
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.1120000

Measuring Software Testability via Automatically
Generated Test Cases
LUCA GUGLIELMO1, LEONARDO MARIANI2, and GIOVANNI DENARO3
1Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, 20126, Italy (e-mail: luca.guglielmo@unimib.it)
2Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, 20126, Italy (e-mail: leonardo.mariani@unimib.it)
3Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, 20126, Italy (e-mail: giovanni.denaro@unimib.it)

Corresponding author: Luca Guglielmo (e-mail: luca.guglielmo@unimib.it).

This work is partially supported by the Big Sistah national research project (MUR, PRIN 2022, 2022EYX28N).

ABSTRACT Estimating software testability can crucially assist software managers to optimize test budgets
and software quality. In this paper, we propose a new approach that radically differs from the traditional
approach of pursuing testability measurements based on software metrics, e.g., the size of the code or the
complexity of the designs. Our approach exploits automatic test generation and mutation analysis to quantify
the evidence about the relative hardness of developing effective test cases. In the paper, we elaborate on the
intuitions and the methodological choices that underlie our proposal for estimating testability, introduce
a technique and a prototype that allows for concretely estimating testability accordingly, and discuss our
findings out of a set of experiments in which we compare the performance of our estimations both against
and in combination with traditional software metrics. The results show that our testability estimates capture
a complementary dimension of testability that can be synergistically combined with approaches based on
software metrics to improve the accuracy of predictions.

INDEX TERMS Software Testability, Software Testing, Automatic Test Generation, Mutation Analysis

I. INTRODUCTION
Software testing is a key activity of the software life-cycle that
requires time and resources to be effective. In this paper we
focus on the testability of the software, which is defined as
the degree to which the design of software artifacts supports
or hardens their own testing [1], [2], and which can correlate
in many relevant ways with the cost of the testing activities
and ultimately with the effectiveness of those activities for
revealing the possible faults. For example, the availability of
estimates on the testability of the software under test and the
components therein can support test analysts in anticipating
the cost of testing, tuning the test plans, or pinpointing com-
ponents that should undergo refactoring before testing.

At the state of the art the problem of estimating soft-
ware testability has been addressed with two main classes
of approaches: fault-sensitivity approaches, which estimate
testability by focusing on the probability of executing and
revealing possible faults, and approaches based on software
metrics, which conjecture the correlation between the testing
effort and the static structures of the code characterized with
software metrics as, for example, the cyclomatic complexity
or the lines of code.

The fault-sensitivity approach grounds on the seminal work
of Voas and colleagues on the execute-infect-propagate (PIE)

model of fault sensitivity [3]–[7]. The PIE model defines
fault sensitivity as the combined probability of executing
faulty locations, infecting the execution state and propagating
the effects of the infection to some observable output. High
fault sensitivity can be a proxy of high testability, and vice-
versa. However, doing actual estimates requires to observe the
frequency of execution of the program locations with very
thorough test suites, hardly available before testing [8]. As
a matter of fact, after the initial momentum in the nineties,
this approach has never made its way to established testability
estimation tools and has been progressively abandoned.
The software metrics approach is the main focus of most

past and recent research on software testability [9]–[24].
Most research effort focuses on object-oriented programs,

by using metrics that capture information about the static
structure of the code at the class-level or method-level (as
for example the Chidamber and Kemerer’s metrics [25]). The
software metrics that have the potential of being good testa-
bility predictors are derived by investigating the correlation
between the metrics and the amount, the complexity and the
thoroughness of the associated test cases.
We observe that a potential threat to the way these software

metrics have been investigated is the fact that many of these
studies are performed only on a, oftentimes small, sample of

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

projects, and this could lead to generalization problems. For
instance, several studies report contrasting results: Bruntink
et al. [9], [11] do not identify WMC and LCOM as good
predictors differently to other studies [10], [12], [16], [17],
[19] and NOC is identified as a good predictor only by Singh
et al. [12], while others have not found such correlation [9],
[11], [17], [21].

In this paper we introduce and discuss the novel idea of
not relying on the possible correlation between static metrics
and testability, but to directly estimate the testability degree
of a software by sampling the test space and the fault space
of the software, and therein collect empirical evidence of the
easiness or hardness to accomplish effective testing. Accord-
ing to our approach, the stronger the evidence that we can
collect about hard-to-test faults in a software component, the
higher the probability that its design is not facilitating testing
enough. Drawing on this idea, we rely on a search-based
test generation tool to automatically generate test cases [26],
and refer to mutation-based fault seeding to sample possible
faults [27]. We then refer to the generated test cases and the
seeded faults to extrapolate the testability evidence.
We empirically studied the effectiveness of our testability

estimates with respect to 598 class methods of three large
software projects in Java. In particular we analyzed to what
extent our estimates correlate with the development complex-
ity of the test cases that were available in the considered
projects, and we compared the correlation yielded by our
estimates with the one yielded by a selection of popular soft-
ware metrics for object-oriented programs. Our main findings
were that our testability estimates contribute to explain the
variability in the development complexity of the test cases
by capturing a different phenomenon than the metrics on the
size and the structure of the software. Furthermore, motivated
by such findings, we explored the combination of our metric
with the software metrics, revealing synergies to improve the
testability estimates. Thus, our findings support the research
hypothesis that it is viable and useful to estimate testability
based on empirical observations collected with automati-
cally generated test cases. We remark that we do not claim
that testability estimates based on software metrics must be
avoided and replaced with our testability estimates, but rather
the two approaches could be used synergically to improve the
accuracy of the estimates.

The paper is organized as follows. Section II presents our
novel approach to estimate testability. Section III presents our
experiments. Section IV surveys the relevant related work.
Section V summarizes the main contributions of this paper.

II. EVIDENCE-BASED TESTABILITY ESTIMATION
Providing testability measurements amounts to estimating the
degree to which a software component facilitates its own
testing [1], [2], [5], [28]. In this section we elaborate on both
the intuitions and the methodological choices that underlie
our novel proposal to make these estimates.

A. INTUITIONS AND APPROACH OVERVIEW

1) Exploiting automated test generation
The main intuition that inspires our approach is to experience
with the testability of a given piece of software by simulating
the activity of crafting test cases for that software. Namely, we
rely on automatically generating test cases with a test gener-
ator (in this paper we used the test generator Evosuite [26]).
Looking into the results from the test generator, we aim to
judge the extent to which the current design is making it hard
(or easy) for the test generator to accomplish test objectives
against the considered software.

2) Exploiting mutation analysis
We sample possible test objectives in the form of synthetic
faults injected in the target software. We rely on mutation-
based fault seeding [29], [30].
Mutation-based fault seeding injects possible faults by

referring to so-called mutation operators, each describing a
class of code-level modifications that may simulate faults
in the program. For instance, the mutation operator replace-
arithmetic-operators creates faulty versions (called mutants)
of a program by exchanging an arithmetic operator used
in the code with a compatible arithmetic operator: it can
produce a faulty version for each possible legal replacement.
In the sample Java program in Figure 1 we indicated some
possible mutants in the comments included in the code: For
example, we can create a faulty version of the program by
replacing the statement at line 8 with the statement indicated
in the comment at the same line. This is a possible instance
of replace-arithmetic-operators; another one is the mutant
indicated in the comment at line 20. The mutants indicated
at lines 13 and 33 refer to another possible mutation operator,
replace-expressions-with-literals, which consists in replacing
a numeric expression with a compatible constant mentioned
somewhere else in the code. In this paper we used the muta-
tion analysis tool PIT [27].
To judge testability, we focus on each seeded fault sep-

arately, and we evaluate whether the current program, by
virtue of its design, makes it hard (or easy) for the test
generator to reveal that fault: If the test generator succeeds
to reveal the fault, we infer a piece of testability evidence,
under the intuition that a human could succeed as well with
controlled effort; Otherwise, we might infer a non-testability
evidence (though this requires the further analysis described
below, § II-A3).
For instance, our prototype based on Evosuite easily re-

veals the mutant at line 8 of Figure 1, e.g., with a test case
like
SampleProg p = new SampleProg();
p.setScale(0);
assertEquals(0, p.getScale();

whose execution fails against the mutant, but not for the
original program. We thus infer a piece of testability evi-
dence after observing that Evosuite easily reveals this mutant.
Conversely, revealing the mutant at line 33 requires a test
case carefully tuned on several interdependent class methods,
which Evosuite consistently fails to generate. A test case that

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 public class SampleProg {
2 public static finale int TARGET = 10;
3 private int state;
4 private int scale;
5 private int mode;
6 private int sensor;
7 public void setScale (int s) {
8 scale = s * 100; //MUT: scale = s + 100
9 }

10 public void setMode(int m) {
11 if (new fileExists("/config.conf")) {
12 int conf = read("/config.conf");
13 mode = conf; //MUT: mode = 100
14 } else mode = m;
15 }
16 public void setSensor(int s) {
17 sensor = s;
18 }
19 public int getScale() {
20 GUI.msg(scale / 10); //MUT: GUI.msg(scale*10)
21 return scale;
22 }
23 public void updtState(){
24 if (mode == TARGET) peekSensor();
25 else state = 1;
26 }
27 private void peekSensor(){
28 if (scale > 1000000) state = sensor;
29 else state = abs(sensor);
30 }
31 public int currState() {
32 if (state >= 0) return state;
33 else return -1; //MUT: return 1
34 }
35 }

FIGURE 1. A sample Java programs and some corresponding mutants

could reveal this mutant would be resemblant to the following
one,

SampleProg p = new SampleProg();
p.setMode(10); // Hit mutant iff this.state =

10...
p.setScale(20000); // ...and this.scale >

1000000...
p.setSensor(-5); // ...and this.sensor < 0
p.updtState(); // ...when executing updtState().
assertEquals(-1, p.currState();

which requires an arguably non-negligible amount of mental
and manual effort also for a human tester. We infer a piece of
non-testability evidence after observing that the test generator
is unable to reveal this latter mutant.

Eventually, we aggregate the testability and non-testability
evidence across the seeded faults of the piece of software of
interest, to estimate the degree of testability of that software:
The larger the amount of testability (resp. non-testability)
evidence, i.e., many mutants are easy (resp. hard) for the test
generator to reveal, the higher (resp. lower) the estimated
degree of testability.

3) Exploiting testability-facilitated APIs as baseline
When inferring non-testability evidences as above, we must
pay attention that the quality of our estimations could be
jeopardized by intrinsic limitations of the approaches (and

ultimately the tools) to which we refer for generating the test
cases. In particular, we aim to avoid non-testability judge-
ments that can derive from intrinsic limitations of the test
generator, rather than testability issues.
For example, a test generator that is not able to construct

some types of data structures, or does not handle test data
from files or network streams, will systematically miss test
cases for any fault that depends on those types of test data,
regardless of actual testability issues of the software under
test. Evosuite consistently fails to hit the mutant at line 13 of
Figure 1, simply because manipulating the file system (to set
a proper file /config.conf) is not part of its functionality.
To acknowledge cases of this type, our approach construc-

tively discriminates the subset of seeded faults (out of the
ones provided by the mutation-analysis tool) for which we
can acquire a sufficient evidence (not necessarily a proof) that
they are not out of the scope of the considered test generator.
We refer to the resulting subset of mutants as the baseline
mutants, since they provide the actual baseline for us to judge
the testability evidences.
In our approach, the baseline mutants are those that the test

generator either can already reveal or could reveal if it has
the freedom to both directly assign any state variable in the
program, and directly inspect the infected execution states.
We enable this capability by (i) augmenting the program
under test with custom setters for all the state variables of
any module in the program, and (ii) recording the mutants
as revealed-mutants as soon as they get executed, even if
there is not a failing assertion in the test cases. We refer to
this simplified setting of the testing problem that we submit
to the test generator as testing the program with testability-
facilitated APIs.
For example, in the case of the program in Figure 1, we

equip the program with the following set of custom setters:

public void _custom_1__(int i) {this.state = i;}
public void _custom_2__(int i) {this.scale = i;}
public void _custom_3__(int i) {this.mode = i;}
public void _custom_4__(int i) {this.sensor = i;}

In the simplified setting, Evosuite easily executes (i) the
mutant at line 8, e.g., with the test case that we already
discussed above, (ii) the mutant at line 33, e.g., with a test
case like

SampleProg p = new SampleProg();
p._custom_1__(-3); // Sets state with custom

setter
assertEquals(-1, p.currState();

that suitably exploits the custom setter custom_1__ to
workaround the hard-for-testing API of the original program
for controlling a negative value ofthis.state, and (iii) the
mutant at line 20, e.g., with a test case like

SampleProg p = new SampleProg();
p.getScale();

that makes the mutant generate an infected execution state at
line 20, even if Evosuite cannot generate a proper assertion for
it. However Evosuite cannot anyway hit the mutant at line 13

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

that remains out of the scope of the test generator, regardless
of the availability of the custom setters. Thus, we eventually
consider as baseline mutants only the mutants at lines 8, 20
and 33, but not the one at line 13.

In summary, our testability judgements are made by gener-
ating test cases for both the original program and the program
augmented with the custom setters, and mutually crosscheck-
ing both sets of test results. We infer testability evidences
upon observing that the test generator successfully generates
test cases that reveal mutants in the original program, e.g., the
mutant at Figure 1, line 8. We infer non-testability evidences
out of the inability of the test generator to reveal baseline mu-
tants, e.g., the mutants at lines 33 and 20. But our estimations
dismiss the information about the non-baseline mutants (as
the one at line 13) conjecturing that the test generator could
not address those mutants regardless of the testability of the
program.

We are aware that, technically speaking, using the
testability-facilitatedAPIsmay lead us to generate some input
states that are illegal for the original program. Nonetheless,
we embrace this approach heuristically: observing faults that
the test generator can hit only with the testability-facilitated
APIs suggests restrictive designs of the program APIs, which
may pinpoint testability issues.

B. THE TECHNIQUE
Figure 2 illustrates the workflow by which our technique
exploits automated test generation (left part of the figure) and
mutation analysis (middle part of the figure) in order to judge
testability evidences (right part of the figure).

The input is a given program under test, which is indicated
at the top-left corner in the figure, and the result is a set
of testability evidences, classified as either controllability
evidences or observability evidences, as indicated at the right-
most side of the figure. The blocks named Test Generation
indicate test generation activities. The blocks named Muta-
tion Analysis indicate mutation analysis activities. The block
named Enrich APIs in program augments the program under
test with the testability-facilitated APIs, as we introduced in
the previous section. The block Prune non original API from
tests removes the calls to the testability-facilitated APIs from
the test cases generated for the program augmented with the
testability-facilitatedAPIs, to obtain additional test cases (and
thus further testability evidence) for the original version of
the program, as explained below. The circles that contain the
+ symbol indicate post-processing for merging the generated
test suites into a single test suite. The circles that contain the
× symbol indicate post-processing of the data derived from
mutation analysis to derive controllability and observability
evidences. The arrows specify the inputs and the outputs of
each activity.

We have currently implemented the entire workflow of
Figure 2 for programs in Java as a fully automated process
scripted in Bash and Java. Below we explain all details of our
approach for the three phases of the workflow.

1) Test Generation

Our current implementation generates test cases with the test
generator EvoSuite that exploits a search-based test gener-
ation algorithm to generate test cases for Java classes [26].
Given a Java class and a set of code coverage criteria, Evo-
Suite starts with randomly sampling a first set of possible
test cases for the class, and then iterates through evolving
the test cases multiple times by applying random changes,
while searching for sets of test cases that optimize the given
code coverage criteria. Furthermore, it generates assertion-
style oracles on the observed outputs.
With reference to the Test Generation blocks in Figure 2,

our technique runs EvoSuite against both the program under
test and its augmented version P’. Our implementation of
the block Enrich APIs in program obtains the augmented
program P’ by enriching the interfaces of all classes with
custom setters for any class variable declared in the code.
In Figure 2 we denoted as TestsP and TestsP’ the test suites
generated as result of those EvoSuite runs, respectively. The
test suite TestsP’ generated against P’ indicates program be-
haviors that EvoSuite could provably exercise, possibly with
the help of facilitated APIs. At the same time, the test suite
TestsP’ implicitly captures the program behaviors that the test
generation algorithm of EvoSuite is unlikely to exercise, since
it failed even when facilitated by the capability to set the input
state independently from the constraints encoded in the pro-
gram APIs. The comparison between the test suites TestsP’
and TestsP indicates program behaviors that arguably were
hard to exercise due specifically to the constraints encoded in
the APIs, that is, behaviors that do not belong to TestsP while
being in TestsP’.
For each of the Test Generation blocks in Figure 2, our

technique runs EvoSuite for a maximum time budget that
depends on the size of the class, considering a minimum
time budget of two minutes for the smallest classes in the
considered project and a maximum time budget of 20 minutes
for the largest classes, while linearly scaling the time budget
for the classes of intermediate size.
Furthermore, our technique acknowledges the dependency

of the search-based algorithm of EvoSuite from the different
code coverage criteria that the tool allows as possible fitness
functions, and from the intrinsic randomness that can natu-
rally make EvoSuite generate different sets of test cases at
different runs. Aiming to exercise as many program behaviors
as possible, we set EvoSuite to address all available fitness
functions, i.e, line coverage, branch coverage, output cover-
age, exception coverage, and mutation coverage.
To get rid of the confounding effect of the differences

between the test suites TestsP and TestsP’ that might be just
due to randomness, we constructively merge those test suites
as follows. We test the original program with both the test
cases from TestsP and the ones from TestsP’noapi, i.e., the test
cases that either were generated in TestsP’ but still did not
use any custom setter, or could be adapted from test cases
in TestsP’ by commenting the calls to the custom setters

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Workflow of our technique to estimate testability evidences

(Figure 2, block Prune non original APIs from tests)1. For
similar reasons, all the available test cases must be accounted
among the ones that EvoSuite could generate for P’, that is,
TestsP, TestsP’ and TestsP’noapi.

2) Mutation Analysis
We use the mutation analysis tool PIT to both seed possible
faults of the program under test [27], and characterize the
generated test suites according to their ability to execute and
reveal those seeded faults. This is the information that we will
use in the next phase to judge the testability evidences that the
generated test suites provided for the program under test.

PIT seeds faults in the program under test according to
the mutation operators described in the documentation of the
tool.2 We specifically considered the set ofmutation operators
that PIT advises as the "stronger" group, which includes 13
mutation operators that address several types of mutations at
the level of the arithmetic operators, the comparison opera-
tors, the logic operators, the return values and the if and switch
statements in the programs3.
PIT monitors the execution of the test suites against the

mutants that it computes according to the selected mutation
operators, and classifies the mutants as either revealed, ex-
ecuted or missed. PIT classifies a mutant as revealed, if at
least a test case produces a different result when executed
against the original program or the mutant program, respec-
tively. That is, (i) the test case executes with no exception
and raises an exception for either program, or (ii) it raises
different exceptions for either program, or (iii) it passes all test

1TestsP’noapi represents test cases that Evosuite could generate also for
the original program. Note that the custom setters can be safely commented
without breaking the syntactic validity of the test cases.

2https://pitest.org/quickstart/mutators/
3We did not consider the larger set of mutation operators that PIT refers

to as the "all" group because either they are marked as experimental in
the documentation, or our initial experiments showed that they result most
often in duplicating mutants that we already obtain with the operators of the
"stronger" group.

oracles and fails for at least a test oracle for either program,
or (iv) it fails with respect to different test oracles for either
program. Our technique considers the assertion-style oracles
that EvoSuite generated in the test cases.4 PIT classifies a
mutant as executed, if it could not classify the mutant as
revealed, but there is at least a test case that executes the code
in which the corresponding fault was injected. PIT classifies a
mutant as missed if it could not classify it neither as revealed
nor as executed.
In Figure 2, the two blocks MA indicate that our tech-

nique executes PIT for the test suites that we generated with
EvoSuite for both the program under test and its augmented
version5. As result we collect:

• the baseline mutants, i.e., the mutants that are executed
with the test cases run against for P’.

• the executed mutants, i.e., the mutants that are executed
with the test suite generated for the original program.
These mutants were provably executed with EvoSuite
with the original program APIs.

• the revealed mutants, i.e., the mutants that are revealed
with the test suite generated for P’. These mutants were
provably revealed with actual assertions within at least a
test case in which they could be successfully executed.

3) Testability Evidences
Based on the results of mutation analysis, we look for indica-
tions of the testability of the program under test. Specifically,
we first judge the testability of the programwith respect to the
testing goal that eachmutant represents: do the results provide
evidence that the program under test facilitates its own testing
with respect to the goal of revealing the seeded fault that each

4We instructed EvoSuite to generate assertions for all program
outputs encompassed in the test cases (that is with the option
assertion_strategy=ALL), since we aim to reveal as many mutants
as possible, even if the test cases could become large.

5When running PIT on P’, we do not inject mutations in the API methods
that we artificially added to obtain exactly the same set of mutants for both
programs P and P’.

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

mutant represents? By answering yes or no to this question we
infer a testability evidence or an evidence of non-testability,
respectively, for each specific mutant that belongs to the set
of baseline mutants computed as above.

We further split the testability verdicts into controllability
verdicts and observability verdicts. Controllability refers to
whether or not the results of mutation analysis provide evi-
dence that the program under test facilitates the execution of
the seeded faults. We annotate a controllability evidence for
each mutant that mutation analysis marks as executed for the
original program under test, i.e., the set of executed mutants
computed as above. With respect to these mutants, the test
cases that we generated with EvoSuite provide empirical
evidence that the program under test, with its original APIs,
provides sufficient means of controlling the assignment of the
program inputs and the program states for test cases to achieve
the execution of those seeded faults. On the other hand,
we annotate a non-controllability evidence for each baseline
mutant not marked as executed for the original program.

Observability refers to whether or not the results of mu-
tation analysis provide evidence that the program under test
facilitates to reveal the seeded faults. We annotate an observ-
ability or non-observability evidence for each baselinemutant
that mutation analysis marks or does not mark, respectively,
as revealed. The observability evidences correspond to empir-
ical evidence that the program under test provides sufficient
means for the seeded faults to be observed from the test cases.

We aggregate the testability evidences, i.e., both the con-
trollability and the observability evidences, for the mutants
that correspond to faults seeded at the same line of code,
to prevent the unbalanced skewing of our results towards
those instructions that were associated with higher numbers
of mutants than other instructions. For each line of code
associated with at least a baseline mutant, we infer a unitary
controllability (resp. observability) evidence if more than
half of the associated baseline mutants vote as controllabil-
ity (resp. observability) evidences; or we infer unitary non-
controllability (resp. non-observability) evidence otherwise.

C. ESTIMATING TESTABILITY
We refer to the collected testability and non-testability evi-
dences to reason on the testability of given parts (e.g., soft-
ware components) of the program under test. For instance, in
the experiments of this paper, we aimed to estimate testability
values that represent the testability of the methods that belong
to a Java program.

To this end, we first map each target piece of software
(e.g., each method) to the subset of testability evidences that
relate with that software, and then aggregate those testability
evidences into a testability value measured in the interval
[0, 1], where 0 and 1 correspond the minimum and the maxi-
mum testability values that we can estimate for a component,
respectively.

Let C be a software component that belongs to the pro-
gram under test, and let contr+(C), contr−(C), obs+(C) and
obs−(C) be the subsets of positive and negative controllabil-

ity and observability evidences, respectively, that we mapped
to the component C , out of the unitary evidences collected
with the technique that we described in the previous section.
Then, by referring to the size of those sets, we estimate the
controllability and the observability of the component C as:

Controllability(C) =
|contr+(C)|

|contr+(C)|+ |contr−(C)|
,

Observability(C) =
|obs+(C)|

|obs+(C)|+ |obs−(C)|
.

Finally we estimate the testability of the component C as
the combination of its controllability and its observability,
namely, as the arithmetic product of the two:

Testability(C) = Controllability(C)× Observability(C).

Furthermore, we acknowledge that the testability evidences
collected with our technique can be sometimes insufficient to
calculate reliable estimates for some program components.
In particular, we reckon this to be the case if our technique
was unable to significantly sample the execution space of
the component. When reasoning on the testability of a piece
of software, we mark our estimates as inconclusive if the
portion of lines of code for which we successfully computed
testability evidences was not a representative sample out of
the component’s lines of code that were associated with some
mutants. We ground on the classic theory of small sample
techniques [31]. As a consequence, the possibility of produc-
ing inconclusive results for some components is a possible
limitation of our technique. Depending on the actual imple-
mentations of the technique, the concretemanifestation of this
limitation boils down to the characteristics of the tools with
which we instantiate the test generation tool and mutation
analysis phases. Explicitly pinpointing the conclusiveness of
the estimates aims to alleviate the impact of such limitation.

III. EXPERIMENTS
We investigated to which extent our estimates of software
testability for the methods that belong to a Java program
can capture the actual complexity of developing test cases
for those methods, in a set of experiments with many class
methods and test cases out of three large Java projects.
We remark upfront the foundational nature of our current

experiments. In particular we do not make any strong claim
on the efficiency of either our current implementation, or
the test generator and the mutation analyzer that the current
implementation depends on. The main goal of the experi-
ments reported in this section is to explore if there is merit
in our idea of estimating testability by relying on empirical
observations made with automatically generated test cases,
and the possible complementarity between this new approach
and the traditional approach of relying on the correlation with
static software metrics.

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. RESEARCH QUESTIONS
Our experiments were driven by the following research ques-
tions:

RQ1: How large is the portion of inconclusive estimates
with our current implementation of the technique?

RQ2: To what extent do our (conclusive) testability esti-
mates correlate with the development complexity of the test
cases that were designed for the considered methods, and
how do they compare with traditional software metrics in this
respect?

RQ3: Does combining our testability estimates with other
static metrics improve over using only the static metrics as
predictors of testability?

B. SUBJECTS
We selected fromGitHub three open-source Java projects that
(i) use Maven as build tool, as this is a requirement of our cur-
rent implementation of the technique, (ii) are representative of
large projects comprised of at least 500 classes, (iii) include at
least 300 methods that can be associated (with the procedure
that we describe in Section III-C) with test cases available
in the projects, (iv) are representative of different types of
software developments, namely, a programming library, a
software engineering tool and a business oriented application.
The three projects are:

• JFreeChart, a programming library that supports the
display of charts,

• Closure Compiler, a software engineering tool that
parses and optimizes programs in Javascript, and

• OpenMRS-Core, a business-oriented application for the
healthcare domain.

Table 1 summarizes descriptive statistics about the Java
methods that belong to each project, namely, the number of
methods (first row), their total and individual size (from the
second to the fifth row), and the number of mutants in the
methods (from the sixth to the eighth row). The columns All
refer to all methods in the projects, while the columns Tested
and Subjects refer, respectively, to the subset of methods that
we were able to successfully associate with some test cases,
and to the further subset that we selected as actual subjects for
our study. We describe the procedure by which we selected
these two latter subsets in the next section. The data in the
table indicate that we selected methods with increasing size
and increasing number of mutants at each selection step.

C. GROUND TRUTH
Out of the Java methods in the considered projects (Table 1,
columns All), we excluded all methods hashCode and equals
that are usually generated automatically, and further selected
only the methods that we could associate with a reference
ground-truth, that is, available test cases that the program-
mers developed for those methods. This because we aimed at
investigating the correlation between our testability estimates
for the methods and the development complexity of the cor-
responding test cases, for methods and test cases designed by

human programmers. We built on the methods2test tool [32]
to associate the methods with the test cases available in the
projects, and selected only the methods for which we identi-
fied at least an associated test case (Table 1, columns Tested).
Methods2test heuristically infers the associations between

the available test cases and the methods that are their main
testing target. It originally relies on two heuristics, name
matching and unique method call, but we extended it with
three additional heuristics, stemming-based name match-
ing, contains-based name matching and non-helper unique
method call, which generalize the two original ones with the
aim to increase the set of identified associations.
For each test case, which in the considered projects is a

test method within a test class, name matching searches for a
target method that both exactly matches with the name of the
test case and belongs to a class that exactly matches with the
name as the test class. Stemming-based name matching and
contains-based name matching address the name matching
with respect to either the stemmed names of methods and test
cases, or whether the test name contains the method name,
respectively. For example testCloning and testCloneSecond-
Case will match with method clone after name stemming
or by name containment, respectively. Unique method call
further exploits the name-based association between a test
class and a target class, by searching for test cases that call a
single method of the target class. Non-helper unique method
call re-evaluates the unique-method check after excluding
the calls to possible helper methods, such as setter methods,
getter methods and the method equals.
After the association with the test cases, we further refined

the set of subject methods by excluding themethods for which
PIT computedmutants for at most two lines of code. For these
methods our technique could distill the unitary testability
evidences out of a too squeezed population of seeded faults,
which results in yielding unbalanced estimates in most cases.
We see this as a drawback of the fault models that we are
currently able to consider by relying on PIT, rather than as
a limitation of our idea of estimating testability based on
automatically generated test cases, and we thus dismissed
these methods from the current experiments on this basis. We
ended with selecting the set of subject methods summarized
in the columns Subjects of Table 1.
We quantified the development complexity of the test cases

associated with each subject method as the number of unique
method invocations made within the ensemble of those test
cases (counted with the tool CK) . We refer to this values as
RfcTest, i.e., the Rfc values of the test cases. Since the test
cases are often sheer sequences of method calls (no decisions,
no loops) other complexity metrics (like the cyclomatic com-
plexity) are scarcely representative, while size metrics (like
LOC, number of test cases or number of assertions) are more
sensitive than RfcTest to arbitrary choices of testers. RfcTest
represents more consistently than other metrics the effort that
testers spent for understanding methods of other classes, as
also considered in several testability studies [13], [16], [24].
Furthermore, we assessed the reliability of our ground-

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Descriptive statistics of the subject methods in the three considered Java projects

JFreeChart Closure Compiler OpenMRS
All Tested Subjects All Tested Subjects All Tested Subjects

Number of methods 8552 613 246 14723 300 111 9166 493 241
Total lines of code (LOC) 71703 6751 5162 110553 3195 2266 51412 6527 5402
Average LOC per method 8.38 11.01 20.98 7.51 10.65 20.41 5.61 13.21 22.41
Mininum LOC per method 1 3 5 1 1 1 1 3 6
Maximum LOC per method 288 188 188 433 246 246 221 121 121
Average mutants per method 2.45 3.69 7.42 2.85 3.64 7.59 1.33 4.70 8.28
Mininum mutants per method 0 1 3 0 1 3 0 1 3
Maximum mutants per method 104 74 74 617 66 66 74 46 46

truth with respect to possible errors in the method-test associ-
ations returned by Methods2test, by manually crosschecking
10% of the methods (randomly sampled with R’s function
sample) for which our technique produced a conclusive es-
timation (cfr. Section III-E1, Table 2). Out of 42 subject
methods that we crosschecked, we detected need for correc-
tions for 7 methods, i.e., 5 methods for which Methods2test
reported a wrongly matched test case (false positives), and
2 other methods for which Methods2test missed 3 and 2
associations, respectively (false negatives). For 3 of these 7
methods, correcting the errors of Methods2test did not affect
the RfcTest value, thus the corrections impacted only 4 out
42 methods. This datum suggests mild impact of the possible
errors of Methods2test.

D. EXPERIMENTAL SETTING
We instantiated our technique with EvoSuite, version 1.2.0,
and PIT, version 1.8.1. In Section II-B we have already
described the configuration of EvoSuite with respect to the
fitness functions, the time budget and the generation of asser-
tions, and the mutation operators used with PIT.

We discriminated inconclusive testability estimates by de-
termining, for each subject method, the threshold for the
minimal number of lines of code that we must sample with
testability evidences out of the lines for which PIT identified
at least a mutant. We computed the thresholds by referring
to the classic approximation to the hypergeometric distribu-
tion [31], setting the confidence level set to 95%, the popula-
tion portions to 0.5 and the corresponding accuracy to 15%.

To compare the performance of our testability estimates
with the performance of the estimates that can be done with
traditional software metrics we used the tool CK6 [33] to
collect the 7 metrics Loc, Rfc, Cbo, Fan-out, Fan-in, Cbo-
modified andWmc, for each subject method. Loc is the num-
ber of lines of code in the method. Rfc is the number of
unique method invocations done within the method. Cbo is
the number of non-primitive data types used in the method.
Fan-out is the number of unique classes on which the method
depends via method calls. Fan-in is the number of other
methods that call the method within the same class. Cbo-
modified is the sum ofFan-out andFan-in.Wmc is the number
of branch instructions within the method or 1 for no branch.

6the tool CK is available at https://github.com/mauricioaniche/ck

E. RESULTS
1) Conclusiveness (RQ1)
Table 2 reports, for each of the three Java projects (column
Project) and set of subject methods (column Subjects), the
number of methods for which we achieved conclusive esti-
mations (column Conclusive) and the corresponding portion
(column Portion).

TABLE 2. Conclusive testability estimations

Project Subjects Conclusive Portion
JFreeChart 246 206 84%

Closure Compiler 111 68 61%
OpenMRS 241 141 59%

The portion of inconclusive estimations is evidently not
negligible, ranging between 16% and 41% across the three
Java projects. The inspection of the methods with inconclu-
sive estimations revealed that, as we expected, many subject
methods were not hit with any test case from EvoSuite since
they depended on inputs that EvoSuite cannot generate due
to limitations of its current implementation. For example, we
identified several methods that take files and streams as inputs
(e.g., parameters of type ObjectInputStream) that EvoSuite
does not currently handle.
We remark that EvoSuite is a research prototype, though

very popular in the community of researchers that work on
test generation, and we did not expect it to be perfect. Tuning
our technique with further test generators or even ensembles
of test generator (as well as experiencing with further muta-
tion analysis tools other than PIT) is an important milestone
for our technique to make its way to practice, and definitely
the most relevant next goal in our research agenda. But we
also underline the importance of studying the merit of our
novel proposal for the cases in which we could indeed achieve
conclusive results with the current implementation, which
admittedly is our main objective in this paper.

2) Correlation with Test Case Complexity (RQ2)
For the research questions RQ2 and RQ3 we focused on the
subject methods for which our technique yielded conclusive
results.
Table 3 reports the correlation (as the Spearman rank cor-

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Correlations between testability estimates, static metrics and test case complexity

Legenda: T=Testability, L=Loc, R=Rfc, C=Cbo, CM=CboModified, FI=FanIn, FO=FanOut, W=Wmc, RfcTest=Rfc on test cases.

JFreeChart Closure Compiler OpenMRS
T L R C CM FI FO W T L R C CM FI FO W T L R C CM FI FO W

Loc -0.16 -0.25 -0.28
Rfc -0.44 0.64 - 0.57 -0.42 0.72
Cbo -0.49 0.41 0.66 - 0.33 0.69 -0.33 0.40 0.49

CboModified -0.40 0.51 0.71 0.66 -0.31 0.24 0.43 0.36 -0.27 0.43 0.60 0.28
FanIn - - -0.20 -0.28 0.15 - - - - 0.56 0.20 - - -0.30 0.38

FanOut -0.43 0.50 0.76 0.77 0.93 -0.16 -0.29 0.39 0.85 0.72 0.55 - -0.44 0.51 0.78 0.57 0.74 -0.19
Wmc -0.18 0.85 0.51 0.34 0.48 - 0.45 - 0.82 0.45 - - - 0.26 - 0.77 0.51 0.32 0.36 - 0.43

RfcTest -0.51 0.21 0.50 0.45 0.44 - 0.49 0.16 -0.41 - - - 0.23 - 0.30 - -0.45 0.33 0.47 0.48 0.33 -0.17 0.53 -

relation coefficient7) between our testability estimations, the
7 static software metrics that we measured with the tool CK,
and the development complexity of the test cases (measured
as the metric RfcTest) for the subjects methods in each con-
sidered Java project. Each cell in the table represents the
correlation between the metrics indicated in the titles of the
corresponding column and row, respectively. For example, the
column T represents the correlations between our testability
estimates and all other metrics, and the row RfcTest represents
the correlation of all possible metrics (including our testabil-
ity estimates) with the development complexity of the cases.
All reported correlation values were computed with R. The
missing correlation values (indicated as dash symbols in the
table) refer to cases for which we did not find support for
statistical significance (p-values greater than 0.05).

We observe that:

• our testability estimations have a moderate correlation
with RfcTest for the sets of subject methods of all the
considered projects (JFreeChart: 0.51, Closure Com-
piler: 0.41 and OpenMRS: 0.45).

• Our testability estimates yielded the best correlation
with RfcTest for the methods of JFreeChart and Closure
Compiler, and the fourth best correlation for themethods
of OpenMRS.

• Our testability estimates have weak correlation with the
size of the methods measured as the lines of code (top-
left correlation value, row Loc, in the three value sets in
the table).

• The other static metrics resulted in significantly higher
correlations with Loc (columns L in the table) than
Testability, with the only exceptions of CboModified in
project Closure Compiler (where however CboModified
has only a weak correlation with RfcTest).

In summary the findings confirm that our testability esti-
mates may contribute to explain the variability in the com-

7The Spearman rank correlation coefficient indicates the extent to which
the ranking of the subjects with respect to an indicator produces a good
approximation of the ranking with respect to the other indicator. The table
also reports the correlation between the testability estimations and the 7 static
software metrics that we measured with the tool CK, and the correlation of
those 7 metrics between them and with RfcTest. The correlation value ranges
between -1 and 1, being 1 an indication of perfect correlation (same ranking),
-1 and indication of perfect anti-correlation (same inverse ranking) and 0 an
indication of no correlation (completely different ranking).

plexity of the test cases, while capturing a different phe-
nomenon than the size of the software. The other software
metrics also correlate with the test complexity, sometimes
with comparable strength as our testability estimates, but their
independence from Loc is questionable. Overall, these find-
ingsmotivate us to explore the possible synergies between our
testability estimates and the static metrics.

3) Synergy with Static Software Metrics (RQ3)
We evaluated the performance of the 7 testability indicators
obtained by combining each static software metrics with our
testability estimates. For each static metric, we obtained the
combined indicator as the average ranking of the two rankings
yielded by the static metric and our testability estimates,
respectively, for the subject methods. For the static metrics
that are anti-correlated with the testability estimates (all but
FanIn, see Table 3) we reversed the testability rankings before
computing the combined indicators.
In this study we considered also the methods for which our

technique resulted in inconclusive estimates. Since the static
metrics are generally available for all methods, and we aim to
evaluate if we can benefit from the static metrics in combina-
tion with the testability estimates, it makes sense to include
those methods as well. For the methods with inconclusive
testability estimates, we obtained the combined indicators as
just the ranking value yielded by the static metrics (that is,
without any additional benefit from testability estimates).

TABLE 4. Correlation with the combined testability indicators

JFreeChart Closure Compiler OpenMRS
base combined base combined base combined

Loc 0.17 0.34 - - 0.39 0.47
Rfc 0.46 0.53 0.23 0.32 0.52 0.55
Cbo 0.45 0.53 0.26 0.33 0.46 0.51

CboModified 0.46 0.54 - 0.35 0.39 0.52
FanIn - -0.38 - -0.31 -0.20 -0.32

FanOut 0.50 0.58 0.23 0.30 0.51 0.53
Wmc 0.14 0.32 - - 0.28 0.43

Table 4 reports the correlation between RfcTest and the 7
combined testability indicators (columns combined) in com-
parison with the correlation obtained with respect to the
base static metrics alone (columns base) for the subjects
methods in each considered Java project. We report only the

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

correlation values supported with statistical significance (p-
value less than 0.05). The data in the table show that the
correlation yielded with the combined indicators consistently
outperformed the correlation yielded with the corresponding
static metrics alone, in most cases with relevant deltas. This
confirms our main research hypothesis that our testability
estimates capture a complementary dimension of testability
with respect to the traditional software metrics, and can be
synergistically combined with those metrics for the purpose
of predicting software testability.

F. THREATS TO VALIDITY
The main threats to the internal validity of our experiments
depend on our current choices about the test generation and
mutation analysis tools (EvoSuite and PIT) embraced in our
current prototype. On one hand, our results directly depend
on the effectiveness of those tools in sampling the execution
space and the fault space of the programs under test, respec-
tively, and thus we might have observed different results if
we had experienced with different tools. On the other hand,
our experiments suffered of several subjects for which PIT
failed to identify sufficient sets of mutants (the subjects that
belonged to the subsets Tests in Table 1, but that we excluded
from the considered subsets Subjects) and EvoSuite failed
to provide sufficient test cases (the subjects that resulted in
inconclusive estimates, see Table 2).

We mitigated the possible threats by focusing our analysis
only on the methods that could be reasonably handled with
PIT, and by explicitly pinpointing the methods for which
EvoSuite allowed us to compute conclusive results. We stud-
ied the performance of our technique both as the extent of
correlation of our conclusive estimates with the development
complexity of the test cases, and by looking into how well
our estimates can combine with traditional software metrics
also with consideration of our inconclusive results. But we
are aware that we cannot make any strong claim on the
efficiency of our current implementation of the technique that
we propose in the paper, and in particular on its specific char-
acteristics of being based on EvoSuite and PIT. Our current
claims are only on having provided initial empirical evidence
that (i) our approach captures a different testability dimension
than the size of the software, and (ii) it can complement
traditional software metrics to reason on software testability
in synergistic fashion.

As for the external validity, our findingsmay not generalize
to other software projects other than the ones that we con-
sidered or to programming languages other than Java. In the
future, we aim to replicate our experiments on further projects
and implement our technique for additional programming
languages.

IV. RELATED WORK
The notion of software testability has been first introduced
by Freedman [28] along with the related concepts of observ-
ability and controllability. In turn, these two concepts were
inherited from the fields of dynamic systems [34] and hard-

ware testing [35]. Then over time the problem of measuring
software testability has been addressed with two classes of
approaches, based on either fault-sensitivity, which addresses
testability by estimating the probability of revealing faults, or
software metrics, which estimate testability by conjecturing
the correlations between software metrics and the testing
effort.
Fault-sensitivity approaches were popular in the 90s, with

the work about the PIE (or RIP) model [3]–[7], [36]. PIE
stands for propagate, inject and execute, which are the three
main stages of the fault-revealing executions that must be
considered to estimate testability. In practice, sensitivity anal-
ysis injects simulated faults into the code and evaluates their
effect on the outputs. Bertolino and Strigini exploited this
notion of testability to study the relation between testability
and reliability [37]. Lin et al. proposed to use a modified
version of the PIE technique, which analyzes the structure of
the code instead of executing test cases [38]. Zhao proposed a
metric that quantifies the portion of a test suite that can detect
specific faults under given test criteria [39].
The strength of the fault-sensitivity approaches is to refer

to actual faults, the weakness is on the performance side,
since the number of input data that need to be provided for
sensitivity analysis is high even for small programs. For these
reasons, researchers progressivelymoved to softwaremetrics,
which are considered more cost-effective to compute. Our
work however shows that dynamic measures derived from
observability and controllability are important factors not
subsumed by static software metrics, which should be rather
considered in combination with them.
Software metrics derive testability indexes from metrics

that capture information about the static structure of the code.
These studies aim at finding a correlation between the static
metrics and the testability of the analyzed software, to iden-
tify which metrics are best predictors of testability. Differ-
ent research efforts studied different combination of metrics.
Khalid et al. proposed static metrics that aim at estimating
the complexity of an object and evaluate their performance
for testability prediction [14]. Alshawan et al. proposed a set
of static metrics specific to web applications [22]. A large
body of papers refer to the so called CK metrics for object
oriented software [25]. Gupta et al. propose a fuzzy approach
to integrate the CK metrics in a unique metric that should
represent the testability [10]. Singh et al. and Zhou et al.
used neural networks and linear regression, respectively, to
predict testability to combine several software static metrics
to predict testability [12], [18].
All research efforts share the challenge of deriving a

ground truth for evaluating the goodness of the proposed
techniques. Typically researchers referred their experiments
to metrics that quantify the testing effort as the size or the
complexity of test suites available in software repositories.
Possible metrics include: the number of test cases, the number
of lines of test code, the number of assertions, the number of
all or unique method calls in test cases, and the average cyclo-
matic complexity of the test cases. For instance, Bruntik and

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

van Deursen studied the correlation between object-oriented
metrics and the testing effort estimated as above [9], [11].
Other studies measured the test effort as the time required
for completing the testing tasks [10]. This datum is however
seldom available as historical data in software repositories.
Others referred to code coverage to evaluate testability in-
dicators with respect the quality of the test suite. Terragni
et al. referred to coverage data normalized with respect to
the size of the test cases [21]. In line with previous studies,
we consider the complexity of the test cases (measured as
RfcTest) as ground truth of testability.

V. CONCLUSIONS
In this paper we discuss a new approach for measuring soft-
ware testability. Our approach tackles the testability mea-
surement problem explicitly, by operationally estimating the
degree of controllability and observability of a software com-
ponent. In particular, our approach samples the test space and
the fault space of the target component, therein collecting
empirical evidence of the easiness or hardness to accomplish
effective testing. Our approach provides a novel and direct
way of dealing with testability, compared to previous work
that attempts to measure testability based on arguable rela-
tions with code size, code complexity and fault sensitivity.
We computed our metric for Java methods and performed
experiments with 598 subject methods from 3 Java projects.
The results show that our approach captures a testability
dimension that static metrics do not well represent, and thus
it can well complement traditional software metrics.

In future work we aim to address the drawbacks that we
discussed in the paper about the automatic testing and muta-
tion analysis tools, aiming to refine and expand the empirical
evidence on the effectiveness of the proposed approach. In ad-
dition, we believe that the unexecuted and unrevealedmutants
that our technique pinpoints may provide concrete examples
of untestable software behaviors that can be of interest for the
engineers to understand the reasons of low testability, and we
thus aim to investigate this different type of exploitation of
our approach.

REFERENCES
[1] International Standard Organization (ISO), ‘‘International standard iso/iec

9126, information technology - product quality - part1: Quality model,’’
2001.

[2] IEEE, ‘‘Ieee standard glossary of software engineering terminology,’’
IEEE, pp. 1–84, 1990.

[3] J. M. Voas and K.W.Miller, ‘‘Improving the software development process
using testability research,’’ 1991.

[4] J. Voas, L. Morell, and K. Miller, ‘‘Predicting where faults can hide from
testing,’’ IEEE Software, vol. 8, no. 2, pp. 41–48, 1991, publisher: IEEE.

[5] J. M. Voas, ‘‘PIE: A dynamic failure-based technique,’’ IEEE Transactions
on software Engineering, vol. 18, no. 8, p. 717, 1992, publisher: IEEE
Computer Society.

[6] J. Voas and K. Miller, ‘‘Software testability: the new verification,’’ IEEE
Software, vol. 12, no. 3, pp. 17–28, May 1995. [Online]. Available:
http://ieeexplore.ieee.org/document/382180/

[7] J. M. Voas, ‘‘Object-Oriented Software Testability,’’ in Achieving Quality
in Software, S. Bologna and G. Bucci, Eds. Boston, MA: Springer US,
1996, pp. 279–290. [Online]. Available: http://link.springer.com/10.1007/
978-0-387-34869-8_23

[8] J. M. Voas, K. W. Miller, and J. E. Payne, ‘‘An empirical comparison of
a dynamic software testability metric to static cyclomatic complexity,’’ in
NASA.Goddard Space Flight Center, Proceedings of the Eighteenth Annual
Software Engineering Workshop, 1993.

[9] M. Bruntink and A. van Deursen, ‘‘Predicting class testability using
object-oriented metrics,’’ in Source Code Analysis and Manipulation,
Fourth IEEE International Workshop on. Chicago, IL, USA: IEEE
Comput. Soc, 2004, pp. 136–145. [Online]. Available: http://ieeexplore.
ieee.org/document/1386167/

[10] V. Gupta, K. Aggarwal, and Y. Singh, ‘‘A fuzzy approach for integrated
measure of object-oriented software testability,’’ Journal of Computer
Science, vol. 1, no. 2, pp. 276–282, 2005.

[11] M. Bruntink and A. van Deursen, ‘‘An empirical study into class
testability,’’ Journal of Systems and Software, vol. 79, no. 9, pp.
1219–1232, Sep. 2006. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0164121206000586

[12] Y. Singh, A. Kaur, and R. Malhotra, ‘‘Predicting testing effort using artifi-
cial neural network.’’ Citeseer, 2008, pp. 1012–1017.

[13] L. Badri, M. Badri, and F. Toure, ‘‘Exploring empirically the relation-
ship between lack of cohesion and testability in object-oriented systems.’’
Springer, 2010, pp. 78–92.

[14] S. Khalid, S. Zehra, and F. Arif, ‘‘Analysis of object oriented complexity
and testability using object oriented design metrics,’’ 2010, pp. 1–8.

[15] Y. Singh and A. Saha, ‘‘Predicting testability of eclipse: a case study,’’
Journal of Software Engineering, vol. 4, no. 2, pp. 122–136, 2010.

[16] L. Badri, M. Badri, and F. Toure, ‘‘An Empirical Analysis of Lack of
Cohesion Metrics for Predicting Testability of Classes,’’ International
Journal of Software Engineering and Its Applications, vol. 5, no. 2, p. 18,
2011.

[17] M. Badri and F. Toure, ‘‘Empirical Analysis of Object-Oriented Design
Metrics for Predicting Unit Testing Effort of Classes,’’ Journal of Software
Engineering and Applications, vol. 05, no. 07, pp. 513–526, 2012.
[Online]. Available: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/
jsea.2012.57060

[18] Y. Zhou, H. Leung, Q. Song, J. Zhao, H. Lu, L. Chen, and B. Xu, ‘‘An
in-depth investigation into the relationships between structural metrics
and unit testability in object-oriented systems,’’ Science china information
sciences, vol. 55, no. 12, pp. 2800–2815, 2012, publisher: Springer.

[19] R. C. da Cruz and M. Medeiros Eler, ‘‘An Empirical Analysis of
the Correlation between CK Metrics, Test Coverage and Mutation
Score,’’ in Proceedings of the 19th International Conference on
Enterprise Information Systems. Porto, Portugal: SCITEPRESS
- Science and Technology Publications, 2017, pp. 341–350.
[Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.aspx?
doi=10.5220/0006312703410350

[20] F. Toure, M. Badri, and L. Lamontagne, ‘‘Predicting different levels of the
unit testing effort of classes using source code metrics: a multiple case
study on open-source software,’’ Innovations in Systems and Software
Engineering, vol. 14, no. 1, pp. 15–46, Mar. 2018. [Online]. Available:
http://link.springer.com/10.1007/s11334-017-0306-1

[21] V. Terragni, P. Salza, and M. Pezzè, ‘‘Measuring Software Testability
Modulo Test Quality,’’ inProceedings of the 28th International Conference
on Program Comprehension. Seoul Republic of Korea: ACM, Jul. 2020,
pp. 241–251. [Online]. Available: https://dl.acm.org/doi/10.1145/3387904.
3389273

[22] N. Alshahwan, M. Harman, A. Marchetto, and P. Tonella, ‘‘Improving web
application testing using testability measures.’’ IEEE, 2009, pp. 49–58.

[23] R. A. Khan and K. Mustafa, ‘‘Metric based testability model for object
oriented design (MTMOOD),’’ ACM SIGSOFT Software Engineering
Notes, vol. 34, no. 2, pp. 1–6, Feb. 2009. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1507195.1507204

[24] A. Kout, F. Toure, and M. Badri, ‘‘An empirical analysis of a
testability model for object-oriented programs,’’ ACM SIGSOFT Software
Engineering Notes, vol. 36, no. 4, pp. 1–5, Aug. 2011. [Online]. Available:
https://dl.acm.org/doi/10.1145/1988997.1989020

[25] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Transactions on software engineering, vol. 20, no. 6, pp.
476–493, 1994, publisher: IEEE.

[26] G. Fraser and A. Arcuri, ‘‘Evosuite: automatic test suite generation for
object-oriented software,’’ 2011, pp. 416–419.

[27] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, ‘‘Pit: a
practical mutation testing tool for java,’’ 2016, pp. 449–452.

[28] R. S. Freedman, ‘‘Testability of software components,’’ IEEE transactions
on Software Engineering, vol. 17, no. 6, pp. 553–564, 1991.

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[29] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, ‘‘Hints on test data
selection: Help for the practicing programmer,’’ Computer, vol. 11, no. 4,
pp. 34–41, 1978, publisher: IEEE.

[30] M. Pezzè andM. Young, Software testing and analysis: process, principles,
and techniques. John Wiley & Sons, 2008.

[31] R. V. Krejcie and D. W. Morgan, ‘‘Determining sample size for research
activities,’’ Educational and psychological measurement, vol. 30, no. 3, pp.
607–610, 1970, publisher: Sage publications Sage CA: Los Angeles, CA.

[32] M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy, ‘‘Meth-
ods2Test: A dataset of focal methods mapped to test cases,’’ arXiv preprint
arXiv:2203.12776, 2022.

[33] M. Aniche, Java code metrics calculator (CK), 2015, available in
https://github.com/mauricioaniche/ck/.

[34] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in mathematical system
theory. McGraw-Hill New York, 1969, vol. 33.

[35] E. J. McCluskey, Logic design principles with emphasis on testable semi-
custom circuits. Prentice-Hall, Inc., 1986.

[36] R. A. DeMillo, A. J. Offutt et al., ‘‘Constraint-based automatic test data
generation,’’ IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900–910, 1991.

[37] A. Bertolino and L. Strigini, ‘‘On the use of testability measures for
dependability assessment,’’ IEEE Transactions on Software Engineering,
vol. 22, no. 2, pp. 97–108, Feb. 1996. [Online]. Available: http:
//ieeexplore.ieee.org/document/485220/

[38] J.-C. Lin and S.-W. Lin, ‘‘An estimated method for software testability
measurement.’’ IEEE, 1997, pp. 116–123.

[39] L. Zhao, ‘‘A new approach for software testability analysis,’’ in
Proceedings of the 28th international conference on Software engineering.
Shanghai China: ACM, May 2006, pp. 985–988. [Online]. Available:
https://dl.acm.org/doi/10.1145/1134285.1134469

LUCA GUGLIELMO is a research fellow at the
University of Milano - Bicocca. He holds a Ph.D.
in Computer Science received from the same uni-
versity in 2023. His research interests include soft-
ware testing and analysis, software metrics and
other software engineering topics. He has been ac-
tive on a project related to a safety-critical embed-
ded system in the railway domain (ERTMS/ETCS
system) since 2018.

LEONARDO MARIANI is Full Professor at the
University of Milano - Bicocca. He holds a Ph.D.
in Computer Science received from the same uni-
versity in 2005. His research interests include soft-
ware engineering, in particular software testing,
program analysis, automated debugging, specifi-
cation mining, and self-healing and self-repairing
systems. He has authored more than 100 papers
appeared at top software engineering conferences
and journals. He has been awarded with the ERC

Consolidator Grant in 2015, an ERC Proof of Concept grant in 2018, and he
is currently active in several European and National projects. He is regularly
involved in the organization of major software engineering conferences.

GIOVANNI DENARO is Associate Professor of
computer science at Università degli Studi di Mi-
lano - Bicocca. He received the Ph.D. degree in
Computer Science and Engineering from Politec-
nico di Milano in 2002. His research interests in-
clude software testing and analysis, formal meth-
ods for software verification and cybersecurity,
distributed and service-oriented systems, and soft-
ware metrics. He has been investigator in several
research and development projects in collaboration

with leading European universities and companies, and is currently active
in several European and National projects. He is regularly involved in the
organization of major software engineering conferences.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

