same. This shows that the vertex is indeed at most at distance &k} + 4,
away from the core.

In conclusion, with high probability, the diameter of the graph is at most

(k* + hy) + diam(Core,,) + (K} + h,,),

which gives us the expressions in (1.9) and (1.13) and completes the proof of the upper bound.

3 | LOWER BOUND FOR CONFIGURATION MODEL

In this section we prove Statements 2.1 t02.3 for the configuration model. By the discussion in
Section 2.1, this completes the proof of the lower bound in Theorem 1.3.
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In our proof, it will be convenient to choose a particular order to pair the half-edges. This is made
precise in the following remark:

Remark 3.1 (Exchangeability in half-edge pairing) Given a sequence d = (di,...,d,) such
that £, = d; + --- + d, is even, the configuration model CM, can be built iteratively as
follows:

> start with d; half-edges attached to each vertex i € [n] = {1,2,...,n};

> choose an arbitrary half-edge and pair it to a uniformly chosen half-edge;

> choose an arbitrary half-edge, among the £, — 2 that are still unpaired, and pair it to a uniformly
chosen half-edge; and so on.

The order in which the arbitrary half-edges are chosen does not matter in the above, by exchange-
ability (see also [13, Chapter 7]).

3.1 | Proof of Statement 2.1

With a slight abuse of notation (see (1.8)), in this section we set
dmin = mil’l{d1, ,dn}

Given a vertex v € [n] and k € N, we denote the set of vertices at distance at most k from v (in the
graph CM,,) by U (v) and we call it the k-neighborhood of v.

Definition 3.2 (Minimally k-connected vertex) For k € Ny, a vertex v € [n] is called minimally
k-connected when all the vertices in U<(v) have minimal degree, that is,

di=dmin foralli e Uq(v),

and furthermore there are no self-loops, multiple edges or cycles in U< (v). Equivalently, v is minimally
k-connected when the graph U (v) is a regular tree with degree dpip.

We denote the (random) set of minimally k-connected vertices by M C [n], and its cardinality by
M, = | M|, that is, M} denotes the number of minimally k-connected vertices.

Remark 3.3 (The volume of the k-neighborhood of k-minimally connected vertices)  For a minimally
k-connected vertex v, since U< (v) is a tree with degree dpn, the number of edges inside U<, (v) equals
(assuming dpin > 2)

k dmin k ifdmin = 2;
k=) dmindmin = D' =9 g kg 3.1

=1 minm lfdmin > 3.
Moreover, the number of vertices inside U< (v) equals i + 1. By (3.1), it is clear why dy,in > 2, or
dmin > 3, is crucial. Indeed, this implies that the volume of neighborhoods of minimally k-connected

vertices grows exponentially in k.

Remark 3.4 (Collapsing minimally k connected trees) By Remarks 3.1 and 3.3, conditionally on
the event {v € M} that a given vertex v is minimally k-connected, the random graph obtained from
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CM,, by collapsing U< (v) to a single vertex, called a, is still a configuration model with n — iy vertices
and with #,, replaced by ¢, — 2ix, where the new vertex a has degree dpmin(dmin — 1)*.

Analogously, conditionally on the event {v € My, w € M,,, Ut(v)NU<,(w) = @} that two given
vertices v and w are minimally £ and minimally m-connected with disjoint neighborhoods, collapsing
U4 (v) and Ug,(w) to single vertices a and b yields again a configuration model with n — iy — i,
vertices, where &, is replaced by ¢, — 2i; — 2i,, and where the new vertices a and b have degrees equal
t0 dmin(dmin — 1* and dpin(dmin — 1)™, respectively.

We denote the number of vertices of degree k in the graph by ny, that is,

ny = Z ]l{dl:k}~ (32)

i€[n]

We now study the first two moments of M, where we recall that the total degree £, is defined
by (1.1):

Proposition 3.5 (Moments of M) Let CM,, be a configuration model such that dpi, > 2. Then, for
allk € N,
b diin(ng,, — i)

EMd=ng, || ————. (3.3)
ll:! Crn—2i+1

where iy is defined in (3.1). When, furthermore, ¢,, > 4iy,

ng .
E[M?] < E[Mi)? + E[M;] <(z‘k+ 1)+ ok din ""“;h. ) (3.4)
n— k

Before proving Proposition 3.5, let us complete the proof of Statement 2.1 subject to it. We are
working under the assumptions of Theorem 1.3, hence d,,;, > 3 and the degree sequence d satisfies the
degree regularity condition, Condition 1.1, as well as the polynomial distribution condition Condition
1.2 with exponent 7 € (2, 3). Recalling (1.1)-(1.2), we can write ny = np:::nin and £, =n YN kpys
so that, as n — oo,

ng =npg . (1+o0()), &,=nu(l+o0(l), with p; >0, u:= z kpy < 0. 3.5

min min min
keN

Recalling the definition (2.1) of £, and (3.1), for k =k,

(dmin - l)k; -1 — d

L ) min l-¢ T 2(1-¢)
k- dmin P Fa—— 2(log n) "¢ (1 + o(1)), hence I O((logn) ).
(3.6)
Bounding E[M,] < n, it follows by (3.4) that
Var[M;-] < E[M-] (OGir-) + O(ixn-)) < nO((logn)*'=9) = n'*0. (3.7)

On the other hand, applying (3.3), for some ¢ € (0, 1) one has

lk;

dinin Pa. L
E[M-1> npa. <M + 0(1)> > npg clogn'™ = pl-o) (3.8)
; p

min
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Relations (3.7) and (3.8) show that (2.3) holds, completing the proof of Statement 2.1. O

Remark 3.6 (Disjoint neighborhoods) Let us show that, with high probability, there are vertices
v,w € My~ with Ug-(v) N Ug-(w) = @. We proceed by contradiction: fix v € M- and assume
that, for every vertex w € M-, one has Ug-(v) N Ug-(w) # @. Then, for any w € M- there
must exist a self-avoiding path from v to w of length < 2k;; which only visits vertices with degree dp;y,
(recall that U-(v) and U-(w) are regular trees). However, for fixed v, the number of such paths is
O((dmin — ™) = O((log n)*'79), see (2.1), while by Statement 2.1 the number of vertices w € M-
is much larger, since M;- ~ E[M;-] = n'=", see (3.8).

Proof of Proposition 3.5 To prove (3.3) we write

M= Y Tpewmy, 3.9)
v€E[n]: d,=d

‘min

and since every vertex in the sum has the same probability of being minimally k-connected,
E [Mi] = ng,, P(v € My). (3.10)

A vertex v with d,, = dp;, 18 in My when all the half-edges in U< (v) are paired to half-edges incident
to distinct vertices having minimal degree, without generating cycles. By Remark 3.1, we can start
pairing a half-edge incident to v to a half-edge incident to another vertex of degree dp,. Since there
are ng _ — 1 such vertices, this event has probability

min

dmin(nd - 1)

min

Cn—1

We iterate this procedure, and suppose that we have already successfully paired (i — 1) couples of
half-edges; then the next half-edge can be paired to a distinct vertex of degree dy,, with probability

dmin(n.dmin )] _ dmin(ndmjn - l) 3.11)
—2i-1)-1_ 7,—2i+1

Indeed, every time that we use a half-edge of a vertex of degree dpni,, we cannot use its remaining
half-edges, and every step we make reduces the total number of possible half-edges by two. By (3.1),
exactly i; couples of half-edges need to be paired for v to be minimally k-connected, so that

[

dnin(ng,,, — )
E[M,] = ndminP(V € M) = ng_. _— (3.12)
,13 Con—2i+1

which proves (3.3). If ng < i the right hand side vanishes, in agreement with the fact that there

cannot be any minimally k-connected vertex in this case (recall (3.1)).
To prove (3.4), we notice that

E[M?] = D Py, w € My). (3.13)

v.weln]: d,=d,=d

min
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We distinguish different cases: the k-neighborhoods of v and w might be disjoint or they may overlap,
in which case w can be included in U (v) or not. Introducing the events

Av,w = {Usk(v) N USk(W) ?é Q} 5 Bv,w = {W S Usk(v)} 5 (314)
we can write the right hand side of (3.13) as

D[P (vwe MiAS,) + P (v,w € My Ay Buw) +P (vow € My, Ay, By) | (3.15)

v,Ww€E|[n]
dv:dw:dmin

Let us look at the first term in (3.15). By Remarks 3.3 and 3.4, conditionally on {v € M;},
the probability of {w € My, A7, } equals the probability that w is minimally k-connected in a new
configuration model, with £, replaced by ¢, —2i; and with the number of vertices with minimal degree
reduced from ny  tong — (ix + 1). Then, by the previous analysis (see (3.12)),

min

. b diin(nay, —i— i — 1)
Plowe M) = [ =255

i=1

P(V S Mk). (3.16)

By direct computation, the ratio in the right hand side of (3.16) is always maximized for iy = O (pro-
vided 7, > 2n4  — 3, which is satisfied since £, > dminng,,, = 3ny4 by assumption). Therefore,
setting i; = 0 in the ratio and recalling (3.12), we get the upper bound

P (v,w € Mk,AS,W) <

b dmin(ndmi“ -0
1 O, —2i+1

] Pve M) =P e My)>. (3.17)

Since there are at most 12

y pairs of vertices of degree dpn, it follows from (3.17) that

min

Y P(vwe MuAs,) <n Pe M) =EIMI, (3.18)

v,we|[n)
d,=d,=d,

min

which explains the first term in (3.4).
For the second term in (3.15), v and w are minimally k-connected with overlapping neighborhoods,
and w € U(v). Since {v,w € M} NA,, NB,, C{ve M}nB,,, we can bound

> PrhweMcAwBL) <E[ Y ey Y 1] 619
v,we[n] ve€[n]: d,=d ;, weln]: d, =d;,
d,=d,=d;,

and note that ZWGM 1g,, = |U«(v)| = ik + 1, by Remark 3.3. Therefore

Y P(v.w€ M Ay, Buy) < BIM Gk + 1), (3.20)

v,we[n]
d,=d, =dp,

which explains the second term in (3.4).
For the third term in (3.15), v and w are minimally k-connected vertices with overlapping neigh-
borhoods, but w € U<(v). This means that dist(v,w) = [+ 1 for some [ € {k,...,2k — 1}, so that
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U<(v)NU<—x(w) = @ and, moreover, a half-edge on the boundary of U<(_x)(w) is paired to a half-edge
on the boundary of U (v), an event that we call F, ;. Therefore

2k—-1

weMInALNBL C | e M) 0 {Us0) N Uge) = @) N Fpgpe. (321
1=k

and we stress that in the right hand side w is only minimally (! — k)-connected (in case / = k this just
means that d,, = dy;,). Then

2k—1

P(v,w € My, A, BS,,) < Z E []l{veMk,weM,,k, Usk(v)nUS,,k(w):(a}]lF\,‘W;,T,{] . (3.22)
i=k

By Remark 3.4, conditionally on {v € My, w € M, U(v) N U< (w) = @}, we can collapse
U< (v) and U;_i(w) to single vertices a and b with degrees respectively dpmin(dmin — 1)* and dpin (dimin —
1)I7*, getting a new configuration model with ¢, replaced by £, — 2i; — 2i;_;. Bounding the probability
that a half-edge of a is paired to a half-edge of b, we get

P(Fy i | v € M, w € Mig, Uq(v) N U1 (w) = @)
< dmin(dmin - 1)kdmin(dmin - 1)Z_k < driin(dmin - l)l (323)
- Cp— 20— 20— 1 - Cn— 4iy

because [ < 2k — 1 and, consequently, i;_; < i;—; < iy — 1. Plugging (3.23) into (3.22), and then
forgetting the event {w € M, U<(v) N U< (w) = @}, leads to

} S AP (doin — 1)
Y PhweMiuA,, B, < Y "——) ) PoeMy
vaveln] = Ok vaveln] (3.24)
\=d,,=duiy o — 1) ,=d, =iy
< ——— i E[M],
S Iok—1 N, K[M;]

where we have used the definition (3.1) of iy—;. Since (dmin — 1)izk—1 < iz, again by (3.1), we have
obtained the third term in (3.4). [

3.2 | Proof of Statement 2.2

We recall that W{' and W} are two independent random vertices chosen uniformly in M- (the set of
minimally k; -connected vertices), assuming that Mk; # @ (which, as we have shown, occurs with
high probability). Our goal is to show that

lim P(E,) = 0, (3.25)

n—-oo

where we set

E, := {dist(Uaq (W), U (W})) < 2k} = {dist(W}, W5) < 2k; + 2k, } . (3.26)
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We know from Statement 2.1 that as n — oo

1 1 Var[M-]
P (M, < SEM, 1) <P (1M, - EIM, 1| > SEM ) < il CICED
S EMy;

n

Therefore,
P(E,) = P E N (M > E[Mk]}>+o(l)

= (wn =v1,wg=v2}]l{dist(v],vz)szk;+2l}n}]I{Mk_>%E[Mk_]} +o(1)
Vi, »ze[n] " "

VIEMA M EM;—} (3.28)
< E [ ] MZ ]l{dlst(L] V) L2k +2k }]l{Mk;>%]E[Mk;]} + 0(1)
Vi,V Eln ks
P (vi, v, € My, dist(vy,v2) < 2k, + 2k
< ) ( — n*2%) +o(1).
Vi, E€[n] ZE[Mk;]z

In analogy with (3.14), we introduce the event
Ay, 1= {USk;(Vl) NUg-(v2) # o},

and show that it gives a negligible contribution. Recalling the proof of Proposition 3.5, in particular
(3.20) and (3.24), the sum restricted to A, ,, leads precisely to the second term in the right hand side
of (3.4):

m'“ dmm
P (V],Vz (S Mk;, Avl.vz) . E[Mk;] <(lk + 1)+ lzk = >
whéw  GEMgE T SEM P (3.29)

_ O@;) +Oliar;) — O((logn)?)
- ]E[Mk;] T pl-oD)

= 0(1)5

where we have used (3.6) and (3.8) (see also (3.5)).
We can thus focus on the event A}, |, = {U«x-(v1) N U«-(v2) = @}. By Remark 3.4,

P (dist(vi,v2) < 2ky + 2ky | viova € My, A5 L)) = P (dist(a, b) < 2k,), (3.30)

where P is the law of the new configuration model which results from collapsing the neighborhoods
USk; (vy) and Usk;(vz) to single vertices a and b, with degrees dmin(dmin — Dk = O(logn) (recall
(2.1)-(2.2)). The degree sequence d of this new configuration model is a slight modification of the
original degree sequence d: two new vertices of degree O(log n) have been added, while 2(ix- + 1) =
O(log n) vertices with degree dp,, have been removed (recall (3.6)). Consequently d still satisfies the
assumptions of Theorem 1.3, hence Statement 2.3 (to be proved in Section 3.3) holds for P and we
obtain

P (dist(a, b) < 2k,) = o(1). (3.31)
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We are ready to conclude the proof of Statement 2.2. By (3.28)-(3.29)-(3.30),

P(E)= ),

1
vy, Eln] ZE[Mk;]z

A ] P (v, v € M
< P (dist(a. b) < 2k,) Pl €Me) |
1
Vi,V E€[n] ZE[Mk;]Z

" Bl
= PP (dist(a, b) < 2k,) ——— + o(1).

1
ZE[Mk; ]2

P (vi,v2 € My, dist(vi, v2) < 2k; + 2k, A5 )

Vi)

+o(1)

Observe that E[(M;-)*] = E[M;-]* + Var(M,-) = O(E[M;-]*), by the second relation in (2.3).
Applying (3.31), it follows that P(E,) = o(1), completing the proof of Statement 2.2. O

3.3 | Proof of Statement 2.3

In this section, we give a self-contained proof of Statement 2.3 for CM,, as used in the proof of
Statement 2.2.

Given two vertices a,b € [n], let Py(a, b) be the set of all self-avoiding paths of length k from a
to b, that is of all sequences (xg, 71, ..., 7)) € [n]¥*! with 7y = a, 7 = b and such that (z;_;, 7;) is
an edge in the graph, for alli = 1, ..., k. Analogously, let Py(a) = Upepn1Pr(a, b) denote the set of all
paths of length k starting at a.

Let us fix an arbitrary increasing sequence (g;),cN, (that will be specified later). Define, for a,b €
R, a A b := min{a,b}. We say that a path # € Py(a,b) is good when d,, < g; A gi—; for every
[ =0,...,k, and bad otherwise. In other words, a path is good when the degrees along the path do
not increase too much from 7y to 72, and similarly they do not increase too much in the backward
direction, from 7y to 7y 2.

For k € Ny, we introduce the event

&la,b) = {Ar € Pr(a,b) : = is a good path} . (3.32)
To deal with bad paths, we define
Fila)={3n € Pu(a) : dr > g but d, <gVi<k-1}. (3.33)

If distcm, (a, b) < 2k, then there must be a path in P(a, b) for some k < k, and this path might be
good or bad. This leads to the simple bound

2k k
P(distew, (a.b) < 28) < Y P(&x(a, b)) + ' [B(Fi(@) + PFu(®)] . (3.34)
k=0 k=0
We give explicit estimates for the two sums in the right hand side. We introduce the size-biased
distribution function F; associated to the degree sequence d = (dy, ..., d,) by
" 1
Fan = — Z dy g < (3.35)

 yeln]
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If we choose uniformly one of the £, half-edges in the graph, and call D}, the degree of the vertex
incident to this half-edge, then F}(r) = P(D;; < r). We also define the truncated mean

va(0) = E[(D} = D1 ip:<yy] = Zd(d D14 < (3.36)

” ve([n]

Now we are ready to bound (3.34).

Proposition 3.7 (Path counting for configuration model) Fixd = (dy, ...,d,) (such that ¢,, = d| +
.. + d, is even) and an increasing sequence (gl),ENO. For all distinct vertices a, b € [n] with d, < go,
dy < go, and for all k € N,

2k —k k-1
d, 2k
P (distom, (a, b) < 2k) <42 Z <1 - 7) | § RGN
= " (3.37)

k—1

k
+da+dn Y (1 - ?) (1 - E3 g0 [ ] waten-
k=1 =1

n

Proof Fix an arbitrary sequence of vertices 7 = (7;)o<i<k € [n]¥*'. The probability that vertex g is
connected to r; is at most

dyydr,
ln—1

because there are d, d,, ordered couples of half-edges, each of which can be paired with probability
1/(Z, — 1) (recall Remark 3.1), and we use the union bound. By similar arguments, conditionally on a
specific half-edge incident to 7y being paired to a specific half-edge incident to z;, the probability that
another half-edge incident to x; is paired to a half-edge incident to z, is by the union bound bounded
from above by
(dﬂl - l)dﬂ'z
=3

Iterating the argument, the probability that z is a path in CM,, is at most

dryds, (s, = Dds, (dr, = Dz, (s, = Dy,

. 3.38
tn—1 ¢,-3 =5 Cn—2k—1) ( )
Let us now fix a,b € [n] with a # b. Recalling (3.32)-(3.36), choosing 7o = a, 7y = b and
summing (3.38) over all vertices 1y, ..., m— satisfying d,, < g; A gi—; yields
(¢, —2k— 1N
P(Ex(a.b) < dudy— "= H Enval8i A 8k-1) (3.39)

Bounding (£, — 2k — 1)!!/(£, — D! < (£, — 2k)~* yields the first term in the right hand side of (3.37).
The bound for P(Fi(a)) is similar. Recalling (3.33)-(3.35), choosing 7y = a and summing (3.38) over
vertices 71, ..., mx_1, w such that d,, < g; fori < k — 1 while d,, > g gives

Cn —
P(Pk(a))sd( 1),, <van<g,> 2 (1= FiGe0) }. (3.40)
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and the same holds for P(F()). Plugging (3.39) and (3.40) into (3.34) proves (3.37). [

In order to exploit (3.37), we need estimates on F; and v, provided by the next lemma:

Lemma 3.8 (Tail and truncated mean bounds for D)  Assume that Condition 1.2 holds. Fix n > 0,
then there exist two constants C; = C(n) and Cy = Cy(n) such that, for every x > 0,

1 - Fi(x) < Cix~ 2, V() < Cox377+0, (3.41)

Proof Forevery x > 0and ¢t > 0 we can see that

1-F) = Z A5 = l Y dd, ] = ZE[D,Lps]. (3.42)

” v€E[n] v€E[n]

where we recall that D, is the degree of a uniformly chosen vertex. This means that

n

j=0 f" j=0
. (3.43)
n .
=z lx(l — Fan(x)) + ; (1- Fd,n(;))]
o2 ~(r=1-1) ~(r=2-1)
anclx ”+Z] ”]SQX ",
Jj=x
where we have used Condition 1.2 in the second last step (recall that 2 < 7 < 3).
For v,,, we can instead write
va(r) = 2 dy(dy — Dlg <y = } l Y du(d, - Dy <x}]
On veln] veln] (3.44)
= _E [Dn(Dn - 1)]1{Dn§x}] < iE [D721 D,<x }]
£ Cn
where D,, is again the degree of a uniformly chosen vertex. The claim now follows from
n 2 n . .
—E |D;1ip <vj| = — 2j+ DP (D, 1ip <1y >
z [Dil(p,<v] z, Z( j+ DP (Dulip,<x) > )
oo x—1
=2 Y Q@+ DPD, > ). Dy <x) < = 2(21 + DP(D, > )) (3.45)
f Jj=0 m j=0
x—1 x—1
]

(2] + 1)[1 - Fdn(]) % Z Cj_(’f_z—ﬂ) < §C2x3—r+n.

n
Cn j=0 j=0
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We are finally ready to complete the proof of Statement 2.3:

Proof of Statement 2.3 As in (2.4), we take
ky=(1-e)————, (3.46)

and our goal is to show that, as n — oo,

P (distew (a,b) < 2k,) —> 0. 3.47
a,be[n]IZI}lil,)ébﬁlogn ( 18 CM”(a’ ) - ) - ( )

We stress that 7 € (2,3) and € > 0 are fixed. Then we choose # > 0 so small that

|log(z =2=2n)| _1-¢/2
|log|log(z —2)| = 1—¢ °

<t—2 and (3.48)

We use the inequality (3.37) given by Proposition 3.7, with the following choice of (gx)ieN,:

, := (log n)loglogn,
8k = (gO)PA, where go. ( lg ) (3.49)
P= 5o > 1.

Let us focus on the first term in the right hand side of (3.37), that is

}’L

—k k-1
& (1——) [T vt A g (3.50)

=1

Since 7, = un(1 + o(1)) by (3.5), for k < 2k, we have

U 4k, ~2k, B K2 3 (loglogn)*\
<1 - Z) <1 -7 ) =1 +0<7n> =1 +O<T> =1+o(1). (3.51)

Then observe that, by Lemma 3.8 and (3.49), for k < 2k,

k-1 k/2 k/2

r —r k/2
H V(g1 A 8r-1) = H va(g1)* < Clzc/z H(81)2(3 ) = Cé/z(go)z(3 +m XL P 552
=1 I=1 =1 .

I_Cn —_ 7‘)1
< C2 (80)2(3 7+n)Cp’ ,

with C = ——. Note that C " = O((log n)°) for some ¢ € (0, ), see (3.46), while by (3.48)
logl log(r—2-2n)]
b = exp(| log(r —2 = 2n)|(1 = e)w) = (og )™ Tl < (logm)!=</?,  (3.53)
|log(z —2)|)

hence the right hand side of (3.52) is n°) (since gy = (log n)'°¢'°¢"), Then, for d,,, d;, < logn,

2 2
(3.50) < (15 0% (14 o(1)) n°® = <(1°g " (1oglogn)n0<“> = o(1).

n
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It remains to look at the second sum in (3.37):

k, —k k—1
(g +dp) Y, (1 - ;-") (1 = Frgon [ vaten- (3.54)
k=1 =1

n

By Lemma 3.8 ,we can bound 1 — F}(g) < Ci(gx)"">. By (3.51) and C]f” = O((log n)°) for
some ¢ € (0, 00), see (3.46), bounding the product in (3.54) like we did in (3.52) yields

k

O((logn)) (d, + dp) 2"‘,(gk)—“-z—'”(go)<3—f+">cf’“, (3.55)
k=1

wherep=1/(z—=2—-2x¢)and C = p%l. By (3.49)

— 2 Bepm)phl p(r—2— 2 (3—¢
(81) T2 (go) T ETTIPT = (g ) P2 (g ) O (3.56)
where
T—2-1 p 3—1+7
—2—p=—"—">1, d —@3- = "7 <1 3.57
p(T 1) == an p—l( T+n) -+ (3.57)

This means that, setting D :=p(z =2 —n) — 1%(3 —7+4+1n) >0, by (3.49),

k

. - - N da+d
(3.55) = O((logn)°) (da +dp) Y (g0)™"" < O((logn)’) # (3.58)
k=1 0
Since go = (log n)'°¢!°¢" while d,, d;, < logn, the right hand side of (3.58) is o(1). [

4 | LOWER BOUND FOR PREFERENTIAL ATTACHMENT MODEL

In this section we prove Statements 2.1, 2.2 and 2.3 for the preferential attachment model. By the
discussion in Section 2.1, this completes the proof of the lower bound in Theorem 1.5.

We recall that, given m € N and 6 € (—m, o0), the preferential attachment model PA, is a random
graph with vertex set [f] = {1,2, ..., ¢}, where each vertex w has m outgoing edges, which are attached
to vertices v € [w] with probabilities given in (1.10). In the next subsection we give a more detailed
construction using random variables. This equivalent reformulation will be used in a few places, when
we need to describe carefully some complicated events. However, for most of the exposition we will
stick to the intuitive description given in Section 1.2.

4.1 | Alternative construction of the preferential attachment model

We introduce random variables &, ; to represent the vertex to which the jth edge of vertex w is attached,
that is

Euj =V = w v, .1
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The graph PA, is a deterministic function of these random variables: two vertices v, w € [f] with
v < w are connected in PA, if and only if &, ; = v for some j € [m]. In particular, the degree of a vertex
v after the kth edge of vertex ¢ has been attached, denoted by D, x(v), is

D) = Y (Lig,mn + L=y (4.2)
(s,0)<(2,k)

where we use the natural order relation
(s,0) < (2,)) = s<t or s=ti<]j.

Defining the preferential attachment model amounts to giving a joint law for the sequence & =
(&wi)owjyeNxpm- In agreement with (1.10), we set &;; = 1 for all j € [m], and for ¢ > 2

Dt,j—l(v) +1 +]5/m

ifv=t
CIJ
P&y =vlein)=1p 4s “3)
_ ifv<it,

Cz,j

where £<(,;—1) is a shorthand for the vector (& ;)(s.)<q,i-1) (and we agree that (¢,0) := (t — 1,m)). The
normalizing constant ¢, in (4.3) is indeed given by (1.11), because by (4.2),

Y D= ) (A+1)=2(-Dm+(G-1).

velr] (D<(tj—1)

The factor j6/m in the first line of (4.3) is commonly used in the literature (instead of the possibly
more natural 6). The reason is that, with such a definition, the graph PA,(m, ) can be obtained from
the special case m = 1, where every vertex has only one outgoing edge: one first generates the random
graph PA,,,(1, 6/m), whose vertex set is [m¢?], and then collapses the block of vertices [m(i— 1)+ 1, mi)
into a single vertex i € [f] (see also [13, Chapter 8]).

Remark 4.1 It is clear from the construction that PA; is a labeled directed graph, because any edge
connecting sites v, w, say with v < w, carries a label j € [m] and a direction, from the newer vertex
w to the older one v (see (4.1)). Even though our final result, the asymptotic behavior of the diameter,
only depends on the underlying undirected graph, it will be convenient to exploit the labeled directed
structure of the graph in the proofs.

4.2 | Proof of Statement 2.1

We denote by U< (v) the k-neighborhood in PA; of a vertex v € [¢], that is the set of vertices at distance
at most k from v, viewed as a labeled directed subgraph (see Remark 4.1). We denote by D,(v) = D; ,,(v)
the degree of vertex v after time ¢, that is, in the graph PA; (recall (4.2)).

We define the notion of minimally k-connected vertex in analogy with the configuration model (see
Definition 3.2), up to minor technical restrictions made for later convenience.

Definition 4.2 (Minimally k-connected vertex) Fork € Ny, avertex v € [¢]\[#/2] is called minimally
k-connected when D,(v) = m, all the other vertices i € U< (v) are in [¢/2] \ [t/4] and have degree
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D,(i) = m+ 1, and there are no self-loops, multiple edges or cycles in U< (v). The graph U (v) is thus
a tree with degree m + 1, except for the root v which has degree m.

We denote the (random) set of minimally k-connected vertices by My C [f] \ [¢/2], and its
cardinality by M = | My].

For the construction of a minimally k-connected neighborhood in the preferential attachment model
we remind that the vertices are added to the graph at different times, so that the vertex degrees change
while the graph grows. The relevant degree for Definition 4.2 is the one at the final time ¢. To build a
minimally k-connected neighborhood, we need

k k1
omt =1
ik=1+Em’=— 4.4)
= m-—1

many vertices. The center v of the neighborhood is the youngest vertex in U< (v), and it has degree m,
while all the other vertices have degree m + 1.

Our first goal is to evaluate the probability P(v € M) that a given vertex v € [f] \ [#/2] is
minimally k-connected. The analogous question for the configuration model could be answered quite
easily in Proposition 3.5, because the configuration model can be built exploring its vertices in an
arbitrary order, in particular starting from v, see Remark 3.1. This is no longer true for the preferential
attachment model, whose vertices have an order, the chronological one, along which the conditional
probabilities take the explicit form (1.10) or (4.3). This is why the proofs for the preferential attachment
model are harder than for the configuration model.

As it will be clear in a moment, to get explicit formulas it is convenient to evaluate the probability
Plv € My, Ug(v) = H), where H is a fixed labeled directed subgraph, that is, it comes with the
specification of which edges are attached to which vertices. To avoid trivialities, we restrict to those H
for which the probability does not vanish, that is, which satisfy the constraints in Definition 4.2, and
we call them admissible.

Let us denote by H° := H \ 0H the set of vertices in H that are not on the boundary (ie, they are
at distance at most k — 1 from v). With this notation, we have the following result:

Lemma4.3 Let {PA,},cn be a preferential attachment model. For any vertex v € [f]\ [¢/2] and any
directed labeled graph H which is admissible,

P e My, U(v) = H) = Li(H) L,(H), 4.5)

where

Hﬁm+5’ (4.6)

Ll(H) =
ueHo =1 Cuj
“ Du_i(H)+|HN[u-1]|6
L) =[] H[1— LCoha LA UL 4.7)
ugHe j=1 Cuj

andD,_(H) = Zwe 1 Du—1,m(W) is the total degree of H before vertex u is added to the graph, and the
normalization constant ¢, is defined in (1.11).
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Proof We recall that {a 5 b} denotes the event that the ith edge of a is attached to b (see (4.1)).
Since H is an admissible labeled directed subgraph, for all # € H® and j € [m], the jth edge of u is
connected to a vertex in H, that we denote by GJH (u). We can then write

m

veMougo) =ty =( (N> ew)n () Nwsm). @8

ueHe j=1 ugH’ j=1

where of course {u s H } = UW§E ylu Lw }. The first term in (4.8) is exactly the event that the edges
present in H are connected in PA, as they should be. The second term is the event that the vertices
u & H° are not attached to H, so that U< (v) = H. Notice that in (4.8) every vertex and every edge of
the graph appears. For a vertex u € H°, by (1.10)

j m+6
[P’(u 50w | PAMJ_1> - nte (4.9)

LMJ

because the vertex 6’jH (u) has degree precisely m (when u is not already present in the graph). For
u ¢ H°, we have to evaluate the probability that its edges do no attach to H, which is

Dy_1(H) +|HN[u—1]|6

Cuj

(4.10)

]P’(u LH PAu_IJ-_l) —1-

Using conditional expectation iteratively, we obtain (4.9) or (4.10) for every edge in the graph,
depending on whether the edge is part of H or not. This proves (4.6) and (4.7). [

The event {v € My, U<(v) = H} is an example of a class of events, called factorizable, that will
be used throughout this section and Section 6. For this reason we define it precisely.

It is convenient to use the random variable &, ;, introduced in Section 4.1, to denote the vertex
to which the jth edge of vertex w is attached (see (4.1)). Any event A for PA,; can be characterized
iteratively, specifying a set A;; C [s] of values for &, for all (s, i) < (¢, m):

A= ﬂ {gs,i € As,i .

(s,0)<(t,m)

Of course, the set A;; is allowed to depend on the “past,” thatis, A;; = Ay (gg(s’,‘_l)), or equivalently
As,i = As,i(PAs,i—l ) Let us set AS(S,Z‘) = ﬂ(uJ)S(s,i) AuJ‘.

Definition 4.4 (Factorizable events) An event A for PA, is called factorizable when the conditional

probabilities of the events {&;; € A,;}, given the past, are deterministic. More precisely, for any (s, i)
there is a (non-random) p;; € [0, 1] such that

P (& € Ayi| E<isimty) = Psi 4.11)

on the event &<(s;—1y € A<(s,i—1)- AS a consequence, the chain rule for probabilities yields

PA = [ po

(s,0)<(t,m)
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Remark 4.5 Relations (4.9) and (4.10) show that A = {v € M;,U«(v) = H} is a factorizable
event. In fact, Ay, is either the single vertex Gfl (s) (if s € H?) orthe set [s — 1]\ H (if s ¢ H°). In
both cases, the set A;; C [s — 1] has a fixed total degree and a fixed cardinality, hence the conditional
probabilities (4.11) are specified in a deterministic way (recall (4.3)).

Note that the event {v € My} is not factorizable. This is the reason for specifying the realization

of the k-neighborhood U (v) = H.

Henceforth we fix € > 0. We recall that k;; was defined in (2.1). Using the more customary ¢ instead
of n, we have

loglog¢
k= (1—e)—2 8 (4.12)
log
We recall that M- = |M;-| denotes the number of minimally k; -connected vertices in PA, (see

Definition 4.2). We can now prove half of Statement 2.1 for the preferential attachment model, more
precisely the first relation in Equation (2.3).

Proposition 4.6 (First moment of M)  Let (PA,)»1 be a preferential attachment model, with m > 2
and 6 € (—m,0). Then, for k;” as in (4.12), as t - oo,

E[M;-] — oo. 4.13)
Proof Similarly to the proof of (3.3), we write

EMd= ) PoeMy= D D PveM,UxO)=H), (4.14)
ve[r\[1(2] velt\[z/2]1 HC[t1\[7/4]

where the sum is implicitly restricted to admissible H (ie, to H that are possible realizations of U<x(v)).
Since we will use (4.5), we need a lower bound on (4.6) and (4.7). Recalling (1.11), it is easy to
show, since the number of vertices in H° equals i, — m* = i,_;, and u < v for u € H°,

4.15)

m+6 ket
v2m+6)+1+6/m

Li(H) > [

Note that for u < /4 all the factors in the product in (4.7) equal 1, because H C [f] \ [¢/4]. Restricting
to u > t/4 and bounding D,_;(H) + |[H N [u — 1]|6 < (m + 1 + 6)iy, we get

L+ 8)i 3mt/4

L) > |1 - O L+ O . (4.16)

Let us write H = {v} U H’ where H' is a subset of [¢/2] \ [t/4] with |H'| = i, — 1. Clearly, for any

such subset there is at least one way to order the vertices to generate an admissible H. The number of

possible subsets in [7/2] \ [t/4] is at least (A’/ 4]) Then, we obtain
i =

mi . 3mt/4

t/4 m+6 (m+ 1+ 8)ix

E[M,] > < ) [ ] - — "% . 4.17)
ve[t]%l/Z] ix=1) |v@m+6)+1+6/m 2Qm +5)
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Recalling that

l/4 _ fik
(ik—1> B 4ik(ik—1)!(1+0(1))’ (4.18)

since miy_; < ig, we obtain

. i 7 3mt/4
o)y —_— m o )1/ R 1)
24u(i, — D! | t2m+8)+1+6/m £(2m+5)

Choosing k = k; as in (4.12) and bounding 1 —x > e~ for x small, as well as m + 1 < 2m, we obtain

1
(C/)ik,— 2 ik; !

¢ (m

BiM 2 5 2o — E> " exp (=3emi) > exp (=3cmic) (4.20)

where C is a constant and C’ = 4C/m. Recalling that i is given by (4.4), and k; by (4.12), hence
i = %mkf (14 o(1)) < 2(log1)'~¢, hence

2D _ ot @21)

i1 < [2(log '€ ]! < [2(log 1)' ]
and also (C'e3¢™)% = (), This implies that E[M,] — oo, as required. n

Remark 4.7 (Disjoint neighborhoods for minimally k-connected pairs) ~ We observe that, on the event
{v,w € My} with v # w, necessarily

Ua) N Ux(w) = @,

because if a vertex x is in U< (v) N U (w) and x # v, w, this means that D,(f) = m + 2, because
in addition to its original m outgoing edges, vertex x has one incident edge from a younger vertex in
U<(v) and one incident edge from a younger vertex in U< (u), which gives a contradiction. Similar
arguments apply when x = v orx = w.

We use the previous remark to prove the second relation in Statement 2.1 for the preferential
attachment model.

Proposition 4.8 (Second moment of M-) Let (PA));»1 be a preferential attachment model, with
m>?2andé € (—m,0). Then, fork € N,

E[M}] < exp (32mi? /t) E[M)* + E[Mq]. (4.22)
Consequently, for k = k; as in (4.12), as t — oo,
]E[M,f;] < (1+o()E[M- 1. (4.23)
Proof We write

EM)= Y PrweMy=) PE.weM)+EM,]. (4.24)
v.welf]\[2/2] VEW
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By Remark 4.7, for v # w we can write

PrweMo= D P@we M, Uk®) = H, Ug(w) = H,). (4.25)

H,nH, =2

The crucial observation is that the event {v,w € My, U(v) = H,, U(w) = H,,} is factorizable
(recall Definition 4.4 and Remark 4.5). More precisely, in analogy with (4.6) and (4.7):

]P)(V, we Mk, Usk(v) = Hv» Usk(w) = Hw) = Ll (HV7 Hw)LZ(Hv» HW)s (4‘26)
where now

LH,.Hy) = [] ﬁ mto, 4.27)

xeHouHo j=1  Cxd
JUH,

m

Ly(H,.H,) = H H [1 _ D VH) +|H VH) NI - LIS 4.28)

xgHOUH?, j=1 Cxj

To prove (4.26), notice that in (4.27) and (4.28) every edge and every vertex of the graph appear.
Further, (4.27) is the probability of the event {U<«(v) = H,,Ux(w) = H,}, while (4.28) is the
probability that all vertices not in the two neighborhoods do not attach to the two trees.

A look at (4.6) shows that L, (H,, H,,) = L,(H,)L,(H,,). We now show that analogous factorization
holds approximately also for L,. Since, for every a,b € [0, 1], witha+b < 1, itis true that 1 —(a+b) <
(1 —a)(1 — b), we can bound

[1 _ Dui(HyUH,) + |(H, UH,) N [x — 1]I5] (4.29)

Cxj

<

[1 _D(H)+ |H N [x - 1]|5] [1 _ Dyi(Hy) + |Hy N [x — 1]|5]

CXJ CXJ'

When we plug (4.29) into (4.28), we obtain L,(H,)L,(H,,) (recall (4.7)) times the following terms:

-1 -1
(H [l_Dx_l(Hv)+|H‘vn[x—1]|5]> (H[l_DX_I(HW>+|H¢n[x—1J|6]> 430)

xeH?, Cuy x€H? Cxj

We can bound D,_(H,) + |H, N [x — 1]|6 < Dy—_1(H,) < (m+ 1)i; (recall that § < 0) and analogously
for H,,. The square brackets in (4.30) equal 1 for x < /4 (since H,, H,, C [t] \ [¢/4] by construction),
and for x > /4 we have c,; > £(2m +6) > %t by (1.11) and 6 > —m. We can thus write

m 17!
LZ(H\), Hw) < LZ(HV) L2(HW) H H ll - (’n-}:ﬂ]

x€HIUH?, j=1 y! 4.31)

< Ly(Hy) Ly(Hy) exp <2(2ik)m(m::¢> ,
4
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where we have used the bound 1 — z > e~ for small z > 0. Since m + 1 < 2m, we obtain

D Y Pw.we M, Ua®) = H,, Ug(w) = Hy)

vEw | HNH, =2

<exp(32mit/t) Y D LiH)LH) Y, Y LiH)La(H,) (4.32)

velr\[t/2] H, welt\[#/2] H,,

= exp (32mi; /t) EIM]*.

Substituting (4.32) in (4.24) completes the proof of (4.22).
Finally, for k = k;” as in (4.12) we have i~ < 2(log £)!=¢ (recall that iy is given by (4.4)). We have
already shown in Proposition 4.6 that E[Mkl—] — 00, hence (4.23) follows. [

Together, Propositions 4.6 and 4.8 prove Statement 2.1. This means, as for the configuration model,
P P
since Var(M}-) = o(E[M;:]?), that My~ /E[M;-1— 1, so in particular M;- — 0. O

=00

4.3 | Proof of Statement 2.3
Fix € > 0 and define, as in (2.4),

2loglogt

=0 e — o

(4.33)

Statement 2.3 follows from the following result on distances between not too early vertices:

Proposition 4.9 (Lower bound on distances) Let (PA,)»1 be a preferential attachment model, with
m > 2 and 6 € (—m,0). Then, there exists a constant p > 0 such that

max P (distpa, (x,y) < 2k) < P

. 4.34
xy> ~ (log?? *39

(log 02

Inequality (4.34) is an adaptation of a result proved in [10, Section 4.1]. Consequently we just give
a sketch of the proof (the complete proof can be found in [6, Appendix A]).
Let us denote by u < v the event that vertices u, v are neighbors in PA,, that is

o= (o).
u A% jL:J1<M viUiv M)

(As a matter of fact, {v N u} is only possible if v > u, while {u iR v} is only possibly if v < u.)
Given a sequence 7 = (7o, 71, ..., ) € [7]! of distinct vertices, we denote by {z C PA,} the event
that z is a path in PA,, that is

k
{rCPA}={mpomomn on}= ﬂ{ﬂi—l © 7}
i=1

The proof of Proposition 4.9 requires the following bound on the probability of connection between
two vertices from Dommers and coworkers [9, Lemma 2.2]: fory = m/(2m + §) € (%, 1), there exists
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¢ € (0, o0) such that, for all vertices u, v € [t].

P o v)<cuvvy 'uav)™. (4.35)
From Dommers and coworkers [9, Corollary 2.3] we know, for any sequence = = (7o, 71, ..., %) €
[/]¥*! of distinct vertices,
k-
P(z CPA,) < p(ro, 71, ..., @ H (4.36)

i—o (i A 7771+1)y(77:l V mi)- v’

where C is an absolute constant. The history of (4.36) is that it was first proved by Bollobés and Riordan
[4] for § = 0 (so that y = 1 —y = 1/2), and the argument was extended to all § in Dommers and
coworkers [9, Corollary 2.3].

Remark 4.10  Proposition 4.9 holds for every random graphs that satisfies (4.36).

We proceed in a similar way as in Section 3.3. Given two vertices x,y € [¢], we consider paths
w = (my, 71, ... , ) between x = m and y = ;. We fix a decreasing sequence of numbers (g,),ENU
that serve as truncation values for the age of vertices along the path (rather than the degrees as for the
configuration model). We say that a path x is good when 7; > g; A gx—; forevery [ =0, ..., k, and bad
otherwise. In other words, a path is good when the age of vertices does not decrease too much from
7o to 72 and, backwards, from 7z to 7z /». Intuitively, this also means that their degrees do not grow
too fast. This means that

2k,
P(distea, (x, y) < 2k) < Z P(&(x, ) + Z [P(Fix) + PCFi(y)] » (4.37)
k=1 k=1

where &(x,y) is the event of there being a good path of length &, as in (3.32), while Fy(x) is the event
of there being a path = with z; > g; for i < k — 1 but 7y < g, in analogy with (3.33).
Recalling the definition of p(xy, 71, ..., 7) in (4.36), we define for [ € N,

t t t
fueow) =Ny D0 D o D pa ., mg, W), (4.38)
=81 = =

setting fo..(x, w) = x4y and f1,,(x, w) = 1 (45g,,p(x, w). From (4.37) we then obtain

2k, t
P(distpa, (v, ) < 2K) < D D fiay21o0 D140, D)
k=1 e (4.39)
Kk gi—1 Kk gi—1

+ 20 D e D+ DY fun D

k=1 =1 k=1 =1

This is the starting point of the proof of Proposition 4.9.
We will show in [6, Appendix A] that the following recursive bound holds

FirCe, D) < ™ + Lypg (Bl (4.40)
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for suitable sequences (ax)reN,> (Br)reN and (gu)ieN (see [6, Definition A.2]). We will prove recursive
bounds on these sequences that guarantee that the sums in (4.39) satisfy the required bounds. We omit

further details at this point, and refer the interested reader to [6, Appendix A].

4.4 | Proof of Statement 2.2

Consider now two independent random vertices Wi and Wé that are uniformly distributed in the set of

minimally k7 -connected vertices M. We set
E; := {dist(Ug- (W), Uc-(W3)) < 2k, } = {dist(W}, W}) < 2k + 2k, }
and, in analogy with Section 3.2, our goal is to show that
tlirczlo P(E;) = 0.

We know from Statement 2.1 that, as t — oo,

1 1 Var(My;
P (Mk; < —E[Mk/—]> <P (M - EIM:)| > SEMi 1) < ——— = o(D).
2 2 TEIM,- 1P

We also define the event
B; := {maxD,(v) < \/;}
ve(t]
and note that it is known (see [13, Theorem 8.13]) that lim,_,, IP(B;) = 1. Therefore,

P(E) =P (E 0 (M > LEIM-1) 0 B, ) + o(1)

El Z ]1(W;:v,,W£=v2}]l{dist(vl,vz)SZk,‘+2kt}]l(Mkl_>%IE[Mkr_]]ﬂB,] +o(1)

ViV, E[1]

L em,-vem,-)
<E 2 {disl(vl,vz)SZkt‘+27<,}]I{Mkr_>%E[Mkl_]}]lB, +o(1)
v, €N 1/2] i
P (Vl,V2 S Mkz_’ dist(vy, ) < 2kt_ + 2]2,, Bt)
< : +o(1).
R=rN172) ;EM,-?

The contribution of the terms with v; = v, is negligible, since it gives

2 ey P (v € My ) 4
LEIMy; 2 ElM;:]

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

because E[Mk;] — oo by Proposition 4.6. Henceforth we restrict the sum in (4.45) tov; # v,. Summing
over the realizations H; and H; of the random neighborhoods U<-(v1) and U<-(v2), and over paths

x from an arbitrary vertex x € dH; to an arbitrary vertex y € dH,, we obtain

4
PE)S g D, ) DY

v vel\l/2] H,, HyCl1)\[t/4] x€0H,,yE0H, T:X—Yy
vV, |zl <2k,

P (Ug-(v1) = Hi, Ug-(v2) = Ha, 7 C PA,, B,) + o(1).

(4.46)
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The next proposition, proved below, decouples the probability appearing in the last expression:

Proposition 4.11  There is a constant q € (1, o) such that, for all vi,v,, Hy, H, and r,

P (Us-(v1) = Hy, Ugi-(v2) = Hy, 1 CPA,, By)

(4.47)
<qP (U () = Hy, Ug:(v2) = Hy) P(x CPA)).

The proof of Proposition 4.11 reveals that we can take g = 2 for ¢ sufficiently large. Using (4.47)
in (4.46), we obtain

4q

PE) < g

PWU«(v1) = Hi, Ug(v2) = Hy)
v €10\[/2] Hy, HyClH\[t/4]

(4.48)
X z Z P(z C PA,)

XE0H,,yE0H, 7:X—y
|z|<2k,

If we bound P (z C PA;) < p(x) in (4.48), as in (4.36), the sum over & can be rewritten as the right
hand side of (4.39) (recall (4.37)-(4.38)). We can thus apply Proposition 4.9 —because the proof of
Proposition 4.9 really gives a bound on (4.39)— concluding that the sum over 7 is at most p/(log t)?,
where the constant p is defined in Proposition 4.9. Since |0H,| = |0H,| = mK = (logt)'~¢ (recall
(4.12)), we finally obtain

4 plogn’— , 4pq
P(E,) < EM_ 1= (1+0(1))———, 4.49
(E) < BT (log)? (M- (14 0(1)) Tog 1) (4.49)
where the last step uses Proposition 4.8. This completes the proof that P(E;) = o(1). O

Proof of Proposition 4.11  Werecall that H; C [t]\[¢/4] is alabeled directed subgraph containing vy,
such that it is an admissible realization of the neighborhood U«-(v1) of the minimally & -connected
vertex vy (recall Definition 4.2); in particular, H; \ {v;} C [#/2] \ [t/4]. We also recall that, for all
u € Hi’ := H, \ 0H; and j € [m], the jth edge of u is connected to a well specified vertex in Hj,

denoted by Qfl (u). Analogous considerations apply to H».
We have to bound the probability

P (Us-(v1) = Hy, Ug-(»2) = Hy, # CPA,, B,), (4.50)

where 7 = (1o, 71, ..., mx) € [t]! is a given sequence of vertices with 7y € 0H, and n; € 0H,.
The event in (4.50) is not factorizable, because the degrees of the vertices in the path z are not speci-
fied, hence it is not easy to evaluate its probability. To get a factorizable event, we need to give more
information. For a vertex v € [¢], define its incoming neighborhood N (v) by

NO) = {w)j) € [[AX[m] : uv). (4.51)

The key observation is that the knowledge of N'(v) determines the degree Dy(v) at any time s < t
(for instance, at time ¢ we simply have D;(v) = [N (v)| + m).

We are going to fix the incoming neighborhoods N (7)) = K|, ..., N (m—1) = Ki_; of all vertices
in the path x, except the extreme ones 7y and 7 (note that N (rp) and N (1) reduce to single points
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in H} and H7, respectively, because 7o € dH, and 7, € 0H). We emphasize that such incoming

neighborhoods allow us to determine whether z# = (7o, ... , 7x) is a path in PA,. Recalling the definition
of the event B; in (4.44), we restrict to

K| <1,  forie[k—1], (4.52)

and simply drop B, from (4.50). We will then prove the following relation: for all vy, v,, H|, Hy, 7 =
(7o, ..., m), and for all K, ..., Ki_ satisfying (4.52), we have

P (Ug:- (1) = Hi, Uiz (7)) = Hy, {N' (1) = K1, ..., N(mi1) = K1 )

(4.53)
<qP(Ug:(v1) = Hi, Ug-(v2) = Hy) P(N' () = Ky, ..., N (i) = Kyt -

Our goal (4.47) follows by summing this relation over all K, ..., K;—; for which 7 C PA,.
The first line of (4.53) is the probability of a factorizable event. In fact, setting for short

R := (Hx[m]) U (H{x[m]) UK U ... U K,

the event in the first line of (4.53) is the intersection of the following four events (see (4.8)):

m . k=1 .
ﬂ m{ui»HjH‘(u)}, ﬂ ﬂ{u—>9H7(u)} ﬂ ﬂ {ui>7ri},

ueH; j=1 ueHy j=1 i=1 (uj)eK;

N (ub (Hy U Hy U],

(uHElIX[mI\ R

where we set 7° := 7 \ {ng, 7} = (71, ..., m—1). Generalizing (4.9)-(4.10), we can rewrite the first
line of (4.53) as follows, recalling (1.10):

P (Ug:- (1) = Hi, Uiz () = Hy, {N' (1) = K1, ..., N(mi) = Ko )

B - m+6 Dyjoi(m) +6
(i gy ==y

{ H (1 Du,j—l(H1UHzU7r")+|(H1UH2Un”)ﬁ[u—1]|6>}
(wPHEMRImI \ R Cuj

We stress that D, j_(r;) is non-random, because it is determined by K;. Analogous considerations
apply to D, ;_1(H; U Hy U z°). We have thus obtained a factorizable event.
Next we evaluate the second line of (4.53). Looking back at (4.26)-(4.28), we have

P (U (1) = Hi, Ugi-(2) = H, {HHm+5}{HHm+5}

ueH! j= Cuyj ueH? j=1 Cuj

(4.55)
{ H <1_DLtJ—I(HlUH2)+|(H1UH2)0[M—1]|5>}
(u)ElX[m] \ (H{UHS)X[m] Cu,j
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On the other hand,

u i)+ 0
P(N(@@) =Ky, ..., N(mo1) = Kiep) {H H Dyjr(mi) +6 }

i=1 (u,j)EK; Cuj

{ m <1 _Du,,»_1<zr0>+|n”m[u—1]|5>}
(u)Elx[m] \ K,U...UK;_, Cuj

Using the bound (1 — (a + b)) < (1 — a)(1 — b) in the second line of (4.54), and comparing with
(4.55)-(4.56), we only need to take into account the missing terms in the product in the last lines. This
shows that relation (4.53) holds if one sets ¢ = C;| C; therein, where

-1
Dyj-1(Hi UHy) + |(Hy UHy) N [u—1]]6
c_:{ 1 (1_ J1(H1 U H) + |(Hy U ) 0 [ ]|>} |
(u)EK, U ... UK,_, Cuyj

-1
D,i_1(z®)+ |z° N [u—-1]|6
C2:={ || <1— )+ | I)}
. Cu ;
(u)E(H GHE)X[m] J

To complete the proof, it is enough to give uniform upper bounds on C; and C», that does not depend
on Hy, H,, =. We start with C,. In the product we may assume u > t/4, because the terms with u < ¢/4
are identically one, since Hy, H, C [t]\[¢/4]. Moreover, for u > t/4 we have ¢,; > t(2m+6)/4 > mt/4
by (1.11) and 6 > —m. Since D,,j_1(H; UH>) < 2(m+ 1)iy, using 1 —x > e~ for x small and recalling
that 6 < 0, it follows that

(4.56)

—2(m + 1)ik> > e_%“{[k—lllik’ 4.57)

—1
€= I1 <1 oy
(u)eK, U ... UK,_, 4

where K, = K; U ... U K. Since i; is given by (4.4), for k = k; as in (4.12) we have
i = %mkf(l + 0(1)) < 2(log1)!~¢. Recalling also (4.52) and bounding m + 1 < 2m, we obtain

) < & Kunlic < g6ki/Vi = cOoRi/V) — | 4 o(1),

For C,, since Dy j_1(n°) < D(xn°) = |Ky_y| < k\ﬁ, again by (4.52), we get

—1
G >

m

kr/t —% & \goupe .
<1 _ \/—> >e n Vi |H{UH |m > e~ 16ki/\i — q _ o(1). (4.58)
() E(H]UHS)X[m] 4

It follows that CC; is bounded from above by some constant g. This completes the proof. n

4.5 | Proof of Theorem 1.6
Dereich and coworkers [10] have already proved the upper bound. For the lower bound we use

Proposition 4.9. In fact, for k, as in (4.33),

P(H <2k)= ) P(Vi=viV,=vy,dist(vy,v2) <2k). (4.59)

Vi Elr]
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t

If v; and v, are both larger or equal than gy = [m

1, then we can apply Proposition 4.9. The
probability that V| < gp or V, < g¢ is

P{Vi <golU{V2<go}) <280/t =0(1), (4.60)
hence we get
i, t— go)?
1 > P(distr.va) < 2k) +o(1) < U=80 P | )=o),
12 2 (logt)?
vy ElH\[go]
and this completes the proof of Theorem 1.6. O

5 | UPPER BOUND FOR CONFIGURATION MODEL

In this section we prove Statements 2.5 and 2.6 for the configuration model. By the discussion in
Section 2.2, this completes the proof of the upper bound in Theorem 1.3, because the proof of
Statement 2.4 is already known in the literature, as explained below Statement 2.4.

Throughout this section, the assumptions of Theorem 1.3 apply. In particular, we work on a
configuration model CM,,, with = € (2,3) and dp;, > 3.

5.1 | Proof of Statement 2.5

We first recall what Core,, is, and define the k-exploration graph.
Recall from (2.8) that, for CM,,, Core,, is defined as

Core, = {i € [n] such that d; > (logn)°},

where ¢ > 1/(3—7). Since the degrees d; are fixed in the configuration model, Core, is a deterministic
subset.

For any v € [n], we recall that U¢(v) C [n] denotes the subgraph of CM,, consisting of the
vertices at distance at most k from v. We next consider the k-exploration graph f]sk(v) as a modification
of U« (v), where we only explore dp, half-edges of the starting vertex v, and only dp,, — 1 for the
following vertices:

Definition 5.1 (k-exploration graph in CM,,)  The k-exploration graph of a vertex v is the subgraph
U< (v) built iteratively as follows:

> Starting from f]so(v) = {v}, we consider the first d,;, half-edges of v and we pair them, one by
one, to a uniformly chosen unpaired half-edge (see Remark 3.1), to obtain f]sl ).

> Assume that we have built 0sf(v), for £ > 1, and set /IL,,»(V) = ﬁs{(V) \ ﬁs(f_l)(v). For each
vertex in ﬁ:f (v), we consider the first dpi, — 1 unpaired half-edges and we pair them, one by one,
to a uniformly chosen unpaired half-edge, to obtain ﬁs(,fJ,])(v). (Note that, by construction, each
vertex in az,g(v) has at least one already paired half-edge.)

Definition 5.2 (Collision) In the process of building the k-exploration graph IA]Sk(v), we say that
there is a collision when a half-edge is paired to a vertex already included in the k-exploration graph.
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We now prove Statement 2.5. Let us fix € > 0 and set

loglogn

kt=( — =
n = e =D

5.1)

Proposition 5.3 (At most one collision)  Under the assumption of Theorem 1.3, the following holds
with high probability: the k}-exploration graph of every vertex either intersects Core,, or it has at
most one collision.

Proof Letus fix a vertex v € [n]. We are going to estimate the probability
qn(v) = P(there are at least 2 collisions in ﬁgk;; (v) and (75;(; (v) nCore, = @).

If we show that sup,c(,; ¢.(v) = o(1/n), then it follows that Zvem gn,(v) = o(1), completing the
proof.

Starting from the vertex v, we pair successively one half-edge after the other, as described in
Definition 5.1 (recall also Remark 3.1). In order to build IAJSk; (v), we need to make a number of pairings,
denoted by N, which is random, because collisions may occur. In fact, when there are no collisions,
N is deterministic and takes its maximal value given by i+ in (3.1), therefore

N <ip < m(dmm — D < 3 (logn)'*e. (5.2)
! min — 2
Introducing the event C; := “there is a collision when pairing the ith half-edge,” we can write

qn(V) < E Z ]l{ci’ c, f]sq(v)ncor@n:@}
I<i<j<N (5.3)

- Z ]P)(Ci’ G, j<WN, I/}gk:’r(V) N Core, = @),

1<i<j<3(log n)!+¢

Let E, be the event that the first £ half-edges are paired to vertices with degree < (logn)? (ie, the
graph obtained after pairing the first # half-edges is disjoint from Core,). Then

P(Cis C}’ j < Ns ﬁsk:(v) n Coren = @) < P(Cb C}5 Ej—l) (5 4)
= P(Ei-) P(Ci | Ei-1) P(Cj | Cis Ej-1). .
On the event E;_;, before pairing the ith half-edge, the graph is composed by at most i — 1 vertices,
each with degree at most (log n)°, hence, for i < 3(logn)'*¢,

(i — D(logn)® < 3(log n)'*¢(log n)® < (log n)°+1+¢
c
Zr—2i+1 = £, —6logn)te p

P(Ci|Ei-) <

’

for some ¢ € (0, o), thanks to £, = nu(1 + o(1)) (recall (3.5)). The same arguments show that

1 o+l+e
P(C/| i ) < ¢ S8
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Looking back at (5.3)-(5.4), we obtain

wpams Y

veln] 1<i<j<3(log n)!*+¢

2(c+1+¢€) 20+4(1+¢)
2 (logn) <9 (logn) o1 7
n2 n2? n

which completes the proof. n

Corollary 5.4 (Large boundaries)  Under the assumptions of Theorem 1.3 and on the event lA]Sk: »n
Core, = @, with high probability, the boundary lA]=k:(v) of the k! -exploration graph of any vertex
v € [n] contains at least (dmin — 2)(Amin — 1)"n+ -1 > %(log n)'*€ vertices, each one with at least two
unpaired half-edges.

Proof By Proposition 5.3, with high probability, every k;f -exploration graph has at most one collision
before hitting Core,. The worst case is when the collision happens immediately, that is, a half-edge
incident to v is paired to another half-edge incident to v: in this case, removing both half-edges, the
k' -exploration graph becomes a tree with (dmin — 2)(dmin — 1)"n+ -1 vertices on its boundary, each of
which has at least (dp, — 1) > 2 yet unpaired half-edges. Since (diin —2)/(dmin — 1) > % for dmin > 3,
and moreover (dpmin — D)5 = (log n)!*¢ by (5.1), we obtain the claimed bound.

If the collision happens at a later stage, that is, for a half-edge incident to a vertex different from
the starting vertex v, then we just remove the branch from v to that vertex, getting a tree with (d, —
D(dmin — DE ! vertices on its boundary. The conclusion follows. [

Together, Proposition 5.3 and Corollary 5.4 prove Statement 2.5. O

5.2 | Proof of Statement 2.6

Consider the k}-exploration graph U= 05@7 (v) of a fixed vertex v € [n], as in Definition 5.1, and
let x1, ..., xy be the (random) vertices on its boundary. We stress that, by Corollary 5.4, with high
probability N > >(log n)'**. Set

h, = [Blog loglogn + C], 5.5

where B, C are fixed constants, to be determined later on.

Henceforth we fix a realization H of U = U <+ (v) and we work conditionally on the event { U=H }.
By Remark 3.1, we can complete the construction of the configuration model CM,, by pairing uniformly
all the yet unpaired half-edges. We do this as follows: for each vertex xj, ..., xy on the boundary of 0,
we explore its neighborhood, looking for fresh vertices with higher and higher degree, up to distance
h, (we call a vertex fresh if it is connected to the graph for the first time, hence it only has one paired
half-edge). We now describe this procedure in detail:

Definition 5.5 (Exploration procedure) Let xi,...,xy denote the vertices on the boundary of a
k' -exploration graph U = U<+ (v). We start the exploration procedure from x;.

> Step 1. We set v’ := x; and we pair all its unpaired half-edges. Among the fresh vertices to which
E)“ has been connected, we call v; the one with maximal degree.

> When there are no fresh vertices at some step, the procedure for x; stops.

> Step 2. Assuming we have built v, we pair all its unpaired half-edges: among the fresh connected

1
vertices, we denote by v’ the vertex with maximal degree.

V



CARAVENNA ET AL WI LEY 481

> We continue in this way for (at most) A, steps, defining vj‘.” for 0 <j < h, (recall (5.5)).

After finishing the procedure for x|, we perform the same procedure for x, x3, ... , xy, defining the

vertices v, V9 vy | starting from vy

0° 1,..., = X;.

Definition 5.6 (Success) Let x1, ..., xy be the vertices on the boundary of a k}-exploration graph
U= ng; (v). We define the event S, := “x; is a success” by

={{v).V).....v) } nCore, # @} = {d,0 > (logn)® for some 0 <j< h,}.
n fi

Here is the key result, proved below:
Proposition 5.7 (Hitting the core quickly) There exists a constant n > 0 such that, for everyn € N
and for every realization H of U,

P(Sy, |U=H) =n, (5.6)

and, for eachi=2,...,N,
P(S, |U=H, S5, ... 85 ) = n. (5.7)

This directly leads to the proof of Statement 2.6, as the following corollary shows:

Corollary 5.8 (Distance between periphery and Core,)  Under the hypotheses of Theorem 1.3, with
high probability, the distance of every vertex in the graph from Core,, is at most
loglogn

Proof By Corollary 5.4, with high probablhty, every vertex v € [] elther is at distance at most k'
from Core,, or has a k! -exploration graph U= U<k+ (v) with at least N > (log n)!*€ vertices on its

boundary. It suffices to consider the latter case. Conditionally on U==H, the probability that none of
these vertices is a success can be bounded by Proposition 5.7:

N
P(S;, n---nSs |U=H)=P(s; |U=H)[[P(s5 | U=H. S5, ... S5 )
=R , (5.9)

<= <1 =)™ = o(1/n),

This is uniform over H, hence the probability that no vertex is a success, without conditioning, is still
o(1/n). 1t follows that, with high probability, every v € [n] has at least one successful vertex on the
boundary of its k -exploration graph. This means that the distance of every vertex v € [n] from Core,
is at most k' + h, = k' + o(loglogn), by (5.5). Recalling (5.1), we have completed the proof of
Corollary 5.8 and thus of Statement 2.6. n

To prove Proposition 5.7, we need the following technical (but simple) result:

Lemma 5.9 (High-degree fresh vertices) Consider the process of building a configuration model
CM,, as described in Remark 3.1. Let G; be the random graph obtained after | pairings of half-edges
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and let V) be the random vertex incident to the half-edge to which the Ith half-edge is paired. For all
I,n € Nand z € [0, 00) such that

1< Z(l — Fa,(2), (5.10)

the following holds:
P(dy,, >z Vi € G| G) >zl - Fdn(Z)] (5.11)

l’l

In particular, when Conditions 1.1 and 1.2 hold, for every { > 0 there are ¢ > 0, ny < oo such that

Vn>ny, 0<z<n'3 1<n'/3: P(dvm >z, Vigl ¢91|Q,)> ¢

> (5.12)

Proof By definition of CM,,, the (/4 1)st half-edge is paired to a uniformly chosen half-edge among
the £, — 21 — 1 that are not yet paired. Consequently

1
P(dy, >z Vi €G|G) = 7 o1 Z dy1ig,>z- (5.13)
VEG

Since |G| <21 < g(l — F4,(2)) by (5.10), we obtain

v;g,d (d,>2) f(ﬂ(l —Fan(2) = |Gil) 2 z(1 _Fd,n(Z))ZLfn’ (5.14)

which proves (5.11).

Assuming Conditions 1.1 and 1.2, we have £, = un(l + o(1)), with u € (0, ), see (3.5), and
there are ¢; > 0 and @ > 1/2 such that 1 — Fy,(2) > ¢ z‘(f_l) for 0 < z < n®. Consequently, for
0 < z < n!'/3, the right hand side of (5. 10) is at least 2 oo 1)/3 Note that (z — 1)/3 < 2/3 (because

7 < 3), hence we can choose ng so that 2 ZW > n'/3 for all n > ng. This directly leads to (5.12). =

With Lemma 5.9 in hand, we are able to prove Proposition 5.7:

Proof of Proposition 5.7 We fix v € [n] and a realization H of U= ﬁsk; (v). We abbreviate

P*(-) :=P(-| U = H). (5.15)
The vertices on the boundary of U are denoted by xi, ..., xy. We start proving (5.6), hence we
focus on x; and we define v:)”, (1”, .. x) as in Definition 5.5, w1th v“) X1.

We first fix some parameters. Since 2 < 7 < 3, we can choose ¢, y > 0 small enough so that
Ei=1-e(z-24+¢)>0. (5.16)
Next we define a sequence (g7)¢eN, that grows doubly exponentially fast:
ge =29 =exp ((log2)exp(y £)). (5.17)

Then we fix B = 1/y and C = log(c/log?2) in (5.5), where o is the same constant as in Core,, see
(2.8). With these choices, we have

gy, = e” " 5 eologloen — (100 o, while g, 1 < (logn)”. (5.18)
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Roughly speaking, the idea is to show that, with positive probability, one has d W > gi. Asa

()

consequence, d W0 > g, = (logn)?, thatis v, belongs to Core, and x; is a success. The situation is

actually more 1nvolved since we can only show that d oo > g; before reaching Core,,.

Let us make the above intuition precise. Recalling (5. 15), let us set
H, =g, Hy :=H, Hk.—HU{v(” ...,v;(”} for1 <k < h,.

Then we introduce the events

4 14

T, .= U {d"g) > (logn)"}, W, = ﬂ {dvzl) > &k, V(k” & Hk—l}- (5.19)
k=0 k=0

(1)

In words, the event T, means that one of the vertices Vo s - (” has already reached Core,,, while
o V) grow at least like go, ..., g, and, further-

the event W, means that the degrees of vertices Vg s -
more, each vy is a fresh vertex (this is actually already 1mphed by Definition 5.5, otherwise v; would
not even be defined). We finally set

o = Wy, EJ‘:=T}‘_1UVVJ‘ for 1 <j<h,.

Note that 7, coincides with S, = “x; is a success.” Also note that W, C {d o > (logn)°},
Iy,
because d i > g, > (logn)° by (5.18), hence
hﬂ

Ey, =Ty~ UW,, CT),-1 U {dm > (log n)’} =T, =S,.

Consequently, if we prove that P*(E}, ) > #, then our goal P*(S,,) > # follows (recall (5.6)).

The reason for working with the events E; is that their probabilities can be controlled by an induction
argument. Recalling (5.15), we can write

P*(Ej) = PX(T) + PH(T7 0 Wit

2
= ]P)*(T) +P(d (1) > 8j+1, V (5 O)

§£H|{U H}nT"nW)]P’*(T”nW)

]+l

The key point is the following estimate on the conditional probability, proved below:
P(dy > g1 vy, & Hj | ({U=HINTNW) > 1—¢g,  where ¢ :=e®@"/2  (521)
with & > 0 is defined in (5.16) and ¢ > 0 is the constant appearing in relation (5.12). This yields

P*(Ejr) 2 PH(T) + (1 =) P(TE N W) > (1 - ) (PHT) + PX(TF N W)
= (1 —g)P*(T;UW)) = (1 - )P*(Ti., U W)
= (1 - )P (E),

which leads us to

h,—1

P > PE) [0 - &) 2 P*(Eo) H(l — &) =

j=0 j=0
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Since ijo g; < o0 and g; < 1 for every j > 0, by (5.21) and (5.17), the infinite product is strictly
positive. Also note that P*(Ep) = P*(d o) > 2) = 1, because go =2 and d ) > diin > 3. Then 57 > 0,
0 0
as required.

It remains to prove (5.21). To lighten notation, we rewrite the left hand side of (5.21) as
g1 1= ]P’(dvml > g1 Vi € H;| D), where Dj = (U=H}n ¢ N W (5.22)

Note that, on the event D; C W;, vertex v}” is fresh (ie, it is connected to the graph for the first

time), hence it has m = d « — 1 unpaired half-edges. These are paired uniformly, connecting v}” to
J
(not necessarily distinct) vertices w”, ..., w®™. Let us introduce for 1 < #Z < m the event
¢
C, 1= ﬂ {dwew > gjs1, W & H;}". (5.23)
k=1

By Definition 5.5, V}L is the fresh vertex with maximal degree among them, hence

{d‘{;l)l > gitls v}il & H]}L =Cp.
Sincem =d m — 1> g; — 1 on W; C D;, the left hand side of (5.21) can be estimated by

gj_l
g1 = 1=P(Cu|Dj) 2 1= [[P(Cc | Djn Cicn)
- =t (5.24)

= 1= [T (1= P(dwo > g1, w* & H; | Dy Cicr) ).
k=1

We claim that we can apply relation (5.12) from Lemma 5.9 to each of the probabilities in the last
line of (5.24). To justify this claim, we need to look at the conditioning event D; N Ci_y, recalling
(5.23), (5.22) and (5.19). In order to produce it, we have to do the following:

> First we build the k' -exploration graph U <+ (v) = H, which requires to pair at most O((dmin —
DK = O((log n)'*+¢) half-edges (recall Definition 5.1);

> Next, starting from the boundary vertex x|, we generate the fresh vertices v\’

02V
side Core,, because we are on the event Tj“, and this requires to pair a number of half-edges

which is at most (logn)°j < (logn)®h, = O((log n)°*1);
> Finally, in order to generate w®, ..., w* ", we pair exactly k — 1 half-edges, and note that
k—1<g—1<g, —1=0(logn)”) (always because v; & Core,).

, v;” all out-

It follows that the conditioning event D; N Cy_; is in the c-algebra generated by G; for /
O((log n)'*°+€) (we use the notation of Lemma 5.9). In particular, / < n!/3. Also note that z = gj4
g, = O((logn)®), see (5.18), hence also z < n'/3. Applying (5.12), we get

c &1 g —1
gj+1 >1- <1—m> Zl—eXp<—Cm> (5.25)

c 8j
>1- - —
21 (-5 i)

INIA
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because | —x < e andn—1 > n/2forall n > 2 (note that g; > go = 2). Since gj+1 = (g;)°, by
(5.17), we finally arrive at

Gi+1 >1- exp < _ %(gj)1—67(7—2+c)> =1- e—C(gf)‘f/Z’ (526)

which is precisely (5.21). This completes the proof of (5.6).

In order to prove (5.7), we proceed in the same way: for any fixed 2 < i < N, we start from the
modification of (5.15) given by P*(-) :=IP(- | U=H R S,il, e S)CC,_I) and we follow the same proof,
working with the vertices v(li’, v;'l) instead of v(l”, s v‘h" (recall Definition 5.5). We leave the details
to the reader. [

6 | UPPER BOUND FOR PREFERENTIAL ATTACHMENT MODEL

In this section we prove Statements 2.5 and 2.6 for the preferential attachment model. By the discussion
in Section 2.2, this completes the proof of the upper bound in Theorem 1.5, because the proof of
Statement 2.4 is already known in the literature, as explained below Statement 2.4.

6.1 | Proof of Statement 2.5

Recall the definition of Core; in (2.8). It is crucial that in Core;, we let D;/>(v) be large. We again
continue to define what a k-exploration graph and its collisions are, but this time for the preferential
attachment model:

Definition 6.1 (k-exploration graph)  Let (PA,)>; be a preferential attachment model. For v € [t], we
call the k-exploration graph of v to be the subgraph of PA,, where we consider the m edges originally
incident to v, and the m edges originally incident to any other vertex that is connected to v in this
procedure, up to distance k from v.

Definition 6.2 (Collision) Let (PA,);»| be a preferential attachment model with m > 2, and let v be
a vertex. We say that we have a collision in the k-exploration graph of v when one of the m edges of a
vertex in the k-exploration graph of v is connected to a vertex that is already in the k-exploration graph
of v.

Now we want to show that every k-exploration graph has at most a finite number of collisions
before hitting the Core;, as we did for the configuration model. The first step is to use Dommers and

coworkers [9, Lemma 3.9]:

Lemma 6.3 (Early vertices have large degree) Fix m > 1. There exists a > 0 such that
]P’( min D) > (log r)") 1 6.1)
i<r¢

for some 6 > 1/(3 — 7). As consequence, [t*] C Core, with high probability.
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In agreement with (2.10) (see also (4.12)), we set

loglogt

kf=(1+e) .
logm

6.2)

We want to prove that the exploration graph IAjskf(v) has at most a finite number of collisions
before hitting Core,, similarly to the case of CM,,, now for PA,. As it is possible to see from (2.8),
Core, C [t/2], that is, is a subset defined in PA; when the graph has size 7/2. As a consequence, we
do not know the degree of vertices in [t/2] when the graph has size ¢. However, in Dommers and
coworkers [9, Appendix A.4] the authors prove that at time ¢ all the vertices #/2 + 1, ..., t have degree
smaller than (log)°.

We continue by giving a bound on the degree of vertices that are not in Core,. For vertices i €
[2/2]\ Core; we know that D, »(i) < (log #)?, see (2.8), but in principle their degree D,(i) at time ¢ could
be quite high. We need to prove that this happens with very small probability. Precisely, we prove that,
for some B > 0,

P ( max D@ > (1 + B)(log t)") =o(1). 6.3)
ie[t/2]\Core,

This inequality implies that when a degree is at most (log #)” at time #/2, then it is unlikely to grow by
B(log 1)° between time /2 and ¢. This provides a bound on the cardinality of incoming neighborhoods
that we can use in the definition of the exploration processes that we will rely on, in order to avoid Core;,.
We prove (6.3) in the following lemma that is an adaptation of the proof of Dommers and coworkers
[9, Lemma A.4]. Its proof is deferred to [6, Appendix B]:

Lemma 6.4 (Old vertex not in Core;)  There exists B € (0, o0) such that, for every i € [t/2],

P (Di(i) = (1 + B)(log 1)° | Dy2(i) < (log1)°) = o(1/1). (6.4)

We can now get to the core of the proof of Statement 2.5, that is we show that there are few collisions
before reaching Core;:

Lemma 6.5 (Few collisions before hitting the core)  Let (PA,);»| be a preferential attachment model,
withm > 2 and 5 € (-m,0). Fixa € (0,1) and | € N such that | > 1/a. With k} as in (6.2), the
probability that there exists a vertex v € [t] such that its k" -exploration graph has at least  collisions
before hitting Core, U [t] is o(1).

Next we give a lower bound on the number of vertices on the boundary of a k}-exploration
graph. First of all, for any fixed a € (0, 1), we notice that the probability of existence of a vertex in
[#] \ [#], that has only self loops is o(1). Indeed, the probability that a vertex s has only self-loops is
O(Sim). Thus, the probability that there exists a vertex in [] \ [#“] that has only self-loops is bounded
above by

Yo (sim) = O™y = o(1), (6.5)

s>

since we assume that m > 2. We can thus assume that no vertex in [¢] \ [#“] has only self-loops. This
leads us formulate the following Lemma, whose proof is also deferred to [6, Appendix B].
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Lemma 6.6 (Lower bound on boundary vertices) Let (PA,);>| be a preferential attachment model,
withm > 2and 6 € (—m,0). Fora € (0, 1), consider avertexv € [t]\(Core,U[t?]) and its k-exploration
graph. If there are at most [ collisions in the k-exploration graph, and no vertex in [t] \ [t*] has only
self loops, then there exists a constant s = s(m, ) > 0 such that the number of vertices in the boundary
of the k-exploration graph is at least s(m, [ym*.

Together, Lemmas 6.3, 6.5 and 6.6 complete the proof of Statement 2.5.

The rest of this section is devoted to the proof of Lemma 6.5. We first need to introduce some
notation, in order to be able to express the probability of collisions. We do this in the next subsection.

6.1.1 | Ulam-Harris notation for trees
Define
k

W i=[ml”,  Weoi= W,
£=0

where Wy := @. We use W, as a universal set to label any regular tree of depth k, where each vertex
has m children. This is sometimes called the Ulam-Harris notation for trees.

Given y € Wy and z € W,,, we denote by (y,z) € Wy, the concatenation of y and z. Given
x,y € W«i, we write y > x if y is a descendant of x, that is y = (x, z) for some z € W;.

Given a finite number of points zy, ..., z, € W<, abbreviate Z,, = (z1, ... , Zm), and define Wz']j) to
be the tree obtained from W; by cutting the branches starting from any of the z;’s (including the z;’s
themselves):

Wl i={xeWq: xtz, ...x 2} (6.6)

Remark 6.7 (Total order) The set W<; comes with a natural total order relation, called shortlex
order, in which shorter words precede longer ones, and words with equal length are ordered lexico-
graphically. More precisely, given x € W, and y € W,,,, we say that x precedes y if either £ < m, or if
¢ =mandx; <y;forall 1 <i< . We stress that this is a fotal order relation, unlike the descendant
relation > which is only a partial order. (Of course, if y > x, then x precedes y, but not vice versa).

6.1.2 | Collisions

We recall that, given z € [f] and j € [m], the jth half-edge starting from vertex z in PA; is attached
to a random vertex, denoted by & ;. We can use the set W, to label the exploration graph U (v), as
follows:

Us) = {Ve) oy - 6.7

where Vg = v and, iteratively, V, = &y ; for z = (x,j) withx € W1 and j € [m].
The first vertex generating a collision is Vz,, where the random index Z; € W, is given by

Z) = min {z € W« © V, =V, for some y which precedes z},
where “min” refers to the total order relation on W, as defined in Remark 6.7.

Now comes a tedious observation. Since Vz, = V, for some y which precedes Z1, by definition of Z;,
then all descendants of Z; will coincide with the corresponding descendants of y, thatis Vz, ) = V(,.»
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for all r. In order not to over count collisions, in defining the second collision index Z,, we avoid
exploring the descendants of index Z,, that is we only look at indices in W(<Z/I<)’ see (6.6). The second
vertex representing a (true) collision is then Vz,, where we define

Z, := min {z € Wf}() . zfollows Z;, ie, V. =V, for some y which precedes z},
Iteratively, we define
Z;41 := min {z € Wf;() : z follows Z;, ie, V., = V, for some y which precedes z},

so that V is the ith vertex that represents a collision. The procedure stops when there are no more
collisions. Denoting by C the (random) number of collisions, we have a family

Zy, Lo, ..., Zc

of random elements of W, such that (Vz )1<;<c are the vertices generating the collisions.

6.1.3 | Proof of Lemma 6.5
Recalling (6.7) and (6.6), given arbitrarily zy, ...,z € W<, we define

3@

UL = {Vz}zewg, (6.8)
that is, we consider a subset of the full exploration graph 0Sk(v), consisting of vertices V, whose
indexes z € W, are not descendants of zj, ..., z;. The basic observation is that

U4(0)=02(v)  ontheevent {C=1 Zi =2z,....2 =2z). 6.9)

In words, this means that to recover the full exploration graph lAJSk(v), it is irrelevant to look at

vertices V. for z that is a descendant of a collision index zj, ..., z;.
We will bound the probability that there are / collisions before reaching Core, U [¢“], occurring at
specified indices zj, ...,z € W, for k = k;r as in (6.2), as follows:
P(C=1 Z =z,....Z =z, Us(v) n (Core, U [1]) = @) < a(r), (6.10)

where for the constant B given by Lemma 6.4, we define

4(1 B) (1 tu+1+e
a(py = 2B Qog 7T 6.11)
m I
Summing (6.10) over zy, ...,z € W< we get
P(C =1, U(v) N (Core, U [1']) = @) < a(t)! W'
Since, for k = k,+ as in (6.2), we can bound

mk+1 -1

|Wer| = — < 2mk < 2 (logt)'*e, (6.12)
m—

the probability of having at least [ collisions, before reaching Core; U [1%], is O(a(t)!(log 1)*) = o(1/1),
because [ > 1/a by assumption. This completes the proof of Lemma 6.5. It only remains to show that
(6.10) holds true.
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6.1.4 | Proof of (6.10): case [ = 1
We start proving (6.10) for one collision. By (6.9), we can replace f]sk(v) by A(Z‘)(v) in the left hand

side of (6.10), that is, we have to prove that =
P(C =1, Z =z, l/}(;‘k’(v) N (Core, U [t]) = @) < a(D). (6.13)
Since v, k and z; are fixed, let us abbreviate, and recalling (6.8),
wi=waw,  U:=050={V.} (6.14)

Note that V_ is the only collision precisely when U is a tree and V., € U. Then (6.13) becomes
P(Uis atree, V,, € U, Un (Core, U []) = @) < a(). (6.15)

We will actually prove a stronger statement: for any fixed deterministic labeled directed tree H C [7]
and for any y € H,

a(t)

P(U = H9 VZ[ =) Hn (Coret U [ta]) = Q) S Z(IOgt)H'E

P(U=H, V, ¢ H). (6.16)

This yields (6.15) by summing over y € H—note that |H| < |W<| < 2(log£)'*¢ by (6.12)—and
then summing over all possible realizations of H.

It remains to prove (6.16). We again use the notion of a factorizable event, as in the proof of the
lower bound. Since the events in (6.16) are not factorizable, we will specify the incoming neighborhood
N(y) (recall (4.51)) of all y € H. More precisely, by labeling the vertices of H, see (6.14), as

H = {vi}sew and y=vs for some s € W, (6.17)

we can consider the events { N (v,) = N, } where N, are (deterministic) disjoint subsets of [¢]x[m].
We say that the subsets (N, )sew are compatible with the tree H when (vy,j) € N, whenever s = ')
with 5,5’ € W, j € [m]. Then we can write

{(U=H} = U {N(v,) =N, forevery s € W}. (6.18)

compatible (N, )seyy

Since the degree of vertex v, equals D,(v;) = m + |N, |, we can ensure that H N (Core; U [t°]) = @
by restricting the union in (6.18) to those N,_satisfying the constraints

vy >t and [N, | <1+ B)(og1)® —m, Vs e W. (6.19)

Finally, if we write

z1 = (%)) forsome xe W, je [m], (6.20)
then, since V, = &y ;, the event {V; = v;} amounts to require that?

(vx.)) € Ny (6.21)

’Incidentally, we observe that the constraint (6.21) is not included in the requirement that (N,,)sew are compatible, because
z1 = (x,j) € W by definition (6.14) of W.
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Let us summarize where we now stand: When we fix a family of (N, )sey that is compatible and
satisfies the constraints (6.19) and (6.21), in order to prove (6.16) it is enough to show that
P(N (vy) = N,,_for every s € W)

a(t) B ) N .
2o i+ P(N (vs) = N, foreverys € W\ {5}, N(v5) =N, \ {(x.)}).

(6.22)

Let us set

N := U N, C (1] [m). (6.23)
SEW

The probability on the left-hand side of (6.22) can be factorized, using conditional expectations
and the tower property, as a product of two kinds of terms:

> For every edge (u,r) € N—say (u,7) € N, , with s € YW—we have the term

Du,r—l (Vs) + 5

(6.24)
Cu,r
corresponding to the fact that the edge needs to be connected to vy;
> On the other hand, for every edge (u, r) € N, we have the term
Dy,.1(H)+|HN[u—-1]|6
- Du 1(H)+|HN[ Il ’ 6.25)

Cur

corresponding to the fact that the edge may not connect to any vertex in H.

(We emphasize that all the degrees D..( ) appearing in (6.24) and (6.25) are deterministic, since
they are fully determined by the realizations of the incoming neighborhoods (N, )sew.)
We can obtain the right-hand side in (6.22) by replacing some terms in the product.

> Among the edges (1, r) € N, whose contribution is (6.24), we have the one that creates the collision,
namely (vy,j). If we want this edge to be connected outside H, as in the right-hand side in (6.22),
we need to divide the left hand side of (6.22) by

(6.26)

<DVXJ_1(v@)+5> <1 D, j1(H)+ |HN v, — 1]|5>“

Cr.i Cvi

We also have to replace some other terms corresponding to edges (u, ) € N,., because the degree
of vertex v; is decreased by one after connecting (v,,j) outside H. More precisely, for every edge
(u,r) € N,, that is younger than (vy, ), that is (u, r) > (vy, j), we can reduce the degree of vs by one
by dividing the left-hand side of (6.22) by

Dyy1(vs)+6 D)+ 6
Dyri(vs) =146 Dy ji(vs)+6

6.27)

W.NEN, , (U.r)>V,j)

Finally, the contribution of the edges (u,r) € N, for s # 5 is unchanged.
> For every edge (u,r) € N, the probability that such edge is not attached to H, after we reconnect
the edge (v,, ), becomes larger, since the degree of H is reduced by one.
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It follows that the inequality (6.22) holds with a(z) /(2(log t)!+¢) replaced by f, defined by

g (Pt +8N (| DD+ IH 0 v~ 1l D+
- €y, Dy, j-1(vs) + 6

) _ -1
_ <D1(V§)+5> <1 _ Dy +HN Dy 1”5) (6.28)

Cryj Cvyi

-1
< (D) I_DVXJ—I(H) _. g
"\ oy Coy o

because 6§ < 0. We only need to show that f < a(t)/(2(log?)'*¢).
Since ¢, ; > m(v — 1), the first relation in (6.19) yields

Cvi

c‘d>t

Hence, since D,(v;5) < (1 + B)(log1)® by the second relation in (6.19), we can bound

<D1(Vs)> o U+ B)ogn)?

Cy,j mr¢

x

Likewise, since D,(H) < |H|(1 + B)(log?)®, for k = k,+ we get, by (6.12),

<1 B DW-_I(H)>“ < <1 _ 2(logn'*+<(1 + B)(log t)">_1 <

Cy A

where the last inequality holds for 7 large enough. Recalling (6.11),

(1 + B)(log1)? a(t)
mtd ~ 2(logp)l+e’
This completes the proof of (6.22), and hence of (6.10), in the case where [ = 1. O

6.1.5 | Proof of (6.10): general case [ > 2

The proof for the general case is very similar to that for / = 1, so we only highlight the (minor) changes.
In analogy with (6.13), we can replace ﬁsk(v) by U( ? (v) in the left-hand side of (6.10), thanks to

(6.9). Then, as in (6.14), we write

wi=wae),  U:=080={V.}, (6.29)

The extension of (6.16) becomes that for any fixed deterministic labeled directed tree H C [¢] and
forall y,...,y; € H,

=H,V, =y, ..,V, =y, Hn(Core, U [t"]) = @)

(6.30)

!
<2(1:g(?)1+5> (U=H’ V., ¢H,V,, ¢ H, .., V., &H).
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As in (6.17), we can write
H={v}sew and VI = Vs, ooy YI= Vg for some 51, ..., 5, € W.

To obtain a factorizable event, we must specify the incoming neighborhoods N, = N,_for all
s € W, which must be compatible with H and satisfy the constraint (6.19). If we write

71 = (X1,J1)s -5 21 = (X1, J0)s for some xi,...,x; €W, ji,...,Ji € [m],
then we also impose the constraint that obviously generalizes (6.21), namely
(W o1) € Ny, oo (o) € Ny
The analogue of (6.22) then becomes

P(N (v5) = N, for every s € W)
a(t) ! _ _ _
< <W> ]P’(.N'(vs) =N, foreverys € W\ {51,...,5}, (6.31)
N(vs) = Ny, \ {(vx,.ji)} forevery i =1, ... ).

When we define N as in (6.23), the probability in the left-hand side of (6.31) can be factorized in
a product of terms of two different types, which are given precisely by (6.24) and (6.25). In order to
obtain the probability in the right-hand side of (6.31), we have to divide the left-hand side by a product
of factors analogous to (6.26) and (6.27). More precisely, (6.26) becomes

! < i 1<vs)+5>( DVX.J,,_I(H)+|Hn[vx,.—11|6>“
I1 1= ’ , (6.32)

i=1 Vi i Vi

while (6.27) becomes
L D) +6
D, j-1(vs)+6

i=1

We define § accordingly, namely we take the product for i = 1, ..., [ of (6.28) with x, j, s replaced
respectively by x;, j;, 5;. Then it is easy to show that

)
~ \2(logt)i*e )’

arguing as in the case [ = 1. This completes the proof of (6.31). 0

6.2 | Proof of Statement 2.6

The next step is to prove that the boundaries of the k;-exploration graphs are at most at distance

= [Blogloglogt + C] (6.33)



CARAVENNA ET AL WI LEY 493

from Core,, where B, C are constants to be chosen later on. Similarly to the proof in Section 5.2, we
consider a k" -exploration graph, and we enumerate the vertices on the boundary as xi, ..., xy, where
N > s(m, l)mkr+ from Lemma 6.6 and / is chosen as in Lemma 6.5. We next define what it means to
have a success:

Definition 6.8 (Success)  Consider the vertices xy, ..., xy on the boundary of a k" -exploration graph.
We say that x; is a success when the distance between x; and Core, is at most 24;.

The next lemma is similar to Lemma 5.7 (but only deals with vertices in [¢/2]):

Lemma 6.9 (Probability of success) Let (PA;)>1 be a preferential attachment model, with m > 2
and & € (—m,0). Consider v € [t/2]\ Core, and its k; -exploration graph. Then there exists a constant
n > 0 such that

P (S, | PAy2) > n, (6.34)

andforallj=72,...,N,
P (Su | PA2. St 5, ) 2 0 (6.35)
The aim is to define a sequence of vertices wy, ..., w, that connects a vertex x; on the boundary

with Core,. In order to do this, we need some preliminar results. We start with the crucial definition
of a t-connector:

Definition 6.10 (+-connector) Let (PA,);»| be a preferential attachment model, with m > 2. Consider
two subsets A, B C [¢/2], with A N B = @. We say that a vertex j € [¢] \ [¢/2] is a t-connector for A
and B if at least one of the edges incident to j is attached to a vertex in A and at least one is attached to
a vertex in B.

The notion of t-connector is useful, because, unlike in the configuration model, in the preferential
attachment model typically two high-degree vertices are not directly connected. From the definition
of the preferential attachment model, it is clear that the older vertices have with high probability large
degree, and the younger vertices have lower degree. When we add a new vertex, this is typically
attached to vertices with large degrees. This means that, with high probability, two vertices with high
degree can be connected by a young vertex, which is the 7-connector.

A further important reason for the usefulness of #-connectors is that we have effectively decoupled
the preferential attachment model at time 7/2 and what happens in between times 7/2 and ¢. When
the sets A and B are appropriately chosen, then each vertex will be a #-connector with reasonable
probability, and the events that distinct vertices are ¢-connectors are close to being independent. Thus,
we can use comparisons to binomial random variables to investigate the existence of t-connectors. In
order to make this work, we need to identify the structure of PA,/; and show that it has sufficiently
many vertices of large degree, and we need to show that #-connectors are likely to exist. We start with
the latter.

In more detail, we will use #-connectors to generate the sequence of vertices wy, ..., w; between
the boundary of a k' -exploration graph and the Core;,, in the sense that we use a t-connector to link
the vertex w; to the vertex w;.;. (This is why we define a vertex x; to be a success if its distance from
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Core, is at most 24, instead of /,.) We rely on a result implying the existence of #-connectors between
sets of high total degree:

Lemma 6.11 (Existence of -connectors) Let (PA,);>| be a preferential attachment model, with m >
2 and & € (—m,0). There exists a constant u > 0 such that, for every A C [t/2], and i € [t/2] \ A,

UD;/2(A) Diyr(i)

P(iﬂj € 1]\ [¢/2]: jis a t-connector foriand A | PA,/Z) <exp (— -

> , (6.36)

where D;2(A) = ZveA D, /5 (v) is the total degree of A at time t/2.

Proof The proof of this lemma is present in the proof of Dommers and coworkers [9, Proposition
3.2]. n

Remark 6.12 Notice that this bound depends on the fact that the number of possible #-connectors is
of order t.

A last preliminary result that we need is a technical one, which plays the role of Lemma 5.9 for
the configuration model and shows that at time 7/2 there are sufficiently many vertices of high degree,
uniformly over a wide range of what ‘large’ could mean:

Lemma 6.13 (Tail of degree distribution) Let (PA,)>1 be a preferential attachment model, with
m > 2and 6 € (—m,0). Then, for all { > 0 there exists a constant ¢ = c({) such that, for all
1 <x < (logt)4, for any g > 0, and uniformly in t,

1 (e
Py (1) = " Z Lipmyzr = cx™ 1O, (6.37)

veE(t]

Proof The degree distribution sequence (pi)ien in (1.12) satisfies a power law with exponent 7 €
(2,3). As a consequence, for all £ > 0 there exists a constant ¢ = ¢(¢) such that

Pox i= D pi 2 T, (6.38)

k>x

We now use a concentration result on the empirical degree distribution (for details, see [13, Theorem
8.2]), which assures us that there exists a second constant C > 0 such that, with high probability, for
every x € N,
logt
|P>y —pse| < C —tg : (6.39)
Fix now ¢ > 0, then from this last bound we can immediately write, for a suitable constant ¢ as in
(6.38),

1 1 .
Py > pse— C %t > a1+ _ ¢y %t > %x—”—”‘f), (6.40)

if and only if

logt
c %zo(ﬂf—“@). (6.41)
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This is clearly true for x < (log 7)¢, for any positive g. Taking ¢ = ¢/2 completes the proof. [
With the above tools, we are now ready to complete the proof of Lemma 6.9:
Proof of Lemma 6.9  As in the proof of Proposition 5.7, we define the super-exponentially growing

sequence gz as in (5.17), where y > 0 is chosen small enough, as well as { > 0, so that (5.16) holds.
The constants B and C in the definition (6.33) of 4, are fixed as prescribed below (5.17).

We will define a sequence of vertices wy, ..., wy, such that, fori = 1, ..., h, D;(w;)(¢) > g; and w;_;
is connected to w;. For this, we define, fori=1,...,h — 1,
Hi={ueln: Dpw =g} Cli/2) (6.42)

so that we aim for w; € H;.

We define the vertices recursively, and start with wy = x;. Then, we consider #-connectors between
wo and H, and denote by w; the vertex in H; with minimal degree among the ones that are connected
to wg by a r-connector. Recursively, consider t-connectors between w; and H,,1, and denote by w;, the
vertex in H;;; with minimal degree among the ones that are connected to w; by a ¢-connector. Recall
(5.18) to see that g;, > (log 7)®, where h; is defined in (6.33). The distance between wy and Core; is at
most 2i, = 2[Blogloglogt + CT. If we denote the event that there exists a # connector between w;_;
and H; by {w;_; ~ H;}, then we will bound from below

hl
PGS, | PA2) > B[ [ Liw, oy | PA2|. (6.43)

i=1

In Lemma 6.11, the bound on the probability that a vertex j € [¢] \ [#/2] is a -connector between two
subsets of [¢#] is independent of the fact that the other vertices are t-connectors or not. This means that,
with F; the o-field generated by the path formed by wy, ..., w; and their respective t-connectors,

B[ iy | PAy2 Pt 2 1= e PPl (6.4)

where D;(H;) = Y,y Di/>(u). This means that

u€H;
h, hy

E| [T Vi, o 1 PAy2] = T (1= e#Ptvpittorr). (6.45)
i=1 i=1

We have to bound every term in the product. Using Lemma 6.13, for i = 1,

1 — e #PipwoDipHY/t 5 | _ e_MDz/Z(WU)glPZgl(Z/z)’ (6.46)

while, fori=2,...,h—1

1 — e #PpwidDp(H)/t > e H8i18iP> (1/2) (6.47)
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Applying (6.37) and recalling (5.25)—(5.26), the result is

h[
]P)(S | PAt) > (1 — e_l‘Dr/Z(Wo)glng](t/z)) ( _”g, 18:P >g (t/2)>
Xl -
= (6.48)

o0
> (1 - e_”mglpzn(f/z)> H (1 _ e—E‘(g,-)f)’

i=2

for some constant ¢. Since i, = [Blogloglog + C], and

Pog (t/2) > Y\ pi >0 (6.49)

k>g,
with high probability as t — oo, we can find a constant # such that

ht
(1 oE: >gl<z/2>) < et @) ) > >0, (6.50)
i=2

which proves (6.34).

To prove (6.35), we observe that all the lower bounds that we have used on the probability of
existence of f-connectors only depend on the existence of sufficiently many potential 7-connectors.
Thus, it suffices to prove that, on the event Sy n---N SC , we have not used too many vertices as
t-connectors. On this event, we have used at most h, (/ 1) Vertlces as r-connectors, which is o(¢). Thus,
this means that, when we bound the probability of SXJ_, we still have 1 — A, - (j — 1) possible z-connectors,
where j is at most (log #)!*¢. Thus, with the same notation as before,

]E[]l{wi—lNHi} | PA[/Z,S;]’ ’Sij—l] >1-— e_”Dt/Z(W,-_])Dr/Z(Hi)/t, 6.51)
so that we can proceed as we did for S, . We omit further details. [

We are now ready to identify the distance between the vertices outside the core and the core:

Proposition 6.14 (Distance between periphery and Core,)  Let (PA,);»1 be a preferential attachment
model with m > 2 and 6 € (—m,0). Then, with high probability and for all v € [t] \ Core,,

diStpAI (v,Core;) < k:— + 2h;,. (6.52)

Proof We start by analyzing v € [¢/2]. By Lemma 6.3, with high probability there exists a € (0, 1]
such that [#“] C Core,. Consider [ > 1/a, and fix a vertex v € [¢/2]. Then, by Lemma 6.5 and with
high probability, the k" -exploration graph starting from v has at most / collisions before hitting Core;.
By Lemma 6.6 and with high probability, the number of vertices on the boundary of the k; -exploration
graph is at least N = s(m, )(log £)!*¢. It remains to bound the probability that none of the N vertices
on the boundary is a success, meaning that it does not reach Core, in at most 24, = 2[Bloglogt + C]
steps.
By Lemma 6.9,

PS5, NS5, [ PAG) < (=) = o(1/1), (6.53)
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thanks to the bound N > s(m, [)(log#)!*¢. This means that the probability that there exists a vertex
v € [t/2] such that its k; -exploration graph is at distance more than A log log log ¢ from Core; is o(1).
This proves the statement for all v € [7/2].

Next, consider a vertex v € [f] \ [¢/2]. Lemma 6.5 implies that the probability that there exists a
vertex v € [t] \ [t/2] such that its k;*—exploration graph contains more than one collision before hitting
Core, U [1/2] is o(1). As before, the number of vertices on the boundary of a k;-exploration graph
starting at v € [7] \ [¢/2] is at least N > s(m, D)mb = s(m, 1)(log 1)'*¢. We denote these vertices by
X1, ... ,Xy. We aim to show that, with high probability,

N
Ay =Y Tgeup = N/4. (6.54)

i=1

For every i = 1,..., N, there exists a unique vertex y; such that y; is in the k;-exploration graph and
it is attached to x;. Obviously, if y; € [¢/2] then also x; € [#/2], since x; has to be older than y,. If
v; & [t/2], then

1
P (x; € [t/2] | PAy—1) =P (i = [1/2] | PA,—1) > > (6.55)
and this bound does not depend on the attaching of the edges of the other vertices {y; : j # i}.
This means that we obtain the stochastic domination
< 1
Ay > Z 1.epi/2)) = Bin (N, 5) , (6.56)

i=1

where we write that X > Y when the random variable X is stochastically larger than Y. By concentration
properties of the binomial, Bin (N , %) > N /4 with probability at least

1 — e N4 = 1 — g=smllogn'**/4 _ 1 _ o(1/1). (6.57)

Thus, the probability that none of the vertices on the boundary intersected with [£/2] is a success is
bounded by

P(S5, n---nS, I PAy) <(1- MV +o(1/1) = o(1/1). (6.58)

We conclude that the probability that there exists a vertex in [z] \ [¢/2] such that it is at distance more

than &} + 2h, from Core;, is o(1).

This completes the proof of Statement 2.6, and thus of Theorem 1.5. [
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