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shing moment map ®. Assuming that @ is transverse to the ray through a given weight v,
associated to these data there is a complex (d —r+ 1)-dimensional polarized projective orb-
ifold M, (referred to as the v-th conic transform of M). Namely, M, is a suitable quotient

Keywords: of the inverse image of the ray in the unit circle bundle of the polarization of M. With the
Toric symplectic orbifold aim to clarify the geometric significance of this construction, we consider the special case
Hamiltonian action where M is toric, and show that My is itself a Kdhler toric orbifold, whose (marked) mo-
Contact lift ment polytope is obtained from the one of M by a certain ‘transform’ operation (depending
Marked moment polytope on ® and v).
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1. Introduction

Consider a d-dimensional connected projective manifold M, with complex structure J, and let (A, h) be a positive holo-
morphic line bundle on M. Thus A is ample, h is a Hermitian metric on it, and the unique covariant derivative V on A
compatible with both the metric and the complex structure has curvature ® = —2: @, with w € (M) a Kihler form on
M, D).

We shall denote by AV the dual line bundle to A, and by X C A the unit circle bundle, with bundle projection 77 : X —
M. Then V corresponds to a connection 1-form o« € 21(X), which is a contact form on X and satisfies

da =27%(w). (1)

Let T" be an r-dimensional compact torus, with Lie algebra ¢ and coalgebra ¢"V. Furthermore, let u™ : T" x M — M
be a holomorphic and Hamiltonian action of T" on (M, 2w, J), with moment map & : M — {” (see e.g. [7] for general
background on Hamiltonian actions and moment maps).

Any & € t" thus determines a Hamiltonian vector field &,, on M. As is well-known [10], ® determines a natural lift of

&, to a contact vector field &y = §$ on (X, ), given by

Ex =Eh — (D,£)0p; )
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here V¥ is the horizontal lift to X, with respect to «, of a vector field V on M, and 8y is the generator of the structure
Sl-action on X, given by counterclockwise fiber rotation. The flow of & x preserves the contact and CR structures of X, and
the flows of £y and &) commute, for any &, &' € t'.

We shall make the stronger hypothesis that ™ lifts to a metric preserving line bundle action on A, and the induced
action X : T" x X — X has the correspondence & — & in (2) as its differential. We shall say that uX is the (contact and
CR) lift of the holomorphic Hamiltonian action (uM, ®).

For example, when r =1 and uM is trivial, ® : M — 1" is constant; choosing ® = in (2) yields the circle action
oX generated by —dy, thus given by clockwise fiber rotation. If 8951 is the standard generator of the Lie algebra of S!,

= (3951) x in (2) is the vector field on X generating the structure S'-action given by counter-clockwise fiber rotation,
while —9y is the vector field generating p* (clockwise fiber rotation); we parametrize S! by 6 — e'?.

Let us fix a non-zero weight v € . The results below rest on the following Basic Assumption on (&, v), henceforth
referred to as BA 1.1.

Basic Assumption 1.1. The following holds:

1. v is primitive (or coprime);
2. @ is nowhere vanishing, that is, 0 & ®(M);
3. @ is transverse to the ray R, - v.

Under these circumstances, a polarized Kéhler orbifold (M.,, Wy, 7 ) can be constructed from the  previous data, by taking
a suitable quotient by a locally free action of T" of a locus in X defined by (&, v); here @, and ]v denote the (orbifold)
symplectic and complex structures on M, [16]. We refer to [16] (where M, is denoted N, and @y by 7ny) for a discussion of
the relevance of this geometric construction in geometric quantization; it generalizes the one of weighted projective spaces
as quotients of an odd-dimensional sphere. Here we aim to clarify the relation between the symplectic structures of M and
M, in the toric setting: as we shall see, assuming that M is a toric manifold, (My, 2®y) is a toric symplectic orbifold, and
its marked moment polytope A, can be explicitly recovered from the moment polytope A of M (by [11] toric symplectic
orbifolds are classified by marked convex rational simple polytopes).

Before stating the result precisely, let us briefly recall the geometric construction in point, referring to [13-16] for details.
Let us set

My =0 '(Ryv)SM, X,:=7"'(My)CX. 3)
Then, assuming BA 1.1, the following holds:

1. My € M is a connected and compact (real) submanifold, of codimension r — 1;
2. wX is locally free on X,.

We may and will assume without loss that uX is generically free on X (and X, ). Then the quotient
My =Xy /T’ (4)

(denoted Ny in [16]) is naturally a (d — r + 1)-dimensional complex orbifold, and comes equipped with a Kahler structure
(Mv, Dy, ]v) induced by (M, w, ]) here T™ acts on X, by the restriction of u* to X,. We shall call Mv the v-th conic
transform of M; it depends on ¥, hence on ®.

We are interested in clarifying the geometry of M, in the toric setting, thus assuming that M be toric, with structure
action yM : T4 x M — M and moment polytope A C tV.

Let us briefly recall the Delzant construction of M from A; obviously with no pretense of exhaustiveness, we refer to
[1], [4], and [11] for more complete discussions. Since M is smooth, A is a Delzant polytope [4]. We shall denote by F(A)
the collection of all faces of A, by F;(A) C F(A) the subset of codimension-I faces, and specifically by G(A) = F1(A) the
subset of facets. If G(A) = {F1, ..., Fi}, then for every j=1,...,k there exist unique

vj e L(TY :=ker (expra(27-)) C ¢ =Lie(T9), 1jeR, (5)

with v; primitive, such that

k
A=(leet’ : Lw) =1y, (6)
j=1
and for every j=1,...,k the relative interior of F; (open facet) is
Fl={tet’ : tj) =rj, j)>rjV¥j #j). (7)
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Let us set
. k k
a)o::EIXl:de/\dZJ‘:X]:de/\dyj. (8)
Jj= Jj=

Then (M, 2w) can be regarded as symplectic reduction of (CK,2wg) under the action of a subtorus N < T¥, as follows. De-
note the general element of T¥ by e'? = (e'”1, ..., e'%); for e'? € T and z= (z))_, € C¥, let us set e'? e z:= (¢' " zj)l;:l.
For any choice of A = (Aj)’;:] e R¥, the action

I“Ck:(e’”,z)eT"x(CkHe_’”oze(Ck 9)

is then Hamiltonian on ((Ck, 2wo), with moment map

k
UozeChsr Y (172 +) €, (10)
j=1

where (ej)’j.:l is the canonical basis of R¥ and (e;f)’j‘.:1 is the dual basis. The linear map R¥ — R¢ such that e; > u; induces

. k . . . . .
a short exact sequence of tori 0 > N — Tk — T4 — 0: hence 'C" restricts to a Hamiltonian action of N on ((Ck, 20)0), with

a moment map \I/i\’ naturally induced from W,. Given that A is Delzant, N acts freely on Zx := \lli\’fl (0); then M = ZA/N,
with its symplectic structure 2 w, is the Marsden-Weinstein reduction of ((C", Zwo) for the action of N. By the arguments
of [5], the standard complex structure Jo of C¥ descends to a compatible complex structure | on M, whence (M, , J) is
a Kdhler manifold.

Furthermore, I descends to a holomorphic and Hamiltonian action of T¢ = T¥/N on (M, 2w, J), yM: T¢ x M — M; the
moment map ¥: M — " is obtained by descending to the quotient the restriction

\Dlle A —> no %tdv.

In addition, if A € Z¥ this construction can be extended by the arguments of [5] so as to obtain an induced toric positive
line bundle (A, h) on M, with curvature ® = —2:  (§2.1.2); that (A, h) is toric means that M lifts to a metric preserving
line bundle action of T¢ on A. Hence by restriction we obtain a contact CR action y* : T4 x X — X lifting ™, where
X C AV is the unit circle bundle.

In addition, we suppose given an effective holomorphic and Hamiltonian action u™ : T" x M — M of an r-dimensional
compact torus T" on M, with moment map ®: M — t'" satisfying BA 1.1 for a certain v € ¥, and commuting with M.
Thus uM factors through an injective group homomorphism T" — T¥, hence we may assume without loss of generality that
T" < T? and that uM is the restriction of y™ to T'; therefore, letting ¢ : " < ¢ be the Lie algebra inclusion,

d=1'oW+3$ (11)
for some constant & € . Equivalently, given § ¢’ such that § = (),
®=10(¥;), where Wji=W+3. (12)

Let us assume that (uM, ®) lifts to uX : T™ x X — X according to the previous procedure. While uM is the restriction of
yM to T, uX is the restriction of y* only if § =0 in (11).

If X exists, we can consider the conic transform 1\71., with respect to uX; as mentioned, (1\71,,,26),,) turns out to be
a symplectic toric orbifold. Furthermore, its associated marked convex rational simple polytope (K.,,s,,) is obtained by
applying a suitable ‘transform’ to A (depending on v).

Since the situation is at its simplest when r = 1, we shall describe this case first. Thus u x M — M is a Hamiltonian
action on (M, 2 w), with a nowhere vanishing moment map ¢ : M — 1", the primitive integral weight v € 1 is uniquely
determined by the condition that M, # @. Then M, = M, X, = X, u* is locally free, and M, = X/T1 (the quotient is with
respect to uX).

Let us choose a complementary torus T¢~! to T! in T, that is, T = T4~ x T1. If =1 < (¢ is the Lie algebra of T4,
tl}je ]corresponding lattices L(T¢"") c ¢4=1 and L(T') c t! are complementary in L(T%) (see §2.3 on how A, depends on
TE ).

Let ¥ € L(T") be the unique primitive lattice vector such that v (¥) > 0; since the weight lattice is the dual lattice to
L(T), primitivity implies v (¥) = 1, that is, v = ¥* € L(T1)V is the dual vector to . Then § =5 v e t'*, where § =8(¥) € Z
(notation as in (11)).

With A and vj as in (6), for each j=1,...,k there are unique v} € t‘cj‘l and pj € Z such that

M:T1

vj=v;+p;jv. (13)
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For every j=1,...,k let us define
V= U/j—()»j—i-pj(S)f) (14)

and

Zu =(|{eet: Z(ﬁj) > —pj}. (15)

-

1

J

Thus A, is obtained from A by replacing each pair (pj, 2;) by the pair (- (k] +0j8), —pj).

We shall see that (Mv, 2wv) is a toric symplectic orbifold, and that A, is its moment polytope. To complete the com-
binatorial description of My, Za),,) following [11], we need to specify the corresponding marking of Ay, that is, the
assignment to each of its facets F, of an appropriate integer s; > 1. We shall denote the marking by s, = (s,)’]‘ 1 € Nk,

and the marked polytope by the pair (Kv, Sp).
We premise a further piece of notation. Given a rank-r integral lattice L C V in a real vector space, and a basis (¢1, ..., ;)
of L, if £ € L we shall denote by (¢) the greatest common divisor of the coefficients of ¢ in the given basis, that is,

(0):=G.CD.0,....2) if £=) 2;t;. (16)

The definition is well-posed, since (¢£) is independent of the choice of a basis of L. Furthermore, the following holds:

1. ¢ is primitive in L if and only if (£) =1;
2. if T is a (real) torus and £ #£0 e L = L(T), then e?¥ =1 T if and only if e'” is a (£)-th root of unity.

Let us define s, = (sj) € N¥ by setting
si=(0;)  (G=1,....k.

Theorem 1.1. Under the above assumptions, thus with r =1, (1VII,, 2&3,,) is the symplectic toric orbifold with associated marked
polytope (Z,,, Sp).

The following consequence generalizes to conic transforms a well-known property of weighted projective spaces [8].

Corollary 1.1. Under the previous assumptions (thus withr=1),
H'(M,Q)=H'(My, Q) (=0,1,...).

Let us now consider a general r <d.
Let v <t be the kernel of v, and T;Il < T' the corresponding subtorus. Under Basic Assumption 1.1, T;Il acts locally

freely on My; then M, := Mv/T;f, the Marsden-Weinstein reduction of M with respect T;zl, is a Kahler orbifold. The
transversality requirement in Basic Assumption 1.1 can be conveniently reformulated as a transversality condition between

A+ 3§ and p L0 ctd” (the annihilator of v1), see §3.4. We shall for simplicity require that T;f acts freely on M,, which

amounts to Z/ =(A+&N p L0 being a Delzant polytope (see §3.5). Then M, is naturally a toric Kihler manifold acted
upon by the quotient torus Td -+l Td/Tr 1. the associated moment polytope A, can be identified with A under the

natural isomorphism between tg ™+1 (the Lie algebra of Tg ™1y and 1% The general case can then be reduced to the case
r=1, with M replaced by M,.
Let us choose:

1. a complementary subtorus T} < T to T;f, so that exists a unique primitive ¥ € L(T}) with v(¥) =1;
2. a complementary subtorus T¢™" < T¢ to T", with Lie algebra 4" < t¢, so that
d ~ rd— ~ rd— +1 -1
TO=TE < T =T x Ty x T, (17)
d~ d—r 71 -1
t:tcrxt,,xtli. (18)
With notation as in (6) and (7), suppose that the k facets of A have been so numbered that G, (A) :={F1, ..., F;} CG(A)

is the subset of those facets of A such that (F; + Hn pt0 # () (it then follows that (F? +&n p L0 # (), see §3.1). For every
j=1,....1, let us decompose v; according to (18):
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V=V, +pjv+], (19)

for unique v’j € L(Tg*r), pj €L, v;./ € L(T;Il). If §;:= S(Uj), ‘A, is canonically identifiable under the natural isomorphism

tg_rﬂ =~ y1% with the Delzant polytope

l
0 _ — 0 ~
pt 2A1,:=(]{yevL Ly W4 pi¥) = A48} (20)
j=1
Let us set
Vj=v;-(j+8) v, s;=(0;) (G=1,...,D. (21)
1
-~ 0 ~
Ay = teevt : (05) = —pj). (22)
j=1

Finally, let Ay C tg"“ be the polytope corresponding to K; C vlo. and let sy :=(sj) € N

TheoreAm 1.2. Under Basic Assumption 1.1, suppose in addition that A + & and pL0 are transverse and that the intersection is Delzant.
Then (My, 2@y) is the symplectic toric orbifold with associated marked polytope (Ay, sy).

We have an analogue of Corollary 1.1, linking the cohomology groups of the symplectic reduction M, and of the conic
transform M. By the theory of [9], H/(M,, Q) is tightly related to the equivariant cohomology of M for the action of T‘r,jl.

Corollary 1.2. Under the hypothesis of Theorem 1.2,
H'(My, @ = H'(My, Q) (1=0,1,..).

Remark 1.1. The reader may have wondered why, after introducing the Kdhler structure w, we refer the Hamiltonian struc-
tures to the form 2w (and similarly, for (1\71.,, 2{5,,)). Needless to say, given a complex orbifold (R, Jr) and a 2-form y on
it, ¥ is Kdhler on (R, Jg) if and only if so 2y. The emphasis on 2® is motivated on the one hand by the normalization
® = —21 w (and the equivalent formula (1)), which is in line of the general conventions up to an occasional factor of 7, and
on the other by the formula (2) for the contact lift. In particular, suppose that f € C**(M) and vy € X(M) is the Hamiltonian
vector field of f with respect to 2w. Let us lift vy to a vector field U € X(X) on X by the prescription (2), i.e.

U= Un—fag.
Then
Ly =dt(0) @ +¢(0) da = —*(df) + 7* (1 (V) Qw)) =0,

so that with these choices U is a contact vector field on (X, «). At then same time, one commonly adopts dVy = a)Ad/d!
as a volume form on M. Furthermore, when studying equivariant Szegd kernel scaling asymptotics, which gave the initial
motivation for the conic transform construction, it is customary to refer the universal 1, Heisenberg invariant in the leading
exponent to w.
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2. Thecaser=1

2.1. Preliminaries

Before embarking on the proof of Theorem 1.1, we need to recall some basic constructions from toric geometry, referring
to [1], [4] and [3] for details. We premise a digression on the geometric relation between A and A,.

5
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2.1.1. The transform of a polytope

Although not logically necessary, it is suggestive to describe the passage from A to A, in terms of a general ‘transform’
operation on rational polytopes in a finite-dimensional real vector space with a full-rank lattice L, depending on the datum
of a decomposition of L as the product of an oriented rank-1 sublattice and a complementary sublattice.

Let V be a d-dimensional real vector space, L C V a full-rank lattice, V" the dual vector space, and LV the dual lattice.
Suppose that A C V" is d-dimensional rational simple convex polytope (terminology as in [11]). This means that there exist
primitive v e L and A; e R, i=1,...,k, such that

k
A=({eeVvY : ewp =2}, (23)
j=1
and that exactly d facets of A meet at each of its vertexes. In addition, we shall say that A is integral if A; € Z for every j.
Suppose given:

1. a primitive lattice vector v#0 e L;
2. § e span(v)"Y such that §(v) € Z and

(V) +8W) >0 VeeA; (24)
3. a complementary sublattice L’ C L to Z - v, so that setting V' : =L ® R we have V =V’ @ span(v) and dually VY =

V" @ span(v*), where v* € span(v)" is dual to v.

Then we may uniquely extend & to § € LY N span(v*) € VY so that 8 = 5v* with § € Z (a different choice of § would
result in a translation of the transformed polytope). By (24), A + § lies in the open half-space V C V¥ where pairing with
Vv is positive.

Any ¢ € Vi can be written uniquely as £ = ¢ + £(v)v*, where ¢/ € V'" and £(v) > 0. Let us define an involution 0:
VY — VY by setting

1 1
) i=— 0 4+ —v*. 25
o) =5t + 5 (25)

Let us determine p(A +8). For each j, we can write uniquely V) :v;—e—pjv where v;. €L’ and pj € Z. Hence S(Vj) =4 pj.

We have

k
A+E={te v’  twp=Lw)+ptm = +6p5). (26)
j=1

Since o = 0!, by (25) and (26) we have

k

~ < 1
A=oa+8 =) {z eVy o)) = W [z/(vj.) +pj] >Aj +5pj}
j=1
k
=N {tevy: ¢)-0s+5ppew=-p. (27)
j=1

Thus A is the convex polytope obtained from A by replacing each primitive normal vector v; = vV, +pjv with the integral
vector V; := v;. —(Aj+8pj)v, and each A with —p;. Clearly, A is rational; it is not claimed that each V; be primitive, hence
neither that A be integral.

Furthermore, (27) shows that, if F; is the facet of A normal to v;, then fj := p(Fj+98) is the facet of A normal to vj;
this correspondence passes to intersection of facets, i.e. faces. Thus we have a bijection between the set of faces of each
given dimension of A and A, hence in particular between the families of their respective vertexes. In particular, the vertexes
of A are the images by o of the vertexes of A, and furthermore A is simple since so is A.

To make the construction more explicit, let us work in coordinates and take L = Z¢ and V = RY; let Cy = (€1, ..., €4)
denote the canonical basis, and choose v=e;, L’ ;= span(ez, ..., €7). We shall conveniently identify V¥ with R¢ by means
of the dual basis C; = (€3,..., €}). Then

VY = {(x1,x/) eRI=R xR : x; > 0},
where X' = (x2,...,X4) and (x1,X’) corresponds to Z‘}l:] Xj ejf. Then ¢ : VY — V in (25) is the involution given by

6
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x1,X) = ! 1x’
0(X1,X) = o .

In particular, o is an inversion along the xj-axis, and a positive dilation in {0} x R Ifa,ceR and B= (by,...,bg) €
R?1, let us consider the half-space W C V given by

W= [(xl,x/) eRY=R xR¥ :ax; + (B,X)) zc].
Then
ownvY)={x.,x)eV]:—cx; + (B,X) > —a}

is again of the form W N VY for a new half-space W ; it follows that o transforms convex polytopes in VY in other convex
polytopes in V. By the Fundamental Theorem of convex polytopes, therefore, if A C VY is the (bounded and convex)
polytope given by the convex hull of point py,...,p, € VY, then o(A) C VY is the convex hull of o(p1),...,0(pr) € VY.
For example, let us take M = IP? with the Fubini-Study form; thus A is the hyperplane line bundle on P? with the
standard metric, AV is the tautological line bundle, and X = S3 (the unit sphere in C?). Let us consider the toric action

yP?: T2 x P2 - P2 given by
2
ye]?ﬂ (zo:z1:22]) :=[2z0:€7" "1 21 :e7' "2 2;] where e'? = (e'"1,e'"2).

We shall identify t =t = R? in the standard manner, and denote by C, = (e1, e2) the canonical basis, with dual basis
C; = (e}, €3). A (normalized) moment map for y]Pz can be taken to be

1Z11? |22]? 2
V:[Z]eP? (—— eR%,
I1ZI12" 112112
where Z = (29,21, 22), [Z]1 =120 : 21 : z2]. Then A = W(IP?) is the triangle with vertexes (0, 0), (1, 0), (0, 1).
Let us consider the action uP”: T! x P2 — P2 given by
2 —
nFo(z) = [z0:e7"% 21 : 2],
with (normalized) everywhere positive moment map

2 2 2 2
<I>P2:[Z]GIP’2r—> |z1] +l:|ZO| +2|z1]° 4 |z2] CR.
1Z]1? I1Z]1?

The linearization corresponding to oP? yields the locally free action of T! on S3 given by
2
Moo (Z) = (e*’QZO,e’Z’Gzl, e*’ezZ) .

Then M = S3/T! (since r =1, there is no ambiguity in writing M = M,).
Thus (MPZ, <I>P2> is the Hamiltonian action obtained by restricting yPZ to the subgroup T! = T! x {1} of T2 (with the
injection e'? (e”’, 1)), and by taking as moment map Ve 1=V + e] (that is, 5= e in (12)). Hence,
Wer (PH) = A+e€f C VY
is the triangle with vertexes at (1,0), (2,0), (1, 1). Thus, Aq = 0(A +e]) is the triangle with vertexes at ¢(1,0) = (1,0),

0(1,1)=(1,1), 0(2,0) = (}.0).
To determine the marking s, we need to compute the normal vectors U; in (14). In the notation (13), we have

p=e;=(1,0), §=1 and t! =span(e;).
Furthermore,
A={(t,e)>0}N{(£,e)>0}N{(£, —e; —ex) > —1}.

Hence we may take

V1 =€ 'U/1=0 ,01=1 )»1=0
V) =€) 'U/2=62 p2=0 }\2=0
V3 =—e1 —€) v’3:—e2 p3=—1 Az3=-1.

Thus applying (14) we have
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1=—0+1-1)e;=(-1,0)
2=—(0+1-0e;+e2=(0,1)

Vy=—(—1+1-(=1)e;—e;=2e; —e;=(2,—1).
Thus sj=1 for j=1,2,3.

v
v

2.1.2. The toric line bundle A and its circle bundle

Let us review the construction of the positive toric line bundle (A, h) on M from the Delzant polytope Ay, for A € ZK,
based on pairing the Delzant construction of M as a symplectic quotient of C* with the construction of a polarization on
the quotient in [5]. Consider the trivial line bundle L := C¥ x C, and define a Hermitian metric « on L by setting

iz((z, w), (z,v)) = wve lZ? zeCk w,veQ).
The unit circle bundle Y c LY (that is, in L with the dual metric) is then
Y = {(z, w)eCkx C : jwj=e7 ”Z”Z}
= [(z,e’%”z”ze’e) czeCk, e'eesllzc"xsl. (28)
In the following we shall implicitly identify Y and Ck x S'. In terms of the previous diffeomorphism, the unique compatible

connection 1-form is

k
l

ﬂ:zijZZ][Zjdfj—zdej]-i-d@. (29)

Thus, B(dyp) =1 and ker(8) C TY is the horizontal subspace.
If f:Ck— C is C*, the corresponding section oy of L has pointwise norm
_Lygp2
lof@ e =1f@]e 21",

Applying this with f =1 we obtain that, letting ®( be the curvature of the unique compatible connection on L,

k
©o =39 <—||z||2) = dzj AdZj =21 wp,
j=1
where wg = (1/2) Z?:] dzj A dz; is the standard symplectic form on C.
Given that A € Z¥, the Hamiltonian action (Fck, U, ) (see (9) and (10)) has the contact CR lift F)’f :Tkx Y — Y given by

ry: (e’ ¥ (z, w)) N (Fck(e’ ¥ z), et WD) w) = (e"" .z, et w) ) (30)

This is the restriction a similarly defined metric preserving linearization Fiv ;T x LV — LV; dually, we also have a lineari-
zation Ik : TK x L — L.
As in [5], we can take the quotient and obtain a positive line bundle (A, h) on M = Zx /N, by setting

A:=1L|z, /N=(Zx x C)/N, (31)

with associated unit circle bundle X C A given by
X=Ylz, /N=(Za x SH/N. (32)

2.1.3. The complexification N and its stable locus

Besides representing M as a Marsden-Weinstein reduction for the quotient of N, it is useful to consider its parallel
description as a GIT quotient for the action of the complexification N ([4], [3]). In the following, for every compact group
T, T is the complexification of T.

Every face F € F(A) of codimension cr of A is uniquely an intersection of facets; hence there exists a unique increasing

multi-index I := (i1 (F). ....ic; (F)} C {1.....kJ such that F = (F{}

F,-j(p). Let us set
Or={z=GpeCt:zj=0® jels] (FeF. (33)

The following holds:
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1. O is an orbit of T*, and O = C**~°F equivariantly;
2. the stabilizer in T* of every z € O is the subtorus Tfé with Lie algebra

t’} :=1spangfe; : j€If},

and the corresponding statement holds for the stabilizer in the complexification, Tk < T¥;

3. Ca := Urcr(a) OF is the open subset of stable points for the action of Tk on Ck with the given linearization or,

equivalently, the Tk_saturation of Za;
. N acts freely and properly on Cy;
M= (CA/N as a complex manifold;
. for every F € F(A), M?, = (O)F/N is a T9-orbit and a complex submanifold of M of codimension cf;

M% = w1 (F%), where FO is the interior of F (recall that ¥: M — 4" is the moment map).

N O U

We have the following ([1], [4], [3]).

Lemma 2.1. For any F € F(A), let Tg < T be the subtorus with Lie subalgebra

t‘; :=spang{u;j : jelj}.
Then

1. the isomorphism T*/N = T¢ induces an isomorphism pf : Tk = T4;

2. Tg is the stabilizer in T* of every m € M(F’.

3. Mg := W 1(F) is the complex submanifold of fixed points of T¢;

4. M(F’ is the dense open subset of M of those points whose stabilizer is exactly Tﬁ.

Similar statements hold in the complexifications.

Let us denote by P:Zx — M and by P: C5 — M the projections. Then Cp =TX-ZA and P = P|z,.

2.14. The lifted action of T4 on X ,
By passing to the quotient, r¢’ and F{ determine corresponding actions

)/M:deM—>M, yX:deX—>X;

given that F{ is the contact and CR lift of (F(Ck, W), yX is the contact and CR lift of (y™, W).

Given m € M(}, T;‘: < T4 acts on Xpm=m~'(m) Cc X by a character that we now specify. Let us choose z € P~1(m) C
Of N Za. Since N acts freely on Z,, the projection L|z, — A restricts to an isomorphism L, = Ay, which is equivariant

with respect to the isomorphism o : T’F‘ = Tg in Lemma 2.1.
If 1 # & and (z, w) € Yz, then by (30)

F{ (e”’, (z, W)) = (z, et D) W) .
Since pr(e'®i) =eVi for j € I, for x=(m, £) € X, we have
yX (erGIF jv; (m, g)) — (m’ et (P) g)
=e ' MM x— yp (erE’F 19f"f)_l X,
where
Xp :eZilr IV e T4 s o Zictr Vit g 51,

We can reformulate this as follows.

Lemma 2.2. Suppose that F is a face of A, that m € M9, and that x € X,,. Then for every t € T,‘,ﬂ we have ytx x) = p))(‘F([) (x).

9
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2.1.5. The lifted action of T! on X

We have remarked that uM : T! x M — M is the restriction of yM : T x M — M to T! while, on the other hand,
wX:T! x X — X won't be the restriction of X : T9 x X — X to T!, unless § =0 t'" in (11). Since however both u*X and
the restriction of X to T lift uM, there is a character x = x5 :T! — S! such that

1A () =X o pxg® (xeX, heTh. (37)

19

Let us make x explicit. Since V is primitive, the map ¢'? € S! e?? eT!is an isomorphism of Lie groups.

Lemma 2.3. We have § € Z and x (e?”) = ' 37,

Proof. Recall that, by choice of ¥, v =7%* e t!" is the dual basis to ¥, and so § = § v, where § = §(¥). Let us write v§ and
’17}1(’ for the vector field on X induced by ¥ under ©X and yX, respectively. In view of (2), we obtain

vj‘(’_vM (®,V) g
=T — (W, V) g — 83 =Vy — 8. (38)

Hence for every x e X and e”” e T!

15 X)) =e Py i (0 =55 0 pliss (0. (39)

Given that ¥ € L(T"), (39) implies pJ,,, =idx. Since p* is free, this implies § € Z. Since (39) holds for any ¥, the second
claim follows as well. O

2.1.6. 1VI,, and its Kdhler structure ) )

By assumption, pX : T] x X — X lifts pLM :T! x M — M. Let us set ®” := (&, b); as ®” > 0, uX is locally free by
(2). Furthermore, since ™ is holomorphic, puX preserves the CR structure of X. Hence the quotient M, := X/uX is a d-
dimensional complex orbifold with complex structure ]v ([14], [16]). Furthermore, X is effective, hence generically free;
therefore the projection 7T, : X — M., is a principal V-bundle with structure group T!.

We shall now see that (M, Jy) carries a Kihler structure @,, naturally induced from w. Aside from slight changes in
notation, the discussion is close to the ones in §2 of [14] and §5.3 of [16], so we’ll be rather sketchy. To lighten notation,
we shall adopt the following conventions.

. if (m, x, ) € M x X x My, we shall write m <— x — i to mean 7 (x) =m and 7, (x) = fi;

. if (m, ) € M x My, we shall write m ~ i to mean that m < x — i for some x € X;

if U C M, we shall set U :=7, (7 ~1(U));

. we shall generally omit symbols of pull-backs for functions, and denote by the same symbol a function f: M — C and
its pull-back 7*(f): X — C;

5. similarly, if f is invariant and hence 7*(f) descends to M., we shall also denote by f: M, — C the descended function.

Let the invariant differential 1-form @, € Q'(X) be defined by

- 1

Then (V) @y, = —1, hence @, is a connection 1-form for 7,. Hence there is a unique orbifold 2-form @, on M, such
that day, =27} (@y). Since by (40) ker(a) = ker(@y), w and 7, share the same horizontal bundle, i.e., Hx () = Hx(7Ty) for
every x € X. On the other hand, since ®” > 0 by (2) we have Px(x) & H (), at every x € X. Hence we can split the tangent
bundle TX of X in the two alternative ways:

TX =H () @ span(dy) = Hx(Ty) ® span(vy). (41)

In particular, if m <— x — m then there are complex linear isomorphisms
TmM = Hy(70) = T (My), (42)
where the latter denotes the uniformizing tangent space of M, at . Since
kS P~ 1 * 1 v
T, (Wy) =doy = —=27%(w) — —~2d<b A,
oY oY
the triple (TrA,.,(IVI.,),Yv, @y) is isomorphic to (TmM, Jm, wm/®”), so that @, is a Kihler form on My.

10
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2.1.7. Horizontal and contact lifts with respect to T,

Since ¥ is primitive, the map ¢'? € ST+ ¢'?” € T! is an isomorphism of Lie groups. Composing the latter with the
effective action 1%, we obtain an effective action of S! on X, which is free on a dense invariant subset. Therefore, there
exists a dense (and smooth) open subset M; C 1VIV over which 7, restricts to principal S'-bundle. Let us set X’ := 7?,,_1 (IW;).

Given a smooth orbifold vector field v on M,, we shall say that a (smooth) vector field on X is the horizontal lift of v
(with respect to 7,) if it is horizontal (i.e., tangent to (1) = H (7)) and 7,-related to v over M.

Proposition 2.1. Any smooth orbifold vector field v on M vy has a unique horizontal lift to X.
We shall denote the horizontal lift in Proposition (2.1) by v”.

Proof. Any two horizontal lifts of v clearly coincide on X’, hence everywhere in X. As to existence, obviously the horizontal
lift exists over the smooth locus (i.e. on X’), so the point is to see that it has a smooth extension over the singular locus.
Suppose M = Ty (x) € M,, and let F{ C X be a slice for X through x. Thus F; uniformizes an open neighborhood
of m, and v corresponds to a vector field vi on Fq, invariant under the action of the stabilizer subgroup T,} of x in
T!. Furthermore, a suitable invariant tubular neighborhood U; C X of the T'-orbit of x is equivariantly diffeomorphic to
T! X7l F1. Hence we can push forward v; (or, more precisely, (0,vy)) under the local diffeomorphism T)} x F1 — Ui, and

obtain a smooth vector field v} on Uy which is Ty-related to v on Ui N X’'. Let v denote the horizontal component of
v/ with respect to Ty, that is, its projection on Hy(7y) along span(¥x) in (41). Then v is a smooth vector field on Uy,
horizontal and 7, -related to v on U; N X'.

Another such vector field v, similarly constructed on an invariant open set U, will necessarily coincide with v; on
Uy NU, N X', whence on all of U NU; if the latter is non-empty. Hence by glueing these local constructions we obtain the
desired lift. O

Suppose that f is a C* real function on M,, and let vy be its Hamiltonian orbifold vector field with respect to 2 @,.
Let us define

v = vbf-l-ff)x. (43)

Proposition 2.2. vcf is a contact vector field on (X, é&y). If in addition the flow of v ¢ is holomorphic on (1\71,,, Jv), then the flow of vic
preserves the CR structure of X.

Proof. We have (writing f for 7} (f))
1(§)day =127 (&) =df, d (t(v‘f)&v) - _df.

Hence Lv§6{,, = L(U?) day +d (L(U?)&v) = 0. This proves the first statement.

On the other hand, the flow of v} preserves the horizontal tangent bundle and covers a holomorphic flow on Iﬁv; the
second statement then follows in view of the unitary isomorphisms (42). O

By the same principle, we can consider lifts of Hamiltonian actions for 7Ty just as one does for 7. Suppose given a
holomorphic and Hamiltonian action ¢Mv of a compact and connected Lie group G on (1\71,,, 2®y) (in the orbifold sense,
see [11]), with moment map A : M, — g". Thus any £ € g determines an induced Hamiltonian (orbifold) vector field &y, on
M,. Applying (43) with v =§p; , thus setting § := .gjm, we associate a contact and CR vector field on X to each &€ € g. A
standard argument shows that this assignment defines an infinitesimal contact and CR action of g on X. If this infinitesimal

action is the differential of a Lie group action ¢X of G on X, we shall call the latter the (contact and CR) lift of (g’T”“, A).
When G acts on both M and M,, we have in principle two lifts in the picture and two different meanings for &,. We
will clarify this point in the following section.

2.1.8. Transfering Hamiltonian actions from M to M,
Suppose that G is a connected compact Lie group and let 2 : G x M — M be a holomorphic and Hamiltonian action,
with moment map Y: M — gV. Assume the following:

1. (EM, ) lifts to the contact CR action EX: G x X — X;
2. M and uM commute.
Then one can see that X commutes with X; therefore EX descends to an action M : G x M, — M,

11
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Proposition 2.3. Under the previous assumptions, EMs js holomorphic and Hamiltonian on the Kdhler orbifold (My, 2By, 7.,), with
moment map
Ty =
v = 5
Furthermore, 2% is also the contact and CR lift of (E’V'“, Ty).

Proof. Given that &M commutes with uM, it preserves ®”. Since EX preserves o and <I>‘~’* it generates a flow of contacto-

morphisms for &,. Therefore, the flow of EX preserves 7 (@y) = d@y /2. Since EX lifts M by 7, we conclude that EM»
is a symplectic vector field for @y.

Since Y: M — gV is G-equivariant by assumption and ®” is G-invariant because EM and uM commute, Ty : My — g”
is G-equivariant. Thus it suffices to prove that (EM», ¥,) is weakly Hamiltonian.

Suppose i = 7, (x) € M,. Choose a slice F C X at x for wX, and view it as the uniformizing open set of an open
neighborhood of m in M,. We obtain a local action EF of G on F as follows. For any y in a neighborhood F’ C F of x and
g in a neighborhood G’ C G of the identity eg, there exists a unique s(g, y) € T! such that /Lf(g’y) o Eg(y) e F. Let us set

EF 1 (g.y)eG x Fl>pul, , o BY(y) eF. (44)
If g1, g2 € G’ are sufficiently close to the identity,

By, 0 8g,(¥) = B, (Mg((gz,y) o (Y))
X
s(g1,
X
s(g1,E5, ()

_ =X X =X
=H gk, ) e © Ksiga,y) © Eg, (V)

X X oX
=K © s(gy.y) © By © Eg, (V)
_ X =X _ r=F

= Ks(gy g2.y) © B g, (V) = Egy g, (V)

Given £ € g, the induced vector field £ on F may be computed by considering the restricted local action of the 1-
parameter subgroup T — e”$ € G, hence by differentiating at T = 0 the path EQFTE (y) = V“i((ef& » Ol«tffr; (y). We conclude the

following.

Lemma 2.4. There exists a C*°-function o : g x F — R such that forany £ egand y € F
Er(V) =0 & »)vx(y) +Ex(Y).

Here &y is as in (2), with Y in place of .
At any y € F, we have a direct sum decomposition TyX =T,F @ span(f}x(y)). Thus Lemma 2.4 may be reformulated as
follows.

Corollary 2.1. Forany y € F and & € g, £ (y) is the projection of € x(y) on Ty F along span(f:x(y)).

By the commutativity of uX and EX, the stabilizer subgroup of x in T! acts on F preserving the previous direct sum of
vector bundles on F. It follows that £ is an invariant vector field on F, and the collection of all such is the induced vector
field glVI., on M,.

Letting j : F < X be the inclusion, let us set of := j*(@y) and wr := dar/2. The collection of all pairs (F, wf) represents
Dy.
If y € F as above, ((€¢(y)) (daF)y is the restriction to TyF C T, X of t(€¢(y)) (d@y)y. On the other hand, by Lemma 2.4
we have

HEFW) @)y = t(8x (V) + 0 (€. 9) Bx () (@@,
=[x daw)]y +0 &, y) [1Tx) (dan)],

= -[d(tEx0 )], 0@y [de@E0an],

¢
=dy (5> +0o (&, y)dy(1)

_q, (I;) —4, ().

12
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We have used that both £y and vy are contact vector fields for @,.
To prove the last statement of Proposition 2.3, we need to verify that &y, = ’;'%/l for every & € g. Since both £y and §;7,
4 v

lift &y = 5;71 under 7y, it suffices to show that the coefficient of & along vy is Y. Therefore, the equality
£y = (85, — Ty, ) + T, (45)
implies that '3111\/1 — ¢ f)?w is the horizontal lift (with respect to 7)) of &y, and that §x = §]‘Q . O

2.1.9. The torus T¢ and its action on M »
As in the Introduction, let Tcd‘1 < T? be a complementary subtorus to T'. Let us define a new torus

T?:=T14"1x s (46)

Since p* (the action of S! on X with generator —dy) and ¥ (the contact CR action of T4 on X) commute, the restriction
of yX to T¢~! and p* may be combined to yield a new action

BX: T x X — X. (47)
Since furthermore X commutes with u* : T! x X — X, it descends to an action

,BM":ffdxM,,%I’V\I,,. (48)

In fact, (47) is the contact and CR lift of a Hamiltonian action 8™ of T4 on (M, 2 w). Given the decomposition t¢ =

=1 @ span(¥) the moment map ¥ of y™ may be written W = W' + W, where W' : M — =1, W’ : M — span()". The

restriction of yM to T¢~! is Hamiltonian, with moment map W'. On the other, hand, with the usual identification of the Lie

algebra and coalgebra of S with : R, pX is the contact lift of the trivial action of S on (M, 2w) with constant moment

map :. Therefore, 8% is the contact lift of the Hamiltonian action g™ : T¢ x M — M with moment map E = (¥, ). In view
of Proposition 2.3, we conclude the following.

Proposition 2.4. ﬁ’V’ v in (48) is Hamiltonian, with moment map

Voon g v d1Y
= a,a :Mv—)f :tc @lR

[6sk

We now argue that /3"7“ can be complexified to a holomorphic action of T4, the complexification of T4, on M,. More
generally, for any compact Lie group G we shall denote its complexification by G.
To this end, we consider the complement of the zero section Ay C A, and observe that all the actions involved on X

uniquely extend to complexified actions on A. Thus uX extends to ,D:Ag (T x Ay =AY, pX to ,?)'on (C*x Ay — Af, yX
to 740 : T4 x Ay — Ay, BX to Bh T4 x Ay — Ay, clearly Td=Td-1 x C*.
In view of the discussion in §2, §3, and §5 of [16] (applied with r = 1), under Basic Assumption 1.1 the following holds:

1. Ay =T"'. X (the {0 -saturation of X);

2. ;’ZAS is proper and locally free;

3. there is a natural biholomorphism
X/T'= Ay /T! (49)

where the former quotient is taken with respect to X, and the latter with respect to ,&'Ag .
Since EAOV commutes with ﬁ"‘g , it descends to the quotient and we conclude the following.
Proposition 2.5. ﬁﬁ’“ admits a unique holomorphic extension E’W" T x 1\71‘, — Mv.

We aim to relate the stabilizer of m € M under yM to the stabilizer of 11 € M, under BMv if m < x — . More generally,

we can consider the same issue for the complexified actions M : T¢ x M — M and EM"; by Proposition 1.6 of [17], the

stabilizer of m under M is the complexification of the stabilizer under y M.

There is a dense open subset M’ ¢ M where yM is free; then M is free and transitive on MO. Let us consider the
corresponding open set

MO := MO = 7, (7~ (M%) C M. (50)

Let us set X0 := g7~ 1(M9).

13
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Proposition 2.6. Under the previous assumptions, the following holds.

1. gMv is free on MoO.
2. My is free and transitive on MC. R
3. 7, restricts to a principal S-bundle X° — MC.

In particular, MO is smooth.

Proof. Suppose m < x — i with m € M, and that (¢, e'?) € T¢ stabilizes 1. Hence there exists h € T! such that

Vi o pXs (0 = il (x).
With x as in (37) and Lemma 2.3, we conclude that

Vi1 0 Pao yy 1@ =x = yllim=m

Hence th™' =1 T¢, and since T4~ and T! are complementary subtori we conclude t = h = 1. Hence e¢'? =1 as well.

This proves the first statement; that EM" is free on Mg then follows either by a similar argument using complexifications,
or else by appealing to Proposition 1.6 of [17]

We prove that /3"”" is transitive on Mo Suppose 11 € Mo, j=1,2. Then there exist m;j € MO and XjET ‘(m N < XO,
such that mj <— x; — 1. There exists t’ € T4 such that yt, (my) = my. We can factor t’ uniquely as t’ = th where t € Td !
and h e T1, Lifting first this relation to X, and then descending to Mv, this means that for some e'? € S1 we have

Vo vt 1) = pa (x2) = 1 0 0 ) o (K1) = 1 (x2)
= B (1) =1y, (51)

where £:= (t, x(h)~Te*?) € T% and x is as in (37).
Finally, since X lifts the restriction of Y™ to T, and on the other hand y™ is free on M?, it follows that 1% is free on
X9; the third statement follows. O

Corollary 2.2. M, (with the Hamiltonian action (EM“, 8))isa symplectic toric orbifold and a complex toric variety.

Let us consider a general triple m < x — i1, and denote by T4 < T¢ the stabilizer of m for M, and by /T\% < T9 the
stabilizer of m for E’V’V. We want to describe the relation between T¢, and 'T\gl.

Let T} < T! be the stabilizer of x in T! under uX. Recall that uM is the restriction of yM, that is, uM = yM
hence we can unambiguously denote by T,L =T'n T,ﬂ the uM-stabilizer of m € M.

|T1><M;

Lemma 2.5. [fm = 77 (x), then T} is a finite subgroup of T}}.

Proof. Since X is locally free, T,} is a discrete subgroup of T!, hence finite. Furthermore, since u*X lifts 4™, which is the
restriction of ™ to T', we also have T} < T4. In fact, if t € T} then uX(x) =x then

i (m) =1 o puf (x) =m

hence te T4. DO
Thus T} < T¢ is finite, and T4, is a subtorus of T¢ [1]; hence T4 /T is a torus of the same dimension as T4.
Proposition 2.7. If m < x — 1, there is a natural isomorphism T4 / = f%. In particular, T,‘% and /f% are tori of the same dimension.

Proof. For every m € M, there is a character &y, : T,‘% — ST such that

V@ =03y g0 ®) (xem™m), keTp). (52)

Let us factor k=th with t € Tf‘1, h e T!. Then (52) implies
~iy [~ R
V008 ot gyt O =1 ) = B (i) =i, (53)
where k := (t, Sm()~1 X(h)”) € T9. Hence we obtain a Lie group homomorphism

14
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Ymik=theTdk:=(t,6mt) " x(H1) e TE. (54)
Let us set T} :=T'NTY. Then
ker(yrm) = {h € T}, : 8m(k) x (h) =1}. (55)
Lemma 2.6. ker () = T,
Proof. By (37) and (52), we have for h e T}
Vi ) =P @ = 1 ) = Py sty )+
In other words, ker(y,) =T}, O
Let us prove that v, is surjective. Suppose (t,e'?) e 'f%, ie. ,E("Ze,g)(ﬁl) =M. There exists h € T! such that

¥ o pls @) = ) = Vo py @ =pX® = ylm)=m.

Thus k:=th € T, whence X (x) = p\ , (x). We conclude pf¥ ;) 4, ®) = 5 (%), s0 that e'? =8m(k)~" x (h)~". It follows
that (t,e'?) = ymk). O

2.2. The polytope Ay

By Proposition 2.4 and Corollary 2.2, Mv is a Kdhler toric orbifold, and its associated convex rational simple polytope

(1], 11 is
Ay =& (My) c . (56)
We aim to describe the faces of A, in terms of the faces of A; to this end, we premise a few remarks.

— —

Lemma 2.7. Suppose that R, S C M; then RN S C RNS. If furthermore R and S are uM-invariant, then RN'S = RNS.

Proof. Suppose € RNS. Then there exist m € RN S, x € X such that m < x — f; hence M € RN'S, so that and RNS C
RNS.

Suppose that R and S are ftM-invariant, and that 1 € RN'S. Hence there exist mi € R, my € S and xq, x € X such that
my < x; — m and my < xo — . Hence x; € T' - x; (uX-orbit) and by the equivariance of 7 this implies my € T! - m;
(uM-orbit). Thus my, my € RN'S and so 1 € RN S. It follows that RN S >DRNS. O

Lemma 2.8. If R C M, then R C R. If in addition R € M is uM invariant, then R = R.
Proof. We have by definition
R=7y (7 "(R)) 27y (x ' (R)) =R;
hence R is closed and contains R, i.e. R D R. B
Before considering the reverse inclusion, let us premise that - sir}\ce m:X— Misan Sl-bungle -7 Y R)=nm"1(R).
Suppose that R is uM-invariant, and let S € M, be closed with R € S. Then 7, '(S) 2 7, ! (R).
Claim 2.1. Given that R is uM-invariant, 7, ' (R) = 7~ (R).
Proof of Claim 2.1. By construction, 7T, 1 (ﬁ) is the union of all ;+X-orbits passing through points of 77~ (R). By equivariance,

every X -orbit projects down to M under 7 to a uM-orbit, and each such orbit through a point of R is entirely contained
in R. Therefore, all u*-orbits through points of 7 ~1(R) are entirely contained in 7 ~1(R), whence the claim. O

Thus 7,1 (S) 2 7~ 1(R), hence
7,/ )27 1(R)=n"'(R) = S2R.
We conclude that ﬁ C R when R is uM-invariant, which completes the proof of Lemma 2.8. O
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Let as above G(A) ={F1, ..., F¢} be the collection of the facets of A. Recalling that ¥: M — 9" is the moment map for
yM for each j let Mj:= l11‘1(Fj) (see §2.1.3). Then M; is a complex submanifold of codimension 1 of M. We shall set
Mj=my (x7'Mp). M0:=M0=m, (n*l (1\/19)) ;
then 1\711- is a complex suborbifold of M, of codimension 1, and 1/\71? is open and dense in Mj. Furthermore, M; is the fixed

locus of the 1-parameter subgroup fj: 7+ e*Vi, where v; is as in (5) and (6), while M? is the locus of those points in M

whose stabilizer subgroup in T¢ is exactly fj(51).
Since M; and M? are uM-invariant for every j, in light of Proposition 2.7, Lemma 2.7, and Lemma 2.8 we conclude the
following.

Corollary 2.3. For every j,l € {1, ..., k}, the following holds:

1L MjnM;=M;nNM;

2. Mj=MY;
3. M?ﬂM?:Q)ifj;él:
4. forevery j=1,...,k, U’;Zl M? C M, is the locus of points with a 1-dimensional stabilizer subgroup in T¢.

Let us set f]‘ = :(1\71]-) We can use the conclusions of Corollary 2.3 to relate the faces of A and Kv.

Proposition 2.8. Let ]-'I(Kv) and g(Zv) =F (Ev) be, respectively, the collections of codimension-l faces and of facets of K.,. Then
there are bijective correspondences

1. Fj=W(Mj) € G(A) > Fj:=B(M)) € G(Ay);
2. NIy, Fiy € FiA) = M1y, Fiy € FiAy);
3. forevery j=1,...,k, the relative interior of F is F) = W(MY);

4. forevery j=1,...,k, the relative interior of F is f? = 3(1\71?)

Proof. By the theory in [1] and [11], the moment maps ¥ and E are quotients by the respective actions, i.e., the fibers are
orbits. Furthermore, the relative interior of Fj is F}) = \II(M?).

By Corollary 2.3, the orbifolds IW? are the connected components of the locus of points in M, having 1-dimensional

stabilizer subgroup in T4, Therefore, 8(1\71?) = :(A7Ij) is a facet of Zv, and these are all the (distinct) faces of K.,.
One argues similarly for the other faces. O

Let us next determine the normal vectors to the facets ’F\j of A,. This amounts to determining the stabilizer subgroup in
T4 of the points in each relative interior /ﬁ? (recall that T¢ acts on M, by gM> in (48)).

Proposition 2.9. The stabilizer subgroup for 5"7’“ of any m € fj is the 1-parameter subgroup of Td generated by D := v/j — (A +
p;j8)as et
Remark 2.1. Given Lemma 2.3, ¥ € L(T%; it is not claimed that ¥ is primitive.

Proof. Assume m < x — m with m e F?, whence 1 € f-'\?. The stabilizer subgroup of m is then the 1-parameter subgroup
T+ e" Vi, where v; is as in (7). Hence My’"f (m) =m for every T € R, and by Lemma 2.2

Vo =p%,, 0 (TeR). (57)
In view of (13), (37), and Lemma 2.3, (57) may be rewritten as follows
_ X X _ X X X
X= yer(u’jerjﬁ) o IOe—TAj (X) = )’ew} © Ioe—r)yj o ijf,(x)
_ X X X X
- yeru;_ Oloefr)»j ° peffpij O/'Lerﬂjﬁ(x)

_ X X X
- yerv;_ Oloe—‘l'()»j+»0j5) O/‘Le‘rpjﬁ(x)

=Wepwo b a () (T€R), (58)

LSy
er[vj—(AJer)zS)de
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where X was introduced in (47). Passing to the quotient, we can reformulate (58) in terms of /3"7’":

i = g™ o ) (TeR). O (59)

r[v —(x; +Pﬂ)"g

Given Proposition 2.9, the facets of A, are defined by equations of the form
2.3. Proof of Theorem 1.1

We can now combine the previous relsults to a proof of Theorem 1.1. Let us premise a piece of notation. We shall denote
by dS'6 the dual basis in Lie(S)Y to 805 . Assuming m < x — 1, by Proposition 2.4
W'(m 1 W (m)+dS'e

w1 s TmEd o
d’(m) P’(m) wrim)+§

o)

() =

(60)

Proof of Theorem 1.1. We have Zu = é(IVI,,) Assume p € K.,, and choose a triple m < x — m with p = ﬁ(rﬁ). Then
(W(m), v;) > Aj for every j=1,...,k. With v; as in (13) this yields for every j

(W), V) = Gog + 038) = —pj (WP (m) +6) = —d7 () . (61)
In view of Proposition 2.9 and (60), dividing (61) by d>f’(m) > 0, one gets

(E/(Tﬁ),ﬁj)z —pj. (62)

Hence, every p € A, satisfies (,0, ’17]-) > —pj for every j. Furthermore, the previous argument also shows that the inequalities
are all strict if and only if p € MmO (notation as in (50)), and that on the other hand equality holds for exactly one j if and
only if p belongs to the correspondmg facet Fj

Since we know already that A, is a rational convex polytope and the Fy j's are its facets, we conclude that

k

ﬂ pety : p(V;)=—pj},

and in partlcular that each v; is inward-pointing.

The previous discussion completes the proof that shape of A, is as claimed in the statement of Theorem 1.1, except that
Ay is realized in the Lie coalgebra of T4 rather than T9. To obtain the corresponding statement of Theorem 1.1 we need
only compose with the isomorphism T4 = T¢~1 x T1 — T4=1 x ST given by the product of the identity and e?” - e'”.

It remains to determine the marking of Ay, that is, the assignment to each facet /F\j of the order s; > 1 of the structure
group G; of an arbitrary m € I\//\I?. By construction, given m < x — m, up to isomorphism G; may be identified with the

stabilizer subgroup Ty <T' of x under u*. Now if u%,, (x) = x then ), (m) =m by equivariance of 7. Since m € MY, this
means that for some (unique) e'?’ € S'

e?V =t Vi WitV o oV — e @pi OV e TITT AT — (1) (63)

(notation as in (13)).
In particular, since v is primitive, we see from (63) that e'? =e'?i? e §1, Let us distinguish the following cases, de-
pending on the relation between v and v;.

Case 1. Suppose p;j =0, that is, v; = v’j

(63) that e ¥ =1as well). Thus Gy is trivial in this case, that is, s; =1 = (D).
At the opposite extreme, suppose that v A% =0. Then v; =0 and v; ==V by primitivity.
Case 2. Assume first v; =7, that is, pj = 1; thus Vj = —(A; +8) V. As m € F;,

=0 e (T ) ctd~1. Then e'? =1 (and since v; is primitive we obtain from

0<®” (M) =W’ m)+8=0(m)+8=2;+3. (64)
J
On the other hand, by (37), Lemma 2.3, and Lemma 2.2

eﬁv (X) el?u o pex&? (x) 1? vj o pex&? (x) = e_l v ()L]_HS) X. (65)

Hence if v = v;, then § 41 > 0, and Gy is isomorphic to the group of (A; + 6)-th roots of unity, that is, s; =A; +§ = (ﬁj).
Case 3. If vj=—V, then p; = —1; hence U; = —(Aj — §) V. In place of (64) we have

0< @’ (m) =W (m)+86=wVi(m)+8=—A;+34, (66)
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and in place of (65) we obtain

1205 (%) = V55 0 Pois (0 =¥ X0 0 Py () =717 TR 5, (67)

Hence § — Aj > 0 and Gy is isomorphic to the group of (§ — A;)-th roots of unity. In particular, s; =8 — A = (V).
Case 4. Suppose that v; ¢ L(T') U L(T¢"1), that is, p; v/, #0. By (63) ¢ ¥ s a (v’))-th root of unity, and et? = et pi,
We have

15 () = V)55 0 )5 (%)
= yefg, v © pe,,/ﬂja(x) —e 1V AjFpid) y (68)
Thus, e ¥ € Gy if and only if e'” =e'i?’, where e'?’ is both a (v’)-th root of unity (by (63) and a (A; + p; &)-th root
of unity (by (68)), i.e. a G.C.D.((v}), Aj+ p;j8)-th root of unity.
Since v; is primitive, G.C.D.((v), p;j) = 1; therefore also

G.C.D.(G.C.D.((v;),/\j +0;9), pj) =1

Hence we may assume that e’ is a primitive G.C.D.((v/j), Aj+pj 8)-th root of unity. In other words, Gy is isomorphic to
the group of G.C.D.((v}), Aj+ pj 8)—th roots of unity, whence by Proposition 2.9

=G.C.D.((V)),2j + pj8) = (V).

The proof of Theorem 1.1 is complete. O

Proof of Corollary 1.1. Since ] and 7v are torus invariant complex structures on M and A71v, respectively, by Theorem 9.1 of
[11] both M and M, have structures of complex toric varieties (of course in the case of M this is our starting assumption);
furthermore, the corresponding fans Fan(M) and Fan(M,,) are defined by their respective polytopes, A and A,. Since A and
A, are simple and compact, Fan(M) and Fan(M,) are simplicial and complete.

Hence the Betti numbers 8; and ﬂj of M and Mv are determined by the collection of the all the numbers d, and dr of
r-dimensional cones in Fan(M) and Fan(M ), respectively (84.5 of [2]). Thus it suffices to prove that d, = dr for any r.

On the other hand, in order to determine the fan Fanr associated to a polytope I' we may assume without loss that
I' contains the origin in its interior; in this case, furthermore, the cones in Fanr are the cones over the faces of the
polar polytope I'® to T" (§1.5 of [2]). Hence we need to show the polar polytopes of (suitable translates of) A and Ay
share the same number of faces in each dimension. However, for any d-dimensional polytope I' in a d-dimensional real
vector space, containing the origin in its interior, there is an order-reversing bijection between the faces of I' and those
of I'%, with corresponding faces F and F* having dimensions adding up to d — 1 ([2]). Thus the statement follows from
Proposition 2.8. O

It is in order to briefly digress on how Ay in Theorem 1.1 depends on the choice of TS’*1 < TA.

Suppose first that § =0 in (11), so that uX is the restriction of y* to T'. Let $¢=1, Td-1 < T¢ be different comple-
mentary subtori to T', so that T¢ = §¢=1 x T' = T4-1 x T1; thus projecting onto T¢~" along T! yields an isomorphism
P:sd-1=Td-1 Let us choose an isomorphism of the standard torus T4~! = (s1)?~" with S¢-7, so that (composing with
p) T4 1= gd-1 = 7d-1,

We obtain actions ¢* and ¥X of Tgt_l on X, by composing the previous isomorphisms with the restrictions of y*X
to S4-1 and T~ respectively; then ¢* # yX (unless S¢~' = T4-1) and, by construction, the two actions differ by the
composition of a character T4~ — T! with uX. On the other hand, since X and ¥* commute with ©X, they descend to
symplectic actions <pM“ and w’v"’ of T on (1\71,,, 2®y); in fact, by the previous remark and the construction of M, as a
quotient, (p"/"’ T

Thus ¢X and X are different contact lifts to X of the same symplectic action of Td_l on 1\711,; hence they correspond
to different Hamiltonian structures for the latter action, whose moment maps differ by a translation in t

Let us consider the action of T¢:=T§ ' x S' on M, given by the product of My = My and pM“ where the latter
is the action of S! on Mv obtained by descendmg pX. Let us adopts the previous choices of Hamiltonian structures (for
the second factor, we use the same Hamiltonian structure as in the proof of Theorem 1.1, see Propositions 2.3 and 2.4).

The corresponding moment maps then differ by a translation by a constant in t‘chv x {0}; hence so do the corresponding
moment polytopes, say Z"/,’ and Z(p

The previous considerations may be extended to the case where § # 0, and therefore goM“ 75 1//M“ In fact, if 6 #0, then
@X and X differ by the composition of a morphism T&~! — T, say of the form e'? > ' @?)¥ where a € Z4~1, with yX
Hence, passing to the quotient, in view of (37) the mduced actions (p""v and 1//"”" will now differ by the composition of a
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character T4~! — S of the form e'? > e~ 3(@?) with oM Identifying the coalgebra of T4~1 with : R¢~1, the correspond-
ing moment maps ®¥ and ®¢ for y/Mv and ¢M» are related by a relation of the form ®¥ = ®¥ —35aT, where I': My > 1R
is the moment map for pM» (recall from Proposition 2.4 that T'(fh) =1 ®*(m)~! if m < x — ).

It follows that the two cones are related by a transformation in : R x : R of the form : (X, y) — 1 (X — y 8 a, y), followed
perhaps by a translation.

3. The case of arbitrary r

We shall now remove the restriction that r =1, and allow any value 1 <r < d. Before dealing directly with the geometric
situation, we shall dwell on some handy technical results.

3.1. Preliminaries on transversality of polytopes

Definition 3.1. Let V be a finite dimensional real vector space, I' C V a convex polytope, W C V an affine subspace. We
shall say that ' and W meet transversely, or that they are transverse to each other, if W is transverse to the relative interior
FO of every face F of T.

In the hypothesis of Definition 3.1, let us set I'yy :=T'N W. Clearly, I'w is a convex polytope in W.
Let F(I') be the collection of faces of I" and G(I') = {Fq, ..., Fs} € F(I') be the subset of its facets. For each j=1,...,s
let £; € VY be an inward normal covector to Fj, so that

S
F=({veV:tjv)=a}
j=1

for certain A; € R; the j-th facet is thus

Fi:=Tn{peV :j(p)=1j}. (69)

If L € 7(I'), there exists a unique subset I} C {1,...,s} such that L = ﬂjE,L Fj.

We are interested in simple polytopes (meaning that exactly n facets of I' meet at each vertex, where n = dim (V)
[11]; if T is simple, then every codimension-k face L € F(TI") is the intersection of exactly k facets, that is, |I| equals the
codimension of L.

Proposition 3.1. In the setting of Definition 3.1, suppose that I" and W meet transversely. The following holds.

1. IfF C Lare faces of T and W N FO £ @, then W N L0 £ .
2. fWNT %0, thenWNT0#£p

More precisely, regarding 1. we shall show that for any p € W N F® and any open neighborhood W’ of p in W one has
W’ N L0 = ¢. Similarly, regarding 2. we shall show that for any p € 'y and any open neighborhood W’ of p in W one has
W’/ N0 £g.

Proof of 1. Since W C V is an affine subspace, it is a translate of a vector subspace W C V. Suppose p € F*N'W. Then W =
D+ W, and by transversality the map p: (w,q) € Wx FOr w+ q € V is submersive, hence open. We have p = p(0, p),
hence the image of an arbitrary small neighborhood of (0, p) in W x F° contains an open neighborhood of p.

Since p € F C L, we can find points p’ € L? arbitrarily close to p. For any such p’, therefore, there exist w € W, w~0,
and q € F°, g ~ p, such that p’ =w +q.

Claim 3.1. With the previous choices, w +p € W N L°,

Proof of Claim 3.1. Clearly, w 4+ p € W by construction. Let us prove that w + p € LY, i.e. that Li(w+p)=2A;if jel; and
Lilw+p)>Ajif j&l;.

Since F C L, we have I} C If.

If jel, we have £j(p') =¢£;(q) =£(p) = Aj since p, p’, q € L. Therefore, £;(w) =£j(p' —q) =Aj —Aj =0. Thus £;(w +
p)=0+Arj=2A; for every jel, so that w+pel.

If jelp\ I, we have £;(p') > Aj since p’ € L%, and £;(p) = ¢j(q) = A; since p, q € F. Therefore, £;(w) = £;(p' — q) =
Ej(p/) —£j(@) >0, and so £;(w +p) =£j(W) + 1 > Aj.

Let § :=min{€j(p) — Aj : j € IF}; thus 6 > 0, since p € FO. If j & I, therefore, Li(p+w)>Aj+8/2>Ajas w~0. O
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Thus for every p € W N FO we have found points p 4+ w arbitrarily close to p in W N L%, and this completes the proof
of 1. O

Proof of 2. This is a slight modification of the previous argument Suppose p e TN W. If p € ', there is nothing to prove.
Otherwise, p € FO for some face F € F(I). We can find p’ € I'° arbitrarily close to p, and therefore - by the previous
considerations - for any such p’ there exist w W with w ~ 0 and q € FO with q ~ p such that p’ = w +q.

If jelf, £j(p)=1Lj(q) =4j since p,qe F, and £j(p’) > 1; since p’ € %, Therefore Lj(w) =£;(p’) — £j(q) > 0. Hence
Li(p+w)=21j+£j(w)>Aj for all jelf.

Let § :=min{€j(p) — Aj : j & IF}; then § > 0 since p € FO. Since w ~0, Li(p+w)=Aj+68/2>xjforall j&lr.

Thus £;(p + w) > Aj for every j=1,...,r,ie. p+weWNnT% 0O

Corollary 3.1. Under the hypothesis of Proposition 3.1, if L is a face of " and T'yy N L # @, then Ty N L% £ 3.
Proof. If p € W N L, there is a face F € F(I') with FC L and p € W N F%. Hence W N L% # @ by Proposition 3.1. O

Proposition 3.2. Under the hypothesis of Proposition 3.1, the following holds:

the facets of 'y are the non-empty intersections of W with the facets of T';

), =wnro;

if T is simple, then the codimension-k faces of 'y are the non-empty intersections of W with the codimension-k faces of T';
if F is a face of T" such that Fy := F N W = ¢, then the relative interior of Fy is F%, = FO N W;

if T is simple, then so is Ty .

A WN =

Proof of 1. Let F; be the j-th facet of T as in (69), and suppose Fj N W # @. Then F? N W # @ by Corollary 3.1. Since W
meets Fj.’ transversely by assumption, F? MW has codimension one in W and ¢; restricts to a non-constant affine linear
functional on W. Thus, if p € F? then every neighborhood of p in W intersects both I'® and I'C. It follows that FinW is a
facet of 'y .

Conversely, let F be a facet of I'yy, and let p € FO. Since p ¢ I'° (for else p € F?,V ), there exists j € {1,...,s} such that
p € Fj, and therefore F? NW # . By the above F; N W is a facet of I'w. Since a small neighborhood of p in W meets no
facet of I'yy other that F, we may slightly perturb p in FO and assume that p € FON F? and therefore FONW' = F? nw’
for some open neighborhood W’ of p in W. This forces F=F;NW. O

Proof of 2. Since every face is the intersection of the facets containing it, by 1. we have

N S
ry=wnD\JwnFy=wn[r\[JFj|=wnT’ o
j=1 j=1

Proof of 3.and 4. If F is a codimension-k face of I' such that F N W = @, let us choose p € FO N W = @. Since T is simple,
Ir ={i1,...,ix} €{1,...,s} and there is a neighborhood W’ of p in W such that

k
/ _ 14 0 __ ’ X
WNF=WNnF=w'n()F.
j=1
By transversality, F© N W has codimension k in W and furthermore each Fi; is a facet of 'y by 1. Thus F :=FNW is
a face of 'y, since it is a non-empty intersection of facets, and it has codimension-k in W, since it has a non-empty open

subset which has codimension k. Furthermore, it is given by the intersection of the k facets Fi; "I"'w of 'y . It then follows
that

ﬂ(WﬂF,)\U(WﬂFl)—Wﬂ ﬂF”\UF, =WnF°
iglp j=1 iglp
Conversely, suppose that K C Ty is a face, and suppose p € K°. Since p ¢ I'?, there exists a unique face F of I" such

that p € FO. By the previous discussion, Fyy = FN'W is also a face of 'y, and p e FO'NW = FSV. Since distinct faces of 'y
have disjoint relative interiors, K = Fyy. O

Proof of 5. By 3., every codimension-k face of I'yy is the intersection of k facets, and this means that I'yy is simple. O
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3.2. The reduction M, and the circle bundle Y,

Definition 3.2. Given a subspace a C ¢, we shall denote by a' C ¢ its annihilator in ¢'. Given p € ¥ we shall also set
p:=span(p)".

Definition 3.3. A vector subspace ¢ C t¢ is integral if ¢ N L(T) is a full-rank lattice in ¢ or, equivalently, if ¢ is the Lie
subalgebra of a closed embedded torus in T¢.

Thus vt Ct C 4 is a vector subspace of dimension r — 1; since v € L(T)V, furthermore, vt is integral. Let T:zl <T' <

T? be the (closed) torus with Lie algebra v+; equivalently, if x,(e?) := e27 (") is the character of T" defined by v, then
T;Il =ker(x»)° (the connected component of the kernel).

We are interested in M, = Xy /T', the action being 1X (notation as in (3) and (4)). The latter quotient may be performed
in stages. Namely, under Basic Assumption 1.1, T" acts in a locally free manner on X,, whence a fortiori so does T;zl. We

first form the partial quotient Y, := X,, /T‘r)‘l, where T:zl acts on X, by uX; next, uX descends to a residual locally free
action of T} := Tr/Tlr,Il onY,,

w Tl <y, > vy (70)
Then

My =X,/TT =Y, /T). (71)

Yy inherits a natural contact structure. Let j, : X, — X be the inclusion. Then j; () is T:I1—invariant. Furthermore,
(writing ® for ® o 7w with abuse of notation) by definition of X, we have ® o j, = A v for some C* function A : X, —> R,.
Hence, if & € t;zl =vp< then J;‘}‘z satisfies

£, = |, — 208 20l = £,

. eker(j;(@)).

In other words, [L(Zj;‘?)a] ojy=0.
We conclude the following. Let q, : X, — Y, be the projection. Thus we have arrows

Yy < x, &5 X.
Lemma 3.1. There exists a differential 1-form (in the orbifold sense) oty € 21(Y,), such that qy(ay) = j5 ().

Under the stronger condition that Trjl acts freely on M,, the quotient
v
M, =M, /T! 7" (72)

is smooth; furthermore, the action of T:I1 on X, induced by ¥ is also free, and therefore Y, is non-singular. In addition,
X (the action on X generated by —dy) descends to a free S'-action p¥: S! x Y, — Y,, and we also have

My =Y,/S". (73)

In addition, o, in Lemma 3.1 is a connection form for pY».

Furthermore, M,, inherits a complex structure J, and a compatible symplectic structure @y; the triple (M, 2@y, J,) is
a Hodge manifold. More precisely, (My, 2@y) is the Marsden-Weinstein reduction of (M, 2®) under the restriction of the
Hamiltonian action (uM, ®) to T‘r}f < T7, and J, is determined from J as in [5].

Let t} denote the Lie algebra of T}, so that

= /vt, )Y = span().

By definition of M,, restricting ® yields a map @' : M, — span(v) = t},v, which descends to a non-vanishing T}, -equivariant
map @ : M, — 1",

Let 7y : Yy — M, and 7y : Yy — M, be the projections. From the previous discussion and the theory in [5] one obtains
the following.

Proposition 3.3. There is a positive holomorphic line bundle (Ay, hy) on My, such that:
1. Y, is the unit circle bundle in A};
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.y is the normalized connection form associated to the unique compatible covariant derivative on Ay;

. day =275 (0y);

. wY» in (70) descends to an action ,uM" : Tll, x My — My, which is holomorphic for ], and symplectic for @y;
[,LM" is Hamiltonian for 2 w,, with moment map ®;

. wYv is the contact lift of (uMv, ).

o LN W

In other words, the description of 1\71,, can be abstractly reduced to the case r =1, with M replaced by M, and X by Y,.
We need to describe how to transfer the toric structure to this quotient picture.

3.3. The toric structure of M,

W aim to verify that the toric setting is preserved in the reduction process of Proposition 3.3. To this end, let us consider
the saturation

Mv = Tgil “My;

thus M, is the set of (semi)-stable points in M for the action of the complexification T;f of Tlr,Il, with respect to the
linearization induced by ® (hence to the lift %)
Therefore, m € M,, if and only if there exists a T;zl-invariant holomorphic section o of A® for some k > 1, such that

o (m) # 0. Equivalently, m € M, if and only if for some, and therefore for any, x € w~1(m) C X there exists a CR function
6 € H(X), which is T;zl—invariant under ¥, and satisfies & (x) # 0. Here, T;f—invariance means that

68=6 Vge Tlr)jl where 68:=6 o,ug,l. (74)

It is convenient to emphasize the holomorphic structure. Recall that ™ : T4 x M — M denotes the complexification of

yM: T4 x M — M; similarly, we have complexified bundle actions 740 : T4 x AY — AY (the complexification of ¥X) and

ﬁAg :T" x Ay — Ay (the complexification of wX). Accordingly, we have associated linear representations of T™ and T on
each space of global holomorphic sections HO(M, A®%), k=0,1,2, .... In fact, H(M, A®¥) is canonically isomorphic with
the space of holomorphic functions on Ay that are homogeneous of degree k, Hy(Ay) C O(Ay), and given & € Hy(Ay) and
geT" we set

ng . A A
0% =00l (75)
The correspondences

6 € Hi(AY) — 6 € HX)p > o € HO(M, A®K)

are natural and equivariant isomorphisms. Therefore, m € M, if and only if for some, and therefore for any, ¢ € Ay lying
over m there exists & € Hy(Ay) which is T;zl-invariant under (75), and satisfies & (£) # 0.

Lemma 3.2. M, is T9-invariant, that is, M (M) = M, Vt € T4

Proof. All actions involved commute. Suppose m € M, and let 6 € Hi(Ay) satisfy 68 =6 for all g€ T, and be such that
G (£) # 0 for some (hence any) ¢ € Ay lying over m. Then for any t € T¢ we have

A N ~AY ~AY
0£6(0) =607 o7 (0). (76)

4
Clearly, 6 o )7:? € Hi(Ay); furthermore, by the assumed invariance of & we have for every g e T‘ff

A LAY ~AY ~AY

R LAY .
=60l oy 3 =607 (77)
Since )ZAK (¢) lies over M (m), (76) and (77) imply that pM(m) e M,. O

_ Recall that M?Y is the dense open subset where y is free and transitive. Since M, and MO are open and dense in M,
M, N MO £ . Therefore Lemma 3.2 implies the following.

Corollary 3.2. M, > M°.
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As is well-known, we have a natural identification [9], [12], [5]
My =M, /T = My/TI T, (78)
which will be left implicit in the following. Accordingly, we shall set
My = M°/T} < M, (79)

an open and dense subset of M,.
Let us define the quotient tori

d—r+1._ d 1 d—r+1 . 1.
T =TT, Tg7=T /T;L : (80)
clearly ']I‘él‘”‘1 is the complexification of Tg‘r“. Then there are induced quotient actions
My . pd=r+1 v _ 1. SMy .md—r+1 N 77
yrv i Tg 1 M, —> My, yrr T, 1« My > My,
and )7M“ is the complexification of ym". Furthermore, T} < Tg*r“ is a 1-dimensional subtorus (notation as in (70) and

Proposition 3.3), and the action //LM" in Proposition 3.3 is the restriction of yM" to T}

- ~WM, . —0
Proposition 3.4. M is free and transitive on M b

Before giving the proof let us interject some pieces of notation.

1. Let us choose a complementary subtorus TI<T to T'7Y, so that TP =TI x T 1; projecting yields an isomorphism Tl
r v vl v pl
T},. Hivmg chosen T},, there is a unique primitive v € L(T},) such that v(v) = 1. Correspondingly, we have isomorphisms
TP =T x T07 LI = ZV & LT, and dually L(T")Y = Zv & L(T)T)Y.
2. Let us choose a complementary subtorus Tg*r < T9 to T7, so that

T T Thx 17, T2 TE < T} < T/ (81)
Then

LTH=LTEHeZVe LTI (82)
and dually

LTHY =LTE e Zve LTI (83)

3. Projection induces isomorphisms
d—r+1 .__ pd—r _ 71 ~ pd—r+1 d—r+1 ._ mqpd—r _ 71 ~ qrd—r+1.
T, =T xT, =Ty , T, =T, 7 xT, = Tq ; (84)

we shall denote by Td~" < Tgd="*1 the image of Td~", so that TJ—"+1 = Td" x T.
4, Ifte 'I[‘Cd‘r“, we shall denote by t € Tg‘r“ its image, and for any m € M, we shall denote by m € M, its projection.

Proof. Suppose m’, m” € Mv, and choose m’, m” M0 lying over them. Then there exists a unique t € T4 such that m”
M(m ). Let us factor t =ty to t3 according to (81), that is, t1 € ’]I‘d "tye 'IF ,t3 € ’]I‘l: 1. Hence

~M _ ~M _~M ~M M ~M
m’ = th ° Vtz ° yt3 (m) = m// — yg v U(m/) — t tvz (m/)

This establishes that yM v is transitive on M
Suppose m € Mv, te ’]I‘g ™1 and m = yM“ (m). Let us choose m € MY lying over m and t € T¢~"+! lying over . Then
there exists t’ € T;zl such that m = y[t/ (m); hence tt' =1 and therefore t =t =1, so t = 1. In conclusion, yM" is free on

—0
M,. O

Corollary 3.3. (M,, J,) is a toric projective manifold.

We can similarly recover the structure of a toric symplectic manifold, as follows. Let us choose § € 4" such that § = (£(8)
as in (11) and (12).
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P . Vo, e . Vv
Definition 3.4. Given a subspace b C 4, we shall denote by b0 c ¢ its annihilator in @,

0 v, . .
Hence v1~ C 4" is a vector subspace of dimension d — r + 1, and

pi0= (-1 (span(v)). (85)

Thus with notation as in (12)
M, = w3 w0, (86)

hence Wy, is an equivariant map M, — pt0 = tg_r+1v_ Therefore, W3|, ~passes to the quotient and yields a Tg‘r“—
v v

equivariant map W; : M, — tg*“f 1Y which is a moment map for yM>.
We conclude the following.

Lemma 3.3. (M, 2wy, Wj) is a symplectic toric orbifold [11]. Furthermore, the moment map ® in Proposition 3.3 is induced by W;.
Remark 3.1. Distinct choices of § determine distinct moment maps GS- differing by a constant in t0c pl0~ tg*'“v.

3.4. The reduced moment polytope A,

We aim to clarify the relation between the moment polytope A, of M, and the moment polytope A of M, and to
interpret properties of ¥ and W in terms of A and A,.

In view of (86) and the identification tg—r“v = pl0

By =T5(M) = W3(My) = (A + H v, (87)

With notation as in (11), (12), and in view of Definition 3.1, we have the following.
Proposition 3.5. Suppose that ®(m) s 0 for every m € M, and ®~ (R, - v) . The following conditions are equivalent:

@ is transverse to Ry - v;
. 0
W5 is transverse to v ;

; 0 z
W is transverse to v — §;

0 3 . \
v~ and A + & meet transversely in t¢";

v _§and A meet transversely in @,

ifTq,..., Tq < T9 are the (distinct) compact tori stabilizing some point of My, then the projection Tg: Td - Tg_r“ restricts to a
finitemap Tj — 7q(Tj) for j=1,...,a;

7. TjﬂT‘r,Il is finitefor j=1,...,a.

Sk W N

The proof of Proposition 3.5 rests on the following property of the moment map W of a toric symplectic manifold (see
[1], [4], [11]). Let A be the moment polytope and F be a face of A. If £ € FO m € W~1(£), then

dmW(TnM) = T F°. (88)

Proof. To begin with, by the hypothesis and the convexity of ®(M) [6], " 1(R, - v) = &' (span(v)).

The equivalence of 1. and 2. follows from (85). That 2. is equivalent to 3. and that 4. is equivalent to 5. is obvious, as is
the equivalence of 6. and 7., given that Tg_r“ = Td/Tlr,f. On the other hand, 7. is equivalent to T;Il acting locally freely
on M,, and this condition is equivalent to 1.

Thus it suffices to show that 2. is equivalent to 4. Let us adopt W; as moment map for the action of T4 on (M, 2 w),

so that Az :=A + 3§ is the corresponding moment polytope. By definition, W3 is transverse to 1% if and only if for every
me \Ilg_l(vlo) we have

A W5 (TraM) + -0 =147, (89)
Let F be a face of Aj such that FOn v 201t FOnvt® and me LIls_l (§) then by (88) and (89) (with W replaced by
vs)

TeFO 4+ v = dy W5 (TM) 4+ v =07

Hence 2. implies 4. The argument for the reverse implication is similar. O
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Proposition 3.6. With the notation in Proposition 3.5, the closed subtori Tj =mg(T)) < Tg‘T‘H, j=1,...,a,are the subgroups that
appear as stabilizer subgroups of points in M,.

Proof. If T; < T¢ is the stabilizer subgroup of m € My, by equivariance of the projection M, — M, clearly T; < Tg—r“ is
a closed subtorus stabilizing m (the image of m in M,). Thus, if S < Tg_r“ is the stabilizer of m, then Tj <S,and S is a
torus [11].

Given the isomorphism T4 = Td=r+1 5 7771 = 7d=r+1 » 7771 we can lift S to a subgroup S’ =S x {1} of T9. Again
by equivariance, for every s € S’ there exist finitely many t € T,r,_1 such that /LQ/{ (m) =m. The collection S of all such pairs
(s,t) e S’ x Tf,_l is a closed subgroup of T¢ of the same dimension as S, stabilizing m (hence contained in T;) and projecting
onto S in Tg‘r“; conversely, any element of T¢ stabilizing m must have this form and therefore S = T;. It follows that
S=T,;.

Hence the subgroups Tj < Tg‘r“ are all the stabilizer subgroups of points in M,. O

Let F be a facet of A, so that F +§ is a facet of A + 8. Let My := ¥~ (F) = xp; (F+8), MY := ¥~ 1(F%). If v is an
inward primitive normal vector to F, then M(F’ is the locus of points in M having stabilizer the 1-dimensional torus S < T¢
generated by v. Furthermore, M?E is open and dense in the 1-codimensional complex submanifold Mg of F.

Proposition 3.7. Assume that the equivalent conditions of Proposition 3.5 are satisfied, and let F be a facet of A. Then:

L F+&)nvi’= W;(MF N My), and in particular Mg N My, # @ if and only if (F + &) N 102 g
2. if Mg N My # @, then the intersection is transverse in M.

Proof of 1. Suppose m € Mg N My. Then W(m) € F (since m € Mf), whence W5(m) € F + §: on the other hand d(m) e Rv
(since m € My), hence W3(m) € 1% Thus, Wz (m) € (F + §nvt

Conversely, suppose y € (F +S) NvL° Thus there exists m € M such that y = W;(m) € F +3 (i.e, me MF), and Wz(m) €
v? ie. me M,. Thus m e Mg N v°, whence y € ¥3(MFNMy). O

Before giving the proof of 2., a remark is in order. The holomorphic and Hamiltonian action (M, s) of T on (M, 2 w)
restricts to a holomorphic and Hamiltonian action (A\M, A) of Tlr]_l, where the moment map A : M — t:fv is induced by
Vs in the standard manner. Then My, = A~1(0) and the transversality hypothesis in Proposition 3.5 are equivalent to the
condition that 0 be a regular value of A, or - still equivalently - that T‘r’jl act locally freely on M,.

Proof of 2. My is a Kahler submanifold of (M, J,2w). It is furthermore T¢-invariant, hence A restricts to a moment map
Afp:Mp — t;fv for the action of T;f on Mg. Transversality of Mg and M, is then equivalent to 0 being a regular value

for Af, hence to T;Il acting locally freely on A;] (0). However T;Il does act locally freely on A;l(O) = My N Mg, since it
acts locally freely on all of My. O

Assume that the conditions in Proposition 3.5 are satisfied, and let F be a facet of A such that Fy := (F + Hn pt? #0.
Then F, is a facet of A,. Furthermore, if Mg := (Mg N M],)/T;Il C M,, we can draw the following conclusion from the
previous discussion.

Corollary 3.4. Mr is a complex suborbifold of M, and Mr = ES_] (Fy).
3.5. Smoothness conditions on A,

Proposition 3.5 characterizes the transversality of ® to R in terms of the mutual position of A and v in ¢V This
condition ensures that M, is a submanifold, that Th~1 acts locally freely on it, and therefore that M, is a Kihler orbifold.
Since our present focus is on the case where M, is a Kihler manifold, we want to similarly characterize this stronger

condition using A and v°.
By the discussion in §3.1, (87), and Proposition 3.5, A, is the convex polytope in o having as facets the non-empty

intersections of v° with the facets of A+3. Equivalently, it is the convex hull of the intersection of v with the d—r+1)-
codimensional (i.e., (r — 1)-dimensional) faces of A + 8. The connected component of such intersection are precisely vertices

of A,; furthermore, if F € A is an (r — 1)-dimensional face, then (F + &) N pi0— (F+ &N vLO, since by transversality
v must have empty intersection with any face of lesser dimension.
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Let G(A) = {F1, ..., Fi} be the collection of facets of A, so that the collection of facets of A + & is G(A + &) = {Fq +

§,... Fx+38). Thus for every j=1,...,s there exist unique UFES L(T%) primitive and Xj € R such that
~ k ~
Atd=(ltet L) =nj+8;), 8;:=38). (90)
j=1

Let us assume that the F;'s have been so numbered that (F; + 3) N vJ-0 #@ for j=1,...,1, and (F; +3) al vJ-O = for

I4+1 < j <k. Hence by (90) and the previous discussion (with the usual identification tg"‘”v = vlo)

!

_ Vo= 0

tg r+ Dszﬂ{yevL sy () > A+ 65} (91)
Jj=1

In view of (17), (82), and (84) there exist unique v/j e (T4, pj e Z, v;-’ € L(T:I]) such that

V=V, +pjV+ ] (92)

Therefore (92) may be rewritten as

l

— 0 ~

Av:ﬂ{yevl Ly W4 V) = A48 (93)
i=1

Definition 3.5. For I = {iy,...,ig} S{1,...,1}, let s5; :=span(v; : jel} C ¢ and let S; < T¢ be the closed subtorus with Lie
subalgebra s;.

Suppose that I is such that F := F;; N...NF;, is a face of A; then, since A is a Delzant polytope, the sequence of normal
vectors (vj,,...,Vj,) is a primitive system in L(T%) (meaning that it can be extended to a lattice basis). Furthermore, S; is
the stabilizer subgroup of any m € w—1(F?).

In particular, let F be a codimension-a face of A such that (F +§) N v-% ¢ (whence (F® + &) nvL° @ by Corol-
lary 3.1). Then there is a unique Ir = {i1, ..., ig} € {1,...,1}, such that F is the intersection of the facets Fj,, ..., F;,, and so
(viy, ..., Vj,) is a primitive system.

Lemma 3.4. Under the previous assumption, and with notation (92), the following conditions are equivalent:

1 T;f acts freely on \113’1 ((FO+8) N vlo);
2. (v, +py V..., v+ pi, V) is a primitive system.

Proof. Suppose y € (FO +3)ﬂvi0, and choose m € M such that W3(m) = y. Then ¥(m) € F°, and so the stabilizer subgroup
of m is Sy,. Hence m has trivial stabilizer in T:Il if and only if T:Il NSy, is trivial.
Suppose that 1. holds, and let ¥ e R, j=1,...,a, be such that

a
exp Zﬂj(vlfj +pi;9) | =1.
j=1

Then

a a
exp | D ojvi; | =exp| D 0;v] [ es, nT I =(D).
j=1 j=1

Thus necessarily ¥; € 27 Z because (vi;); is a primitive system. Hence 2. holds.
Conversely, assume that 2. holds. Suppose that t € S;, N T:f. There exist ¥, j=1,...,a,and § € t;f such that

a
t =exp Z ¥jv;j | =exp(§)
j=1

a a
= exp Zﬁj(v§j+pij3) = exp 5—219]- v’
j=1 j=1
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a

= exp | D 0] +pi,) | (Tgfr x T},) AT = (1)
j=1

=>v0je2nZ, Vj=1,...,a = t=1,

where we have made use of (17). Hence 2. implies 1. O
This can be strengthened as follows.

Proposition 3.8. Under the previous assumptions, the following conditions are equivalent:

1 T:zl acts freely on My;
2. forevery (r — 1)-dimensional face F of A such that (F + &) N p L0 # @, withIp ={i1,...,ig—ry1} € {1,...,1}, the sequence

!’

W), + PV Vi D)

ld—r41
is a primitive system;
3. forevery (b +r — 1)-dimensional face F of A (with b > 0) such that (F +8) N p 0 W, withlp ={i1,...,ig—p—r+1} < {1,...,1},
the sequence

!’

, ~ ~
(vi1 +0iV,..., Uid7b7r+1 + Pig_p_ri1 V)

is a primitive system.

Proof. That 1. implies 2. follows immediately from Lemma 3.4. Suppose that 2. holds. Let m € M. If m € M9 (i.e., ¥(m) €
A9, then TY acts freely at m, hence so does T:Il. Otherwise, W(m) € FO for a unique face F of A, whence Ws(m) €

(FO+8) N p i Applying again Lemma 3.4, we conclude that T;zl acts freely at m. Thus if 2. holds then T‘r’jl acts freely at
every m e \118’1 (vLO) = M,, i.e. 1. holds. That 3. implies 2. is obvious, since 2. is formally the special case of 3. with b =0.
Suppose that 2. holds, and let F be a (b +r — 1)-dimensional face of A as in the statement of 3; then F, := (F + 3) npt?

is a b-dimensional face of A,. Therefore F, contains a vertex y of A,. Hence there exists an (r — 1)-dimensional face F’ of

A, as in the statement of 2., such that {y} = (F + Hn v10 The sequence of normal vectors corresponding to F’ contains
the sequence corresponding to F, and since a subsystem of a primitive system is necessarily also primitive, we conclude
that 3. holds. O

3.6. Proof of Theorem 1.2

We can now build on the previous discussion to give the proof of the Theorem.

Proof of Theorem 1.2. Under the given assumptions on A and vlo M, is a toric manifold, acted upon by Td‘r“ =
Td T+ = Td " x Tl in (84), and with associated moment polytope A,. Furthermore, by (73) and the discussion in §3.2,
Yv is the unit c1rcle bundle associated to the positive line bundle (A, hy) on M,. In addition, M., = Y,,/T] by (71), where
T} acts on Y, by the contact lift u*v of the Hamiltonian action (4™, ®) (Proposition 3.3).

We are therefore in the situation of Theorem 1.1, with the following replacements: M by My; T4 by T¢—"+1 = 14~ =
T4 x T1: A by Ay; X by Yy; W by Wy T by T = T); @ by ®; T4-1 by T¢~". Furthermore, the constants A are replaced
by Aj+6;j for j=1,...,1 in view of (91), and the scalar 8 is taken to vamsh by Lemma 3.3 (once W has been replaced by
\115, no further translatlon is required).

The statement of Theorem 1.2 is now an immediate consequence of Theorem 1.1. O
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