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Suppose that a compact r-dimensional torus T r acts in a holomorphic and Hamiltonian 
manner on polarized complex d-dimensional projective manifold M , with nowhere vani-
shing moment map �. Assuming that � is transverse to the ray through a given weight ν , 
associated to these data there is a complex (d −r+1)-dimensional polarized projective orb-
ifold M̂ν (referred to as the ν-th conic transform of M). Namely, M̂ν is a suitable quotient 
of the inverse image of the ray in the unit circle bundle of the polarization of M . With the 
aim to clarify the geometric significance of this construction, we consider the special case 
where M is toric, and show that M̂ν is itself a Kähler toric orbifold, whose (marked) mo-
ment polytope is obtained from the one of M by a certain ‘transform’ operation (depending 
on � and ν).

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Consider a d-dimensional connected projective manifold M , with complex structure J , and let (A, h) be a positive holo-
morphic line bundle on M . Thus A is ample, h is a Hermitian metric on it, and the unique covariant derivative ∇ on A
compatible with both the metric and the complex structure has curvature � = −2 ı ω, with ω ∈ �2(M) a Kähler form on 
(M, J ).

We shall denote by A∨ the dual line bundle to A, and by X ⊂ A∨ the unit circle bundle, with bundle projection π : X→
M . Then ∇ corresponds to a connection 1-form α ∈�1(X), which is a contact form on X and satisfies

dα = 2π∗(ω). (1)

Let T r be an r-dimensional compact torus, with Lie algebra tr and coalgebra tr∨ . Furthermore, let μM : T r × M → M
be a holomorphic and Hamiltonian action of T r on (M, 2 ω, J ), with moment map � : M → tr

∨ (see e.g. [7] for general 
background on Hamiltonian actions and moment maps).

Any ξ ∈ tr thus determines a Hamiltonian vector field ξ M on M . As is well-known [10], � determines a natural lift of 
ξ M to a contact vector field ξ X = ξ�X on (X, α), given by

ξ X := ξ
�
M − 〈�, ξ 〉 ∂θ ; (2)
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here V � is the horizontal lift to X , with respect to α, of a vector field V on M , and ∂θ is the generator of the structure 
S1-action on X , given by counterclockwise fiber rotation. The flow of ξ X preserves the contact and CR structures of X , and 
the flows of ξ X and ξ ′X commute, for any ξ , ξ ′ ∈ tr .

We shall make the stronger hypothesis that μM lifts to a metric preserving line bundle action on A, and the induced 
action μX : T r × X→ X has the correspondence ξ �→ ξ X in (2) as its differential. We shall say that μX is the (contact and 
CR) lift of the holomorphic Hamiltonian action (μM , �).

For example, when r = 1 and μM is trivial, � : M → t1
∨

is constant; choosing � = ı in (2) yields the circle action 
ρ X generated by −∂θ , thus given by clockwise fiber rotation. If ∂ S1

θ is the standard generator of the Lie algebra of S1, 
∂θ = (∂ S1

θ )X in (2) is the vector field on X generating the structure S1-action given by counter-clockwise fiber rotation, 
while −∂θ is the vector field generating ρ X (clockwise fiber rotation); we parametrize S1 by θ �→ eı θ .

Let us fix a non-zero weight ν ∈ tr∨ . The results below rest on the following Basic Assumption on (�, ν), henceforth 
referred to as BA 1.1.

Basic Assumption 1.1. The following holds:

1. ν is primitive (or coprime);
2. � is nowhere vanishing, that is, 0 �∈�(M);
3. � is transverse to the ray R+ · ν .

Under these circumstances, a polarized Kähler orbifold (M̂ν , ̂ων , ̂Jν) can be constructed from the previous data, by taking 
a suitable quotient by a locally free action of T r of a locus in X defined by (�, ν); here ω̂ν and Ĵν denote the (orbifold) 
symplectic and complex structures on M̂ν [16]. We refer to [16] (where M̂ν is denoted Nν and ω̂ν by ην ) for a discussion of 
the relevance of this geometric construction in geometric quantization; it generalizes the one of weighted projective spaces 
as quotients of an odd-dimensional sphere. Here we aim to clarify the relation between the symplectic structures of M and 
M̂ν in the toric setting: as we shall see, assuming that M is a toric manifold, (M̂ν , 2 ̂ων) is a toric symplectic orbifold, and 
its marked moment polytope 
̂ν can be explicitly recovered from the moment polytope 
 of M (by [11] toric symplectic 
orbifolds are classified by marked convex rational simple polytopes).

Before stating the result precisely, let us briefly recall the geometric construction in point, referring to [13–16] for details. 
Let us set

Mν :=�−1(R+ ν)⊆ M, Xν := π−1(Mν)⊆ X . (3)

Then, assuming BA 1.1, the following holds:

1. Mν ⊆ M is a connected and compact (real) submanifold, of codimension r − 1;
2. μX is locally free on Xν .

We may and will assume without loss that μX is generically free on X (and Xν ). Then the quotient

M̂ν := Xν/T r (4)

(denoted Nν in [16]) is naturally a (d − r + 1)-dimensional complex orbifold, and comes equipped with a Kähler structure 
(M̂ν , ω̂ν , ̂Jν) induced by (M, ω, J ); here T r acts on Xν by the restriction of μX to Xν . We shall call M̂ν the ν-th conic 
transform of M; it depends on μX , hence on �.

We are interested in clarifying the geometry of M̂ν in the toric setting, thus assuming that M be toric, with structure 
action γ M : T d ×M→ M and moment polytope 
 ⊆ t∨ .

Let us briefly recall the Delzant construction of M from 
; obviously with no pretense of exhaustiveness, we refer to 
[1], [4], and [11] for more complete discussions. Since M is smooth, 
 is a Delzant polytope [4]. We shall denote by F(
)
the collection of all faces of 
, by Fl(
) ⊆F(
) the subset of codimension-l faces, and specifically by G(
) = F1(
) the 
subset of facets. If G(
) = {F1, . . . , Fk}, then for every j = 1, . . . , k there exist unique

υ j ∈ L(T d) := ker
(

expT d (2π ·))⊂ td = Lie(T d), λ j ∈R, (5)

with υ j primitive, such that


=
k⋂

j=1

{� ∈ t∨ : �(υ j)≥ λ j}, (6)

and for every j = 1, . . . , k the relative interior of F j (open facet) is

F 0 = {� ∈ t∨ : �(υ j)= λ j, �(υ j′) > λ j′ ∀ j′ �= j}. (7)
j

2
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Let us set

ω0 := ı
2

k∑
j=1

dz j ∧ dz j =
k∑

j=1

dx j ∧ dy j . (8)

Then (M, 2 ω) can be regarded as symplectic reduction of (Ck, 2 ω0) under the action of a subtorus N � T k , as follows. De-

note the general element of T k by eı ϑ = (eı ϑ1 , . . . , eı ϑk
)
; for eı ϑ ∈ T k and z = (z j)

k
j=1 ∈Ck , let us set eı ϑ • z := (eı ϑ j z j

)k
j=1. 

For any choice of λ= (λ j)
k
j=1 ∈Rk , the action

�C
k :
(

eı ϑ , z
)
∈ T k ×Ck �→ e−ı ϑ • z ∈Ck (9)

is then Hamiltonian on 
(
Ck,2ω0

)
, with moment map

�λ : z ∈Ck �→ ı

k∑
j=1

(
|z j|2 + λ j

)
e∗j , (10)

where (e j)
k
j=1 is the canonical basis of Rk and (e∗j )

k
j=1 is the dual basis. The linear map Rk→Rd such that e j �→ u j induces 

a short exact sequence of tori 0 → N→ T k→ T d→ 0; hence �Ck
restricts to a Hamiltonian action of N on 

(
Ck,2ω0

)
, with 

a moment map �N
λ naturally induced from �λ . Given that 
 is Delzant, N acts freely on Z
 :=�N

λ
−1
(0); then M = Z
/N , 

with its symplectic structure 2 ω, is the Marsden-Weinstein reduction of 
(
Ck,2ω0

)
for the action of N . By the arguments 

of [5], the standard complex structure J0 of Ck descends to a compatible complex structure J on M , whence (M, ω, J ) is 
a Kähler manifold.

Furthermore, � descends to a holomorphic and Hamiltonian action of T d = T k/N on (M, 2 ω, J ), γ M : T d ×M→ M; the 
moment map � : M→ td

∨
is obtained by descending to the quotient the restriction

�λ|Z
 : Z
→ n0 ∼= td
∨
.

In addition, if λ ∈Zk this construction can be extended by the arguments of [5] so as to obtain an induced toric positive 
line bundle (A, h) on M , with curvature � =−2 ı ω (§2.1.2); that (A, h) is toric means that γ M lifts to a metric preserving 
line bundle action of T d on A. Hence by restriction we obtain a contact CR action γ X : T d × X → X lifting γ M , where 
X ⊂ A∨ is the unit circle bundle.

In addition, we suppose given an effective holomorphic and Hamiltonian action μM : T r × M→ M of an r-dimensional 
compact torus T r on M , with moment map � : M→ tr

∨ satisfying BA 1.1 for a certain ν ∈ tr∨ , and commuting with γ M . 
Thus μM factors through an injective group homomorphism T r → T k , hence we may assume without loss of generality that 
T r � T d and that μM is the restriction of γ M to T r ; therefore, letting ι : tr ↪→ td be the Lie algebra inclusion,

�= ιt ◦�+ δ (11)

for some constant δ ∈ tr∨ . Equivalently, given δ̃ ∈ td∨ such that δ = ιt(δ̃),
�= ιt ◦ (�δ̃), where �δ̃ :=�+ δ̃. (12)

Let us assume that (μM , �) lifts to μX : T r × X→ X according to the previous procedure. While μM is the restriction of 
γ M to T r , μX is the restriction of γ X only if δ = 0 in (11).

If μX exists, we can consider the conic transform M̂ν with respect to μX ; as mentioned, (M̂ν , 2 ̂ων) turns out to be 
a symplectic toric orbifold. Furthermore, its associated marked convex rational simple polytope (
̂ν , sν) is obtained by 
applying a suitable ‘transform’ to 
 (depending on ν).

Since the situation is at its simplest when r = 1, we shall describe this case first. Thus μM : T 1×M→ M is a Hamiltonian 
action on (M, 2 ω), with a nowhere vanishing moment map � : M→ t1

∨
; the primitive integral weight ν ∈ t1∨ is uniquely 

determined by the condition that Mν �= ∅. Then Mν = M , Xν = X , μX is locally free, and M̂ν = X/T 1 (the quotient is with 
respect to μX ).

Let us choose a complementary torus T d−1
c to T 1 in T d , that is, T d ∼= T d−1

c × T 1. If td−1
c � td is the Lie algebra of T d−1

c , 
the corresponding lattices L(T d−1

c ) ⊂ td−1
c and L(T 1) ⊂ t1 are complementary in L(T d) (see §2.3 on how 
̂ν depends on 

T d−1
c ).

Let ν̃ ∈ L(T 1) be the unique primitive lattice vector such that ν (̃ν) > 0; since the weight lattice is the dual lattice to 
L(T ), primitivity implies ν (̃ν)= 1, that is, ν = ν̃∗ ∈ L(T 1)∨ is the dual vector to ν̃ . Then δ = δ ν ∈ t1∨ , where δ = δ(̃ν) ∈Z
(notation as in (11)).

With 
 and υ j as in (6), for each j = 1, . . . , k there are unique υ ′j ∈ td−1
c and ρ j ∈Z such that

υ j = υ ′ + ρ j ν̃. (13)
j

3
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For every j = 1, . . . , k let us define

υ̂ j := υ ′j − (λ j + ρ j δ) ν̃ (14)

and


̂ν :=
k⋂

j=1

{� ∈ t∨ : �(υ̂ j
)≥−ρ j}. (15)

Thus 
̂ν is obtained from 
 by replacing each pair (ρ j, λ j) by the pair (−(λ j + ρ j δ), −ρ j).
We shall see that (M̂ν , 2 ̂ων) is a toric symplectic orbifold, and that 
̂ν is its moment polytope. To complete the com-

binatorial description of (M̂ν , 2 ̂ων) following [11], we need to specify the corresponding marking of 
̂ν , that is, the 
assignment to each of its facets F̂ j of an appropriate integer s j ≥ 1. We shall denote the marking by sν = (s j)

k
j=1 ∈Nk , 

and the marked polytope by the pair (
̂ν , sν).
We premise a further piece of notation. Given a rank-r integral lattice L ⊂ V in a real vector space, and a basis (�1, . . . , �r)

of L, if � ∈ L we shall denote by (�) the greatest common divisor of the coefficients of � in the given basis, that is,

(�) := G.C.D.(λ1, . . . , λr) if �=
r∑

j=1

λ j � j. (16)

The definition is well-posed, since (�) is independent of the choice of a basis of L. Furthermore, the following holds:

1. � is primitive in L if and only if (�) = 1;
2. if T is a (real) torus and ξ �= 0 ∈ L = L(T ), then eϑ ξ = 1 ∈ T if and only if eı ϑ is a (ξ )-th root of unity.

Let us define sν = (s j) ∈Nk by setting

s j :=
(
υ̂ j
)

( j = 1, . . . ,k).

Theorem 1.1. Under the above assumptions, thus with r = 1, 
(
M̂ν , 2 ̂ων

)
is the symplectic toric orbifold with associated marked 

polytope 
(

̂ν , sν

)
.

The following consequence generalizes to conic transforms a well-known property of weighted projective spaces [8].

Corollary 1.1. Under the previous assumptions (thus with r = 1),

Hl(M,Q)∼= Hl(M̂ν , Q
)

(l= 0,1, . . .).

Let us now consider a general r ≤ d.
Let ν⊥ � tr be the kernel of ν , and T r−1

ν⊥ � T r the corresponding subtorus. Under Basic Assumption 1.1, T r−1
ν⊥ acts locally 

freely on Mν ; then Mν := Mν/T r−1
ν⊥ , the Marsden-Weinstein reduction of M with respect T r−1

ν⊥ , is a Kähler orbifold. The 
transversality requirement in Basic Assumption 1.1 can be conveniently reformulated as a transversality condition between 

 + δ̃ and ν⊥0 ⊆ td

∨
(the annihilator of ν⊥), see §3.4. We shall for simplicity require that T r−1

ν⊥ acts freely on Mν , which 

amounts to 
′ν := (
 + δ̃) ∩ ν⊥0
being a Delzant polytope (see §3.5). Then Mν is naturally a toric Kähler manifold, acted 

upon by the quotient torus T d−r+1
q := T d/T r−1

ν⊥ ; the associated moment polytope 
ν can be identified with 
′ν under the 

natural isomorphism between td−r+1
q (the Lie algebra of T d−r+1

q ) and ν⊥0
. The general case can then be reduced to the case 

r = 1, with M replaced by Mν .
Let us choose:

1. a complementary subtorus T̂ 1
ν � T r to T r−1

ν⊥ , so that exists a unique primitive ν̃ ∈ L(T̂ 1
ν ) with ν (̃ν) = 1;

2. a complementary subtorus T d−r
c � T d to T r , with Lie algebra td−r

c � td , so that

T d ∼= T d−r
c × T r ∼= T d−r

c × T̂ 1
ν × T r−1

ν⊥ , (17)

td ∼= td−r
c × t̂1ν × t

r−1
ν⊥ . (18)

With notation as in (6) and (7), suppose that the k facets of 
 have been so numbered that Gν (
) := {F1, . . . , Fl} ⊆ G(
)
is the subset of those facets of 
 such that (F j + δ̃) ∩ ν⊥0 �= ∅ (it then follows that (F 0

j + δ̃) ∩ ν⊥0 �= ∅, see §3.1). For every 
j = 1, . . . , l, let us decompose υ j according to (18):
4
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υ j = υ ′j + ρ j ν̃ + υ ′′j , (19)

for unique υ ′j ∈ L(T d−r
c ), ρ j ∈Z, υ ′′j ∈ L(T r−1

ν⊥ ). If δ j := δ̃(υ j), 
ν is canonically identifiable under the natural isomorphism 

td−r+1
q

∼= ν⊥0
with the Delzant polytope

ν⊥0 ⊇
′ν :=
l⋂

j=1

{γ ∈ ν⊥0 : γ (υ ′j + ρ j ν̃)≥ λ j + δ j}. (20)

Let us set

υ̂ j := υ ′j − (λ j + δ j) ν̃, s j :=
(
υ̂ j
)

( j = 1, . . . , l). (21)


̂′ν :=
l⋂

j=1

{� ∈ ν⊥0 : �(υ̂ j
)≥−ρ j}. (22)

Finally, let 
̂ν ⊂ td−r+1
q be the polytope corresponding to 
̂′ν ⊂ ν⊥0

, and let sν := (s j) ∈Nl .

Theorem 1.2. Under Basic Assumption 1.1, suppose in addition that 
 + δ̃ and ν⊥0
are transverse and that the intersection is Delzant. 

Then 
(
M̂ν , 2 ̂ων

)
is the symplectic toric orbifold with associated marked polytope 

(

̂ν , sν

)
.

We have an analogue of Corollary 1.1, linking the cohomology groups of the symplectic reduction Mν and of the conic 
transform M̂ν . By the theory of [9], Hl(Mν , Q) is tightly related to the equivariant cohomology of M for the action of T r−1

ν⊥ .

Corollary 1.2. Under the hypothesis of Theorem 1.2,

Hl(Mν ,Q)∼= Hl(M̂ν , Q
)

(l= 0,1, . . .).

Remark 1.1. The reader may have wondered why, after introducing the Kähler structure ω, we refer the Hamiltonian struc-
tures to the form 2 ω (and similarly, for 

(
M̂ν , 2 ̂ων

)
). Needless to say, given a complex orbifold (R, J R ) and a 2-form γ on 

it, γ is Kähler on (R, J R) if and only if so 2 γ . The emphasis on 2 ω is motivated on the one hand by the normalization 
� =−2 ı ω (and the equivalent formula (1)), which is in line of the general conventions up to an occasional factor of π , and 
on the other by the formula (2) for the contact lift. In particular, suppose that f ∈ C∞(M) and υ f ∈X(M) is the Hamiltonian 
vector field of f with respect to 2 ω. Let us lift υ f to a vector field υ̃ ∈X(X) on X by the prescription (2), i.e.

υ̃ := υ� − f ∂θ .

Then

Lυ̃α = dι
(
υ̃
)
α + ι (υ̃) dα =−π∗(d f )+π∗ (ι (υ) (2ω))= 0,

so that with these choices υ̃ is a contact vector field on (X, α). At then same time, one commonly adopts dV M = ω∧d/d!
as a volume form on M . Furthermore, when studying equivariant Szegö kernel scaling asymptotics, which gave the initial 
motivation for the conic transform construction, it is customary to refer the universal ψ2 Heisenberg invariant in the leading 
exponent to ω.
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2. The case r = 1

2.1. Preliminaries

Before embarking on the proof of Theorem 1.1, we need to recall some basic constructions from toric geometry, referring 
to [1], [4] and [3] for details. We premise a digression on the geometric relation between 
 and 
̂ν .
5
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2.1.1. The transform of a polytope
Although not logically necessary, it is suggestive to describe the passage from 
 to 
̂ν in terms of a general ‘transform’ 

operation on rational polytopes in a finite-dimensional real vector space with a full-rank lattice L, depending on the datum 
of a decomposition of L as the product of an oriented rank-1 sublattice and a complementary sublattice.

Let V be a d-dimensional real vector space, L ⊂ V a full-rank lattice, V ∨ the dual vector space, and L∨ the dual lattice. 
Suppose that 
 ⊂ V ∨ is d-dimensional rational simple convex polytope (terminology as in [11]). This means that there exist 
primitive vi ∈ L and λi ∈R, i = 1, . . . , k, such that


=
k⋂

j=1

{
� ∈ V ∨ : �(v j)≥ λ j

}
, (23)

and that exactly d facets of 
 meet at each of its vertexes. In addition, we shall say that 
 is integral if λ j ∈Z for every j.
Suppose given:

1. a primitive lattice vector v �= 0 ∈ L;
2. δ ∈ span(v)∨ such that δ(v) ∈Z and

�(v)+ δ(v) > 0 ∀� ∈
; (24)

3. a complementary sublattice L′ ⊂ L to Z · v, so that setting V ′ := L′ ⊗R we have V = V ′ ⊕ span(v) and dually V ∨ =
V ′∨ ⊕ span(v∗), where v∗ ∈ span(v)∨ is dual to v.

Then we may uniquely extend δ to δ̃ ∈ L∨ ∩ span(v∗) ⊆ V ∨ so that δ̃ = δ v∗ with δ ∈Z (a different choice of δ̃ would 
result in a translation of the transformed polytope). By (24), 
 + δ̃ lies in the open half-space V ∨+ ⊂ V ∨ where pairing with 
v is positive.

Any � ∈ V ∨+ can be written uniquely as � = �′ + �(v) v∗ , where �′ ∈ V ′∨ and �(v) > 0. Let us define an involution � :
V ∨+ → V ∨+ by setting

�(�) := 1

�(v)
�′ + 1

�(v)
v∗. (25)

Let us determine ρ(
 + δ̃). For each j, we can write uniquely v j = v′j+ρ j v where v′j ∈ L′ and ρ j ∈Z. Hence δ̃(v j) = δ ρ j . 
We have


+ δ̃ =
k⋂

j=1

{
� ∈ V ∨ : �(v j)= �′(v′j)+ ρ j �(v)≥ λ j + δ ρ j

}
. (26)

Since �= �−1, by (25) and (26) we have


̂ := �(
+ δ̃)=
k⋂

j=1

{
� ∈ V ∨+ : �(�)(v j)= 1

�(v)

[
�′(v′j)+ ρ j

]
≥ λ j + δ ρ j

}

=
k⋂

j=1

{
� ∈ V ∨+ : �′(v′j)− (λ j + δ ρ j) �(v)≥−ρ j

}
. (27)

Thus 
̂ is the convex polytope obtained from 
 by replacing each primitive normal vector v j = v′j+ρ j v with the integral 
vector ̂v j := v′j− (λ j+ δ ρ j) v, and each λ j with −ρ j . Clearly, 
̂ is rational; it is not claimed that each ̂v j be primitive, hence 
neither that 
̂ be integral.

Furthermore, (27) shows that, if F j is the facet of 
 normal to v j , then F̂ j := ρ(F j + δ) is the facet of 
̂ normal to ̂v j ; 
this correspondence passes to intersection of facets, i.e. faces. Thus we have a bijection between the set of faces of each 
given dimension of 
 and 
̂, hence in particular between the families of their respective vertexes. In particular, the vertexes 
of 
̂ are the images by � of the vertexes of 
, and furthermore 
̂ is simple since so is 
.

To make the construction more explicit, let us work in coordinates and take L =Zd and V =Rd; let Cd = (ε1, . . . , εd)

denote the canonical basis, and choose v = e1, L′ := span(ε2, . . . , εd). We shall conveniently identify V ∨ with Rd by means 
of the dual basis C∗d =

(
ε∗1, . . . ,ε∗d

)
. Then

V ∨+ =
{
(x1,x

′) ∈Rd =R×Rd−1 : x1 > 0
}
,

where x′ = (x2, . . . , xd) and (x1, x′) corresponds to 
∑d

j=1 x j e∗ . Then � : V ∨+ → V ∨+ in (25) is the involution given by
j

6
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�(x1,x
′)=

(
1

x1
,

1

x1
x′
)
.

In particular, � is an inversion along the x1-axis, and a positive dilation in {0} ×Rd−1. If a, c ∈R and B = (b2, . . . , bd) ∈
Rd−1, let us consider the half-space W ⊂ V given by

W =
{
(x1,x

′) ∈Rd =R×Rd−1 : a x1 + 〈B,x′〉 ≥ c
}
.

Then

�(W ∩ V ∨+)=
{
(x1,x

′) ∈ V ∨+ : −c x1 + 〈B,x′〉 ≥ −a
}

is again of the form W̃ ∩ V ∨+ for a new half-space W̃ ; it follows that � transforms convex polytopes in V ∨+ in other convex 
polytopes in V ∨+ . By the Fundamental Theorem of convex polytopes, therefore, if 
 ⊂ V ∨+ is the (bounded and convex) 
polytope given by the convex hull of point p1, . . . , pr ∈ V ∨+ , then �(
) ⊂ V ∨+ is the convex hull of �(p1), . . . , �(pr) ∈ V ∨+ .

For example, let us take M = P 2 with the Fubini-Study form; thus A is the hyperplane line bundle on P 2 with the 
standard metric, A∨ is the tautological line bundle, and X = S3 (the unit sphere in C2). Let us consider the toric action 
γP2 : T 2 ×P 2→P 2 given by

γ P
2

eı ϑ
([z0 : z1 : z2]

) := [z0 : e−ı ϑ1 z1 : e−ı ϑ2 z2
]

where eı ϑ = (eı ϑ1 , eı ϑ2
)
.

We shall identify t ∼= t∨ ∼=R2 in the standard manner, and denote by C2 = (e1, e2) the canonical basis, with dual basis 
C∗2 = (e∗1, e∗2). A (normalized) moment map for γP2

can be taken to be

� : [Z ] ∈ P 2 �→
( |z1|2
‖Z‖2

,
|z2|2
‖Z‖2

)
∈R2,

where Z = (z0, z1, z2), [Z ] = [z0 : z1 : z2]. Then 
 =�(P 2) is the triangle with vertexes (0, 0), (1, 0), (0, 1).
Let us consider the action μP2 : T 1 ×P 2→P 2 given by

μP2

eı θ ([Z ]) :=
[
z0 : e−ı θ z1 : z2

]
,

with (normalized) everywhere positive moment map

�P2 : [Z ] ∈ P 2 �→ |z1|2
‖Z‖2

+ 1= |z0|2 + 2 |z1|2 + |z2|2
‖Z‖2

∈R.

The linearization corresponding to �P2
yields the locally free action of T 1 on S3 given by

μS2

eı θ (Z) :=
(

e−ı θ z0, e
−2 ı θ z1, e−ı θ z2

)
.

Then M̂ = S3/T 1 (since r = 1, there is no ambiguity in writing M̂ = M̂ν ).

Thus 
(
μP2

,�P2
)

is the Hamiltonian action obtained by restricting γP2
to the subgroup T 1 ∼= T 1 × {1} of T 2 (with the 

injection eı θ �→ (
eı θ ,1

)
), and by taking as moment map �e∗1 :=� + e∗1 (that is, δ̃ = e∗1 in (12)). Hence,

�e∗1(P
2)=
+ e∗1 ⊂ V ∨+

is the triangle with vertexes at (1, 0), (2, 0), (1, 1). Thus, 
̂e∗1 = �(
 + e∗1) is the triangle with vertexes at �(1, 0) = (1, 0), 
�(1, 1) = (1, 1), �(2, 0) = ( 1

2 ,0
)
.

To determine the marking s, we need to compute the normal vectors υ̂ j in (14). In the notation (13), we have

ν̃ = e1 = (1,0), δ = 1 and t1c = span(e2).

Furthermore,


= {〈�,e1〉 ≥ 0} ∩ {〈�,e2〉 ≥ 0} ∩ {〈�,−e1 − e2〉 ≥ −1}.
Hence we may take

υ1 = e1 υ ′1 = 0 ρ1 = 1 λ1 = 0
υ2 = e2 υ ′2 = e2 ρ2 = 0 λ2 = 0
υ3 =−e1 − e2 υ ′3 =−e2 ρ3 =−1 λ3 =−1.

Thus applying (14) we have
7



R. Paoletti Journal of Geometry and Physics 202 (2024) 105224
υ̂1 =−(0+ 1 · 1)e1 = (−1,0)

υ̂2 =−(0+ 1 · 0)e1 + e2 = (0,1)
υ̂2 =−(−1+ 1 · (−1))e1 − e2 = 2 e1 − e2 = (2,−1).

Thus s j = 1 for j = 1, 2, 3.

2.1.2. The toric line bundle A and its circle bundle
Let us review the construction of the positive toric line bundle (A, h) on M from the Delzant polytope 
λ , for λ ∈Zk , 

based on pairing the Delzant construction of M as a symplectic quotient of Ck with the construction of a polarization on 
the quotient in [5]. Consider the trivial line bundle L :=Ck ×C, and define a Hermitian metric κ on L by setting

κz
(
(z,w), (z, v)

) := w v e−‖z‖2
(z ∈Ck, w, v ∈C).

The unit circle bundle Y ⊂ L∨ (that is, in L with the dual metric) is then

Y :=
{
(z,w) ∈Ck ×C : |w| = e−

1
2 ‖z‖2

}
=
{(

z, e−
1
2 ‖z‖2

eı θ
)
: z ∈Ck, eı θ ∈ S1

}∼=Ck × S1. (28)

In the following we shall implicitly identify Y and Ck× S1. In terms of the previous diffeomorphism, the unique compatible 
connection 1-form is

β := ı
2

k∑
j=1

[
z j dz j − z j dz j

]+ dθ. (29)

Thus, β(∂θ ) = 1 and ker(β) ⊂ T Y is the horizontal subspace.
If f :Ck→C is C∞ , the corresponding section σ f of L has pointwise norm

‖σ f (z)‖κ = | f (z)| e− 1
2 ‖z‖2

.

Applying this with f = 1 we obtain that, letting �0 be the curvature of the unique compatible connection on L,

�0 = ∂ ∂
(
−‖z‖2

)
=

k∑
j=1

dz j ∧ dz j =−2 ı ω0,

where ω0 = (ı/2) ∑k
j=1 dz j ∧ dz j is the standard symplectic form on Ck .

Given that λ ∈Zk , the Hamiltonian action (�Ck
, �λ) (see (9) and (10)) has the contact CR lift �Y

λ : T k × Y → Y given by

�Y
λ :
(

eı ϑ , (z,w)
)
�→
(
�C

k
(eı ϑ , z), e−ı 〈λ,ϑ〉 w

)
=
(

e−ı ϑ · z, e−ı 〈λ,ϑ〉 w
)
. (30)

This is the restriction a similarly defined metric preserving linearization �L∨
λ : T k × L∨ → L∨; dually, we also have a lineari-

zation �L
λ : T k × L → L.

As in [5], we can take the quotient and obtain a positive line bundle (A, h) on M = Z
/N , by setting

A := L|Z
 /N = (Z
 ×C)/N, (31)

with associated unit circle bundle X ⊂ A∨ given by

X = Y |Z
 /N ∼= (Z
 × S1)/N. (32)

2.1.3. The complexification ̃N and its stable locus
Besides representing M as a Marsden-Weinstein reduction for the quotient of N , it is useful to consider its parallel 

description as a GIT quotient for the action of the complexification Ñ ([4], [3]). In the following, for every compact group 
T , T̃ is the complexification of T .

Every face F ∈F(
) of codimension cF of 
 is uniquely an intersection of facets; hence there exists a unique increasing 
multi-index I F := {i1(F ), . . . , icF (F )} ⊂ {1, . . . , k}cF such that F =⋂icF (F )

j=i1(F )
Fi j(F ) . Let us set

OF :=
{

z= (z j) ∈Ck : z j = 0 ⇔ j ∈ I F

}
(F ∈F(
)). (33)

The following holds:
8
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1. OF is an orbit of T̃ k , and OF ∼=C∗k−cF equivariantly;
2. the stabilizer in T k of every z ∈OF is the subtorus T k

F with Lie algebra

tkF := ı spanR{e j : j ∈ I F },
and the corresponding statement holds for the stabilizer in the complexification, T̃ k

F � T̃ k;
3. C
 := ⋃F∈F(
)OF is the open subset of stable points for the action of T̃ k on Ck with the given linearization or, 

equivalently, the T̃ k-saturation of Z
;
4. Ñ acts freely and properly on C
;
5. M =C
/Ñ as a complex manifold;
6. for every F ∈F(
), M0

F :=OF /Ñ is a T̃ d-orbit and a complex submanifold of M of codimension cF ;

7. M0
F =�−1(F 0), where F 0 is the interior of F (recall that � : M→ td

∨
is the moment map).

We have the following ([1], [4], [3]).

Lemma 2.1. For any F ∈F(
), let T d
F � T d be the subtorus with Lie subalgebra

tdF := spanR{u j : j ∈ I J }.
Then

1. the isomorphism T k/N ∼= T d induces an isomorphism ρF : T k
F
∼= T d

F ;
2. T d

F is the stabilizer in T k of every m ∈ M0
F .

3. M F :=�−1(F ) is the complex submanifold of fixed points of T d
F ;

4. M0
F is the dense open subset of M F of those points whose stabilizer is exactly T d

F .

Similar statements hold in the complexifications.

Let us denote by P : Z
→ M and by P̃ :C
→ M the projections. Then C
 = T̃ k · Z
 and P = P̃ |Z
 .

2.1.4. The lifted action of T d on X
By passing to the quotient, �Cd

and �Y
λ determine corresponding actions

γ M : T d ×M→ M, γ X : T d × X→ X;
given that �Y

λ is the contact and CR lift of (�Ck
, �λ), γ X is the contact and CR lift of (γ M , �).

Given m ∈ M0
F , T d

F � T d acts on Xm = π−1(m) ⊂ X by a character that we now specify. Let us choose z ∈ P−1(m) ⊂
OF ∩ Z
 . Since N acts freely on Z
 , the projection L|Z
 → A restricts to an isomorphism Lz ∼= Am , which is equivariant 
with respect to the isomorphism ρF : T k

F
∼= T d

F in Lemma 2.1.
If ı ϑ ∈ tkF and (z, w) ∈ Yz , then by (30)

�Y
λ

(
eı ϑ , (z,w)

)
=
(

z, e−ı 〈λ,ϑ〉 w
)
. (34)

Since ρF (eı e j ) = eυ j for j ∈ I F , for x = (m, �) ∈ Xm we have

γ X
(

e
∑

j∈I F
ϑ j υ j , (m, �)

)
=
(

m, e−ı 〈λ,ϑ〉 �
)

= e−ı 〈λ,ϑ〉 x= χF

(
e
∑

j∈I F
ϑ j υ j

)−1
x, (35)

where

χF : e
∑

j∈I F
ϑ j υ j ∈ T d

F �→ eı
∑

j∈I F
ϑ j λ j ∈ S1. (36)

We can reformulate this as follows.

Lemma 2.2. Suppose that F is a face of 
, that m ∈M0 , and that x ∈ Xm. Then for every t ∈ T d
m we have γ X

t (x) = ρ X (x).
F χF (t)

9
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2.1.5. The lifted action of T 1 on X
We have remarked that μM : T 1 × M → M is the restriction of γ M : T d × M → M to T 1 while, on the other hand, 

μX : T 1× X→ X won’t be the restriction of γ X : T d × X→ X to T 1, unless δ = 0 ∈ t1∨ in (11). Since however both μX and 
the restriction of γ X to T 1 lift μM , there is a character χ = χδ : T 1→ S1 such that

μX
h (x)= γ X

h ◦ ρ X
χ(h)(x) (x ∈ X, h ∈ T 1). (37)

Let us make χ explicit. Since ν̃ is primitive, the map eı ϑ ∈ S1 �→ eϑ υ̃ ∈ T 1 is an isomorphism of Lie groups.

Lemma 2.3. We have δ ∈Z and χ(eϑ ν̃) = eı δ ϑ .

Proof. Recall that, by choice of ν̃ , ν = ν̃∗ ∈ t1∨ is the dual basis to ν̃ , and so δ = δ ν , where δ = δ(̃ν). Let us write ν̃�X and 
ν̃�X for the vector field on X induced by ν̃ under μX and γ X , respectively. In view of (2), we obtain

ν̃�X = ν̃�M − 〈�, ν̃〉 ∂θ
= ν̃�M − 〈�, ν̃〉 ∂θ − δ ∂θ = ν̃�X − δ ∂θ . (38)

Hence for every x ∈ X and eϑ ν ∈ T 1

μX
eϑ ν̃ (x)= e−ı δ ϑγ X

eϑ ν̃ (x)= γ X
eϑ ν̃ ◦ ρ X

eı δ ϑ (x). (39)

Given that ν̃ ∈ L(T 1), (39) implies ρ X
e2π ı δ = idX . Since ρ X is free, this implies δ ∈Z. Since (39) holds for any ϑ , the second 

claim follows as well. �
2.1.6. M̂ν and its Kähler structure

By assumption, μX : T 1 × X → X lifts μM : T 1 × M → M . Let us set �ν̃ := 〈�, ̃ν〉; as �ν̃ > 0, μX is locally free by 
(2). Furthermore, since μM is holomorphic, μX preserves the CR structure of X . Hence the quotient M̂ν := X/μX is a d-
dimensional complex orbifold with complex structure Ĵν ([14], [16]). Furthermore, μX is effective, hence generically free; 
therefore the projection π̂ν : X→ M̂ν is a principal V -bundle with structure group T 1.

We shall now see that (M̂ν , ̂ Jν) carries a Kähler structure ω̂ν , naturally induced from ω. Aside from slight changes in 
notation, the discussion is close to the ones in §2 of [14] and §5.3 of [16], so we’ll be rather sketchy. To lighten notation, 
we shall adopt the following conventions.

1. if (m, x, ̂m) ∈ M × X × M̂ν , we shall write m ← x → m̂ to mean π(x) =m and π̂ν(x) = m̂;
2. if (m, ̂m) ∈ M × M̂ν , we shall write m ∼ m̂ to mean that m ← x → m̂ for some x ∈ X ;
3. if U ⊆ M , we shall set Û := π̂ν

(
π−1(U )

)
;

4. we shall generally omit symbols of pull-backs for functions, and denote by the same symbol a function f : M→C and 
its pull-back π∗( f ) : X→C;

5. similarly, if f is invariant and hence π∗( f ) descends to M̂ν , we shall also denote by f : M̂ν→C the descended function.

Let the invariant differential 1-form α̂ν ∈�1(X) be defined by

α̂ν := 1

�ν̃
α. (40)

Then ι(ν̃ X ) ̂αν = −1, hence α̂ν is a connection 1-form for π̂ν . Hence there is a unique orbifold 2-form ω̂ν on M̂ν such 
that dα̂ν = 2 ̂π∗ν (ω̂ν). Since by (40) ker(α) = ker(α̂ν), π and π̂ν share the same horizontal bundle, i.e., Hx(π) =Hx(π̂ν) for 
every x ∈ X . On the other hand, since �ν̃ > 0 by (2) we have ν̃ X (x) �∈H(π)x at every x ∈ X . Hence we can split the tangent 
bundle T X of X in the two alternative ways:

T X =H(π)⊕ span(∂θ )=Hx(π̂ν)⊕ span(ν̃ X ). (41)

In particular, if m ← x → m̂ then there are complex linear isomorphisms

Tm M ∼=Hx(π)∼= Tm̂(M̂ν), (42)

where the latter denotes the uniformizing tangent space of M̂ν at m̃. Since

2 π̂∗ν (ω̂ν)= dα̂ν = 1

�ν̃
2π∗(ω)− 1

�ν̃2
d�ν̃ ∧ α,

the triple 
(
Tm̂(M̂ν), Ĵν , ω̂ν

)
is isomorphic to (Tm M, Jm, ωm/�

ν̃), so that ω̂ν is a Kähler form on M̂ν .
10
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2.1.7. Horizontal and contact lifts with respect to ̂πν

Since ν̃ is primitive, the map eı ϑ ∈ S1 �→ eı ϑ ν̃ ∈ T 1 is an isomorphism of Lie groups. Composing the latter with the 
effective action μX , we obtain an effective action of S1 on X , which is free on a dense invariant subset. Therefore, there 
exists a dense (and smooth) open subset M̂ ′ν ⊆ M̂ν over which π̂ν restricts to principal S1-bundle. Let us set X ′ := π̂−1

ν (M̂ ′ν).
Given a smooth orbifold vector field υ on M̂ν , we shall say that a (smooth) vector field on X is the horizontal lift of υ

(with respect to π̂ν ) if it is horizontal (i.e., tangent to H(π) =H(π̂ν)) and π̂ν -related to υ over M̂ ′ν .

Proposition 2.1. Any smooth orbifold vector field υ on M̂ν has a unique horizontal lift to X.

We shall denote the horizontal lift in Proposition (2.1) by υ� .

Proof. Any two horizontal lifts of υ clearly coincide on X ′ , hence everywhere in X . As to existence, obviously the horizontal 
lift exists over the smooth locus (i.e. on X ′), so the point is to see that it has a smooth extension over the singular locus.

Suppose m̂ = π̂ν(x) ∈ M̂ν , and let F1 ⊂ X be a slice for μX through x. Thus F1 uniformizes an open neighborhood
of m̂, and υ corresponds to a vector field v1 on F1, invariant under the action of the stabilizer subgroup T 1

x of x in 
T 1. Furthermore, a suitable invariant tubular neighborhood U1 ⊆ X of the T 1-orbit of x is equivariantly diffeomorphic to 
T 1 ×T 1

x
F1. Hence we can push forward v1 (or, more precisely, (0, v1)) under the local diffeomorphism T 1

x × F1→ U1, and 
obtain a smooth vector field υ ′1 on U1 which is π̂ν -related to υ on U1 ∩ X ′ . Let υ1 denote the horizontal component of 
υ ′1 with respect to π̂ν , that is, its projection on Hx(π̂ν) along span(ν̃ X ) in (41). Then υ1 is a smooth vector field on U1, 
horizontal and π̂ν -related to υ on U1 ∩ X ′ .

Another such vector field υ2 similarly constructed on an invariant open set U2 will necessarily coincide with υ1 on 
U1 ∩ U2 ∩ X ′ , whence on all of U1 ∩ U2 if the latter is non-empty. Hence by glueing these local constructions we obtain the 
desired lift. �

Suppose that f is a C∞ real function on M̂ν , and let υ f be its Hamiltonian orbifold vector field with respect to 2 ̂ων . 
Let us define

υc
f := υ�f + f ν̃ X . (43)

Proposition 2.2. υc
f is a contact vector field on (X, α̂ν). If in addition the flow of υ f is holomorphic on (M̂ν , Jν), then the flow of υc

f
preserves the CR structure of X.

Proof. We have (writing f for π̂∗ν ( f ))

ι(υc
f )dα̂ν = ι(υc

f )2 π̂∗ν
(
ω̂∗ν
)= d f , d

(
ι(υc

f ) α̂ν

)
=−d f .

Hence Lυc
f
α̂ν = ι(υc

f ) dα̂ν + d 
(
ι(υc

f ) α̂ν

)
= 0. This proves the first statement.

On the other hand, the flow of υc
f preserves the horizontal tangent bundle and covers a holomorphic flow on M̂ν ; the 

second statement then follows in view of the unitary isomorphisms (42). �
By the same principle, we can consider lifts of Hamiltonian actions for π̂ν just as one does for π . Suppose given a 

holomorphic and Hamiltonian action ς M̂ν of a compact and connected Lie group G on (M̂ν , 2 ̂ων) (in the orbifold sense, 
see [11]), with moment map   : M̂ν→ g∨ . Thus any ξ ∈ g determines an induced Hamiltonian (orbifold) vector field ξ M̂ν

on 
M̂ν . Applying (43) with υ = ξ M̂ν

, thus setting ξ X := ξ c
M̂ν

, we associate a contact and CR vector field on X to each ξ ∈ g. A 
standard argument shows that this assignment defines an infinitesimal contact and CR action of g on X . If this infinitesimal 
action is the differential of a Lie group action ς X of G on X , we shall call the latter the (contact and CR) lift of (ς M̂ν ,  ).

When G acts on both M and M̂ν , we have in principle two lifts in the picture and two different meanings for ξ X . We 
will clarify this point in the following section.

2.1.8. Transfering Hamiltonian actions from M to M̂ν

Suppose that G is a connected compact Lie group and let !M : G × M→ M be a holomorphic and Hamiltonian action, 
with moment map ϒ : M→ g∨ . Assume the following:

1. (!M , ϒ) lifts to the contact CR action !X : G × X→ X ;
2. !M and μM commute.

Then one can see that !X commutes with μX ; therefore !X descends to an action !M̂ν : G × M̂ν→ M̂ν .
11
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Proposition 2.3. Under the previous assumptions, !M̂ν is holomorphic and Hamiltonian on the Kähler orbifold (M̂ν, 2 ̂ων , ̂ Jν), with 
moment map

ϒ̂ν := 1

�ν̃
ϒ.

Furthermore, !X is also the contact and CR lift of 
(
!M̂ν , ϒ̂ν

)
.

Proof. Given that !M commutes with μM , it preserves �ν̃ . Since !X preserves α and �ν̃ , it generates a flow of contacto-
morphisms for α̂ν . Therefore, the flow of !X preserves π̂∗ν (ω̂ν) = dα̂ν/2. Since !X lifts !M̂ν by π̂ν , we conclude that !M̂ν

is a symplectic vector field for ω̂ν .
Since ϒ : M→ g∨ is G-equivariant by assumption and �ν̃ is G-invariant because !M and μM commute, ϒ̂ν : M̂ν→ g∨

is G-equivariant. Thus it suffices to prove that (!M̂ν , ϒ̂ν) is weakly Hamiltonian.
Suppose m̂ = π̂ν(x) ∈ M̂ν . Choose a slice F ⊂ X at x for μX , and view it as the uniformizing open set of an open 

neighborhood of m̂ in M̂ν . We obtain a local action !F of G on F as follows. For any y in a neighborhood F ′ ⊆ F of x and 
g in a neighborhood G ′ ⊂ G of the identity eG , there exists a unique s(g, y) ∈ T 1 such that μX

s(g,y) ◦!X
g (y) ∈ F . Let us set

!F : (g, y) ∈ G ′ × F ′ �→μX
s(g,y) ◦!X

g (y) ∈ F . (44)

If g1, g2 ∈ G ′ are sufficiently close to the identity,

!F
g1
◦!F

g2
(y)=!F

g1

(
μX

s(g2,y)
◦!X

g2
(y)
)

=μX
s(g1,!

F
g2
(y))
◦!X

g1
◦μX

s(g2,y)
◦!X

g2
(y)

=μX
s(g1,!

F
g2
(y))
◦μX

s(g2,y)
◦!X

g1
◦!X

g2
(y)

=μX
s(g1 g2,y))

◦!X
g1 g2

(y)=!F
g1 g2

(y).

Given ξ ∈ g, the induced vector field ξ F on F may be computed by considering the restricted local action of the 1-
parameter subgroup τ �→ eτ ξ ∈ G , hence by differentiating at τ = 0 the path !F

eτ ξ (y) =μX
s(eτ ξ ,y)

◦μX
eτ ξ (y). We conclude the 

following.

Lemma 2.4. There exists a C∞-function σ : g × F →R such that for any ξ ∈ g and y ∈ F

ξ F (y)= σ(ξ , y) ν̃ X (y)+ ξ X (y).

Here ξ X is as in (2), with ϒ in place of �.
At any y ∈ F , we have a direct sum decomposition T y X = T y F ⊕ span

(
ν̃ X (y)

)
. Thus Lemma 2.4 may be reformulated as 

follows.

Corollary 2.1. For any y ∈ F and ξ ∈ g, ξ F (y) is the projection of ξ X (y) on T y F along span
(
ν̃ X (y)

)
.

By the commutativity of μX and !X , the stabilizer subgroup of x in T 1 acts on F preserving the previous direct sum of 
vector bundles on F . It follows that ξ F is an invariant vector field on F , and the collection of all such is the induced vector 
field ξ M̂ν

on M̂ν .
Letting j : F ↪→ X be the inclusion, let us set αF := j∗(α̂ν) and ωF := dαF /2. The collection of all pairs (F , ωF ) represents 

ω̂ν .
If y ∈ F as above, ι

(
ξ F (y)

)
(dαF )y is the restriction to T y F ⊂ T y X of ι

(
ξ F (y)

)
(dα̂ν)y . On the other hand, by Lemma 2.4

we have

ι
(
ξ F (y)

)
(dα̂ν)y = ι

(
ξ X (y)+ σ(ξ , y) ν̃ X (y)

)
(dα̂ν)y

= [ι(ξ X ) (dα̂ν)]y + σ(ξ , y)
[
ι(ν̃ X ) (dα̂ν)

]
y

=− [d (ι(ξ X ) α̂ν)
)]

y − σ(ξ , y)
[
d(ι(ν̃ X ) α̂ν)

]
y

= dy

(
ϒξ

�ν̃

)
+ σ(ξ , y)dy(1)

= dy

(
ϒξ

�ν̃

)
= dy

(
ϒ̂ξ
)
.

12
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We have used that both ξ X and ν̃ X are contact vector fields for α̂ν .
To prove the last statement of Proposition 2.3, we need to verify that ξ X = ξ c

M̂ν
for every ξ ∈ g. Since both ξ X and ξ c

M̂ν

lift ξ X = ξ c
M̂ν

under π̂ν , it suffices to show that the coefficient of ξ X along ν̃ X is ϒ̂ξ . Therefore, the equality

ξ X =
(
ξ
�
M − ϒ̂ξ ν̃�M

)
+ ϒ̂ξ ν̃ X , (45)

implies that ξ �M − ϒ̂ξ ν̃�M is the horizontal lift (with respect to π̂ν ) of ξ M̂ν
, and that ξ X = ξ c

M̂ν
. �

2.1.9. The torus ̂T d and its action on M̂ν

As in the Introduction, let T d−1
c � T d be a complementary subtorus to T 1. Let us define a new torus

T̂ d := T d−1
c × S1. (46)

Since ρ X (the action of S1 on X with generator −∂θ ) and γ X (the contact CR action of T d on X) commute, the restriction 
of γ X to T d−1

c and ρ X may be combined to yield a new action

β X : T̂ d × X→ X . (47)

Since furthermore β X commutes with μX : T 1 × X→ X , it descends to an action

β M̂ν : T̂ d × M̂ν→ M̂ν . (48)

In fact, (47) is the contact and CR lift of a Hamiltonian action βM of T̂ d on (M, 2 ω). Given the decomposition td =
td−1
c ⊕ span(ν̃) the moment map � of γ M may be written � = �′ +�′′ , where �′ : M→ td−1

c
∨

, �′′ : M→ span(ν̃)∨ . The 
restriction of γ M to T d−1

c is Hamiltonian, with moment map �′ . On the other, hand, with the usual identification of the Lie 
algebra and coalgebra of S1 with ıR, ρ X is the contact lift of the trivial action of S1 on (M, 2 ω) with constant moment 
map ı . Therefore, β X is the contact lift of the Hamiltonian action βM : T̂ d ×M→ M with moment map ! = (�′, ı). In view 
of Proposition 2.3, we conclude the following.

Proposition 2.4. β M̂ν in (48) is Hamiltonian, with moment map

!̂ :=
(
�′

�ν̃
,
ı

�ν̃

)
: M̂ν→ t̂d∨ = td−1

c
∨ ⊕ ıR.

We now argue that β M̂ν can be complexified to a holomorphic action of T̂d , the complexification of T̂ d , on M̂ν . More 
generally, for any compact Lie group G we shall denote its complexification by G.

To this end, we consider the complement of the zero section A∨0 ⊂ A∨ , and observe that all the actions involved on X

uniquely extend to complexified actions on A∨0 . Thus μX extends to μ̃A∨0 :T 1 × A∨0 → A∨0 , ρ X to ρ̃ A∨0 :C∗ × A∨0 → A∨0 , γ X

to γ̃ A∨0 :Td × A∨0 → A∨0 , β X to β̃ A∨0 : T̂d × A∨0 → A∨0 ; clearly T̂d =Td−1
c ×C∗ .

In view of the discussion in §2, §3, and §5 of [16] (applied with r = 1), under Basic Assumption 1.1 the following holds:

1. A∨0 =T 1 · X (the μ̃A∨0 -saturation of X);

2. μ̃A∨0 is proper and locally free;
3. there is a natural biholomorphism

X/T 1 ∼= A∨0 /T 1 (49)

where the former quotient is taken with respect to μX , and the latter with respect to μ̃A∨0 .

Since β̃ A∨0 commutes with μ̃A∨0 , it descends to the quotient and we conclude the following.

Proposition 2.5. β M̂ν admits a unique holomorphic extension β̃ M̂ν : T̂d × M̂ν→ M̂ν .

We aim to relate the stabilizer of m ∈ M under γ M to the stabilizer of m̂ ∈ M̂ν under β M̂ν if m ← x → m̂. More generally, 
we can consider the same issue for the complexified actions γ̃ M : Td × M→ M and β̃ M̂ν ; by Proposition 1.6 of [17], the 
stabilizer of m under γ̃ M is the complexification of the stabilizer under γ M .

There is a dense open subset M0 ⊂ M where γ M is free; then γ̃ M is free and transitive on M0. Let us consider the 
corresponding open set

M̂0 := M̂0 = π̂ν
(
π−1(M0)

)⊂ M̂ν . (50)

Let us set X0 := π−1(M0).
13
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Proposition 2.6. Under the previous assumptions, the following holds.

1. β M̂ν is free on M̂0.
2. β̃ M̂ν is free and transitive on M̂0.
3. π̂ν restricts to a principal S1-bundle X0→ M̂0 .

In particular, M̂0 is smooth.

Proof. Suppose m ← x → m̂ with m ∈ M0, and that (t, eıθ ) ∈ T̂ d stabilizes m̂. Hence there exists h ∈ T 1 such that

γ X
t ◦ ρ X

eıθ (x)=μX
h (x).

With χ as in (37) and Lemma 2.3, we conclude that

γ X
t h−1 ◦ ρ X

eıθ χ(h)−1(x)= x ⇒ γ M
t h−1(m)=m.

Hence t h−1 = 1 ∈ T d , and since T d−1
c and T 1 are complementary subtori we conclude t = h = 1. Hence eı θ = 1 as well.

This proves the first statement; that β̃ M̂ν is free on M̂0 then follows either by a similar argument using complexifications, 
or else by appealing to Proposition 1.6 of [17].

We prove that β̃ M̂ν is transitive on M̂0. Suppose m̂ j ∈ M̂0, j = 1, 2. Then there exist m j ∈ M0 and x j ∈ π−1(m j) ⊆ X0, 
such that m j← x j→ m̂ j . There exists t′ ∈ T d such that γ M

t′ (m1) =m2. We can factor t′ uniquely as t′ = t h, where t ∈ T d−1
c

and h ∈ T 1. Lifting first this relation to X , and then descending to M̂ν , this means that for some eıθ ∈ S1 we have

γ X
t ◦ γ X

h (x1)= ρ X
eı θ (x2)⇒ γ X

t ◦ ρ−1
χ(h) eı θ

(x1)=μX
h−1(x2)

⇒ β̃ M̂ν

t̂
(m̂1)= m̂2, (51)

where t̂ := (t, χ(h)−1 e−ı θ
) ∈ T̂ d , and χ is as in (37).

Finally, since μX lifts the restriction of γ M to T 1, and on the other hand γ M is free on M0, it follows that μX is free on 
X0; the third statement follows. �
Corollary 2.2. M̂ν (with the Hamiltonian action (β̃ M̂ν , !̂)) is a symplectic toric orbifold and a complex toric variety.

Let us consider a general triple m ← x → m̂, and denote by T d
m � T d the stabilizer of m for γ M , and by T̂ d

m̂
� T̂ d the 

stabilizer of m̂ for β̃ M̂ν . We want to describe the relation between T d
m and T̂ d

m̂
.

Let T 1
x � T 1 be the stabilizer of x in T 1 under μX . Recall that μM is the restriction of γ M , that is, μM = γ M

∣∣
T 1×M ; 

hence we can unambiguously denote by T 1
m = T 1 ∩ T d

m the μM -stabilizer of m ∈ M .

Lemma 2.5. If m = π(x), then T 1
x is a finite subgroup of T 1

m.

Proof. Since μX is locally free, T 1
x is a discrete subgroup of T 1, hence finite. Furthermore, since μX lifts μM , which is the 

restriction of γ M to T 1, we also have T 1
x � T d

m . In fact, if t ∈ T 1
x then μX

t (x) = x then

μM
t (m)= π ◦μX

t (x)=m,

hence t ∈ T d
m . �

Thus T 1
x � T d

m is finite, and T d
m is a subtorus of T d [1]; hence T d

m/T 1
x is a torus of the same dimension as T d

m .

Proposition 2.7. If m ← x → m̂, there is a natural isomorphism T d
m/T 1

x
∼= T̂ d

m̂
. In particular, T d

m and ̂T d
m̂

are tori of the same dimension.

Proof. For every m ∈M , there is a character δm : T d
m→ S1 such that

γ X
k (x)= ρ X

δm(k)
(x) (x ∈ π−1(m), k ∈ T d

m). (52)

Let us factor k = t h with t ∈ T d−1
c , h ∈ T 1. Then (52) implies

γ X
t ◦ ρ X

δm(k)−1 χ(h)−1(x)=μX
h−1(x) ⇒ β̃

M̂ν

k̂

(
m̂
)= m̂, (53)

where k̂ := (t, δm(k)−1 χ(h)−1
) ∈ T̂ d . Hence we obtain a Lie group homomorphism
14
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ψm : k= t h ∈ T d
m �→ k̂ := (t, δm(k)−1χ(h)−1) ∈ T̂ d

m. (54)

Let us set T 1
m := T 1 ∩ T d

m . Then

ker(ψm)=
{

h ∈ T 1
m : δm(k)χ(h)= 1

}
. (55)

Lemma 2.6. ker(ψm) = T 1
x .

Proof. By (37) and (52), we have for h ∈ T 1
m

γ X
h (x)= ρ X

δm(h)
(x) ⇒ μX

h (x)= ρ X
χ(h) δm(h)

(x).

In other words, ker(ψm) = T 1
x . �

Let us prove that ψm is surjective. Suppose (t, eıθ ) ∈ T̂ d
m̂

, i.e. β̃ M̂
(t,eıθ )

(m̂) = m̂. There exists h ∈ T 1 such that

γ X
t ◦ ρ X

eı θ (x)=μX
h−1(x)⇒ γ X

t h ◦ ρ X
χ(h)(x)= ρ X

e−ı θ (x) ⇒ γ M
t h (m)=m.

Thus k := t h ∈ T d
m , whence γ X

k (x) = ρ X
δm(k)

(x). We conclude ρ X
δm(k)χ(h)

(x) = ρ X
e−ı θ (x), so that eı θ = δm(k)−1 χ(h)−1. It follows 

that (t, eı θ ) =ψm(k). �
2.2. The polytope 
̂ν

By Proposition 2.4 and Corollary 2.2, M̂ν is a Kähler toric orbifold, and its associated convex rational simple polytope 
([1], [11]) is


̂ν :=!
(
M̂ν
)⊂ t̂d∨. (56)

We aim to describe the faces of 
̂ν in terms of the faces of 
; to this end, we premise a few remarks.

Lemma 2.7. Suppose that R, S ⊆ M; then ̂R ∩ S ⊆ R̂ ∩ Ŝ . If furthermore R and S are μM -invariant, then ̂R ∩ S = R̂ ∩ Ŝ .

Proof. Suppose m̂ ∈ ̂R ∩ S . Then there exist m ∈ R ∩ S , x ∈ X such that m ← x → m̂; hence m̂ ∈ R̂ ∩ Ŝ , so that and ̂R ∩ S ⊆
R̂ ∩ Ŝ .

Suppose that R and S are μ̂M -invariant, and that m̂ ∈ R̂ ∩ Ŝ . Hence there exist m1 ∈ R , m2 ∈ S and x1, x2 ∈ X such that 
m1 ← x1 → m̂ and m2 ← x2 → m̂. Hence x2 ∈ T 1 · x1 (μX -orbit) and by the equivariance of π this implies m2 ∈ T 1 ·m1

(μM -orbit). Thus m1, m2 ∈ R ∩ S and so m̂ ∈ ̂R ∩ S . It follows that ̂R ∩ S ⊇ R̂ ∩ Ŝ . �
Lemma 2.8. If R ⊆ M, then ̂R ⊆ R̂ . If in addition R ⊆ M is μM invariant, then ̂R = R̂ .

Proof. We have by definition

R̂ = π̂ν
(
π−1 (R))⊇ π̂ν

(
π−1 (R)

)= R̂;
hence R̂ is closed and contains R̂ , i.e. R̂ ⊇ R̂ .

Before considering the reverse inclusion, let us premise that - since π : X→ M is an S1-bundle - π−1(R) = π−1(R).
Suppose that R is μM -invariant, and let S ⊆ M̂ν be closed with R̂ ⊆ S . Then π̂−1

ν (S) ⊇ π̂−1
ν (R̂).

Claim 2.1. Given that R is μM -invariant, ̂π−1
ν (R̂) = π−1(R).

Proof of Claim 2.1. By construction, π̂−1
ν (R̂) is the union of all μX -orbits passing through points of π−1(R). By equivariance, 

every μX -orbit projects down to M under π to a μM -orbit, and each such orbit through a point of R is entirely contained 
in R . Therefore, all μX -orbits through points of π−1(R) are entirely contained in π−1(R), whence the claim. �

Thus π̂−1
ν (S) ⊇ π−1(R), hence

π̂−1
ν (S)⊇ π−1(R)= π−1 (R) ⇒ S ⊇ R̂.

We conclude that R̂ ⊆ R̂ when R is μM -invariant, which completes the proof of Lemma 2.8. �
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Let as above G(
) = {F1, . . . , Fk} be the collection of the facets of 
. Recalling that � : M→ td
∨

is the moment map for 
γ M , for each j let M j :=�−1(F j) (see §2.1.3). Then M j is a complex submanifold of codimension 1 of M . We shall set

M̂ j := πν
(
π−1(M j)

)
, M̂0

j := M̂0
j = πν

(
π−1(M0

j )
)
;

then M̂ j is a complex suborbifold of M̂ν of codimension 1, and M̂0
j is open and dense in M̂ j . Furthermore, M j is the fixed 

locus of the 1-parameter subgroup f j : τ �→ eτ υ j , where υ j is as in (5) and (6), while M0
j is the locus of those points in M

whose stabilizer subgroup in T d is exactly f j(S1).
Since M j and M0

j are μM -invariant for every j, in light of Proposition 2.7, Lemma 2.7, and Lemma 2.8 we conclude the 
following.

Corollary 2.3. For every j, l ∈ {1, . . . , k}, the following holds:

1. ̂M j ∩Ml = M̂ j ∩ M̂l;

2. M̂ j = M̂0
j ;

3. M̂0
j ∩ M̂0

l = ∅ if j �= l;

4. for every j = 1, . . . , k, 
⋃k

j=1 M̂0
j ⊂ M̂ν is the locus of points with a 1-dimensional stabilizer subgroup in ̂T d.

Let us set F̂ j :=!(M̂ j) We can use the conclusions of Corollary 2.3 to relate the faces of 
 and 
̂ν .

Proposition 2.8. Let Fl(
̂ν) and G(
̂ν) = F1(
̂ν) be, respectively, the collections of codimension-l faces and of facets of 
̂ν . Then 
there are bijective correspondences

1. F j =�(M j) ∈ G(
) �→ F̂ j :=!(M̂ j) ∈ G(
̂ν);

2.
⋂il

j=i1
Fi j ∈Fl(
) �→⋂il

j=i1
F̂ i j ∈Fl(
̂ν);

3. for every j = 1, . . . , k, the relative interior of F j is F 0
j =�(M0

j );

4. for every j = 1, . . . , k, the relative interior of ̂F j is ̂F 0
j =!(M̂0

j )

Proof. By the theory in [1] and [11], the moment maps � and ! are quotients by the respective actions, i.e., the fibers are 
orbits. Furthermore, the relative interior of F j is F 0

j =�(M0
j ).

By Corollary 2.3, the orbifolds M̂0
j are the connected components of the locus of points in M̂ν having 1-dimensional 

stabilizer subgroup in T̂ d . Therefore, !(M̂0
j ) =!(M̂ j) is a facet of 
̂ν , and these are all the (distinct) faces of 
̂ν .

One argues similarly for the other faces. �
Let us next determine the normal vectors to the facets F̂ j of 
̂ν . This amounts to determining the stabilizer subgroup in 

T̂ d of the points in each relative interior F̂ 0
j (recall that T̂ d acts on M̂ν by β M̂ν in (48)).

Proposition 2.9. The stabilizer subgroup for β M̂ν of any m̂ ∈ F̂ j is the 1-parameter subgroup of ̂T d generated by ̂υ j := υ ′j − (λ j +
ρ j δ) ∂ S1

θ ∈ t̂d.

Remark 2.1. Given Lemma 2.3, υ̂ j ∈ L(T̂ d); it is not claimed that υ̂ j is primitive.

Proof. Assume m ← x → m̂ with m ∈ F 0
j , whence m̂ ∈ F̂ 0

j . The stabilizer subgroup of m is then the 1-parameter subgroup 
τ �→ eτ υ j , where υ j is as in (7). Hence μM

eτ υ j (m) =m for every τ ∈R, and by Lemma 2.2

γ X
eτ υ j (x)= ρ X

eτ λ j
(x) (τ ∈R). (57)

In view of (13), (37), and Lemma 2.3, (57) may be rewritten as follows

x= γ X

e
τ (υ′j+ρ j ν̃)

◦ ρ X
e−τ λ j

(x)= γ X

e
τ υ′j
◦ ρ X

e−τ λ j
◦ γ X
ρ j ν̃
(x)

= γ X

e
τ υ′j
◦ ρ X

e−τ λ j
◦ ρ X

e−τ ρ j δ
◦μX

eτ ρ j ν̃
(x)

= γ X

e
τ υ′j
◦ ρ X

e−τ (λ j+ρ j δ)
◦μX

eτ ρ j ν̃
(x)

=μX

eτ ρ j ν̃
◦ β X

τ [υ′ −(λ j+ρ j δ) ∂
S1 ]
(x) (τ ∈R), (58)
e j θ

16
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where β X was introduced in (47). Passing to the quotient, we can reformulate (58) in terms of β M̂ν :

m̂= β M̂ν

e
τ [υ′j−(λ j+ρ j δ) ∂

S1
θ
]
(m̂) (τ ∈R). � (59)

Given Proposition 2.9, the facets of 
̂ν are defined by equations of the form

2.3. Proof of Theorem 1.1

We can now combine the previous results to a proof of Theorem 1.1. Let us premise a piece of notation. We shall denote 
by dS1

θ the dual basis in Lie(S1)∨ to ∂ S1

θ . Assuming m ← x → m̂, by Proposition 2.4

!̂(m̂)= �
′(m)

�ν̃(m)
+ 1

�ν̃(m)
dS1
θ = �

′(m)+ dS1
θ

�ν̃(m)+ δ . (60)

Proof of Theorem 1.1. We have 
̂ν = !̂
(
M̂ν
)
. Assume ρ ∈ 
̂ν , and choose a triple m ← x → m̂ with ρ = !̂(m̂). Then 

〈�(m), υ j〉 ≥ λ j for every j = 1, . . . , k. With υ j as in (13) this yields for every j

〈�′(m),υ ′j〉 − (λ j + ρ j δ)≥−ρ j

(
�ν̃(m)+ δ

)
=−�ν̃(m)ρ j . (61)

In view of Proposition 2.9 and (60), dividing (61) by �ν̃(m) > 0, one gets〈
!′(m̂), υ̂ j

〉≥−ρ j . (62)

Hence, every ρ ∈ 
̂ν satisfies 
〈
ρ, υ̂ j

〉≥−ρ j for every j. Furthermore, the previous argument also shows that the inequalities 
are all strict if and only if ρ ∈ M̂0 (notation as in (50)), and that on the other hand equality holds for exactly one j if and 
only if ρ belongs to the corresponding facet F̂ j .

Since we know already that 
̂ν is a rational convex polytope and the F̂ j ’s are its facets, we conclude that


̂ν =
k⋂

j=1

{
ρ ∈ t̂∨ν : ρ

(
υ̂ j
)≥−ρ j

}
,

and in particular that each υ̂ j is inward-pointing.
The previous discussion completes the proof that shape of 
̂ν is as claimed in the statement of Theorem 1.1, except that 


̂ν is realized in the Lie coalgebra of T̂ d rather than T d . To obtain the corresponding statement of Theorem 1.1 we need 
only compose with the isomorphism T d ∼= T d−1

c × T 1→ T d−1
c × S1 given by the product of the identity and eϑ ν �→ eı ϑ .

It remains to determine the marking of 
̂ν , that is, the assignment to each facet F̂ j of the order s j ≥ 1 of the structure 
group G j of an arbitrary m̂ ∈ M̂0

j . By construction, given m ← x → m̂, up to isomorphism G j may be identified with the 
stabilizer subgroup T 1

x � T 1 of x under μX . Now if μX
eϑ ν (x) = x then μM

eϑ ν (m) =m by equivariance of π . Since m ∈ M0
j , this 

means that for some (unique) eı ϑ ′ ∈ S1

eϑ ν̃ = eϑ
′ υ j = eϑ

′ (υ ′j+ρ j ν̃) ⇒ eϑ
′ υ ′j = e(ϑ−ρ j ϑ

′) ν̃ ∈ T d−1
c ∩ T 1 = (1) (63)

(notation as in (13)).
In particular, since ν̃ is primitive, we see from (63) that eı ϑ = eı ρ j ϑ

′ ∈ S1. Let us distinguish the following cases, de-
pending on the relation between ν̃ and υ j .

Case 1. Suppose ρ j = 0, that is, υ j = υ ′j = υ̂ j ∈ L(T d−1
c ) ⊂ td−1

c . Then eı ϑ = 1 (and since υ j is primitive we obtain from 
(63) that eı ϑ ′ = 1 as well). Thus Gx is trivial in this case, that is, s j = 1 = (υ̂ j).

At the opposite extreme, suppose that υ j ∧ ν̃ = 0. Then υ ′j = 0 and υ j =±ν̃ by primitivity.
Case 2. Assume first υ j = ν̃ , that is, ρ j = 1; thus υ̂ j =−(λ j + δ) ̃ν . As m ∈ F j ,

0<�ν̃(m)=�ν̃(m)+ δ =�υ j (m)+ δ = λ j + δ. (64)

On the other hand, by (37), Lemma 2.3, and Lemma 2.2

μX
eϑ ν̃ (x)= γ X

eϑ ν̃ ◦ ρ X
eıδϑ (x)= γ X

eϑ υ j
◦ ρ X

eıδϑ (x)= e−ı ϑ (λ j+δ) x. (65)

Hence if ̃ν = υ j , then δ+ λ j > 0, and Gx is isomorphic to the group of (λ j + δ)-th roots of unity, that is, s j = λ j + δ = (υ̂ j).
Case 3. If υ j =−ν̃ , then ρ j =−1; hence υ̂ j =−(λ j − δ) ̃ν . In place of (64) we have

0<�ν̃(m)=�ν̃(m)+ δ =�−υ j (m)+ δ =−λ j + δ, (66)
17
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and in place of (65) we obtain

μX
eϑ ν̃ (x)= γ X

eϑ ν̃ ◦ ρ X
eıδϑ (x)= γ X

e−ϑ υ j
◦ ρ X

eıδϑ (x)= e−ı ϑ (−λ j+δ) x. (67)

Hence δ − λ j > 0 and Gx is isomorphic to the group of (δ − λ j)-th roots of unity. In particular, s j = δ− λ j = (υ̂ j).
Case 4. Suppose that υ j �∈ L(T 1) ∪ L(T d−1

c ), that is, ρ j υ
′
j �= 0. By (63) eı ϑ

′
is a (υ ′j)-th root of unity, and eı ϑ = eı ϑ

′ ρ j . 
We have

μX
eϑ ν̃ (x)= γ X

eϑ ν̃ ◦ ρ X
eϑ δ (x)

= γ X

eϑ
′ υ j
◦ ρ X

eϑ
′ ρ j δ
(x)= e−ı ϑ ′ (λ j+ρ j δ) x. (68)

Thus, eϑ ν̃ ∈ Gx if and only if eı ϑ = eı ρ j ϑ
′
, where eı ϑ

′
is both a (υ ′j)-th root of unity (by (63) and a (λ j + ρ j δ)-th root 

of unity (by (68)), i.e. a G.C .D.
(
(υ ′j), λ j + ρ j δ

)
-th root of unity.

Since υ j is primitive, G.C .D.
(
(υ ′j), ρ j

)= 1; therefore also

G.C .D.
(

G.C .D.
(
(υ ′j), λ j + ρ j δ

)
,ρ j

)
= 1.

Hence we may assume that eı ϑ is a primitive G.C .D.
(
(υ ′j), λ j + ρ j δ

)
-th root of unity. In other words, Gx is isomorphic to 

the group of G.C .D.
(
(υ ′j), λ j + ρ j δ

)
-th roots of unity, whence by Proposition 2.9

s j = G.C .D.
(
(υ ′j), λ j + ρ j δ

)= (υ̂ j
)
.

The proof of Theorem 1.1 is complete. �
Proof of Corollary 1.1. Since J and ̂ Jν are torus invariant complex structures on M and M̂ν , respectively, by Theorem 9.1 of 
[11] both M and M̂ν have structures of complex toric varieties (of course in the case of M this is our starting assumption); 
furthermore, the corresponding fans Fan(M) and Fan(M̂ν) are defined by their respective polytopes, 
 and 
̂ν . Since 
 and 

̂ν are simple and compact, Fan(M) and Fan(M̂ν) are simplicial and complete.

Hence the Betti numbers β j and β̂ j of M and M̂ν are determined by the collection of the all the numbers dr and ̂dr of 
r-dimensional cones in Fan(M) and Fan(M̂ν), respectively (§4.5 of [2]). Thus it suffices to prove that dr = d̂r for any r.

On the other hand, in order to determine the fan Fan� associated to a polytope � we may assume without loss that 
� contains the origin in its interior; in this case, furthermore, the cones in Fan� are the cones over the faces of the 
polar polytope �0 to � (§1.5 of [2]). Hence we need to show the polar polytopes of (suitable translates of) 
 and 
̂ν

share the same number of faces in each dimension. However, for any d-dimensional polytope � in a d-dimensional real 
vector space, containing the origin in its interior, there is an order-reversing bijection between the faces of � and those 
of �0, with corresponding faces F and F ∗ having dimensions adding up to d − 1 ([2]). Thus the statement follows from 
Proposition 2.8. �

It is in order to briefly digress on how 
̂ν in Theorem 1.1 depends on the choice of T d−1
c � T d .

Suppose first that δ = 0 in (11), so that μX is the restriction of γ X to T 1. Let Sd−1
c , T d−1

c � T d be different comple-
mentary subtori to T 1, so that T d ∼= Sd−1

c × T 1 ∼= T d−1
c × T 1; thus projecting onto T d−1

c along T 1 yields an isomorphism 
P : Sd−1

c
∼= T d−1

c . Let us choose an isomorphism of the standard torus T d−1
st = (S1)d−1 with Sd−1

c , so that (composing with 
P ) T d−1

st
∼= Sd−1

c
∼= T d−1

c .
We obtain actions ϕ X and ψ X of T d−1

st on X , by composing the previous isomorphisms with the restrictions of γ X

to Sd−1
c and T d−1

c respectively; then ϕ X �= ψ X (unless Sd−1
c = T d−1

c ) and, by construction, the two actions differ by the 
composition of a character T d−1

st → T 1 with μX . On the other hand, since ϕ X and ψ X commute with μX , they descend to 
symplectic actions ϕM̂ν and ψ M̂ν of T d−1

st on (M̂ν , 2 ̂ων); in fact, by the previous remark and the construction of M̂ν as a 
quotient, ϕM̂ν =ψ M̂ν .

Thus ϕ X and ψ X are different contact lifts to X of the same symplectic action of T d−1
st on M̂ν ; hence they correspond 

to different Hamiltonian structures for the latter action, whose moment maps differ by a translation in td−1
st
∨

.

Let us consider the action of T̂ d := T d−1
st × S1 on M̂ν given by the product of ϕM̂ν = ψ M̂ν and ρ M̂ν , where the latter 

is the action of S1 on M̂ν obtained by descending ρ X . Let us adopts the previous choices of Hamiltonian structures (for 
the second factor, we use the same Hamiltonian structure as in the proof of Theorem 1.1, see Propositions 2.3 and 2.4). 
The corresponding moment maps then differ by a translation by a constant in td−1

c
∨ × {0}; hence so do the corresponding 

moment polytopes, say 
̂ψν and 
̂ϕν .
The previous considerations may be extended to the case where δ �= 0, and therefore ϕM̂ν �= ψ M̂ν . In fact, if δ �= 0, then 

ϕ X and ψ X differ by the composition of a morphism T d−1
st → T 1, say of the form eı ϑ �→ eı 〈a,ϑ〉 ν̃ where a ∈Zd−1, with γ X . 

Hence, passing to the quotient, in view of (37) the induced actions ϕM̂ν and ψ M̂ν will now differ by the composition of a 
18
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character T d−1
st → S1 of the form eı ϑ �→ e−ı δ 〈a,ϑ〉 with ρ M̂ν . Identifying the coalgebra of T d−1

st with ıRd−1, the correspond-

ing moment maps �ψ and �ϕ for ψ M̂ν and ϕM̂ν are related by a relation of the form �ψ =�ϕ − δ a �, where � : M̂ν→ ıR
is the moment map for ρ M̂ν (recall from Proposition 2.4 that �(m̂) = ı �ν̃(m)−1 if m ← x → m̂).

It follows that the two cones are related by a transformation in ıRd × ıR of the form ı (x, y) �→ ı (x − y δ a, y), followed 
perhaps by a translation.

3. The case of arbitrary r

We shall now remove the restriction that r = 1, and allow any value 1 ≤ r ≤ d. Before dealing directly with the geometric 
situation, we shall dwell on some handy technical results.

3.1. Preliminaries on transversality of polytopes

Definition 3.1. Let V be a finite dimensional real vector space, � ⊂ V a convex polytope, W ⊆ V an affine subspace. We 
shall say that � and W meet transversely, or that they are transverse to each other, if W is transverse to the relative interior 
F 0 of every face F of �.

In the hypothesis of Definition 3.1, let us set �W := � ∩W . Clearly, �W is a convex polytope in W .
Let F(�) be the collection of faces of � and G(�) = {F1, . . . , Fs} ⊆F(�) be the subset of its facets. For each j = 1, . . . , s

let � j ∈ V ∨ be an inward normal covector to F j , so that

�=
s⋂

j=1

{
v ∈ V : � j(v)≥ λ j

}
for certain λ j ∈R; the j-th facet is thus

F j := �∩
{

p ∈ V : � j(p)= λ j}. (69)

If L ∈F(�), there exists a unique subset I L ⊆ {1, . . . , s} such that L =⋂ j∈I L
F j .

We are interested in simple polytopes (meaning that exactly n facets of � meet at each vertex, where n = dimR(V )
[11]; if � is simple, then every codimension-k face L ∈ F(�) is the intersection of exactly k facets, that is, |I L | equals the 
codimension of L.

Proposition 3.1. In the setting of Definition 3.1, suppose that � and W meet transversely. The following holds.

1. If F ⊆ L are faces of � and W ∩ F 0 �= ∅, then W ∩ L0 �= ∅.
2. If W ∩ � �= ∅, then W ∩ �0 �= ∅

More precisely, regarding 1. we shall show that for any p ∈W ∩ F 0 and any open neighborhood W ′ of p in W one has 
W ′ ∩ L0 �= ∅. Similarly, regarding 2. we shall show that for any p ∈ �W and any open neighborhood W ′ of p in W one has 
W ′ ∩ �0 �= ∅.

Proof of 1. Since W ⊆ V is an affine subspace, it is a translate of a vector subspace Ŵ ⊆ V . Suppose p ∈ F 0∩W . Then W =
p + Ŵ , and by transversality the map ρ : (w, q) ∈ Ŵ × F 0 �→ w + q ∈ V is submersive, hence open. We have p = ρ(0, p), 
hence the image of an arbitrary small neighborhood of (0, p) in Ŵ × F 0 contains an open neighborhood of p.

Since p ∈ F ⊆ L, we can find points p′ ∈ L0 arbitrarily close to p. For any such p′ , therefore, there exist w ∈ Ŵ , w ∼ 0, 
and q ∈ F 0, q ∼ p, such that p′ = w + q.

Claim 3.1. With the previous choices, w + p ∈W ∩ L0 .

Proof of Claim 3.1. Clearly, w + p ∈W by construction. Let us prove that w + p ∈ L0, i.e. that � j(w + p) = λ j if j ∈ I L and 
� j(w + p) > λ j if j �∈ I L .

Since F ⊆ L, we have I L ⊆ I F .
If j ∈ I L , we have � j(p′) = � j(q) = �(p) = λ j since p, p′, q ∈ L. Therefore, � j(w) = � j(p′ − q) = λ j − λ j = 0. Thus � j(w +

p) = 0 + λ j = λ j for every j ∈ I L , so that w + p ∈ L.
If j ∈ I F \ I L , we have � j(p′) > λ j since p′ ∈ L0, and � j(p) = � j(q) = λ j since p, q ∈ F . Therefore, � j(w) = � j(p′ − q) =

� j(p′) − � j(q) > 0, and so � j(w + p) = � j(w) + λ j > λ j .
Let δ :=min{� j(p) − λ j : j �∈ I F }; thus δ > 0, since p ∈ F 0. If j �∈ I F , therefore, � j(p + w) ≥ λ j + δ/2 > λ j as w ∼ 0. �
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Thus for every p ∈ W ∩ F 0 we have found points p + w arbitrarily close to p in W ∩ L0, and this completes the proof 
of 1. �
Proof of 2. This is a slight modification of the previous argument. Suppose p ∈ � ∩W . If p ∈ �0, there is nothing to prove. 
Otherwise, p ∈ F 0 for some face F ∈ F(�). We can find p′ ∈ �0 arbitrarily close to p, and therefore - by the previous 
considerations - for any such p′ there exist w ∈ Ŵ with w ∼ 0 and q ∈ F 0 with q ∼ p such that p′ = w + q.

If j ∈ I F , � j(p) = � j(q) = λ j since p, q ∈ F , and � j(p′) > λ j since p′ ∈ �0. Therefore � j(w) = � j(p′) − � j(q) > 0. Hence 
� j(p + w) = λ j + � j(w) > λ j for all j ∈ I F .

Let δ :=min{� j(p) − λ j : j �∈ I F }; then δ > 0 since p ∈ F 0. Since w ∼ 0, � j(p + w) ≥ λ j + δ/2 > λ j for all j �∈ I F .
Thus � j(p + w) > λ j for every j = 1, . . . , r, i.e. p + w ∈W ∩ �0. �

Corollary 3.1. Under the hypothesis of Proposition 3.1, if L is a face of � and �W ∩ L �= ∅, then �W ∩ L0 �= ∅.

Proof. If p ∈W ∩ L, there is a face F ∈F(�) with F ⊆ L and p ∈W ∩ F 0. Hence W ∩ L0 �= ∅ by Proposition 3.1. �
Proposition 3.2. Under the hypothesis of Proposition 3.1, the following holds:

1. the facets of �W are the non-empty intersections of W with the facets of �;
2. �0

W =W ∩ �0;
3. if � is simple, then the codimension-k faces of �W are the non-empty intersections of W with the codimension-k faces of �;
4. if F is a face of � such that F W := F ∩W �= ∅, then the relative interior of F W is F 0

W = F 0 ∩W ;
5. if � is simple, then so is �W .

Proof of 1. Let F j be the j-th facet of � as in (69), and suppose F j ∩W �= ∅. Then F 0
j ∩W �= ∅ by Corollary 3.1. Since W

meets F 0
j transversely by assumption, F 0

j ∩W has codimension one in W and � j restricts to a non-constant affine linear 
functional on W . Thus, if p ∈ F 0

j then every neighborhood of p in W intersects both �0 and �c . It follows that F j ∩W is a 
facet of �W .

Conversely, let F be a facet of �W , and let p ∈ F 0. Since p �∈ �0 (for else p ∈ �0
W ), there exists j ∈ {1, . . . , s} such that 

p ∈ F j , and therefore F 0
j ∩W �= ∅. By the above F j ∩W is a facet of �W . Since a small neighborhood of p in W meets no 

facet of �W other that F , we may slightly perturb p in F 0 and assume that p ∈ F 0 ∩ F 0
j and therefore F 0 ∩W ′ = F 0

j ∩W ′
for some open neighborhood W ′ of p in W . This forces F = F j ∩W . �
Proof of 2. Since every face is the intersection of the facets containing it, by 1. we have

�0
W = (W ∩ �) \

s⋃
j=1

(W ∩ F j)=W ∩
⎛⎝� \ s⋃

j=1

F j

⎞⎠=W ∩ �0. �

Proof of 3. and 4. If F is a codimension-k face of � such that F ∩W �= ∅, let us choose p ∈ F 0 ∩W �= ∅. Since � is simple, 
I F = {i1, . . . , ik} ⊆ {1, . . . , s} and there is a neighborhood W ′ of p in W such that

W ′ ∩ F =W ′ ∩ F 0 =W ′ ∩
k⋂

j=1

Fi j .

By transversality, F 0 ∩W has codimension k in W and furthermore each Fi j is a facet of �W by 1. Thus F W := F ∩W is 
a face of �W , since it is a non-empty intersection of facets, and it has codimension-k in W , since it has a non-empty open 
subset which has codimension k. Furthermore, it is given by the intersection of the k facets Fi j ∩�W of �W . It then follows 
that

F 0
W =

k⋂
j=1

(W ∩ Fi j ) \
⋃
i �∈I F

(W ∩ Fi)=W ∩
⎛⎝ k⋂

j=1

Fi j \
⋃
i �∈I F

F i

⎞⎠=W ∩ F 0.

Conversely, suppose that K ⊂ �W is a face, and suppose p ∈ K 0. Since p �∈ �0, there exists a unique face F of � such 
that p ∈ F 0. By the previous discussion, F W = F ∩W is also a face of �W , and p ∈ F 0 ∩W = F 0

W . Since distinct faces of �W

have disjoint relative interiors, K = F W . �
Proof of 5. By 3., every codimension-k face of �W is the intersection of k facets, and this means that �W is simple. �
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3.2. The reduction Mν and the circle bundle Yν

Definition 3.2. Given a subspace a ⊆ tr
∨ , we shall denote by a⊥ ⊆ tr its annihilator in tr . Given ρ ∈ tr∨ we shall also set 

ρ⊥ := span(ρ)⊥ .

Definition 3.3. A vector subspace c ⊆ td is integral if c ∩ L(T ) is a full-rank lattice in c or, equivalently, if c is the Lie 
subalgebra of a closed embedded torus in T d .

Thus ν⊥ ⊆ tr ⊆ td is a vector subspace of dimension r − 1; since ν ∈ L(T )∨ , furthermore, ν⊥ is integral. Let T r−1
ν⊥ � T r �

T d be the (closed) torus with Lie algebra ν⊥; equivalently, if χν(eξ ) := e2π ı 〈ν,ξ〉 is the character of T r defined by ν , then 
T r−1
ν⊥ = ker(χν)

0 (the connected component of the kernel).

We are interested in M̂ν = Xν/T r , the action being μX (notation as in (3) and (4)). The latter quotient may be performed 
in stages. Namely, under Basic Assumption 1.1, T r acts in a locally free manner on Xν , whence a fortiori so does T r−1

ν⊥ . We 
first form the partial quotient Yν := Xν/T r−1

ν⊥ , where T r−1
ν⊥ acts on Xν by μX ; next, μX descends to a residual locally free 

action of T 1
ν := T r/T r−1

ν⊥ on Yν ,

μYν : T 1
ν × Yν→ Yν . (70)

Then

M̂ν = Xν/T r = Yν/T 1
ν . (71)

Yν inherits a natural contact structure. Let jν : Xν ↪→ X be the inclusion. Then j∗ν (α) is T r−1
ν⊥ -invariant. Furthermore, 

(writing � for � ◦π with abuse of notation) by definition of Xν we have � ◦ jν = λ ν for some C∞ function λ : Xν→R+ . 
Hence, if ξ ∈ tr−1

ν⊥ = ν⊥ then ξ�X satisfies

ξ�X
∣∣

Xν
= ξ

�
M

∣∣∣
Xν

− λ 〈ν, ξ 〉 ∂ϑ |Xν
= ξ

�
M

∣∣∣
Xν

∈ ker
(
j∗ν (α)

)
.

In other words, [ι(ξ�X ) α] ◦ jν = 0.
We conclude the following. Let qν : Xν→ Yν be the projection. Thus we have arrows

Yν
qν←− Xν

jν
↪→ X .

Lemma 3.1. There exists a differential 1-form (in the orbifold sense) αν ∈�1(Yν), such that q∗ν(αν) = j∗ν (α).

Under the stronger condition that T r−1
ν⊥ acts freely on Mν , the quotient

Mν := Mν/T r−1
ν⊥ (72)

is smooth; furthermore, the action of T r−1
ν⊥ on Xν induced by μX is also free, and therefore Yν is non-singular. In addition, 

ρ X (the action on X generated by −∂θ ) descends to a free S1-action ρYν : S1 × Yν→ Yν , and we also have

Mν = Yν/S1. (73)

In addition, αν in Lemma 3.1 is a connection form for ρYν .
Furthermore, Mν inherits a complex structure Jν and a compatible symplectic structure ων ; the triple (Mν , 2 ων , Jν) is 

a Hodge manifold. More precisely, (Mν , 2 ων) is the Marsden-Weinstein reduction of (M, 2 ω) under the restriction of the 
Hamiltonian action (μM , �) to T r−1

ν⊥ � T r , and Jν is determined from J as in [5].

Let t1ν denote the Lie algebra of T 1
ν , so that

t1ν
∼= tr/ν⊥, t1ν

∨ ∼= span(ν).

By definition of Mν , restricting � yields a map �′ : Mν→ span(ν) ∼= t1ν
∨

, which descends to a non-vanishing T 1
ν -equivariant 

map � : Mν→ t1ν
∨

.
Let πν : Yν→ Mν and π̂ν : Yν→ M̂ν be the projections. From the previous discussion and the theory in [5] one obtains 

the following.

Proposition 3.3. There is a positive holomorphic line bundle (Aν, hν) on Mν , such that:

1. Yν is the unit circle bundle in A∨ν ;
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2. αν is the normalized connection form associated to the unique compatible covariant derivative on Aν ;
3. dαν = 2 π∗ν(ων);

4. μYν in (70) descends to an action μMν : T 1
ν ×Mν→ Mν , which is holomorphic for Jν and symplectic for ων ;

5. μMν is Hamiltonian for 2 ων , with moment map �;

6. μYν is the contact lift of (μMν , �).

In other words, the description of M̂ν can be abstractly reduced to the case r = 1, with M replaced by Mν and X by Yν . 
We need to describe how to transfer the toric structure to this quotient picture.

3.3. The toric structure of Mν

W aim to verify that the toric setting is preserved in the reduction process of Proposition 3.3. To this end, let us consider 
the saturation

M̃ν :=T r−1
ν⊥ ·Mν;

thus M̃ν is the set of (semi)-stable points in M for the action of the complexification T r−1
ν⊥ of T r−1

ν⊥ , with respect to the 
linearization induced by � (hence to the lift μX ).

Therefore, m ∈ M̃ν if and only if there exists a T r−1
ν⊥ -invariant holomorphic section σ of A⊗k , for some k ≥ 1, such that 

σ(m) �= 0. Equivalently, m ∈ M̃ν if and only if for some, and therefore for any, x ∈ π−1(m) ⊆ X there exists a CR function 
σ̃ ∈ H(X)k which is T r−1

ν⊥ -invariant under μX , and satisfies σ̃ (x) �= 0. Here, T r−1
ν⊥ -invariance means that

σ̃ g = σ̃ ∀ g ∈ T r−1
ν⊥ where σ̃ g := σ̃ ◦μX

g−1 . (74)

It is convenient to emphasize the holomorphic structure. Recall that γ̃ M :Td × M→ M denotes the complexification of 
γ M : T d × M→ M; similarly, we have complexified bundle actions γ̃ A∨0 :Td × A∨0 → A∨0 (the complexification of γ X ) and 
μ̃A∨0 :T r × A∨0 → A∨0 (the complexification of μX ). Accordingly, we have associated linear representations of T r and Td on 
each space of global holomorphic sections H0(M, A⊗k), k = 0, 1, 2, . . .. In fact, H0(M, A⊗k) is canonically isomorphic with 
the space of holomorphic functions on A∨0 that are homogeneous of degree k, Hk(A∨0 ) ⊂O(A∨0 ), and given σ̂ ∈Hk(A∨0 ) and 
g ∈T r we set

σ̂ g := σ̂ ◦ μ̃A∨0
g−1 . (75)

The correspondences

σ̂ ∈Hk(A
∨
0 ) �→ σ̃ ∈ H(X)k �→ σ ∈ H0(M, A⊗k)

are natural and equivariant isomorphisms. Therefore, m ∈ M̃ν if and only if for some, and therefore for any, � ∈ A∨0 lying 
over m there exists σ̂ ∈Hk(A∨0 ) which is T r−1

ν⊥ -invariant under (75), and satisfies σ̂ (�) �= 0.

Lemma 3.2. M̃ν is Td-invariant, that is, γ̃ M
t (M̃ν) = M̃ν ∀ t ∈Td.

Proof. All actions involved commute. Suppose m ∈ M̃ν and let σ̂ ∈Hk(A∨0 ) satisfy σ̂ g = σ̂ for all g ∈T r , and be such that 
σ̃ (�) �= 0 for some (hence any) � ∈ A∨0 lying over m. Then for any t ∈Td we have

0 �= σ̂ (�)= σ̂ ◦ γ̃ A∨0
t−1 ◦ γ̃ A∨0

t (�). (76)

Clearly, σ̂ ◦ γ̃ A∨0
t−1 ∈Hk(A∨0 ); furthermore, by the assumed invariance of σ̂ we have for every g ∈T r−1

ν⊥

σ̂ ◦ γ̃ A∨0
t−1 ◦ μ̃A∨0

g−1 = σ̂ ◦ μ̃A∨0
g−1 ◦ γ̃ A∨0

t−1 = σ̂ ◦ γ̃ A∨0
t−1 . (77)

Since γ̃ A∨0
t (�) lies over γ̃ M

t (m), (76) and (77) imply that γ̃ M
t (m) ∈ M̃ν . �

Recall that M0 is the dense open subset where γ̃ M is free and transitive. Since M̃ν and M0 are open and dense in M , 
M̃ν ∩M0 �= ∅. Therefore Lemma 3.2 implies the following.

Corollary 3.2. M̃ν ⊇ M0 .
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As is well-known, we have a natural identification [9], [12], [5]

Mν = Mν/T r−1
ν⊥
∼= M̃ν/T

r−1
ν⊥ , (78)

which will be left implicit in the following. Accordingly, we shall set

M
0
ν := M0/T r−1

ν⊥ ⊆ Mν , (79)

an open and dense subset of Mν .
Let us define the quotient tori

T d−r+1
q := T d/T r−1

ν⊥ , Td−r+1
q :=Td/T r−1

ν⊥ ; (80)

clearly Td−r+1
q is the complexification of T d−r+1

q . Then there are induced quotient actions

γ Mν : T d−r+1
q ×Mν→ Mν , γ̃ Mν :Td−r+1

q ×Mν→ Mν ,

and γ̃ Mν is the complexification of γ Mν . Furthermore, T 1
ν � T d−r+1

q is a 1-dimensional subtorus (notation as in (70) and 
Proposition 3.3), and the action μMν in Proposition 3.3 is the restriction of γ Mν to T 1

ν .

Proposition 3.4. γ̃ Mν is free and transitive on M0
ν .

Before giving the proof let us interject some pieces of notation.

1. Let us choose a complementary subtorus T̂ 1
ν � T r to T r−1

ν⊥ , so that T r ∼= T̂ 1
ν × T r−1

ν⊥ ; projecting yields an isomorphism T̂ 1
ν
∼=

T 1
ν . Having chosen T̂ 1

ν , there is a unique primitive ν̃ ∈ L(T̂ 1
ν ) such that ν (̃ν) = 1. Correspondingly, we have isomorphisms 

T r ∼= T̂ 1
ν × T r−1

ν⊥ , L(T r) ∼=Z ̃ν ⊕ L(T r−1
ν⊥ ), and dually L(T r)∨ ∼=Z ν ⊕ L(T r−1

ν⊥ )
∨ .

2. Let us choose a complementary subtorus T d−r
c � T d to T r , so that

T d ∼= T d−r
c × T̂ 1

ν × T r−1
ν⊥ , Td ∼=Td−r

c × T̂ 1
ν ×T r−1

ν⊥ . (81)

Then

L(T d)∼= L(T d−r
c )⊕Z ν̃ ⊕ L(T r−1

ν⊥ ) (82)

and dually

L(T d)∨ ∼= L(T d−r
c )∨ ⊕Zν ⊕ L(T r−1

ν⊥ )
∨. (83)

3. Projection induces isomorphisms

T d−r+1
c := T d−r

c × T̂ 1
ν
∼= T d−r+1

q , Td−r+1
c :=Td−r

c × T̂ 1
ν
∼=Td−r+1

q ; (84)

we shall denote by Td−r
q �Td−r+1

q the image of Td−r
c , so that Td−r+1

q
∼=Td−r

q ×T 1
ν .

4. If t ∈Td−r+1
c , we shall denote by t ∈Td−r+1

q its image, and for any m ∈ M̃ν we shall denote by m ∈ Mν its projection.

Proof. Suppose m′, m′′ ∈ M
0
ν , and choose m′, m′′ ∈ M̃0

ν lying over them. Then there exists a unique t ∈Td such that m′′ =
γ̃ M

t (m
′). Let us factor t = t1 t2 t3 according to (81), that is, t1 ∈Td−r

c , t2 ∈ T̂ 1
ν , t3 ∈T r−1

ν⊥ . Hence

m′′ = γ̃ M
t1
◦ γ̃ M

t2
◦ γ̃ M

t3
(m) ⇒ m′′ = γ̃ Mν

t1
◦ γ̃ Mν

t2
(m′)= γ̃ Mν

t1 t2
(m′).

This establishes that γ̃ Mν is transitive on M
0
ν .

Suppose m ∈ M
0
ν , t ∈ Td−r+1

q and m = γ̃ Mν

t
(m). Let us choose m ∈ M̃0

ν lying over m and t ∈ Td−r+1
c lying over t . Then 

there exists t′ ∈T r−1
ν⊥ such that m = γ̃ M

t t′ (m); hence t t′ = 1 and therefore t = t′ = 1, so t = 1. In conclusion, γ̃ Mν is free on 

M
0
ν . �

Corollary 3.3. (Mν , Jν) is a toric projective manifold.

We can similarly recover the structure of a toric symplectic manifold, as follows. Let us choose δ̃ ∈ td∨ such that δ = ιt(δ̃)
as in (11) and (12).
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Definition 3.4. Given a subspace b ⊆ td , we shall denote by b0 ⊆ td
∨

its annihilator in td∨ .

Hence ν⊥0 ⊆ td
∨

is a vector subspace of dimension d − r + 1, and

ν⊥0 = (ιt)−1(span(ν)
)
. (85)

Thus with notation as in (12)

Mν =�−1
δ̃
(ν⊥0

); (86)

hence �δ̃

∣∣
Mν

is an equivariant map Mν → ν⊥0 ∼= td−r+1
q

∨
. Therefore, �δ̃

∣∣
Mν

passes to the quotient and yields a T d−r+1
q -

equivariant map �δ̃ : Mν→ td−r+1
q

∨
, which is a moment map for γ Mν .

We conclude the following.

Lemma 3.3. (Mν , 2 ων , �δ̃) is a symplectic toric orbifold [11]. Furthermore, the moment map � in Proposition 3.3 is induced by �δ̃ .

Remark 3.1. Distinct choices of δ̃ determine distinct moment maps �δ̃ , differing by a constant in tr 0 ⊆ ν⊥0 ∼= td−r+1
q

∨
.

3.4. The reduced moment polytope 
ν

We aim to clarify the relation between the moment polytope 
ν of Mν and the moment polytope 
 of M , and to 
interpret properties of γ and � in terms of 
 and 
ν .

In view of (86) and the identification td−r+1
q

∨ ∼= ν⊥0
,


ν =�δ̃(Mν)=�δ̃(Mν)= (
+ δ̃)∩ ν⊥0
. (87)

With notation as in (11), (12), and in view of Definition 3.1, we have the following.

Proposition 3.5. Suppose that �(m) �= 0 for every m ∈ M, and �−1(R+ · ν) �= ∅. The following conditions are equivalent:

1. � is transverse to R+ · ν;

2. �δ̃ is transverse to ν⊥0
;

3. � is transverse to ν⊥0 − δ̃;
4. ν⊥0

and 
 + δ̃ meet transversely in td∨;

5. ν⊥0 − δ̃ and 
 meet transversely in td∨;
6. if T1, . . . , Ta � T d are the (distinct) compact tori stabilizing some point of Mν , then the projection πq : T d→ T d−r+1

q restricts to a 
finite map T j→ πq(T j) for j = 1, . . . , a;

7. T j ∩ T r−1
ν⊥ is finite for j = 1, . . . , a.

The proof of Proposition 3.5 rests on the following property of the moment map � of a toric symplectic manifold (see 
[1], [4], [11]). Let 
 be the moment polytope and F be a face of 
. If ξ ∈ F 0 m ∈�−1(ξ), then

dm�(Tm M)= Tξ F 0. (88)

Proof. To begin with, by the hypothesis and the convexity of �(M) [6], �−1(R+ · ν) =�−1
(
span(ν)

)
.

The equivalence of 1. and 2. follows from (85). That 2. is equivalent to 3. and that 4. is equivalent to 5. is obvious, as is 
the equivalence of 6. and 7., given that T d−r+1

q = T d/T r−1
ν⊥ . On the other hand, 7. is equivalent to T r−1

ν⊥ acting locally freely 
on Mν , and this condition is equivalent to 1.

Thus it suffices to show that 2. is equivalent to 4. Let us adopt �δ̃ as moment map for the action of T d on (M, 2 ω), 
so that 
δ̃ :=
 + δ̃ is the corresponding moment polytope. By definition, �δ̃ is transverse to ν⊥0

if and only if for every 
m ∈�−1

δ̃
(ν⊥0

) we have

dm�δ̃(Tm M)+ ν⊥0 = td
∨
. (89)

Let F be a face of 
δ̃ such that F 0 ∩ ν⊥0 �= ∅. If ξ ∈ F 0 ∩ ν⊥0
and m ∈�−1

δ̃
(ξ ) then by (88) and (89) (with � replaced by 

�δ̃)

Tξ F 0 + ν⊥0 = dm�δ̃(Tm M)+ ν⊥0 = td
∨
.

Hence 2. implies 4. The argument for the reverse implication is similar. �
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Proposition 3.6. With the notation in Proposition 3.5, the closed subtori T j := πq(T j) � T d−r+1
q , j = 1, . . . , a, are the subgroups that 

appear as stabilizer subgroups of points in Mν .

Proof. If T j � T d is the stabilizer subgroup of m ∈ Mν , by equivariance of the projection Mν→ Mν clearly T j � T d−r+1
q is 

a closed subtorus stabilizing m (the image of m in Mν ). Thus, if S � T d−r+1
q is the stabilizer of m, then T j � S , and S is a 

torus [11].
Given the isomorphism T d ∼= T d−r+1

c × T r−1
ν⊥
∼= T d−r+1

q × T r−1
ν⊥ , we can lift S to a subgroup S ′ = S × {1} of T d . Again 

by equivariance, for every s ∈ S ′ there exist finitely many t ∈ T r−1
ν such that μM

s t (m) =m. The collection S̃ of all such pairs 
(s, t) ∈ S ′ × T r−1

ν is a closed subgroup of T d of the same dimension as S , stabilizing m (hence contained in T j) and projecting 
onto S in T d−r+1

q ; conversely, any element of T d stabilizing m must have this form and therefore S̃ = T j . It follows that 
S = T j .

Hence the subgroups T j � T d−r+1
q are all the stabilizer subgroups of points in Mν . �

Let F be a facet of 
, so that F + δ̃ is a facet of 
 + δ̃. Let M F := �−1(F ) = �−1
δ̃
(F + δ̃), M0

F := �−1(F 0). If υ is an 
inward primitive normal vector to F , then M0

F is the locus of points in M having stabilizer the 1-dimensional torus S F � T d

generated by υ . Furthermore, M0
F is open and dense in the 1-codimensional complex submanifold M F of F .

Proposition 3.7. Assume that the equivalent conditions of Proposition 3.5 are satisfied, and let F be a facet of 
. Then:

1. (F + δ̃) ∩ ν⊥0 =�δ̃(M F ∩Mν), and in particular M F ∩Mν �= ∅ if and only if (F + δ̃) ∩ ν⊥0 �= ∅;
2. if M F ∩Mν �= ∅, then the intersection is transverse in M.

Proof of 1. Suppose m ∈ M F ∩ Mν . Then �(m) ∈ F (since m ∈ M F ), whence �δ̃(m) ∈ F + δ̃; on the other hand �(m) ∈R ν
(since m ∈ Mν ), hence �δ̃(m) ∈ ν⊥0

. Thus, �δ̃(m) ∈ (F + δ̃) ∩ ν⊥0
.

Conversely, suppose γ ∈ (F + δ̃) ∩ ν⊥0
. Thus there exists m ∈ M such that γ =�δ̃(m) ∈ F + δ̃ (i.e., m ∈ M F ), and �δ̃(m) ∈

ν⊥0
, i.e. m ∈ Mν . Thus m ∈ M F ∩ ν⊥0

, whence γ ∈�δ̃(M F ∩Mν). �
Before giving the proof of 2., a remark is in order. The holomorphic and Hamiltonian action (γ M , �δ̃) of T d on (M, 2 ω)

restricts to a holomorphic and Hamiltonian action (λM ,  ) of T r−1
ν⊥ , where the moment map   : M→ t

r−1
ν⊥
∨

is induced by 
�δ̃ in the standard manner. Then Mν =  −1(0) and the transversality hypothesis in Proposition 3.5 are equivalent to the 
condition that 0 be a regular value of  , or - still equivalently - that T r−1

ν⊥ act locally freely on Mν .

Proof of 2. M F is a Kähler submanifold of (M, J , 2 ω). It is furthermore T d-invariant, hence  restricts to a moment map 
 F : M F → t

r−1
ν⊥
∨

for the action of T r−1
ν⊥ on M F . Transversality of M F and Mν is then equivalent to 0 being a regular value 

for  F , hence to T r−1
ν⊥ acting locally freely on  −1

F (0). However T r−1
ν⊥ does act locally freely on  −1

F (0) = Mν ∩M F , since it 
acts locally freely on all of Mν . �

Assume that the conditions in Proposition 3.5 are satisfied, and let F be a facet of 
 such that Fν := (F + δ̃) ∩ ν⊥0 �= ∅. 
Then Fν is a facet of 
ν . Furthermore, if M F := (M F ∩ Mν)/T r−1

ν⊥ ⊆ Mν , we can draw the following conclusion from the 
previous discussion.

Corollary 3.4. M F is a complex suborbifold of Mν , and M F =�−1
δ̃
(Fν).

3.5. Smoothness conditions on 
ν

Proposition 3.5 characterizes the transversality of � to R ν in terms of the mutual position of 
 and ν⊥0
in td∨ . This 

condition ensures that Mν is a submanifold, that T r−1
ν acts locally freely on it, and therefore that Mν is a Kähler orbifold. 

Since our present focus is on the case where Mν is a Kähler manifold, we want to similarly characterize this stronger 
condition using 
 and ν⊥0

.
By the discussion in §3.1, (87), and Proposition 3.5, 
ν is the convex polytope in ν⊥0

having as facets the non-empty 
intersections of ν⊥0

with the facets of 
 + δ̃. Equivalently, it is the convex hull of the intersection of ν⊥0
with the (d −r+1)-

codimensional (i.e., (r−1)-dimensional) faces of 
 + δ̃ . The connected component of such intersection are precisely vertices
of 
ν ; furthermore, if F ⊆ 
 is an (r − 1)-dimensional face, then (F + δ̃) ∩ ν⊥0 = (F 0 + δ̃) ∩ ν⊥0

, since by transversality 
ν⊥0

must have empty intersection with any face of lesser dimension.
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Let G(
) = {F1, . . . , Fk} be the collection of facets of 
, so that the collection of facets of 
 + δ̃ is G(
 + δ̃) = {F1 +
δ̃, . . . , Fk + δ̃}. Thus for every j = 1, . . . , s there exist unique υ j ∈ L(T d) primitive and λ j ∈R such that


+ δ̃ =
k⋂

j=1

{� ∈ t∨ : �(υ j)≥ λ j + δ j}, δ j := δ̃(υ j). (90)

Let us assume that the F j ’s have been so numbered that (F j + δ̃) ∩ ν⊥0 �= ∅ for j = 1, . . . , l, and (F j + δ̃) ∩ ν⊥0 = ∅ for 
l + 1 ≤ j ≤ k. Hence by (90) and the previous discussion (with the usual identification td−r+1

q
∨ ∼= ν⊥0

)

td−r+1
q

∨ ⊃
ν
∼=

l⋂
j=1

{γ ∈ ν⊥0 : γ (υ j)≥ λ j + δ j}. (91)

In view of (17), (82), and (84) there exist unique υ ′j ∈ L(T d−r
c ), ρ j ∈Z, υ ′′j ∈ L(T r−1

ν⊥ ) such that

υ j = υ ′j + ρ j ν̃ + υ ′′j . (92)

Therefore (92) may be rewritten as


ν
∼=

l⋂
j=1

{γ ∈ ν⊥0 : γ (υ ′j + ρ j ν̃)≥ λ j + δ j}. (93)

Definition 3.5. For I = {i1, . . . , ia} ⊆ {1, . . . , l}, let sI := span(υ j : j ∈ I} ⊆ td and let S I � T d be the closed subtorus with Lie 
subalgebra sI .

Suppose that I is such that F := Fi1 ∩ . . .∩ Fia is a face of 
; then, since 
 is a Delzant polytope, the sequence of normal 
vectors (υ i1 , . . . , υ ia ) is a primitive system in L(T d) (meaning that it can be extended to a lattice basis). Furthermore, S I is 
the stabilizer subgroup of any m ∈�−1(F 0).

In particular, let F be a codimension-a face of 
 such that (F + δ̃) ∩ ν⊥0 �= ∅ (whence (F 0 + δ̃) ∩ ν⊥0 �= ∅ by Corol-
lary 3.1). Then there is a unique I F = {i1, . . . , ia} ⊆ {1, . . . , l}, such that F is the intersection of the facets Fi1 , . . . , Fia , and so 
(υ i1 , . . . , υ ia ) is a primitive system.

Lemma 3.4. Under the previous assumption, and with notation (92), the following conditions are equivalent:

1. T r−1
ν⊥ acts freely on �−1

δ̃

(
(F 0 + δ̃) ∩ ν⊥0)

;

2. (υ ′i1
+ ρi1 ν̃, . . . , υ ′ia

+ ρia ν̃) is a primitive system.

Proof. Suppose γ ∈ (F 0+ δ̃) ∩ν⊥0
, and choose m ∈ M such that �δ̃(m) = γ . Then �(m) ∈ F 0, and so the stabilizer subgroup 

of m is S I F . Hence m has trivial stabilizer in T r−1
ν⊥ if and only if T r−1

ν⊥ ∩ S I F is trivial.
Suppose that 1. holds, and let ϑ j ∈R, j = 1, . . . , a, be such that

exp

⎛⎝ a∑
j=1

ϑ j (υ
′
i j
+ ρi j ν̃)

⎞⎠= 1.

Then

exp

⎛⎝ a∑
j=1

ϑ j υ i j

⎞⎠= exp

⎛⎝ a∑
j=1

ϑ j υ
′′
i j

⎞⎠ ∈ S I F ∩ T r−1
ν⊥ = (1).

Thus necessarily ϑ j ∈ 2 π Z because (υ i j ) j is a primitive system. Hence 2. holds.

Conversely, assume that 2. holds. Suppose that t ∈ S I F ∩ T r−1
ν⊥ . There exist ϑ j , j = 1, . . . , a, and ξ ∈ tr−1

ν⊥ such that

t = exp

⎛⎝ a∑
j=1

ϑ j υ j

⎞⎠= exp(ξ)

⇒ exp

⎛⎝ a∑
j=1

ϑ j (υ
′
i j
+ ρi j ν̃)

⎞⎠= exp

⎛⎝ξ −
a∑

j=1

ϑ j υ
′′
j

⎞⎠
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⇒ exp

⎛⎝ a∑
j=1

ϑ j (υ
′
i j
+ ρi j ν̃)

⎞⎠ ∈ (T d−r
c × T̂ 1

ν

)
∩ T r−1

ν⊥ = (1)

⇒ ϑ j ∈ 2π Z, ∀ j = 1, . . . ,a ⇒ t = 1,

where we have made use of (17). Hence 2. implies 1. �
This can be strengthened as follows.

Proposition 3.8. Under the previous assumptions, the following conditions are equivalent:

1. T r−1
ν⊥ acts freely on Mν ;

2. for every (r − 1)-dimensional face F of 
 such that (F + δ̃) ∩ ν⊥0 �= ∅, with I F = {i1, . . . , id−r+1} ⊆ {1, . . . , l}, the sequence

(υ ′i1
+ ρi1 ν̃, . . . ,υ ′id−r+1

+ ρid−r+1 ν̃)

is a primitive system;

3. for every (b + r− 1)-dimensional face F of 
 (with b ≥ 0) such that (F + δ̃) ∩ ν⊥0 �= ∅, with I F = {i1, . . . , id−b−r+1} ⊆ {1, . . . , l}, 
the sequence

(υ ′i1
+ ρi1 ν̃, . . . ,υ ′id−b−r+1

+ ρid−b−r+1 ν̃)

is a primitive system.

Proof. That 1. implies 2. follows immediately from Lemma 3.4. Suppose that 2. holds. Let m ∈ Mν . If m ∈ M0 (i.e., �(m) ∈

0), then T d acts freely at m, hence so does T r−1

ν⊥ . Otherwise, �(m) ∈ F 0 for a unique face F of 
, whence �δ̃(m) ∈
(F 0 + δ̃) ∩ ν⊥0

. Applying again Lemma 3.4, we conclude that T r−1
ν⊥ acts freely at m. Thus if 2. holds then T r−1

ν⊥ acts freely at 

every m ∈�−1
δ̃
(ν⊥0

) = Mν , i.e. 1. holds. That 3. implies 2. is obvious, since 2. is formally the special case of 3. with b = 0. 

Suppose that 2. holds, and let F be a (b + r − 1)-dimensional face of 
 as in the statement of 3; then Fν := (F + δ̃) ∩ ν⊥0

is a b-dimensional face of 
ν . Therefore Fν contains a vertex γ of 
ν . Hence there exists an (r− 1)-dimensional face F ′ of 

, as in the statement of 2., such that {γ } = (F ′ + δ̃) ∩ ν⊥0

. The sequence of normal vectors corresponding to F ′ contains 
the sequence corresponding to F , and since a subsystem of a primitive system is necessarily also primitive, we conclude 
that 3. holds. �
3.6. Proof of Theorem 1.2

We can now build on the previous discussion to give the proof of the Theorem.

Proof of Theorem 1.2. Under the given assumptions on 
 and ν⊥0
, Mν is a toric manifold, acted upon by T d−r+1

q
∼=

T d−r+1
c = T d−r

c × T̂ 1
ν in (84), and with associated moment polytope 
ν . Furthermore, by (73) and the discussion in §3.2, 

Yν is the unit circle bundle associated to the positive line bundle (Aν , hν) on Mν . In addition, M̂ν = Yν/T 1
ν by (71), where 

T 1
ν acts on Yν by the contact lift μYν of the Hamiltonian action (μMν , �) (Proposition 3.3).

We are therefore in the situation of Theorem 1.1, with the following replacements: M by Mν ; T d by T d−r+1
q

∼= T d−r+1
c =

T d−r
c × T̂ 1

ν ; 
 by 
ν ; X by Yν ; � by �δ̃ ; T r by T 1
ν
∼= T̂ 1

ν ; � by �; T d−1
c by T d−r

c . Furthermore, the constants λ j are replaced 
by λ j + δ j for j = 1, . . . , l in view of (91), and the scalar δ is taken to vanish by Lemma 3.3 (once � has been replaced by 
�δ̃ , no further translation is required).

The statement of Theorem 1.2 is now an immediate consequence of Theorem 1.1. �
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