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Abstract
In present paper, an analysis of the stability behaviour of ideal efficient solutions to parametric
vector optimization problems is conducted. A sufficient condition for the existence of ideal
efficient solutions to locally perturbed problems and their nearness to a given reference
value is provided by refining recent results on the stability theory of parameterized set-
valued inclusions.More precisely, the Lipschitz lower semicontinuity property of the solution
mapping is established, with an estimate of the related modulus. A notable consequence of
this fact is the calmness behaviour of the ideal value mapping associated to the parametric
class of vector optimization problems. Within such an analysis, a refinement of a recent
existence result, specific for ideal efficient solutions to unperturbed problem and enhanced
by related error bounds, is discussed. Some connections with the concept of robustness in
multi-objective optimization are also sketched.

Keywords Ideal efficient solutions · Vector optimization · Lipschitz lower semicontinuity ·
Calmness · Generalized derivatives

Mathematics Subject Classification 90C31 · 90C29 · 49J53 · 49J52

1 Introduction and problem statement

Vector optimization offers a sophisticated and effective theoretical apparatus for supporting
decision processes in the presence of multiple conflicting criteria. A peculiar feature of
vector optimization is that, in a context of partial orderings, there are different concepts of
solutions, reflecting different viewpoints and priorities of the decision maker. Among the
basic and mainly investigated solution concepts, ideal efficient solutions are the strongest
ones, whose definition appears very close to the natural definition of solution for scalar
optimization problems. In its global form, an ideal efficient solution in fact captures the
possibility of comparison with any other admissible choice and, in doing so, it guarantees
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better performances with respect to each among the multiple criteria to be considered. The
concept of ideal efficiency indeed is related to the cone domination property over all possible
choices, whereas mere efficiency can only guarantee a non-domination property, with a
consequent minor impact on the related solution concept in concrete decision processes. The
relations between these two solution concepts have been well understood since long ago: it is
well known that ideal efficient solutions are, a fortiori, efficient solutions, the converse failing
to be true, in general (see, for instance, [16, Proposition 2.4.6]). Nonetheless,whenever the set
of ideal solutions happens to be nonempty, it coincides with the set of all efficient solutions.
This link should offer theoretical motivations for studying ideal efficiency, inasmuch as it
enables to provide information which are relevant, to a certain extent, also to mere efficiency.
On the other hand, since the aforementioned coincidence holds only for global efficient
solutions, the need of a specific study devoted to ideal efficiency should also emerge.

Besides theoreticalmotivations,whendealingwith concrete vector optimization problems,
evidences show that the set of efficient solutions is typically a big set. In a concrete decision
process this does not help to identify immediately the “most-preferred” solutions, namely the
ones that the decision maker would identify as the solution to the decision-making problem.
Consequently, as far as the problem analysis is confined tomerely efficient solutions, a further
selection procedure is often required. In contrast to this, whenever they exist, ideal efficient
solutions allow to avoid any additional involvement of the decision maker, representing a
solution concept which is valid once and for all.

All of this becomes evident when dealing, in particular, with multi-objective optimization
problems, i.e. with vector optimization problems, whose partial order is induced by the
nonnegative orthant of a finite-dimensional Euclidean space (component-wise partial order).
Solving this kind of problems (a.k.a. Pareto optimization problems) is about studying the
inherent trade-offs among conflicting objectives. In this specific context, efficient solutions
are the ones that possess the relevant trade-off information. On the other hand, ideal efficiency
singles out those special situations, in which such trade-offs are any more needed: since ideal
efficient solutionsminimize at the same time each scalar objective function (as a component of
the vector cost mapping), conditions ensuring a priori their existence should lead to simplify
solution procedures. Of course, as it is readily seen in this particular context, the occurrence
of such a favourable circumstance is expected to happen rarely. Consistently, a drawback
of such a solution concept is that the geometry of ideal efficiency is very delicate, so that
the existence of ideal efficient solutions can hardly take place in many problems. For this
reason, in the rare circumstanceswhen they do exist, it becomes important to understand upon
which conditions their existence can be preserved in the presence of data perturbations and,
if this happens, how and how much they change. Whereas for the stability analysis of weak
efficient and efficient solutions to vector optimization problems a well-developed literature
can be found (see, among the others, [1, 2, 4–7, 14, 26–28]), a stability analysis specific for
ideal efficient solutions seems to be still largely unexplored. The present paper describes an
attempt to address this question.

Consider the following parametric optimization problem

C- min f (p, x) subject to x ∈ R(p), (VOPp )

where f : P × X −→ Y is a mapping representing the vector objective function, C ⊂ Y is
a nontrivial (i.e. C �= {0}) closed, pointed, convex cone, inducing the partial order relation
≤C on Y in the standard way (i.e., y1 ≤C y2 iff y2 − y1 ∈ C), andR : P ⇒ X is the feasible
region set-valued mapping. Henceforth (P, d) denotes a metric space, where perturbation
parameters vary, while (X, ‖ · ‖) and (Y, ‖ · ‖) denote real Banach spaces.
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Fixed p̄ ∈ P , an element x̄ ∈ R( p̄) is said to be a (global) ideal efficient solution to the
particular problem (VOP p̄ ) if

f ( p̄, x̄) ≤C f ( p̄, x), ∀x ∈ R( p̄), (1)

or, equivalently, if

f ( p̄,R( p̄)) ⊆ f ( p̄, x̄) + C . (2)

If the value of the parameter p is subject to perturbations, making it to vary around the
nominal value p̄, the corresponding problems (VOPp ) are expected to admit different ideal
efficient solutions, if any, reflecting changes in the feasible region and in the vector objective
function. The study of the stability behaviour of vector optimization problems leads therefore
to consider the ideal efficient solution mapping IE : P ⇒ X, which is defined by

IE(p) = {x ∈ R(p) : x ideal efficient solution to (VOPp )}.
The analysis of concrete examples gives evidence to the fact that the behaviour of themapping
IE may be bizarre enough, even in the presence of very amenable data. In the below example,
for a problemwith linear (and smoothly perturbed) objective function and linear (unperturbed)
constraints, the solution mapping IE exhibits a variety of situations: it alternates isolated
solution existence (meaning no solution for small changes of p around a solvable problem)
with the best form of stability (solution existence and invariance of the solution set for small
changes of p).

Example 1 Let P = [0, 2π ], X = Y = R
2, C = R

2+ = {y = (y1, y2) ∈ R
2 : y1 ≥ 0, y2 ≥

0}, let the objective mapping f : [0, 2π ] × R
2 −→ R

2 be given by

f (p, x) = A(p)x, with A(p) =
(

cos(p) sin(p)
− sin(p) cos(p)

)
,

and let R : [0, 2π] ⇒ R
2 be given by

R(p) = T = {x = (x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}, ∀p ∈ [0, 2π].

Evidently, the matrix A(p) represents the clockwise rotation of R
2 of an angle measuring p

radians. By direct inspection of the so defined problem (VOPp ), one sees that the associated
solution mapping IE : [0, 2π ] ⇒ R

2 results in

IE(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 0)} if p = 0,

{(1, 0)} if p ∈ [
π
2 , 3

4π
]
,

{(0, 1)} if p ∈
[
5
4π, 3

2π
]
,

∅ otherwise.

This says that for small changes in the value of p ∈ [0, 2π]near 0, the correspondingproblems
(VOPp ) have no solution, whereas fixed any p̄ ∈ ( π

2 , 3
4π) ∪ ( 54π, 3

2π), for perturbations
of the parameter sufficiently near to p̄ the corresponding problems are still solvable and the
solution set stays constant.

It is worth noticing that this parametric optimization problem admits efficient solutions
for every p ∈ [0, 2π]. Thus, the present example shows that the geometry of ideal efficiency
can be broken by small perturbations of the parameter more easily than the one related to
mere efficiency.
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From inclusion (2) it should be apparent that the domination (ordering) cone C plays
a crucial role in defining the peculiarity of ideal efficiency, causing its rare occurrence.
Geometrical properties of C clearly affect the solution set to each problem (VOPp ). Of
course, this is true also for the mere efficiency concept, but in a different manner. Observe,
for instance, that if it is int f ( p̄,R( p̄)) �= ∅, a necessary condition for the existence of
ideal efficient solutions to problem (VOP p̄ ) requires that C has nonempty interior. Such a
topological implication has no analogue in the case of efficient solutions to the same problem,
which are characterized by the following relation of different nature

f ( p̄,R( p̄)) ∩ [ f ( p̄, x̄) − C] = { f ( p̄, x̄)}. (3)

Another related aspect is that, whereas condition (3) may take place for many elements
as f ( p̄, x̄) in f ( p̄,R( p̄)), thereby causing big solution sets, the inclusion in (2) can take
place only for one vector f ( p̄, x̄) in f ( p̄,R( p̄)) (possibly given by several elements in
R( p̄)). As a further remark concerning the role of C , marking the difference between full
domination and non-domination property, notice that, while enlarging such a cone results
in a diminished amount of efficient solutions, enlargements of C may yield the existence of
ideal efficient solutions, otherwise lacking. Throughout this paper, the cone C is kept fixed,
with the intention to extend the present analysis to the case of ordering cones C varying with
p ∈ P in subsequent developments.

It is plain to see that the search for ideal efficient solutions to problems (VOPp ) can be
regarded in fact as a specialization of a more general class of problems involving set-valued
mappings and cones, a kind of parameterized generalized equations which are referred to
as set-valued inclusions in [31]. More precisely, given set-valued mappings R : P ⇒ X,
F : P × X ⇒ Y and a nontrivial cone C ⊆ Y, these problems require to

find x ∈ R(p) such that F(p, x) ⊆ C . (PSV)

Their solution mapping will be denoted henceforth by S : P ⇒ X, namely

S (p) = {x ∈ R(p) : F(p, x) ⊆ C}.
By introducing the specific set-valued mapping FR , f : P × X ⇒ Y defined as

FR , f (p, x) = f (p,R(p)) − f (p, x), (4)

it is clear that

IE(p) = S (p).

Set-valued inclusions, in simple as well as in parameterized form, have been recently studied
from several viewpoints in [3, 29–32]. The idea underlying the research exposed in the
present paper is that useful insights into the stability behaviour of ideal efficient solutions
can be obtained by refining in a proper way the study of solution stability of parameterized
set-valued inclusions. In doing so, it will be also possible to establish some property of
the ideal efficient value mapping val : dom IE −→ Y associated to (VOPp ), namely the
single-valued mapping well defined by

val(p) = f (p, x̄ p),

where x̄ p is any element of IE(p). Notice that val(p) is well defined evenwhen IE(p) contains
more than one element, as it may happen. Indeed, according to the definition of ideal efficient
solution to (VOPp ), the relation

f (p, x̄ p) ≤C f (p, x), ∀x ∈ R(p)
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must be true for every x̄ p ∈ IE(p). So, the fact that C is pointed entails that f (p, x̄ p) must
be the same value for every x̄ p ∈ IE(p).

The contents of the paper are arranged as follows. In Sect. 2 a sufficient condition for
the existence of ideal efficient solutions for a problem in the family (VOPp ), in the case
of a fixed value of p, is provided. In Sect. 3 a sufficient condition for the solution mapping
associated to a problem family (PSV) to be stable is established. Here the stability behaviour
is expressed as Lipschitz lower semicontinuity for set-valued mappings. An estimate for
the related modulus is also provided. In Sect. 4 the result established in the previous section
finds a specific application in providing sufficient conditions for the stability of ideal efficient
solutions to problems (VOPp ). The focus is therefore on Lipschitz lower semicontinuity of
IE, but, whenever IE happens to be single-valued, such a property qualifies as calmness.
Section 5 is reserved for concluding remarks and perspectives.

The main notations in use throughout the paper are basically standard: R denotes the real
number field and R

n+ indicates the nonnegative orthant in the Euclidean space R
n . In any

metric space (X , d), B (x, r) denotes the closed ball with center x ∈ X and radius r ≥ 0,
dist (x, S) the distance of x from S ⊆ X , with the convention that dist (x, ∅) = +∞, and
B (S, r) = {x ∈ X : dist (x, S) ≤ r} the r -enlargement of S. The symbol int S and cl S
indicate the topological interior of S and closure of S, respectively. Given A, B ⊆ X , the
value exc(A, B) = sup{dist (a, B) : a ∈ A} is the excess of A over B. In any real Banach
space (X, ‖ · ‖), with null vector 0, B = B (0, 1) stands for the closed unit ball, whereas S for
the unit sphere. Given two nonempty subsets A, B ⊆ X, their ∗-difference (a.k.a. Pontryagin
difference) is defined as A ∗ B = {x ∈ X : x + B ⊆ A}. The convex hull of a set A ⊆ X is
denoted by conv A. The space of all n × n matrices with real entries is indicated by L(Rn),
the operator norm of Λ ∈ L(Rn) by ‖Λ‖L, and the inverse of Λ by Λ−1, provided that it
exists. If Φ : X ⇒ Y denotes a set-valued mapping, its domain is indicated by domΦ. The
acronyms p.h., l.s.c. and u.s.c. stand for positively homogeneous, lower semicontinuous and
upper semicontinuous, respectively. The meaning of additional symbols will be explained
contextually to their introduction.

2 An existence result without boundedness and continuity

This section is a digression from the main theme of the paper. A basic feature of any stability
behaviour of the solution mapping to a parameterized problem is non-emptiness of its values.
Therefore, before exploring conditions for this phenomenon to happen, it seems reasonable
to spend some words about the solution existence for a fixed problem within the family
(VOPp ). Thus, the present section presents a sufficient condition for the existence of ideal
efficient solutions to the following (geometrically) constrained vector optimization problem
(VOP):

C-min f (x) subject to x ∈ R, (VOP)

where f : X −→ Y, C ⊆ Y and R are the problem data. Throughout the current section,
(X , d) stands for a complete metric space, whereas (Y, ‖ · ‖) denotes a real Banach space.
Such existence condition refines and accomplishes an analogous result recently proposed
(see [29, Theorem 5.1]), by weakening several of its hypotheses. Indeed, the continuity of
f is replaced by the lower C-semicontinuity, while the closedness of f (R) is dropped out.
Besides, an assumption, given for granted in [29, Theorem 5.1], is now explicitly made,
which avoids a pathological, yet possible, behaviour of (VOP).
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Let us recall that, according to [18], a mapping f : X −→ Y is said to be C-lower
semicontinuous (for short, C-l.s.c.) at x̄ ∈ X if for every ε > 0 there exists δε > 0 such that

f (x) ∈ B ( f (x̄), ε) + C, ∀x ∈ B (x̄, δε) . (5)

Of course, whenever f is continuous at x̄ , a fortiori it is C-l.s.c. at the same point. Following
a variational approach combined with an analysis via set-valued inclusions, the ideal efficient
solutions to (VOP) can be singled out by means of the function ν : R −→ [0,+∞], defined
by

ν(x) = exc( f (R) − f (x),C) = exc( f (R), f (x) + C). (6)

More precisely, since the cone C has been assumed to be closed, it is clear that

IE = [ν ≤ 0] = [ν = 0], (7)

where IE indicates the set of all idel efficient solutions to (VOP).
The next lemma connects assumptions on the problem data of (VOP) with properties of

ν, which will be useful in the sequel.

Lemma 1 Let f : X −→ Y be a mapping, let C ⊆ Y be a closed, convex cone and let
R ⊆ X be a nonempty closed set.

(i) If there exists x0 ∈ R such that the set [ f (R) − f (x0)]\C is bounded, then ν �≡ +∞.
(ii) If f is C-l.s.c. at x̄ ∈ R, then ν is l.s.c. at x̄ .

Proof (i) It suffices to observe that, if M > 0 is such that [ f (R) − f (x0)]\C ⊆ MB, then
it results in

ν(x0) = sup
y∈[ f (R )− f (x0)]\C

dist (y,C) ≤ sup
y∈MB

dist (y,C) ≤ sup
y∈MB

‖y‖ = M < +∞,

and hence ν �≡ +∞.
(ii) It is useful to recall that, given two nonempty sets A, B ⊆ Y, and ε > 0, then

exc(A, B + εB) ≥ exc(A, B) − ε.

Indeed, one has

exc(A, B + εB) = sup
a∈A

inf
b∈B
u∈B

‖a − b − εu‖ ≥ sup
a∈A

inf
b∈B
u∈B

[‖a − b‖ − ε‖u‖]

= sup
a∈A

inf
b∈B[‖a − b‖ − ε] = exc(A, B) − ε.

Now, let (xn)n be a sequence inR, with xn −→ x̄ , as n → ∞. If ν(x̄) = 0, the inequality
lim infn→∞ ν(xn) ≥ 0 = ν(x̄) trivially holds true, as ν takes nonnegative values only.
Assume that ν(x̄) > 0 and take any sequence (xn)n in R, such that xn −→ x̄ . Fix an
arbitrary ε > 0. Since f is C-l.s.c. at x̄ , there exists δε > 0 such that inclusion (5) holds.
Since for a proper n̄ ∈ N, one has xn ∈ B (x̄, δε), for every n ∈ N, with n ≥ n̄, then it is
f (xn) + C ⊆ f (x̄) + εB + C , for every n ∈ N, with n ≥ n̄. Consequently, one obtains

ν(xn) = exc( f (R), f (xn) + C) ≥ exc( f (R), f (x̄) + εB + C)

≥ exc( f (R), f (x̄) + C) − ε = ν(x̄) − ε, ∀n ∈ N, n ≥ n̄.

The above inequalities imply

lim inf
n→∞ ν(xn) ≥ ν(x̄) − ε.
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The thesis follows by arbitrariness of ε. The reader should notice that such a reasoning
works also in the case ν(x̄) = +∞.

��

In order to formulate the next result, it is to be recalled that, following [29, Definition
3.1], given a set S ⊆ X and a mapping g : X −→ Y, g is said to be metrically C-increasing
on S if there exists a constant a > 1 such that

∀x ∈ S, ∀r > 0, ∃u ∈ B (x, r) ∩ S : B (g(u), ar) ⊆ B (g(x) + C, r) . (8)

The quantity

inc(g; S) = sup{a > 1 : inclusion (8) holds}
is called the exact bound of metric C-increase of g on S. For a discussion of this notion,
including examples, related properties and its connection with the decrease principle of
variational analysis, the reader is referred to [29].

Theorem 1 (Ideal efficient solution existence) With reference to a problem (VOP), suppose
that:

(i) R is nonempty and closed;
(ii) there exists x0 ∈ R such that [ f (R) − f (x0)]\C is a bounded set;
(iii) f is C-l.s.c. with respect to the topology induced on R, at each point of R;
(iv) − f is metrically C-increasing on R.

Then, IE �= ∅ is closed and the following estimate holds

dist (x, IE) ≤ ν(x)

inc(− f ;R)
, ∀x ∈ R. (9)

Proof The idea is to apply [29, Theorem 4.2], after observing that, as one readily checks by
a perusal of its proof, assuming the set-valued mapping F : X ⇒ Y, F = f (R) − f , to be
closed-valued is not required in order for getting the validity of the aforementioned result.

That said, notice that, as a closed subset of a completemetric space,R is a completemetric
space. In the light of Lemma 1, by hypotheses (ii) and (iii), the function ν : R −→ [0,+∞]
defined as in (6) is l.s.c. onR and ν �≡ +∞. Since according to (7) IE = [ν ≤ 0] is a sublevel
set of a l.s.c. function, it is closed.

Now, in order to show that IE �= ∅ and the error bound in (9) holds true, it suffices to
apply [29, Theorem 4.2], with X = R, F = f (R) − f and φ = ν, following the same
argument as proposed in [29, Theorem 5.1]. In doing so, notice that the existence of x0 ∈ R
such that ν(x0) < +∞ is guaranteed by hypothesis (ii), whereas the lower semicontinuity
of ν can be derived directly from the lower C-semicontinuity of f , instead of from the lower
semicontinuity of F . Besides, the hypothesis (iv) entails the property of metric C-increase
on R for the mapping f (R) − f . ��

Example 2 Let X = Y = R
2 be endowed with its standard Euclidean space structure, let

C = R
2+ and let f : R

2 −→ R
2 be defined by

f (x) = −x + e
∞∑
n=0

(n + 1)χ(n,n+1](‖x‖∞),
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where e = (1, 1) ∈ R
2, χA denotes the characteristic function of a subset A ⊆ R, and

‖x‖∞ = max{|x1|, |x2|}. Let the feasible region be R = −R+e = {x = (x1, x2) ∈ R
2 :

x1 = x2 ≤ 0}. One sees from the definition that

f (R) = {(0, 0)} ∪
∞⋃
n=0

(2n + 1, 2n + 2]e. (10)

This makes it clear that, for the problem (VOP) defined by these data it is IE = {(0, 0)}.
Notice that f (R) fails to be closed, as (2n + 1)e /∈ f (R), for every n ∈ N, even though R
is a closed subset of R

2. It is readily seen that f is not continuous at each point of the form
x = −ne ∈ R, with n ∈ N. Nonetheless, f turns out to be R

2+-l.s.c. at each point of R.
Indeed, fixed any x0 ∈ R and ε ∈ (0, 1), it suffices to take δ = ε in order to have

f (x) ∈ B ( f (x0), ε) + R
2+, ∀x ∈ B (x0, δ) ∩ R. (11)

If x0 = (0, 0) this inclusion is evident because f (R) ⊆ R
2+ ⊆ B( f (0), ε) + R

2+. If x0 ∈⋃∞
n=0(n, n+1)(−e), f coincides with the function x �→ −x + (n+1)e in a neighbourhood

inR of x0 and it is continuous with respect to the topology induced onR at x0. If x0 = −ne,
with n ∈ N\{0}, the inclusion in (11) is true, because for every x ∈ B (x0, ε) ∩ R, with
x0 ≤C x , it is f (x) ∈ B ( f (x0), ε), whereas for every x ∈ B (x0, ε) ∩ R, with x ≤C x0,
x �= x0, it results in

f (x) = −x + (n + 1)e ≥C −x0 + (n + 1)e ≥C −x0 + ne

= f (x0),

so

f (x) ∈ f (x0) + R
2+ ⊆ B ( f (x0), ε) + R

2+.

Let us show that − f is R
2+-increasing on R. Fix an arbitrary x ∈ R and r > 0 and set

u = e

‖e‖ and z = x + ru ∈ B (x, r) ∩ R.

Taken a = 2 > 1, it is possible to prove that

− f (z) + arB ⊆ − f (x) + R
2+ + rB. (12)

Indeed, since it is ‖x + ru‖∞ ≤ ‖x‖∞ for every x ∈ R, one has

e
∞∑
n=0

(n + 1)χ(n,n+1](‖x + ru‖∞) ≤C e
∞∑
n=0

(n + 1)χ(n,n+1](‖x‖∞)

and hence

e
∞∑
n=0

(n + 1)χ(n,n+1](‖x‖∞) ∈ e
∞∑
n=0

(n + 1)χ(n,n+1](‖x + ru‖∞) + R
2+,

wherefrom it follows

−e
∞∑
n=0

(n + 1)χ(n,n+1](‖x + ru‖∞) ∈ −e
∞∑
n=0

(n + 1)χ(n,n+1](‖x‖∞) + R
2+,

On the other hand, it is clear that for every r > 0 it is

r
e

‖e‖ + arB = rB

(
e

‖e‖ , a

)
⊆ rB + R

2+. (13)
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Thus, in the light of the above inclusions, one finds

− f (z) + arB = (x + ru) − e
∞∑
n=0

(n + 1)χ(n,n+1](‖x + ru‖∞) + arB

⊆ x + r
e

‖e‖ − e
∞∑
n=0

(n + 1)χ(n,n+1](‖x‖∞) + R
2+ + arB

⊆ f (x) +
(
r

e

‖e‖ + arB

)
+ R

2+

⊆ f (x) + rB + R
2+,

so inclusion (12) is satisfied. Moreover, one can see that a = 2 is the greatest constant for
which inclusion (13) and hence inclusion (12) is true. Thus, it is inc(− f ;R) = 2.

Thus, since for x0 = (0, 0) the set [ f (R)− f (x0)]\R
2+ = ∅ is bounded, for this instance

of problem (VOP) Theorem 1 can be applied. It must be remarked that the existence of an
ideal efficient solution is achieved in spite of the fact that R is not bounded, f (R) is not
closed and f is not continuous on R.

To accomplish the analysis of the present example, observe that, as f (R) takes the form
in (10) and (0, 0) ∈ f (R), one readily sees that

ν(x) = exc( f (R) − f (x), R
2+) = exc( f (R), f (x) + R

2+) = ‖ f (x)‖
= ‖x || + ‖(n + 1)e‖ = ‖x‖ + √

2(n + 1), ∀x ∈ R : n < ‖x‖∞ ≤ n + 1.

On the other hand, clearly it is dist (x, IE) = ‖x ||. By taking into account that, for every
x ∈ R

2, it is ‖x‖ ≤ √
2‖x‖∞, the inequality

‖x‖∞ ≤ n + 1

implies

‖x‖ ≤ √
2(n + 1).

Thus, one finds

dist (x, IE) = ‖x‖ ≤ ν(x)

inc(− f ;R)
= ‖x‖ + √

2(n + 1)

2
≤

√
2(n + 1) + √

2(n + 1)

2

= √
2(n + 1), ∀x ∈ R : n < ‖x‖∞ ≤ n + 1,

which agrees with the estimate provided in (9).

Several existence results for ideal efficient solutions can be found in the literature dedicated
to vector optimization. Some of them demand compactness of the feasible region (see, for
instance, [20]). Other results drop out the boundedness of the feasible region, while are
essentially based on convexity properties of the objective mapping (see [11, 13]). Theorem 1
avoids any form of convexity (remember that X is a metric space), whereas the solution
existence relies on metric completeness, through the property of metric C-increase. Such an
approach makes it possible to complement the qualitative part of the statement (existence)
with a quantitative part (an error bound for the distance from the solution set). To the author’s
knowledge, results of this type are a few in nonconvex vector optimization. It is worth
mentioning that a promising characterization of ideal efficient solutions has been obtained
in [12, Corollary 3.5(c)], which is expressed as a sort of Fermat rule involving lower radial
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epiderivatives of the vector objective function (see [12, Remark 3.6] for relevant discussions),
leading as amatter of fact to a set-valued inclusion.Nevertheless, the author foundno evidence
of subsequent developments exploiting such a condition to achieve quantitative existence
results.

3 Parameterized set-valued inclusions withmoving feasible region

This section deals with stability properties of the solution mappingS : P ⇒ X associated to
a parameterized problem (PSV). More precisely, a sufficient condition forS to be Lipschitz
l.s.c. at a point of its graph is established. Recall that, according to [17], a set-valued mapping
Φ : P ⇒ X between metric spaces is said to be Lipschitz l.s.c. at ( p̄, x̄) ∈ graphΦ if there
exist positive δ and 
 such that

Φ(p) ∩ B (x̄, 
d( p̄, p)) �= ∅, ∀p ∈ B ( p̄, δ) . (14)

The value

LiplscΦ( p̄, x̄) = inf{
 > 0 : ∃δ > 0 for which (14) holds} (15)

is called modulus of Lipschitz lower semicontinuity of Φ at ( p̄, x̄).
Discussions about this property and its relationshipswith other quantitative semicontinuity

properties for set-valued mappings can be found, for instance, in [17, 31]. For the purpose
of the present analysis, it is relevant to observe that the requirement in (14) entails local
solvability for problems (PSV) and nearness to the reference value x̄ of at least some among
the solutions to the perturbed problems. Not only: the condition postulated in (14) contains
a quantitative aspect, in prescribing a nearness which must be proportional to the parameter
variation.The rate ismeasuredby themodulus ofLipschitz lower semicontinuity.Historically,
this quantitative aspect motivated the use of the prefix ‘Lipschitz’ for qualifying such kind
of stability behaviours in the variational analysis literature, to distinguish them from mere
topological properties (see [9, 17, 19, 22, 25] and commentaries therein).

Another property of this kind, which will be employed in the sequel, is Lipschitz upper
semicontinuity: a set-valued mapping Φ : P ⇒ X between metric spaces is said to be
Lipschitz u.s.c. at p̄ ∈ domΦ if there exist positive δ and 
 such that

exc(Φ(p),Φ( p̄)) ≤ 
d(p, p̄), ∀p ∈ B ( p̄, δ) . (16)

The value

LipuscΦ( p̄) = inf{
 > 0 : ∃δ > 0 for which (16) holds}
is called modulus of Lipschitz upper semicontinuity of Φ at p̄. It is possible to see at once
that, whenever Φ happens to be single-valued in a neighbourhood of p̄, Lipschitz lower
semicontinuity at ( p̄, Φ( p̄)) and Lipschitz upper semicontinuity at p̄ reduce to the same
property, as conditions (14) and (16) in this case share the form

d(Φ(p),Φ( p̄)) ≤ 
d(p, p̄), ∀p ∈ B ( p̄, δ) . (17)

If a single-valued mapping Φ : P −→ X satisfies inequality (17) for some positive δ and 


it is called calm at p̄. In such an event, the value

clmΦ( p̄) = LiplscΦ( p̄, Φ( p̄)) = LipuscΦ( p̄)
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will be called modulus of calmness of Φ at x̄ . When, in particular, Φ is a single-real-valued
function, the above notion of calmness can be split in its versions from above and from below.
So, Φ : P −→ R ∪ {±∞} is said to be calm from above at p̄ ∈ domΦ if there exist positive
δ and 
 such that

Φ(p) − Φ( p̄) ≤ 
d(p, p̄), ∀p ∈ B ( p̄, δ) , (18)

with

clmΦ( p̄) = inf{
 > 0 : ∃δ > 0 for which (18) holds}
being the modulus of calmness from above of Φ at p̄.

The following standing assumption will be supposed to hold throughout the current sec-
tion:

(A ) both the set-valued mappings F and R take nonempty and closed values (in particular,
dom F = P × X and domR = P).

In order to develop, through variational methods, a quantitative stability analysis of the
solution mapping associated to (PSV) it is convenient to introduce the function ν1 : P ×
X −→ [0,+∞], defined as

ν1(p, x) = exc(F(p, x),C) + dist (x,R(p)) , (19)

which is a kind of merit function providing a functional characterization of solutions to
(PSV). In fact, one sees that, for every p ∈ P , it holds

S (p) = [ν1(p, ·) = 0] = ν1(p, ·)−1(0).

Together with function ν1, in what follows it will be convenient to deal also with the function
νF : P × X −→ [0,+∞] associated to a set-valued mapping F : P × X ⇒ Y as being

νF (p, x) = exc(F(p, x),C).

Notice that, unlike function ν1, function νF involves the set-valued mapping F only.

Remark 1 The author is aware of the fact that other functions could be considered to the same
purpose in the place of ν1, e.g. function ν∞ given by

ν∞(p, x) = max{exc(F(p, x),C), dist (x,R(p))}.
A different choice of merit function does not affect the essence of the approach and the
consequent achievements, resulting only in a change of the estimates for the involvedmoduli.

The variation rate of merit functions such as ν1 and νF can be measured in a metric space
setting by means of the notion of slope. Recall that, after [8], for (strong) slope of a function
ϕ : X −→ R ∪ {±∞} at x0 ∈ dom ϕ the following value is meant:

|∇ϕ|(x0) =
⎧⎨
⎩
0, if x0 is a local minimizer of ϕ,

lim sup
x→x0

ϕ(x0) − ϕ(x)

d(x, x0)
, otherwise.

A behaviour of the above notion of slope in the presence of additive perturbations is pointed
out in the next remark, as it will be employed in the sequel.
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Remark 2 (Calm perturbation of the slope) Let ϕ : X −→ R ∪ {±∞}, let ψ : X −→
R ∪ {±∞}, and let x0 ∈ dom ϕ ∩ domψ . If x0 is not a local minimizer of ϕ, ψ is calm at x0
and cψ > clmψ(x0), then

|∇(ϕ + ψ)|(x0) ≥ max{|∇ϕ|(x0) − cψ, 0}.
Indeed, according to the definition of strong slope, one has

|∇(ϕ + ψ)|(x0) ≥ max

{
lim sup
x→x0

(ϕ + ψ)(x0) − (ϕ + ψ)(x)

d(x, x0)
, 0

}

and, according to inequality (17), one finds

lim sup
x→x0

(ϕ + ψ)(x0) − (ϕ + ψ)(x)

d(x, x0)
≥ lim sup

x→x0

ϕ(x0) − ϕ(x)

d(x, x0)
+ lim inf

x→x0

ψ(x0) − ψ(x)

d(x, x0)

≥ |∇ϕ|(x0) − cψ.

In the statement of the next result, the following partial version of the strict outer slope
(see, for instance, [10]) will be employed for a function ϕ : P ×X −→ R∪ {±∞} at a point
(p0, x0):

|∇xϕ|>(p0, x0) = lim
ε→0+ inf{|∇ϕ(p, ·)|(x) : (p, x) ∈ B (p0, ε) × B (x0, ε) ,

ϕ(p0, x0) < ϕ(p, x) < ϕ(p0, x0) + ε}
= lim inf

(p,x)→(p0,x0)
ϕ(p,x)↓ϕ(p0,x0)

|∇ϕ(p, ·)|(x). (20)

Proposition 1 (Lipschitz lower semicontinuity of S ) With reference to (PSVp), let p̄ ∈ P
and x̄ ∈ S ( p̄) be given. Suppose that:

(i) there exists δ > 0 such that each mapping F(p, ·) : X ⇒ Y is l.s.c. on X, for every
p ∈ B ( p̄, δ);

(ii) R : P ⇒ X is Lipschitz l.s.c. at ( p̄, x̄) and F(·, x̄) : P ⇒ Y is Lipschitz u.s.c. at p̄;
(iii) it holds |∇xνF |>( p̄, x̄) > 1.

Then S is Lipschitz l.s.c. at ( p̄, x̄) and the following estimate holds

LiplscS ( p̄, x̄) ≤ Lipusc F(·, x̄)( p̄) + LiplscR( p̄, x̄)

|∇xνF |>( p̄, x̄) − 1
.

Proof Following the same technique as in [31, Theorem 3.1], let us start with showing that,
under the current assumptions, the function ν1 : P × X −→ [0,+∞] defined by (19) fulfils
the following properties:

(℘1) p �→ ν1(p, x̄) is calm from above at p̄ and the following estimate holds

clm ν1(·, x̄) ≤ Lipusc F(·, x̄)( p̄) + LiplscR( p̄, x̄);
(℘2) x �→ ν1(p, x) is l.s.c. on X, for every p ∈ B ( p̄, δ), for some δ > 0;
(℘3) it holds |∇xν1|>( p̄, x̄) > 0.

As for (℘1), by [31, Lemma 2.4(ii)], the function p �→ exc(F(p, x̄),C) is calm from
above at p̄ because F(·, x̄) is Lipschitz u.s.c. at p̄, with the aforementioned estimate. This
means that, for any 
1 > Lipusc F(·, x̄)( p̄), there exists δ1 > 0 such that

exc(F(p, x̄),C) ≤ 
1d(p, p̄), ∀p ∈ B ( p̄, δ1) .
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On the other hand, by the Lipschitz lower semicontinuity ofR at ( p̄, x̄), one can say that for
any 
2 > LiplscR( p̄, x̄) there exists δ2 > 0 such that

R(p) ∩ B (x̄, 
2d(p, p̄)) , ∀p ∈ B ( p̄, δ2) ,

so that dist (x̄,R(p)) ≤ 
2d(p, p̄). Thus, by setting δ0 = min{δ1, δ2}, one obtains
ν1(p, x̄) − ν1( p̄, x̄) ≤ exc(F(p, x̄),C) + dist (x̄,R(p))

≤ (
1 + 
2)d(p, p̄), ∀p ∈ B ( p̄, δ0) .

The last inequality says that the function ν1(·, x̄) is calm from above at p̄ and, by arbitrariness
of 
1 and 
2, the estimate in (℘1) holds true.

As for (℘2), remember that by virtue of the assumption (A ) it must beR(p) �= ∅, so that,
for every p ∈ P , each function x �→ dist (x,R(p)) is Lipschitz continuous onX. Besides, by
taking δ as in hypothesis (i), for every fixed p ∈ B ( p̄, δ), the function x �→ exc(F(p, x),C)

is l.s.c. on X, according to [31, Lemma 2.4(i)]. Thus the function x �→ ν1(p, x) turns out to
be l.s.c. on X as a sum of two l.s.c. functions.

As for (℘3), according to the hypothesis (iii), fixed σ in such a way that 1 < σ <

|∇xνF |>( p̄, x̄), there exists δσ > 0 such that

|∇νF (p, ·)|(x) > σ, ∀(p, x) ∈ B ( p̄, δσ ) × B (x̄, δσ ) : 0 < νF (p, x) < δσ . (21)

Fix an arbitrary (p0, x0) ∈ B ( p̄, δσ ) ×B (x̄, δσ ), with 0 < νF (p0, x0) < δσ . The inequality
(21) entails that x0 can not be a local minimizer for the function νF (p0, ·). Thus, since the
function x �→ dist (x,R(p0)) is Lipschitz continuous on X with constant 1, and hence calm
around x0, it is possible to apply what has been observed in Remark 2, with ϕ = νF (p0, ·),
ψ = dist (·,R(p0)) and cψ = 1. Consequently, it holds

|∇[νF (p0, ·) + dist (·,R(p0))]|(x0) ≥ |∇νF (p0, ·)|(x0) − 1 ≥ σ − 1 > 0.

From the last inequality the positivity of |∇xν1|>( p̄, x̄) readily follows.
Now, let us exploit a variational argument to prove the thesis. By virtue of (℘3), there

exists σ0 ∈ (0, 1) such that

|∇xν1|>( p̄, x̄) > σ0.

By recalling the definition in (20), this means that there exists η > 0 such that for every
ε ∈ (0, η) it holds

|∇ν1(p, ·)|(x) > σ0, ∀(p, x) ∈ B ( p̄, ε) × B (x̄, ε) : 0 < ν1(p, x) < ε. (22)

Clearly, η can be assumed to be smaller that the value of δ appearing in (℘2). By virtue of
property (℘1), taken any 
 > Lipusc F(·, x̄)( p̄) + LiplscR( p̄, x̄), there exists δ
 > 0 such
that

ν1(p, x̄) ≤ ν1( p̄, x̄) + 
d(p, p̄) = 
d(p, p̄), ∀p ∈ B ( p̄, δ
) . (23)

Without any loss of generality, one can assume that the inequality in (23) holds with

0 < δ
 <
σ0η

2(
 + 1)
. (24)

Notice that, if this is true, one has in particular δ
 < η/2.
Let us consider the function ν1(p, ·) : X −→ [0,+∞], where p is arbitrarily fixed in

B ( p̄, δ
) \{ p̄}. As it is δ
 < η < δ, then by virtue of property (℘2), function ν1(p, ·) is l.s.c.
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on X. Moreover, ν1(p, ·) is obviously bounded from below and, on account of inequality
(23), it is ν1(p, x̄) < +∞ and

ν1(p, x̄) ≤ inf
x∈X ν1(p, x) + 
d(p, p̄).

These facts enable one to invoke the Ekeland variational principle. According to it, corre-
sponding to λ = 
d(p, p̄)/σ0, there exists xλ ∈ X such that

ν1(p, xλ) ≤ ν1(p, x̄), (25)

d(xλ, x̄) ≤ λ, (26)

ν1(p, xλ) < ν1(p, x) + σ0d(x, xλ), ∀x ∈ X\{xλ}. (27)

In the present context, the validity of the relations (25), (26) and (27) implies that ν1(p, xλ) =
0. Indeed, observe that, according to the inequality (27), it is

ν1(p, xλ) − ν1(p, x)

d(x, xλ)
< σ0, ∀x ∈ X\{xλ},

and hence

|∇ν1(p, ·)|(xλ) = lim
r→0+ sup

x∈B(xλ,r)\{xλ}
ν1(p, xλ) − ν1(p, x)

d(x, xλ)
≤ σ0. (28)

On the other hand, by recalling that d(p, p̄) ≤ δ
 < η/2, on account of inequalities (24) and
(26) one finds

d(xλ, x̄) ≤ 
d(p, p̄)

σ0
≤ 


σ0
δ
 <

η

2
.

Besides, by combining inequalities (23), (24) and (25), one obtains

ν1(p, xλ) ≤ 
δ
 <
η

2
.

Thus, if it were ν1(p, xλ) > 0, in the light of inequality (28) one would find inequality (22)
contradicted for ε = η/2.

The fact that ν1(p, xλ) = 0 means that

exc(F(p, xλ),C) = 0 and dist (xλ,R(p)) = 0,

so, as R(p) and C are closed sets,

F(p, xλ) ⊆ C and xλ ∈ R(p),

namely xλ ∈ S (p). Since it is d(xλ, x̄) ≤ 
d(p, p̄)/σ0, as a consequence one has

S (p) ∩ B

(
x̄,


d(p, p̄)

σ0

)
�= ∅.

By arbitrariness of p ∈ B ( p̄, δ
) \{ p̄}, this allows one to say that S is Lipschitz l.s.c. at
( p̄, x̄) and

LiplscS ( p̄, x̄) ≤ 


σ0
.

As the last inequality remains true for every 
 > Lipusc F(·, x̄)( p̄)+LiplscR( p̄, x̄) and for
every σ0 < |∇xν1|>( p̄, x̄), then also the estimate in the thesis must hold true. This completes
the proof. ��
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From the Proof of Proposition 1 it should be evident that such a result embeds Theorem
3.1 in [31], which provides a sufficient condition for Lipschitz lower semicontinuity in the
special case with R being given by R(p) = X , for every p ∈ P . Notice that, in such
an event, LiplscR( p̄, x̄) = 0 while, for every p ∈ P , the function x �→ dist (x,R(p))
vanishes. The condition in hypothesis (iii) can therefore be replaced with the mere positivity
of |∇xνF |>( p̄, x̄), as ν1 reduces to νF .

4 Stability conditions for ideal efficiency

In the present section, with the aim of deriving a stability condition for ideal efficiency, the
general condition for theLipschitz lower semicontinuity of the solutionmapping associated to
a parameterized set-valued inclusionpresented inSect. 3will be adapted to the specific context
of vector optimization problems. In such a setting, the set-valued mapping F appearing in
problems (PSV) takes the special form introduced in (4). While in Proposition 1 several
assumptions are directly made on F , inasmuch as in the context of (PSV) such a mapping
appears among the problem data as an independent one, the definition of FR , f involves
several elementary data such asR and f . This fact requires a further work aimed at singling
out reasonable conditions, which can guarantee the aforementioned assumptions be satisfied.

Remark 3 Under conditions making each set-valued mapping FR , f (p, ·) : X ⇒ Y l.s.c. on
X, for p ∈ P , the mapping IE : P ⇒ X turns out to be closed (possibly, empty) valued.

Throughout the current section, with reference to problems (VOPp ) the following
assumption will be supposed to hold:

( ˜A ) domR = P .

Lemma 2 (Lower semicontinuity of FR , f )Let p ∈ P and let themapping f (p, ·) : X −→ Y

be continuous on X. Under assumption ( ˜A ) the set-valued mapping FR , f (p, ·) : X ⇒ Y,
defined as in (4), is l.s.c. on X.

Proof Observe that, as a consequence of assumption ( ˜A ), it is dom FR , f = P × X . Fix
x0 ∈ X and take an arbitrary open subset O of Y, with FR , f (p, x0) ∩ O �= ∅. According to
the definition of FR , f , this means

[ f (p,R(p)) − f (p, x0)] ∩ O �= ∅,

so there exists y0 ∈ f (p,R(p)) such that y0− f (p, x0) ∈ O . By openness of O , there exists
ε > 0 such that B (y0 − f (p, x0), ε) ⊆ O . Thus, since the function f (p, ·) is continuous at
x0, there exists δε > 0 such that

f (p, x) ∈ B ( f (p, x0), ε) , ∀x ∈ B (x0, δε) ,

wherefrom it follows

y0 − f (p, x) ∈ B (y0 − f (p, x0), ε) , ∀x ∈ B (x0, δε) .

Consequently, one finds

y0 − f (p, x) ∈ FR , f (p, x) ∩ O �= ∅, ∀x ∈ B (x0, δε) ,

what shows that FR , f (p, ·) is l.s.c. at x0, thereby completing the proof. ��
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Lemma 3 Let f : P × X −→ Y be a mapping, let R : P ⇒ X be a set-valued mapping
satisfying assumption ( ˜A ), and let p̄ ∈ P. Suppose that:

(i) f is Lipschitz continuous with constant 
 f on P × X;
(ii) R is Lipschitz u.s.c. at p̄.

Then, the set-valued mapping G : P ⇒ Y, defined by G(p) = f (p,R(p)), is Lipschitz
u.s.c. at p̄ and the following estimate holds

LipuscG( p̄) ≤ 
 f [1 + LipuscR( p̄)]. (29)

Proof By hypothesis (ii), fixed 
R > LipuscR( p̄) there exists δ > 0 such that

exc(R(p),R( p̄)) ≤ 
R d(p, p̄), ∀p ∈ B ( p̄, δ) . (30)

Take an arbitrary p ∈ B ( p̄, δ) and x ∈ R(p). By virtue of the Lipschitz continuity of f , one
obtains

dist ( f (p, x),G( p̄)) = inf
z∈R ( p̄)

‖ f (p, x) − f ( p̄, z)‖ ≤ inf
z∈R ( p̄)


 f [d(p, p̄) + d(x, z)]

= 
 f

[
d(p, p̄) + inf

z∈R ( p̄)
d(x, z)

]
= 
 f [d(p, p̄) + dist (x,R( p̄))].

As from inequality (30) one has for every x ∈ R(p)

dist (x,R( p̄)) ≤ 
R d(p, p̄), ∀p ∈ B ( p̄, δ) ,

then the last estimate gives

dist ( f (p, x),G( p̄)) ≤ 
 f [1 + 
R ]d(p, p̄), ∀p ∈ B ( p̄, δ) .

By arbitrariness of x in R(p), what obtained implies

G(p) = f (p,R(p)) ⊆ B
(
G( p̄), 
 f [1 + 
R ]d(p, p̄)

)
, ∀p ∈ B ( p̄, δ) .

This shows that G is Lipschitz u.s.c. at p̄ with LipuscG( p̄) ≤ 
 f [1+ 
R ]. The arbitrariness
of 
R > LipuscR( p̄) enables one to achieve the estimate in (29). ��

The next lemma establishes a stability behaviour of the Lipschitz upper semicontinu-
ity property under additive calm perturbations, which turns out to be useful in the present
approach.

Lemma 4 Let G : P ⇒ Y be a set-valuedmapping, let h : P −→ Y be a given single-valued
mapping and let p̄ ∈ P. If G is Lipschitz u.s.c. at p̄ and h is calm at p̄, then G+h is Lipschitz
u.s.c. at p̄ and the following estimate holds

Lipusc (G + h)( p̄) ≤ LipuscG( p̄) + clm h( p̄). (31)

Proof It suffices to observe that, since any distance induced by a norm is invariant under
translations, one has

exc(G(p) + h(p),G( p̄) + h( p̄)) = sup
y∈G(p)

dist (y + h(p),G( p̄) + h( p̄))

= sup
y∈G(p)

dist (y,G( p̄) + h( p̄) − h(p))

≤ exc(G(p),G( p̄)) + ‖h(p) − h( p̄)‖.
The estimate in (31) is a straightforward consequence of the above inequality, the definitions
of modulus of Lipschitz upper semicontinuity and of modulus of calmness. ��
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Conditions ensuring the behaviour of |∇xνF |>( p̄, x̄) to fit the requirement in hypothesis
(iii) of Proposition 1 will be expressed in terms of generalized derivatives. Recall that, fol-
lowing [24], a mapping f : X −→ Y is said to be Bouligand differentiable at x0 ∈ X if there
exists a continuous p.h. mapping DB f (x0; ·) : X −→ Y such that

lim
x→x0

f (x) − f (x0) − DB f (x0; x − x0)

‖x − x0‖ = 0.

In such an event, the mapping v �→ DB f (x0; v) is called Bouligand derivative of f at x0. It is
clear that such a differentiability notion actually generalizes the Fréchet smoothness: when-
ever f is Fréchet differentiable at x0, with Fréchet derivative D f (x0), f is also Bouligand
differentiable at the same point with DB f (x0; ·) = D f (x0).

Before stating the next remark, it is proper to recall that, after [15], a p.h. set-valued
mapping H(x0; ·) : X ⇒ Y is said to be an outer prederivative of G : X ⇒ Y at x0 ∈ X if
for every ε > 0 there exists δ > 0 such that

G(x) ⊆ G(x0) + H(x0; x − x0) + ε‖x − x0‖B, ∀x ∈ B (x0, δ) .

For more details on this nonsmooth analysis tool the reader may refer to [15, 21].

Remark 4 Let f : P×X −→ Y be a mapping, let p be fixed in P and x0 ∈ X. If the mapping
x �→ f (p, ·) is Bouligand differentiable at x0 with Bouligand derivative DB f (p, ·)(x0), then
the set-valued mapping x � FR , f (p, x) admits as an outer prederivative at x0 the mapping
v � {−DB f (p, ·)(x0)(v)}. Indeed, fixed any ε > 0, the Bouligand differentiability of
f (p, ·) at x0 ensures the existance of δε > 0 such that

f (p, x) ∈ f (p, x0) + DB f (p, ·)(x0; x − x0) + ε‖x − x0‖B, ∀x ∈ B (x0, δε) .

This inclusion implies

FR , f (p, x) = f (p,R(p)) − f (p, x)

⊆ f (p,R(p)) − f (p, x0) − DB f (p, ·)(x0; x − x0) + ε‖x − x0‖B

= FR , f (p, x0) − DB f (p, ·)(x0; x − x0) + ε‖x − x0‖B, ∀x ∈ B (x0, δε) .

The next technical lemma provides a below estimate for the slope of the function
νFR , f (p, ·) : X −→ [0 + ∞], defined by νFR , f (p, x) = exc(FR , f (p, x),C), in terms
of ‘strict negativity’ (with respect to the partial ordering ≤C ) of the values taken by the
first-order approximation of f (p, ·).
Lemma 5 With reference to a problem (VOPp ), let p be fixed in P and let x0 /∈ IE(p).
Under assumption ( ˜A ), suppose that:

(i) f (p, ·) : X −→ Y is continuous on X;
(ii) f (p, ·) is Bouligand differentiable at x0;
(iii) there exist σ > 1 and u ∈ S such that B (DB f (p, ·)(x0; u), σ ) ⊆ −C.

Then, it holds

|∇νFR , f (p, ·)|(x0) ≥ σ. (32)

Proof By virtue of hypothesis (i) and Lemma 2, the set-valuedmapping FR , f (p, ·) is l.s.c. on
X, so, in particular, l.s.c. at x0. Accordingwithwhat has been noticed in Remark 4, FR , f (p, ·)
admits the set-valued mapping v � {−DB f (p, ·)(x0)(v)} as an outer prederivative at x0,
owing to hypothesis (ii).
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Now, if σ and u ∈ S are as in hypothesis (iii), one has

−DB f (p, ·)(x0; u) + σB ⊆ C

and hence

sup
v∈S

|C −∗ {−DB f (p, ·)(x0)(v)}| ≥ σ,

where |S| = sup{r > 0 : rB ⊆ S}. In the light of [32, Proposition 2.5], the last inequality
implies the estimate in (32), thereby completing the proof. ��

With the above elements, one is in a position to establish the following result about stability
of ideal efficient solutions to (VOPp ).

Theorem 2 (Lipschitz lower semicontinuity of IE) With reference to a (VOPp ), let p̄ ∈ P
and x̄ ∈ IE( p̄) be given. Under assumption ( ˜A ), suppose that:

(i) f : P × X −→ Y is Lipschitz continuous on P × X with constant 
 f ;
(ii) R is Lipschitz u.s.c. at p̄ and Lipschitz l.s.c. at ( p̄, x̄);
(iii) there exists δ0 > 0 such that f (p, ·) is Bouligand differentiable on B (x̄, δ0), for each

p ∈ B ( p̄, δ0);
(iv) there exist δ ∈ (0, δ0) and σ > 1 such that for every (p, x) ∈ [B ( p̄, δ) ×

B (x̄, δ)]\graph IE there is u ∈ S such that

DB f (p, ·)(x; u) + σB ⊂ −C . (33)

Then, IE is Lipschitz l.s.c. at ( p̄, x̄) and the following estimate holds

Liplsc IE( p̄, x̄) ≤ 
 f [2 + LipuscR( p̄)] + LiplscR( p̄, x̄)

σ − 1
. (34)

Proof The proof consists in showing that, under the current assumptions, it is possible to
apply Proposition 1, with F = FR , f . To do so, let us start with observing, since each
mapping x �→ f (p, x) is continuous on X, for every p ∈ P , as a consequence of hypothesis
(i), then on account of Lemma 2 each set-valued mapping FR , f (p, ·) is l.s.c. on X, for every
p ∈ P . This shows that hypothesis (i) of Proposition 1 is fulfilled.

Moreover, by virtue of hypothesis (i) and (ii), Lemma3 ensures that the set-valuedmapping
p � f (p,R(p)) is Lipschitz u.s.c. at p̄, with Lipusc f (·,R(·))( p̄) ≤ 
 f [1+LipuscR( p̄)].
Since for any fixed x ∈ X the mapping p �→ f (p, x) is calm at p̄, again as a consequence
of hypothesis (i), with constant 
 f > clm f (·, x)( p̄), then Lemma 4 enables one to say that
FR , f is Lipscitz u.s.c. at p̄, with

Lipusc FR , f ( p̄) ≤ 
 f [1 + LipuscR( p̄)] + 
 f .

This shows that all the requirements in the hypothesis (ii) of Proposition 1 are fulfilled under
the assumptions made.

It remains to show that also hypothesis (iii) of Proposition 1 is fulfilled. This can be done
by applying Lemma 5. Remembering the definition of partial strict outer slope, one has to
prove the existence of ε > 0 such that

|∇νFR , f (p, ·)|(x) > 1, ∀(p, x) ∈ B ( p̄, ε) × B (x̄, ε) , 0 < νFR , f (p, x) < ε.

So, taking ε ∈ (0, δ), where δ > 0 is as in hypothesis (iv), and an arbitrary (p, x) ∈
B ( p̄, ε) × B (x̄, ε), one has that, according to hypothesis (iii), if it is νFR , f (p, x) > 0 then
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(p, x) /∈ graph IE and therefore, by hypothesis (iv) there exists u ∈ S such that inclusion (33)
holds. In turn this inclusion, on account of Lemma5, implies that |∇νFR , f (p, ·)|(x) ≥ σ > 1.

Thus the thesis follows by taking into account that, in the current setting, IE = S . This
completes the proof. ��

Hypothesis (ii) in Theorem 2 refers to a certain stability behaviour of R. In concrete
problems, this set-valued mapping may happen to be defined by a large variety of constraint
systems. For many of them, in the last decades adequate conditions ensuring the needed
stability behaviour have been developed within variational analysis (see [9, Chapter 4.D],
[17], [19, Chapter 4.3] and references therein).

The stability behaviour of IE established by Theorem 2 has a remarkable consequence
on the stability of ideal efficient values, which can be formulated through the mapping
val : P −→ Y.

Corollary 1 (Calmness of val) Under the same hypotheses as in Theorem 2 the mapping
val : P −→ Y is calm at p̄ and it holds

clm val( p̄) ≤ 
2f [2 + LipuscR( p̄)] + 
 f (LiplscR( p̄, x̄) + 1)

σ − 1
.

Proof By Theorem 2 IE is Lipschitz l.s.c. at ( p̄, x̄), with the related modulus estimate. So, if
taking an arbitrary 
 > Liplsc IE( p̄, x̄), there exists ζ
 > 0 such that for any p ∈ B ( p̄, ζ
) an
element xp must belong to IE(p) with the property that d(xp, x̄) ≤ 
d(p, p̄). Consequently,
it results in

|val(p) − val( p̄)| = | f (p, xp) − f ( p̄, x̄)| ≤ 
 f [d(p, p̄) + ‖xp − x̄‖]
≤ 
 f [1 + 
]d(p, p̄), ∀p ∈ B ( p̄, ζ
) .

This says that val is calm at p̄. By arbitrariness of 
 > Liplsc IE( p̄, x̄), to obtain the estimate
complementing the thesis, it suffices to recall the inequality in (34). ��
Example 3 Let P = [0,+∞), X = Y = R

2, C = R
2+, with f : [0,+∞) × R

2 −→ R
2

given by

f (p, x) = (2 arctan x2,−2 arctan x1),

and R : [0,+∞) ⇒ R
2 given by

R = {x ∈ R
2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ β(p)},

where β : [0,+∞) −→ [0,+∞) is a function with β(0) = 0 and calm from above at 0.
Take p̄ = 0 and x̄ = (0, 0).

In order to find the ideal efficient solutions to the corresponding (VOPp ), it is convenient
to observe first that IE(0) = {(0, 0)} and that, for every y = (y1, y2) ∈ f (p,R(p)), with
p ∈ [0,+∞), according to the definition of f and R(p), one has

y1 ≥ 0 and y2 ≥ −2 arctan β(p).

In other terms, (β(p), 0) ∈ R(p) and

f (p,R(p)) ⊆ f (p, (β(p), 0)) + R
2+ = (0,−2 arctan β(p)) + R

2+,

which means that (β(p), 0) ∈ IE(p), for every p ∈ [0,+∞). Besides, since the vector
(0,−2 arctan β(p)) can be the only ideal efficient element of the set f (p,R(p)) and the
function x �→ f (p, x) is injective, one can state that

IE(p) = {(β(p), 0)}, ∀p ∈ [0,+∞).
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Thus, since for any cβ > clm β(0) there exists δ > 0 such that it holds

dist ((0, 0), IE(p)) = β(p) ≤ cβ p, ∀p ∈ [0, δ],
it is possible to deduce that IE is Lipschitz l.s.c. (actually, also Lipschitz u.s.c. and hence
calm) at (0, (0, 0)), with

Liplsc IE(0, (0, 0)) ≤ clm β(0). (35)

In order to test the application of Theorem 2 in this concrete case, let us start with noticing
that, since f (p, ·) is (Fréchet) differentiable on R

2 and the linear mapping D f (p, ·)(x) :
R
2 −→ R

2 can be represented by the Jacobian matrix

D f (p, ·)(x) =

⎛
⎜⎜⎝

0
2

1 + x22
− 2

1 + x21
0

⎞
⎟⎟⎠ ,

with

‖D f (p, ·)(x)‖L = sup
u∈S

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

0
2

1 + x22
− 2

1 + x21
0

⎞
⎟⎟⎠

(
u1
u2

)
∥∥∥∥∥∥∥∥

= sup
u∈S

∥∥∥∥
(

2u2
1 + x22

, − 2u1
1 + x21

)∥∥∥∥ ≤
√

4

(1 + x21 )
2

+ 4

(1 + x22 )
2

≤ 2
√
2, ∀x = (x1, x2) ∈ R

2,

then f turns out to be Lipschitz continuous on [0,+∞) × R
2, with constant 
 f = 2

√
2.

Since it is

exc(R(p),R(0)) = ‖(β(p), 0)‖ = β(p) ≤ cβ p, ∀p ∈ [0, δ],
it is true that R is Lipschitz u.s.c. at 0, with LipuscR(0) ≤ cβ . Moreover, as it is

R(0) = {(0, 0)} ⊆ R(p), ∀p ∈ [0,+∞),

one sees that for every 
 > 0 is holds

R(p) ∩ B ((0, 0), 
|p|) �= ∅, ∀p ∈ [0,+∞),

what says that R is also Lipschitz l.s.c. at (0, (0, 0)) and LiplscR(0, (0, 0)) = 0.
Now, take an arbitrary x ∈ B ((0, 0), δ) \{(0, 0)}, with δ fixed in such a way that 0 < δ <√√
2 − 1, and set

σ =
√
2

1 + δ2
.

Notice that σ > 1, because δ <
√√

2 − 1. Taking u = (1/
√
2,−1/

√
2) ∈ S, one finds

D f (p, ·)(x)u =

⎛
⎜⎜⎜⎝

−
√
2

1 + x22

−
√
2

1 + x21

⎞
⎟⎟⎟⎠ ,
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whence it follows

dist
(
D f (p, ·)(x)u, R

2\(−intR2+)
) = min

{ √
2

1 + x21
,

√
2

1 + x22

}
≥

√
2

1 + δ2
.

Consequently, it is true that

D f (p, ·)(x)u + σB ⊆ −R
2+, ∀x ∈ B ((0, 0), δ) \{(0, 0)}.

This shows that also hypothesis (iii) of Theorem 2 is fulfilled. In the case under consideration,
the estimate in (34) becomes

Liplsc IE(0, (0, 0)) ≤ 2
√
2[2 + cβ ]√
2

1 + δ2
− 1

,

which is consistent with (even though, less accurate than) the estimate in (35), obtained by
direct inspection of IE. Indeed, one sees that

lim
δ→0+

2
√
2[2 + cβ ]√
2

1 + δ2
− 1

= 4
√
2 + 2

√
2cβ√

2 − 1
> cβ > clm β(0)

(whereas

lim
δ→

√√
2−1

−
2
√
2[2 + cβ ]√
2

1 + δ2
− 1

= +∞ > clm β(0) ).

The above example suggests that, whenever f is one-to-one, IE is single-valued and this
fact automatically enhances the Lipschitz lower semicontinuity property to calmness. It is
well known that a sufficient condition for a Lipschitz (possibly, nonsmooth) mapping f
between finite-dimensional spaces to be a homeomorphism can be expressed in terms of
Clarke’s generalized Jacobian (see [23]). Let ∂◦ f (p, ·)(x0) denote the Clarke’s generalized
Jacobian of f (p, ·) : R

n −→ R
n at x0 ∈ R

n , i.e. the set

∂◦ f (p, ·)(x0) = conv
{
Λ ∈ L(Rn) : ∃(xk)k, xk ∈ D( f (p, ·)), xk → x0,

D f (p, ·)(xk) −→ Λ as k → ∞} ,

where D( f (p, ·)) indicates the set of points at which the function x �→ f (p, x) is (Fréchet)
differentiable (the Rademacher theorem ensures that such a set is a Lebesgue full measure
subset of R

n).

Corollary 2 Under the same hypotheses as in Theorem 2, suppose that X = Y = R
n and

(v) for every p ∈ P there exists γp > 0 such that, for every x ∈ R
n, every Λ ∈ ∂◦ f (p, ·)(x)

is invertible and

sup
x∈Rn

sup
Λ∈∂◦ f (p,·)(x)

‖Λ−1‖L ≤ γp.

Then, IE is single-valued and calm at p̄, with

clm IE( p̄) ≤ 
 f [2 + LipuscR( p̄)] + LiplscR( p̄, x̄)

σ − 1
.
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Proof Fix an arbitrary p ∈ P . The additional hypothesis (v) enables one to apply the Lip-
schitzian Hadamard theorem in [23]. According to it, the mapping f (p, ·) : R

n −→ R
n is

one-to-one on R
n . Consequently, since it is

IE(p) = f −1(p, ·)(val(p)) ∩ R(p),

themapping IEmust be single-valued. As already remarked, in such a circumstance Lipschitz
lower semicontinuity and calmness collapse to the same property. So the thesis becomes a
consequence of Theorem 2. ��

It is well recognized that the stability/sensitivity analysis in optimization, as well as robust
and stochastic programming, affords an useful approach to dealing with problems affected
by uncertain data. Effects due to uncertainty can not be neglected in concrete problems,
so evaluating how stable/sensitive an optimal solution is with respect to perturbations of the
input data becomes a necessary issue for a complete problem analysis. Nonetheless, as clearly
explained in [16, Chapter 15.4], a specific feature of the stability/sensitivity approach is to
provide only some a posteriori insights in describing ranges for the input data, within which
solutions, if any, remain optimal. “It does not, however, provide a course of action for changing
a solution should the perturbation be outside this range. In contrast, stochastic and robust
optimization techniques take the uncertainty into account during the optimization process”
([16]). In particular, following the robustness approach, different scenarios are allowed for
the input parameter and this leads to a solution concept that works well in every uncertain
scenario, thereby hedging against the worst case that may happen. In the light of this basic
difference, the findings of the present paper can not be directly related to results of robustness
in vector optimization. Nevertheless, as guessed by the journal editor handling the present
paper, the technique here employed for the stability analysis, mainly relying on the solution
behaviour of parameterized set-valued inclusions, may offer useful hints to be developed in
a hereafter analysis explicitly focussing on robustness in multi-objective optimization. More
precisely, if the parameter space P is interpreted as a set of all possible scenarios, a way to
define a robust counterpart of the feasible region affected by uncertainty is to set

R =
⋂
p∈P

R(p) (robust feasibility).

Consequently, a robust counterpart of the notion of ideal efficient solution related to problems
(VOPp ) should lead to single out any vector x̄ ∈ R such that

FR , f (p, x̄) = f (p,R(p)) − f (p, x̄) ⊆ C, ∀p ∈ P.

In this setting, by introducing the set-valued mapping F : X ⇒ Y embedding all uncertain
scenarios

F(x) = FR , f (P, x) =
⋃
p∈P

[ f (p,R(p)) − f (p, x)],

the set-valued inclusion problem formalizing the robust counterpart related to problem (PSV)

turns out to be

find x ∈ R such that F(x) ⊆ C .

Investigations focusing on the solvability of the above set-valued inclusion problem will be
the subject of a future research work.
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5 Conclusions

Evidences show that ideal efficiency has a delicate geometry. The findings of the present paper
demonstrate that the analysis of the solution stability for parameterized set-valued inclusions
can afford useful insights into the behaviour of ideal efficient solutions to vector optimization
problems subject to perturbations, from both the qualitative and the quantitative viewpoint.
The study has focused on the Lipschitz lower semicontinuity property for the ideal efficient
solution mapping, but it is reasonable to expect that other quantitative stability properties
widely considered in variational analysis (such as Lipschitz upper semicontinuity, calmness
and the Aubin property) can be fruitfully investigated by the same approach, via set-valued
inclusions. While the analysis of parameterized set-valued inclusions has been conducted in
a rather abstract setting, the related achievements have been subsequently applied in a more
structured context, where the employment of well-known generalized derivatives ensures
applicability of results to a large class of problems. The choice made in this part of the work
leaves open the possibility to refine the stability conditions here obtained by means of other,
more sophisticated, tools of nonsmooth analysis.
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