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Abstract: Liquid–liquid phase separation (LLPS) is responsible for the formation of so-called membrane-
less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically
disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved
in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit
to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins
are also known to partition into cellular MLOs, thus raising the question as to whether these cellular
phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of
eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within
cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information
on these proteins, which constitute promising targets for innovative antiviral strategies. Using various
computational approaches, we thoroughly investigated their disorder content and inherent propensity
to undergo LLPS, along with their biological functions and interactivity networks. Results show that
these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for
phase separation being correlated, as expected, with their disorder content. A trend, which awaits further
validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered
cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their
annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation,
foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.

Keywords: liquid–liquid phase separation; membrane-less organelles; intrinsically disordered pro-
teins; intrinsically disordered regions; viral factories; viral inclusion bodies; viral infection-related
MLOs; protein–protein interactions; post-translational modifications

1. Introduction

Liquid–liquid phase separation (LLPS) is a physico-chemical process by which a
homogeneous solution demixes to form a dense and a light phase, with the solute being
more concentrated in the dense phase than in the light phase [1]. LLPS sensitivity to
variations in temperature, ionic strength, pH, and solute concentration makes this process
an ideally suited mechanism for the spatio-temporal organization of macromolecular
components in living cells [2–7]. In living cells, molecular condensation involves proteins
and often nucleic acids, producing a peculiar kind of biomolecular condensate referred to
as membrane-less organelles (MLOs). Cells in all kingdoms of life might have hundreds of
different MLOs [8], with the most known being stress granules (SGs), nucleoli, processing
(P) granules, and Cajal bodies. MLOs respond not only to environmental stimuli, but
also to changes in the concentration and chemical composition of solutes, i.e., they can
be modulated by post-translational modifications (PTMs) of proteins undergoing phase
separation [9]. Thus, by endowing the cell with the ability to transiently compartmentalize
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its components, LLPS enables (in)activating specific functions, responding rapidly to a
range of factors, integrating them and buffering the cellular noise [10].

An analysis of the molecular features of intracellular condensation has led to a dis-
tinction between elements that actively trigger demixing, which act as LLPS drivers and
eventually form the coacervate scaffold, and those that implant into MLOs secondar-
ily, the so-called clients (or passengers) which are not able to trigger condensation on their
own [11,12]. An additional category is provided by so-called co-drivers, i.e., macromolecules
(proteins, RNA, or DNA) that strictly require another macromolecule to undergo phase
separation. Depending on the circumstances in which demixing takes place, a particular
specific component may act as either a scaffold or a client. Although regulators, like clients,
do not physically participate in the formation of the scaffold, they can determine both the
formation of an MLO and its functional and morphological properties. For instance, a
typical regulator is an enzyme that induces key PTM(s) that may define the localization
and/or binding properties of scaffold proteins [13]. Among the intrinsic characteristics
of a protein that endow it with the scaffolding ability is undoubtedly its multivalency,
i.e., the multiplicity of binding motifs. Multivalency is typical of, although not strictly
restricted to, intrinsically disordered proteins (IDPs) and regions (IDRs). Therefore, it is
not surprising that many MLOs and biomolecular condensates are specifically enriched in
IDPs or proteins with IDRs [14]. Although the “grammar” of LLPS has only started to be
deciphered, a few rules are beginning to emerge [15]. For instance, Arg/Lys-containing
IDRs were shown to serve as cryptic nucleic-acid-binding domains that may phase separate
upon binding nucleic acids [16]. The gathered knowledge so far has contributed to making
possible the generation of synthetic MLOs endowed with controllable phase separation
and cargo recruitment abilities [17].

The sequence degeneracy of IDPs/IDRs, favoring low complexity, encodes residue
types and/or short motifs that favor three-dimensional networking of protein chains, and
thus behave as stickers [18]. This ability is further amplified by their structural flexibility,
conformational dynamics [19], and the general accessibility of IDRs to the enzymes cat-
alyzing various PTMs [20] that ultimately impact their charge and hydrophobicity. Further
modulation of LLPS is offered by the distribution of stickers. Molecular dynamics simula-
tion studies unveiled that uniformly interspersed stickers consisting of aromatic residues
promote LLPS, while their clustering leads to aggregation [21]. Sequence features influence
IDP/IDR recruitment as clients as well. Indeed, electrostatic and cation-π interactions favor
IDP/IDR client recruitment into numerous protein condensates [22].

Viruses broadly exploit LLPS to form viral factories, also known as inclusion bodies
(IBs). Viral factories are sites where transcription and replication take place. They can
be either membrane-delimited (which is typically the case in +ssRNA viruses, such as
Flaviviridae and Coronaviridae) or devoid of membranes. In the latter case, they are referred
to as “membrane-less replication compartments”. Viruses exploit LLPS to form not only
viral factories but also assembly compartments, i.e., compartments where trafficking and
assembly of viral components take place. LLPS provides an excellent solution to the prob-
lem of physical and functional separation of viral macromolecules from those endogenous
to the host cell in its cytosol. Accordingly, LLPS has emerged as a new promising target for
antiviral approaches [23–25].

One of the best-known examples of viral factories resulting from LLPS is represented
by the so-called Negri bodies (NBs) in pyramidal cells of the hippocampus [26,27]. NBs
have been long considered a hallmark of infection by rabies virus (RABV), a member of the
Mononegavirales order that embraces non-segmented, negative-sense single-strand RNA
(-ssRNA) viruses [28–30]. NBs are micrometer-sized liquid condensates containing viral
RNA, together with nucleoprotein (N), phosphoprotein (P), and large protein (L), which
build up the replicative complex [30–32]. Recent works have led to the identification of
several viruses whose life cycle is mediated by the formation of molecular condensates,
the liquid-like nature of which was demonstrated based on their sphericity, fluidity, and
ability to coalesce (for reviews see [25,32–46]). Other well-known examples of viral factories
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resulting from LLPS pertain to other members of the Mononegavirales order, such as vesic-
ular stomatitis virus (VSV) [47], measles virus (MeV) [48,49], respiratory syncytial virus
(RSV) [50], human metapneumovirus (hMPV) [51], and Borna disease virus (BDV) [52].
A proposed mechanism for viral factory formation relies on the attainment of high con-
centrations of N and P proteins, together with RNA molecules [44]. Indeed, when critical
concentrations are reached, phase separation occurs, thus bringing virion components into
proximity and facilitating their proper assembly, while at the same time conferring the
ability to the virus to evade the cell defensive mechanisms.

Beyond members of the Mononegavirales order, a growing number of studies provide
evidence for the liquid nature of viral factories from an expanding number of viruses,
including members of positive-stranded RNA (+ssRNA) virus families (i.e., Zika and
Dengue viruses, ZIKV and DENV, [53] and SARS-CoV-2 [54,55]), double-stranded RNA
(dsRNA) virus families (i.e., Rotaviruses [56] and Birnaviruses [57]), and segmented, single-
stranded negative-sense RNA virus families (i.e., influenza A virus, IAV, [58]), as well as
members of the Retroviridae family (i.e., Human immunodeficiency virus 1 (HIV-1) [59,60])
and some DNA viruses (i.e., Herpes simplex virus 1 (HSV-1) [61,62] and adenovirus [41]). In
line with the well-documented relationship between intrinsic disorder and LLPS propensity,
in the majority of examples cited above, the viral proteins engaged in the formation of
these liquid replication compartments were shown to encompass IDRs [35,43], and in a
few cases, a clear link between intrinsic disorder and LLPS was established (for examples
see [31,49,50,63]).

Viruses can either give rise de novo to biomolecular condensates, using parallel
strategies to cellular systems [34], or interfere with existing ones, especially SGs and P
bodies, which are involved in stress signaling and cellular defense mechanisms (for a
recent review see [64]). An even more devious use of condensation mechanisms can be
hypothesized, namely the exploitation of the intrinsic condensation properties of host
proteins to form viral factories. This is suggested by the observation that host cell proteins
are also found in viral factories and that, for some of these, intrinsic scaffolding capacity is
known. In this work, we have focused on a set of eukaryotic proteins found either within
viral factories or within cellular MLOs into which viral proteins partition. We will refer to
both types of compartments as “viral infection-related MLOs” (vir-MLOs). The main goal of
this work is to gather predicted and experimental information on cellular proteins recruited
to vir-MLOs as a first step towards the future development of a dedicated database. The
identification of specific features, such as conformational disorder content, LLPS propensity,
and degree of interactivity may enable, in the future, predicting if a cellular protein is
recruited to vir-MLOs, as well as its functional role as potential (co)driver or client/regulator.

2. Results
2.1. Data Set Generation and Global Disorder Analysis of the Selected Eukaryotic Proteins

The data set of cellular vir-MLOs proteins was generated by selecting cellular proteins
that are either recruited to virus-specific condensates or found in cellular MLOs into which
viral proteins colocalize. The use of these strict criteria for selecting target proteins for our
analysis led to a relatively small data set, encompassing 19 proteins (Table 1). The small size
of the data set reflects the hitherto limited number of published studies reporting examples
of interactions between cellular and viral proteins within phase-separated compartments.

One should, however, keep in mind that there are a number of additional potential
interactors, including essentially all proteins found in SGs and/or proteins of the NF-κB
pathway shown to interact with various viral proteins known to form liquid condensates (as,
for instance, the SARS-CoV-2 nucleocapsid, NC, protein) [65,66]. However, if the interaction
and the functional outcome have been documented, no data are available supporting the
evidence that the interaction occurs within liquid compartments. Likewise, kinases and
phosphatases are expected to be client proteins of IBs formed by MeV N and P proteins or by
the SARS-CoV-2 NC protein, as phosphorylation events are known to impact the material
properties of the liquid condensates formed by these viral proteins [48,67]. Unfortunately,
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the specific kinases and phosphatases involved in these PTMs and co-localizing within
these IBs have not been identified yet. Since we were interested in analyzing cell proteins
genuinely interacting with viral proteins within phase-separated condensates, we chose not
to incorporate these proteins in the data set. Indeed, although incorporation of the latter
would have resulted in an enlarged data set, it would also have jeopardized the analysis.

Table 1. Eukaryotic proteins recruited to MLOs related to viral infection.

Cellular
Protein

Organism
UniProt

ID

Type of
Conden-

sate
Virus

Known to
Phase

Separate

PPIDR
(PONDR®

VSL2)

IDRs
(PONDR®

VSL2)
MoRFs

FuzDrop
pLLPS
Status
DPRs

PSP
Score

DisProt
Entry #
(IDRs)

Ref.

FUS 1 Homo
sapiens
P35637

Cellular
MLO

SARS-
CoV-2

YES 90.68 1–286
314–315
330–347
356–526

1–19
33–61
75–83
111–165
175–196
205–212
231–240
257–268
285–312
347–375
423–428
432–446
478–486
489–512

0.9999
Driver
1–294
360–437
443–526

0.99 DP01102
(1–507)

[66]

MAVS 2 Homo
sapiens
Q7Z434

Viral
IBs

RSV NO 79.26 1–6
91–508
537–540

123–148
156–268
277–290
294–325
338–377
397–410
416–449
463–479

0.9996
Driver
81–456
470–513

0.58 none [68]

hnRNPA2 3 Homo
sapiens
P22626

Cellular
MLO

SARS-
CoV-2

YES 69.97 1–21
57–62
72–108
120–126
148–152
183–353

65–71
155–160
168–177
205–212
238–244

0.9808
Driver
1–12
187–353

0.99 DP01109
(190–341)

[66]

p53 4 Homo
sapiens
P04637

Viral
replica-
tion
foci

HPV
(human
papilloma
virus)

YES 68.19 1–107
165–166
168–189
222–224
260–393

11–57
106–115
132–141
232–239
251–258
265–277
322–355
363–387

0.9848
Driver
1–24
28–108
277–337
341–393

0.94 DP00086
(1–93,
291–312,
361–393)

[69]

G3BP2 5 Homo
sapiens
Q9UN86

Cellular
MLO

SARS-
CoV-2

YES 64.94 1–7
43–53
100–106
127–331
400–482

90–97
109–115
119–145
168–192
207–224
232–281
323–338
348–358
371–379
387–399
436–448
456–482

0.9976
Driver
130–325
399–482

0.94 none [70]
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Table 1. Cont.

Cellular
Protein

Organism
UniProt

ID

Type of
Conden-

sate
Virus

Known to
Phase

Separate

PPIDR
(PONDR®

VSL2)

IDRs
(PONDR®

VSL2)
MoRFs

FuzDrop
pLLPS
Status
DPRs

PSP
Score

DisProt
Entry #
(IDRs)

Ref.

p65 6 Homo
sapiens
Q04206

Viral
IBs

RSV NO 64.61 1–4
14–92
169–175
257–457
487–551

1–11
31–41
62–76
98–103
110–118
285–290
305–317
350–380
398–414
433–483
492–504
523–551

0.9487
Driver
37–71
77–96
309–355
367–441
503–526

0.83 DP00085
(428–551)

[71]

G3BP1 7 Homo
sapiens
Q13283

Cellular
MLO

SARS-
CoV-2

YES 63.95 1–7
37–52
139–342
352–356
401–466

123–143
165–193
206–280
304–311
337–348
355–369
376–386
395–406
435–466

0.9937
Driver
135–339
405–466

0.49 none [70]

TDP-43 8 Homo
sapiens
Q13148

Cellular
MLO

SARS-
CoV-2

YES 57.25 1–23
79–98
137–143
176–195
197–197
199–207
258–414

28–35
245–255
311–342
380–387
397–402

0.8981
Driver
251–414

0.98 DP01108
(263–414)

[66]

NTF2 9 Nicotiana
benthami-
ana
Q84JH2
This is a
homolog
from Ara-
bidopsis
thaliana

Cellular
MLO

Pea
enation
mosaic
virus 2
(PEMV2)

YES 52.18 1–8
82–87
141–144
160–174
177–315
392–458

173–179
197–202
233–257
276–284
292–299
318–334
360–365
424–429
450–458

0.7408
Driver
184–200
213–312
396–451

0.96 none [72]

MDA5 10 Homo
sapiens
Q9BYX4

Viral
IBs

RSV NO 37.27 1–8
98–110
153–164
192–311
347–356
425–430
466–477
493–500
524–553
568–568
570–576
585–598
631–718
757–774
824–825
865–896
995–999
1022–1025

233–239
243–276
324–329
503–515

0.6164
Driver
239–308
489–499
566–595
641–661

0.11 none [68]

Fib2 11 Nicotiana
benthami-
ana
B7VCB9

Cellular
MLO

PEMV2 YES 35.99 1–83
116–119
277–292
305–314

1–16
29–44
72–90

0.3248
Client
1–86

0.99 none [72]

FAK1 12 Homo
sapiens
Q05397

Negri
bodies
(viral
IBs)

RABV YES 34.32 1–32
107–113
188–194
306–313
363–418
576–580
638–647
660–751
771
785–926
941–949
1014–1018
1046–1052

1–7
36–42
341–359
652–660
672–681
698–705
726–769
792–808
830–845
848–867
882–905
922–938
958–965

0.6417
Driver
1–35
683–736
743–767
812–922

0.07 DP03144
(565–583)

[31,73]
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Table 1. Cont.

Cellular
Protein

Organism
UniProt

ID

Type of
Conden-

sate
Virus

Known to
Phase

Separate

PPIDR
(PONDR®

VSL2)

IDRs
(PONDR®

VSL2)
MoRFs

FuzDrop
pLLPS
Status
DPRs

PSP
Score

DisProt
Entry #
(IDRs)

Ref.

TIAR1 13 Homo
sapiens
Q01085

Viral
IBs

Ebola
Virus
(EBOV)

YES 32.27 1–8
85–94
132–138
174–201
280–284
303–309
320–375

140–148
205–213
339–345

0.5857
Client
1–16
174–185
311–375

0.36 none [74]

HSP70-1A
14

Homo
sapiens
P0DMV8

Negri
bodies
(viral
IBs)

RABV NO 29.64 1–5
100–106
153–158
230–230
243–286
361–363
491–572
588–598
611–641

476–486
541–550
573–584
602–614

0.3828
Client
548–569
606–641

0.12 DP02353
(229–306)

[31]

RAB11 15 Homo
sapiens
P62491

Viral
assembly
compart-
ment

IAV NO 24.54 1–6
24–25
35–40
178–216

166–176
210–216

0.1679
Client
176–209

0.02 none [58]

PP1 16 Homo
sapiens
P62136

Viral
IBs

RSV NO 19.70 1–10
14–14
18–30
179–183
213–216
299–330

Not
found

0.1692
Client
300–330

0.04 none [75]

CAD 17 Homo
sapiens
P27708

IBs (viral
factories)

EBOV NO 19.51 1–5
118–155
222–232
239–243
319–320
338–343
360–402
405–406
408–412
525–544
567–573
689–696
797–804
852–860
1041–1042
1117–1119
1156–1159
1287–1289
1325–1326
1401–1403
1540–1545
1649–1665
1690–1708
1711–1711
1713–1727
1807–1923
1972–1986
1988–2009
2122–2135
2177–2177
2190–2196
2223–2225

327–333
346–357
1675–1684
1709–1718
1768–1805
1841–1864
1874–1891
1903–1930
2161–2166

0.2011
Client
379–392
1812–1923
2043–2053

0.11 DP01024
(1822–
1846)

[76]
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Table 1. Cont.

Cellular
Protein

Organism
UniProt

ID

Type of
Conden-

sate
Virus

Known to
Phase

Separate

PPIDR
(PONDR®

VSL2)

IDRs
(PONDR®

VSL2)
MoRFs

FuzDrop
pLLPS
Status
DPRs

PSP
Score

DisProt
Entry #
(IDRs)

Ref.

MAPK14
18

Homo
sapiens
Q16539

Viral
IBs

RSV NO 13.89 1–7
176–178
247–256
313–327
342–345
350–360

Not
found

0.1119
Not
related to
LLPS

0.00 None [77]

OGT 19
Homo
sapiens
O15294

Viral
IBs RSV NO 12.83

1–17
34–36
106–106
305–308
377–377
405–405
435–445
499–512
541–553
564–579
683–693
759–770
814–819
908–911
1031–1034
1039–1046

Not
found

0.1567
Client
1–15
758–772

0.10 None [77]

1 RNA-binding protein fused in sarcoma (FUS). SARS-CoV-2 N protein partitions as a client in cellular MLOs
containing TDP-43, FUS, and hnRNPA2. 2 Mitochondrial antiviral signaling protein (MAVS). RSV N protein likely
interacts with MDA5, is in close proximity to MAVS, and sequesters these proteins within IBs, which results in
the attenuation of the interferon (IFN) response. 3 Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2).
SARS-CoV-2 N protein partitions as a client in cellular MLOs containing TDP-43, FUS, and hnRNPA2. 4 p53. HPV
E2 protein partitions as client in chromatin-associated foci containing p53. Co-condensation of p53 and E2 in
the nucleus results in modulation of HPV gene function. 5 Ras-GAP SH3 domain-binding protein 2 (G3BP2).
SARS-CoV-2 N protein associates with the host SG-nucleating proteins G3BP1 and G3BP2. 6 NF-κB complex p65
subunit (p65). In both human and bovine RSV-infected cells, the p65 subunit of NF-κB is rerouted to perinuclear
puncta in the cytoplasm, which correspond to viral IBs where viral RNA replication occurs. Captured p65 is unable
to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α)
stimulation, confirming the immune-antagonistic nature of this sequestration. 7 Ras-GAP SH3 domain-binding
protein 1 (G3BP1). SARS-CoV-2 N protein associates with the host SG-nucleating proteins G3BP1 and G3BP2.
8 TAR DNA-binding protein 43 (TDP-43). SARS-CoV-2 N protein partitions as a client in cellular MLOs containing
TDP-43, FUS, and hnRNPA2. 9 Nuclear transport factor 2 (NTF2) family protein (a plant G3BP-like activator
of SGs). The p26 movement protein from PEMV2 partitions with cellular proteins fibrillarin (Fib2) and G3BP.
p26 partitions as a client protein in the nucleolus and in SGs. 10 Melanoma differentiation-associated protein 5
(MDA5). MDA5 is sequestered into IBs, likely through interaction with the RSV N protein. 11 Fibrillarin (Fib2).
p26 movement protein from PEMV2 partitions with cellular proteins fibrillarin (Fib2) and G3BP. Viral p26 protein
partitions as client protein in the nucleolus and in SGs. 12 Focal Adhesion Kinase 1 (FAK1). FAK1 is recruited to
NBs through interaction with the RABV P protein.13 Nucleolysin TIAR1. TIAR1 is a SG marker. During infection,
it co-localizes with EBOV VP35 in cytoplasmic aggregates, which are likely to be viral IBs. 14 Heat shock 70 kDa
protein 1A (HSP70-1A). HSP70-1A is recruited to NBs through interaction with the RABV P protein.15 GTPase
RAB11 (RAB11). In uninfected cells, RAB11 is the master regulator of the endocytic recycling compartment (ERC),
a system used for delivering endocytosed material and specific cargos from the trans-Golgi network (TGN) to
the cell surface. RAB11 is redistributed during infection, changing from discrete to enlarged puncta that match
sites of clustered vesicles positive for RAB11 and vRNPs (viral ribonucleoproteins), constituting vRNP hotspots.
16 Phosphatase PP1 (PP1). PP1 is recruited to IBs through interaction with the RSV P protein. The P protein
recruits the viral transcription factor M2-1 to viral IBs (independently of its phosphorylation state). M2-1 is
dephosphorylated by the P-PP1 complex. M2-1 needs to be dephosphorylated in order to be recruited into IBAGs,
which are a substructure of IBs where viral transcription mainly takes place. 17 CAD is a key component in
the pathway of de novo synthesis of pyrimidines. CAD directly interacts with the EBOV N protein, with N
being sufficient to recruit CAD into IBs via the glutaminase (GLN) domain of the latter. 18 Mitogen-activated
protein kinase 14 (MAPK14) or p38MAPKα is a key regulator of cellular inflammatory and stress responses. RSV
induces the sequestration of p38MAPKα in IBs resulting in the accumulation of a downstream signaling substrate,
MAPK-activated protein kinase 2 (MAPK2). 19 O-GlcNAc transferase (OGT). OGT catalyzes the addition of OGN
to target proteins to regulate cellular processes, including signal transduction, transcription, translation, and stress
response. During RSV infection, OGT is sequestered in RSV IBs, causing the impairment of SGs formation, thus
triggering suppression of the antiviral cellular response. Detailed information on the structural organization and
main biological functions of the proteins of the data set can be found in Section 2.5.

As shown in Table 1, many, though not all, proteins within our data set are characterized
by high levels of predicted disorder. Proteins in Table 1 are arranged by their intrinsic disorder
status in the form of the predicted percentage of intrinsically disordered residues (PPIDR, i.e.,
percent of residues with disorder scores exceeding 0.5), evaluated by PONDR® VSL2 [78], a
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highly accurate disorder predictor [79]. It is noteworthy that for some of the proteins (i.e.,
FUS, hnRNPA2, p53, p65, TDP-43, FAK1, HSP701A, and CAD), disorder has already been
experimentally validated, and for them we reported the amino acid boundaries as annotated in
the DisProt database of IDPs [80–82]. For most of the proteins, including the most disordered
ones such as FUS, MAVS, hnRNPA2, and p53, at least partial structural information is available
(see Supplementary Table S1). Note, however, that the availability of structural data for a portion
of the polypeptide chain is not, per se, proof that the region is ordered, as structural data for
the proteins with the highest predicted disorder (i.e., FUS, MAVS, hnRNPA2, p53, and G3BP1)
are often based either on crystal structures of complexes with partners/ligands or on NMR
solution structures that feature a high structural heterogeneity (see Supplementary Table S1).
Table 1 also features information on their experimentally documented ability to undergo LLPS
whenever available. As shown in Table 1, a number of these cellular proteins have intrinsic
phase-separating abilities, thus raising the question as to whether they may serve as (co-)drivers
in the condensation processes that give rise to viral factories. Such a mechanism would reflect
a long co-evolutionary pathway between the host cell and the virus and would identify new
promising targets for antiviral strategies.

It is commonly recognized that PPIDR can be used for intrinsic disorder status clas-
sification of query proteins, where proteins with PPIDR < 10%, 10% ≤ PPIDR < 30%,
and PPIDR ≥ 30% are considered highly ordered, moderately disordered, and highly
disordered, respectively [83]. Based on these criteria, 13 proteins analyzed here are highly
disordered and 6 are moderately disordered (see Table 1). In addition to classifying proteins
based on their PPIDR values, the average disorder score (ADS, calculated as the sum of
disorder scores divided by the number of protein residues) in query proteins can be used
for their classification as well. Here, proteins with ADS < 0.15, 0.15 ≤ ADS < 0.5, and
ADS ≥ 0.5 are considered highly ordered, moderately disordered and highly disordered,
respectively. Figure 1A shows the correlation between ADS and PPIDR values for the 19
eukaryotic proteins analyzed in this study and supports the notion that all these proteins
are at least moderately disordered. The most disordered proteins (i.e., those located within
the red region) are human FUS, MAVS, hnRNPA2, p53, G3BP2, NF-κB complex p65, G3BP1,
TDP-43, and G3BP from Nicotiana benthamiana (see also Table 1).

Another approach to look at the global intrinsic disorder predisposition of query
proteins is based on the analysis of their distribution within the charge-hydropathy (CH)–
cumulative distribution function (CDF) phase space, where ordered proteins, molten
globular/hybrid proteins containing sizable levels of order and disorder, and native coils
or native pre-molten globular proteins are located within the lower right, lower left, and
upper left quadrant, respectively [84]. Figure 1B shows that FUS, G3BP2, G3BP1, hnRNPA2,
and p53 are predicted to be highly disordered, whereas MAVS, NF-κB complex p65, and
G3BP-like SG activator in plants are predicted to be native molten globules or hybrid
proteins with sizable ordered and disordered regions, with the remaining proteins being
grouped within the lower right quadrant, confirming that these proteins are mostly ordered
or contain large ordered domains. Therefore, although many proteins in our data set are
disordered, some of them are not, clearly indicating that enrichment in disorder is not a
strict prerequisite for a protein to be recruited to vir-MLOs.

2.2. Per-Residue Disorder Predictions and Interactivity Analysis of the Eukaryotic Proteins
Recruited to Vir-MLOs

The structures of the proteins in our data set were predicted with AlphaFold2 and the
resulting structural models are shown in Figure 2.
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Figure 1. Global intrinsic disorder predisposition of 19 eukaryotic proteins recruited to the viral
infection-related MLOs. (A). Analysis of query proteins based on the average disorder score (ADS)
and percent of predicted disordered residues (PPIDR) as evaluated by PONDR® VSL2. High values
of each parameter correspond to high disorder propensities. Different color blocks indicate regions
containing proteins with different levels of order, where mostly ordered, moderately disordered, and
mostly disordered proteins are located within blue, pink, and red blocks, respectively. If the two
parameters (ADS and PPIDR) agree, the corresponding part of the background is shown by a dark
color (blue or pink), whereas light blue and light pink reflect areas in which only one of these criteria
applies. (B). CH–CDF plot for 19 eukaryotic proteins recruited to the viral infection-related MLOs.
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Figure 2. Three-dimensional structures modeled for query proteins by AlphaFold2 as retrieved
from UniProt. (A). FUS (UniProt ID: P35637); (B). MAVS (UniProt ID: Q7Z434); (C). hnRNPA2
(UniProt ID: P22626); (D). p53 (UniProt ID: P04637); (E). G3BP2 (UniProt ID: Q9UN86); (F). p65
(UniProt ID: Q04206); (G). G3BP1 (UniProt ID: Q13283); (H). TDP-43 (UniProt ID: Q13148); (I). G3BP
(UniProt ID: Q84JH2); (J). MDA5 (UniProt ID: Q9BYX4); (K). Fib2 (UniProt ID: B7VCB9); (L). FAK1
(UniProt ID: Q05397); (M). TIAR1 (UniProt ID: Q01085); (N). HSP701A (UniProt ID: P0DMV8);
(O). RAB11 (UniProt ID: P62491); (P). PP1 (UniProt ID: P62136); (Q). CAD (UniProt ID: P27708);
(R). MAPK14 (UniProt ID: Q16539); (S). OGT (UniProt ID: O15294). Note that since the predicted
structure of Fib2 from N. benthamiana is not available in UniProt, shown is the structure of Fib2 from
Arabidopsis thaliana (UniProt ID: Q94AH9). Structural elements are colored based on the confidence of
structure prediction by AlphaFold2 (in cyan and dark blue structures predicted with high to very
high confidence, in yellow and orange segments predicted with low to very low confidence, and
expected to be disordered).

Although AlphaFold2 models can in no way be regarded as accurate descriptions
of IDPs/IDRs, the latter being only describable as conformational ensembles [85], they
are still useful because they provide a convenient cartoon representation that graphically
enables conveying and capturing the conformational heterogeneity of IDRs. AlphaFold2
model reliability is expressed by the parameter pLDDT, which takes a value between
0 and 100 assigned to each residue. Low pLDDT scores (i.e., <50) have been shown to
provide a good measure of residue-wise disorder [79,86]. For each of the protein in our
data set, we generated a per-residue correlation plot between the predicted disorder score
(as provided by PONDR® VSL2) and the AlphaFold confidence score (see Figure 3 and
Supplementary Figures S1–S17). Results indicate that the correlation between these two
tools is moderate, which is not surprising, as it was already pointed out that AlphaFold
is not the most accurate predictor of disorder. However, for all proteins, when looking
at all data points, there is an overall positive correlation between the two predictors,
indicating that, on average, residues with higher PONDR® VSL2 propensity have lower
AlphaFold2 confidence.
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Figure 3. Functional disorder in RNA-binding protein FUS. (A). Amino acid sequence (top) and RIDAO-
generated disorder profile (bottom). RIDAO aggregates the results from a number of well-known dis-
order predictors: PONDR® VLXT (black line), PONDR® VLS2 (red line), PONDR® VL3 (green line),
IUPred2_short (yellow line), IUPred2_long (blue line), and PONDR® FIT (pink line). Mean disorder
prediction (MDP), which is calculated by averaging the outputs of these six predictors, is shown by a
thick dashed dark-pink line and the corresponding error distribution is shown by a light pink shadow.
The outputs of the evaluation of the per residue disorder propensity by these tools are represented as
real numbers between 0 (ideal prediction of order) and 1 (ideal prediction of disorder). A threshold of
≥0.5 is used to identify disordered residues and regions in query proteins. Solid and dashed horizontal
lines at disorder scores 0.5 and 0.15 correspond to the disorder and flexibility thresholds. (B). MeDor
output. MeDor aggregates the results of eight predictors implemented in MobiDB-lite 3.0 (GlobPlot,
ESpritz-N, ESpritz-D, ESpritz-X, IUPRED2A Long, IUPRED2A Short, DisEMBL REM465, DisEMBL hot-
loops) along with those provided by DorA, MoreRONN (RONN), FoldIndex, and FoldUnfold. Regions
predicted to be disordered by the various predictors are indicated by double arrows with a color code
corresponding to that of the corresponding predictors as indicated on the left, while regions predicted
to be ordered are shown as grey dashed lines. The MeDor output displays the MobiDB-lite consen-
sus (Consensus MobiDB, grey double arrow) and two other types of global consensus: Consensus 1
(dark blue double arrow), which corresponds to regions predicted to be disordered by more than half
of the implemented predictors, and Consensus 2, which corresponds to regions consistently predicted
to be disordered by all the implemented predictors (none in this case). The MeDor output also displays
low-complexity regions (pink bar) and transmembrane regions (none in this case). The HCA plot (see
Appendix A) is shown below the amino acid sequence. Predicted α-helices (red) and β-strands (blue
arrows) are shown above the sequence. (C). STRING-generated PPI network. The minimum required
interaction score was set to 0.700 (high confidence). Number of nodes 67; number of edges 523; average
node degree: 15.6; avg. local clustering coefficient: 0.77; expected number of edges: 97; PPI enrichment
p-value: < 1.0× 10−16. The corresponding interactive map of FUS-centered PPI network can be found at:
https://string-db.org/cgi/network?taskId=bvsmgavPysJb&sessionId=bxLUgl7X6fKS (last accessed on 2
January 2023). (D). FuzDrop output. (E). AlphaFold2 structure with FuzDrop annotations. (F). Per residue
correlation plot of disorder score (as provided by PONDR VLS2) versus (100-pLDDT), where pLDDT is the
corresponding AlphaFold2 confidence score.

https://string-db.org/cgi/network?taskId=bvsmgavPysJb&sessionId=bxLUgl7X6fKS
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Visual analysis of AlphaFold2 structural models revealed that all proteins in this study
are enriched in disorder and even the most ordered members of the data set, i.e., RAB11,
PP1, CAD, P38MAPKα, and OGT, still possess noticeable levels of disorder, judged from
the presence of multiple IDRs (see also Table 1).

Next, we generated disorder profiles for all query proteins using various computa-
tional platforms, such as the MeDor disorder prediction metaserver [87], the web crawler
RIDAO, which aggregates outputs of six per residue disorder predictors (i.e., PONDR®

VLXT [88], PONDR® VL3 [89], PONDR® VLS2 [90], PONDR® FIT [91], IUPred2 (Short),
and IUPred2 (Long) [92,93]) and generates mean disorder profiles based on the averaged
outputs of individual predictors and the D2P2 database [94]. The RIDAO profile of the
well-known, highly disordered, and phase-separating FUS protein is shown as an example
in Figure 3A, while the RIDAO profiles of all the other proteins analyzed in this study are
shown in the Supplementary Materials. Figure 3B shows the MeDor output for FUS as an
example, while the MeDor profiles obtained for all the other proteins in the data set are
shown in the Supplementary Materials.

Figure 4 shows the functional disorder profiles generated by the D2P2 platform for
the six most disordered proteins, namely FUS, MAVS, hnRNPA2, p53, G3BP2, and p65.
The analysis clearly shows that all these proteins make extensive use of intrinsic disorder
for functional purposes, as they all contain multiple disorder-based binding sites, known
as molecular recognition features (MoRFs) i.e., short disordered regions that fold upon
interaction with binding partners [95,96]. Furthermore, all these proteins contain numerous
PTM sites, which is a well-documented feature of IDRs [20]. Amino acid boundaries
of MoRFs were obtained from the D2P2 output for all proteins analyzed in this study
except for Fib2, for which D2P2 does not have data and whose MoRFs were predicted
using ANCHOR2 [97]. Table 1 shows that, with the exception of PP1, P38MAPKα, and
OGT, all these proteins contain multiple MoRFs, with some of these proteins (e.g., FUS)
utilizing almost their entire sequence as a disorder-based binding platform (see Table 1 and
Figure 4A).

To test the possibility of reciprocal interactions between the 17 human proteins selected
in this study, we used the STRING platform to generate internal protein–protein interaction
(PPI) networks in these proteins. The results of this analysis are presented in Figure 5A,
which shows 86 interactions between the 17 human proteins, with an average number of
interactions per protein—i.e., the average node degree—of 10.1. Gene Ontology (GO) term
enrichment analysis was applied to this network and the most relevant data are shown in
Table 2. Taken together, these data provide a measure of the involvement of these proteins
in rather diverse metabolic and cellular signaling pathways.

Next, we generated an external PPI network for these 17 human proteins and found
that they, as a group, form a very dense and highly populated network (Figure 5B), encom-
passing at least 517 proteins linked by 4834 interactions (with an average node degree of
18.7). This extensive interaction network was again analyzed to identify enriched GO terms,
and the results are collected in Table 3. The high interactivity of the 17 human proteins
with the rest of the human proteome is also confirmed by STRING-based analysis obtained
for each protein (see Figure 3C and Supplementary Materials).

2.3. LLPS Propensities of the Eukaryotic Proteins Recruited to Vir-MLOs

To assess the inherent propensity of the set of target proteins to undergo LLPS, we
used the FuzDrop and the PSPredictor web servers. Obtained results are shown in Table 1,
Figure 3D,E, and Supplementary Materials. Next, we looked at the correlation between
intrinsic disorder and propensity for phase separation as evaluated by FuzDrop (Figure 6A)
and PSPredictor (Figure 6B) (see also Table 1).
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Table 2. GO annotation results for the “internal” interaction network. The table shows the five most
enriched terms for biological processes, molecular functions, and cellular components among the
network of reciprocal interactions predicted by STRING for the 17 human proteins considered in this
study. In order to include all proteins in the network, the minimum required interaction score: low
confidence (0.150) was used.

GO Terms GO ID p Value

Biological processes (five most enriched)

Symbiotic process 0044403 1.68 × 10−7

Viral process 0016032 1.17 × 10−7

Interspecies interaction between organisms 0044419 1.20 × 10−5

Negative regulation of catabolic process 0009895 1.69 × 10−5

Cellular response to stimulus 0051716 1.85 × 10−5

Molecular functions (five most enriched)

mRNA binding 0003729 9.29 × 10−6

mRNA 3-UTR binding 0003730 1.86 × 10−5

RNA binding 0003723 0.0031

Protein phosphatase binding 0019903 0.0064

Organic cyclic compound binding 0097159 0.0073

Cellular components (five most enriched)

Cytoplasmic stress granule 0010494 0.00086

Ribonucleoprotein complex 1990904 0.00086

Cell junction 0030054 0.0107

Protein-containing complex 0032991 0.0107

Nuclear matrix 0016363 0.0193

Table 3. GO annotation results for the “external” interaction network. The table shows the five most
enriched terms among biological processes, molecular functions, and cellular components for the
network of interactions that the 17 human proteins considered in this study establish with the human
proteome, as predicted by STRING using minimum required interaction score: highest confidence
(0.900).

GO Terms GO ID p Value

Biological processes (five most enriched)

Positive regulation of nitrogen compound metabolic process 0051173 1.34 × 10−122

Positive regulation of cellular metabolic process 0031325 3.13 × 10−119

Positive regulation of cellular process 0048522 1.80 × 10−116

Positive regulation of macromolecule metabolic process 0010604 1.19 × 10−115

Regulation of cellular metabolic process 0031323 1.87 × 10−115

Molecular functions (five most enriched)

Enzyme binding 0019899 1.02 × 10−93

Protein binding 0005515 1.58 × 10−92

Binding 0005488 1.39 × 10−60

Transcription factor binding 0008134 8.70 × 10−51

Kinase binding 0019900 2.08 × 10−59

Cellular components (five most enriched)

Nucleoplasm 0005654 1.67 × 10−95

Nuclear lumen 0031981 5.16 × 10−83

Nucleus 0005634 4.98 × 10−82

Intracellular organelle lumen 0070013 1.14 × 10−73

Cytosol 0005829 3.48 × 10−65
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G3BP2 (E), and p65 (F) by the D2P2 platform, which is a database of predicted disorder for proteins 
from completely sequenced genomes (https://d2p2.pro/) (last accessed on 09 December 2022). Here, 
the outputs of IUPred, PONDR® VLXT, PrDOS, PONDR® VSL2, PV2, and ESpritz are used to show 
disorder predispositions of query proteins by differently colored bars. Consensus between these 
nine disorder predictors is shown by the blue-green-white bar, whereas location of various PTMs is 
shown by differently colored circles. D2P2 also shows positions of conserved functional SCOP do-
mains as predicted by the SUPERFAMILY predictor. Positions of these functional domains are 
shown below the outputs of the nine disorder predictors. Functional disorder profile also includes 
information on the location of predicted disorder-based binding sites (MoRF regions) identified by 
the ANCHOR algorithm and various PTMs assigned using the outputs of PhosphoSitePlus. 
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Figure 4. Functional disorder profiles generated for FUS (A), hnRNPA2 (B), MAVS (C), p53 (D),
G3BP2 (E), and p65 (F) by the D2P2 platform, which is a database of predicted disorder for proteins
from completely sequenced genomes (https://d2p2.pro/) (last accessed on 9 December 2022). Here,
the outputs of IUPred, PONDR® VLXT, PrDOS, PONDR® VSL2, PV2, and ESpritz are used to show
disorder predispositions of query proteins by differently colored bars. Consensus between these nine
disorder predictors is shown by the blue-green-white bar, whereas location of various PTMs is shown
by differently colored circles. D2P2 also shows positions of conserved functional SCOP domains as
predicted by the SUPERFAMILY predictor. Positions of these functional domains are shown below
the outputs of the nine disorder predictors. Functional disorder profile also includes information on
the location of predicted disorder-based binding sites (MoRF regions) identified by the ANCHOR
algorithm and various PTMs assigned using the outputs of PhosphoSitePlus.

https://d2p2.pro/


Int. J. Mol. Sci. 2023, 24, 2151 15 of 43Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 15 of 46 
 

 

 
Figure 5. Internal (A) and external PPI networks (B) of 17 human proteins recruited to MLOs related 
to viral infection. Networks were generated by STRING (http://string-db.org/) (accessed on 09 De-
cember 2022), which creates a network of associations based on predicted and experimentally vali-
dated information on the interaction partners of a protein of interest. In the corresponding network, 
the nodes correspond to proteins, whereas the edges show predicted or known functional associa-
tions. Seven types of evidence are used to build the corresponding network and are indicated by the 
differently colored lines: a green line—neighborhood evidence; a red line—presence of fusion evi-
dence; a purple line—experimental evidence; a blue line—co-occurrence evidence; a light blue 
line—database evidence; a yellow line—text mining evidence; and a black line—co-expression evi-
dence. Interactive maps of internal and external PPI networks can be found at: https://string-
db.org/cgi/network?taskId=bUhEOdNrRfH9&sessionId=bxLUgl7X6fKS (last accessed on 2 January 
2023) and https://string-db.org/cgi/network?taskId=beMc7yqPboZj&sessionId=bxLUgl7X6fKS (last 
accessed on 2 January 2023). 
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Figure 5. Internal (A) and external PPI networks (B) of 17 human proteins recruited to MLOs related
to viral infection. Networks were generated by STRING (http://string-db.org/) (accessed on 9
December 2022), which creates a network of associations based on predicted and experimentally
validated information on the interaction partners of a protein of interest. In the corresponding
network, the nodes correspond to proteins, whereas the edges show predicted or known functional
associations. Seven types of evidence are used to build the corresponding network and are indicated
by the differently colored lines: a green line—neighborhood evidence; a red line—presence of fusion
evidence; a purple line—experimental evidence; a blue line—co-occurrence evidence; a light blue
line—database evidence; a yellow line—text mining evidence; and a black line—co-expression
evidence. Interactive maps of internal and external PPI networks can be found at: https://string-db.
org/cgi/network?taskId=bUhEOdNrRfH9&sessionId=bxLUgl7X6fKS (last accessed on 2 January
2023) and https://string-db.org/cgi/network?taskId=beMc7yqPboZj&sessionId=bxLUgl7X6fKS
(last accessed on 2 January 2023).

This analysis revealed that the LLPS propensities of the proteins are related to their
intrinsic disorder level according to the following equations:

pLLPS = –0.0372(± 0.079) + 0.0140(± 0.0015) × PPIDRPONDR VSL2 (R2 = 0.8192) (1)

PSP score = –0.14(± 0.13) + 0.0141(± 0.0025) × PPIDRPONDR VSL2 (R2 = 0.6257) (2)

Since it is commonly accepted that intrinsic disorder represents one of the key drivers
of phase separation [14,15] and because LLPS predictions are also based on the structural
disorder status of proteins, it might seem obvious, if not recursive, to assess the correlation
between disorder and the condensation propensity of the 19 proteins in our data set. It
should be noted that our set contains many proteins for which the ability to form LLPS
is experimentally known (see Table 1 and Appendix A), and the comparison of the two
LLPS predictors reveals a different ability to capture phase separation behavior, at least
in the peculiar context of vir-MLOs. This different performance seems to be influenced
by the degree of disorder. Although the pLLPS and PSP scores are both reasonably well

http://string-db.org/
https://string-db.org/cgi/network?taskId=bUhEOdNrRfH9&sessionId=bxLUgl7X6fKS
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related to the PPIDR disorder score as provided by VSL2, the correlation between these
two measures of LLPS predisposition was much poorer, being formalized as follows:

pLLPS = 0.283(± 0.089) + 0.64(± 0.14) × PSP score (R2 = 0.5407) (3)
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 46 
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PONDR® VSL2, and probability of spontaneous liquid–liquid phase separation, pLLPS, evaluated by
FuzDrop (A) or phase separation protein score, PSP score, evaluated by PSPredictor (B).

Figure 6 and Table 1 show that the outputs of these two LLPS predictors mostly
agree for proteins with the highest and lowest propensity for phase separation, whereas
agreement is less prominent for proteins with intermediate to moderate propensities for
LLPS. Although eleven proteins were identified as LLPS drivers by FuzDrop, PSPredictor
found nine phase-separating proteins, and only one protein, i.e., fibrillarin from Nicotiana
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benthamiana (UniProt ID: B7VCB9), was predicted to be a phase-separating protein by
PSPredictor but not an LLPS driver by FuzDrop (see Table 1 and Figure 6).

2.4. Relationships between Disorder Content and Role in LLPS

In an attempt to ascertain a possible relationship between disorder content and role
as driver or client, we browsed the MLOsMetaDB (https://mlos.leloir.org.ar) [98]. This
database integrates and analyzes the information across three LLPS-dedicated databases,
namely PhaSePro [99], PhaSepDB [100], and DRLLPS [101]. It provides a consolidated and
curated set of experimentally validated phase-separating proteins enabling a customized
selection of different sets of proteins based on MLO location, database, and disorder content,
among other attributes. Most interestingly for the present study, MLOsMetaDB collates
curated experimental information on the role of the various proteins it contains as drivers,
clients, and regulators of LLPS. We, thus, browsed the database and searched for entries
corresponding to the set of proteins analyzed in this study. For each of them, we plotted
their annotated role in the database as a function of their disorder content, estimated by
PPIDRPONDR VSL2 (Figure 7A).

Although no data were found for five proteins in our set, the overall results point to
a trend whereby the most disordered proteins (i.e., those with a disorder content > 50%)
would serve as drivers, whereas clients and regulators would be more ordered (Figure 7A).
In Figure 7B, we focused on drivers and clients and assessed statistical significance between
the two groups. Despite the small set size (n = 8 for drivers and n = 5 for clients), a statis-
tically significant difference was found between the two data sets (p = 0.034, significance
level = 96.6% and a t-score, i.e., number of standard deviations away from the mean of
the t-distribution, of −2.14). These results support the hypothesis that disorder content
determines the behavior of a given protein as a driver or client, in agreement with previ-
ous conclusions based on the analysis of the much larger data set of MLOsMetaDB (see
Figure 4C in [98]).

2.5. Structural Organization and Biological Functions of the Eukaryotic Proteins Recruited
to Vir-MLOs

Below we provide a detailed description of the structural organization and main
biological functions of each of the eukaryotic proteins considered in this study. We empha-
size the connections between biological functions and the various predicted properties as
provided by the present study.

2.5.1. Human hnRNPs: FUS, TDP-43, and hnRNPA2

The family of the heterogeneous ribonucleoproteins (hnRNPs) includes several RNA-
binding proteins (RBPs) contributing to various aspects of nucleic acid metabolism, such as
regulation of alternative splicing, mRNA stabilization, and regulation of transcription and
translation [102]. Considered below are three members of this family that are part of the
data set used in this study: fused in sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43),
and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1, also indicated as
hnRNPA2). It was recently shown that FUS, TDP-43, and hnRNPA2 colocalize within
liquid droplets formed by the SARS-CoV-2 nucleocapsid protein (N) and viral RNA [66]. In
addition, the low-complexity (LC) domains of these proteins are able to phase separate,
and SARS-CoV-2 N partitions in vitro into these phase-separated LC domains [66]. Table 1
shows that the LLPS-prone regions predicted by FuzDrop overlap with or encompass the
long IDRs of these proteins, and all these regions contain MoRFs.

https://mlos.leloir.org.ar
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Figure 7. (A) Correlations between protein intrinsic disorder content, PPIDRPONDR VSL2, evaluated
by PONDR® VSL2, and the experimentally validated role in LLPS for each of the 19 proteins in
our data set, as retrieved by browsing MLOsMetaDB (https://mlos.leloir.org.ar, accessed on 4
January 2023). The continuous horizontal line corresponds to a 50% content in disorder. Proteins
predicted as drivers or as clients by FuzDrop (see Table 1) are marked as pD and pC, respectively.
(B) Statistical analysis based on Student’s t-test. Note that both Normality and Equal Variance tests
were successfully passed, indicating the suitability of the t-test to assess statistically significant
differences. The analysis was conducted using the online Georgiev G.Z., “P-value Calculator”
(https://www.gigacalculator.com/calculators/p-value-significance-calculator.php URL, accessed on
5 January 2023).

FUS. FUS has multiple biological functions, including RNA processing and regulation
of pre-mRNA splicing [103], control and regulation of the transcription of target genes [104],
and DNA repair [105]. FUS is the most disordered protein in the data set analyzed in
this study (see Table 1 and Figures 1–4). It is best known for its association with the
pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration
(FTLD) [106]. FUS is present both in the nucleus and the cytoplasm and can shuttle
between these two locations. While in the norm its predominant localization is the nucleus
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of neurons, in ALS and FTLD, FUS is mislocalized to the cytoplasm, where it forms
characteristic inclusions [107]. This cytoplasmic mislocalization of mutated FUS, which
causes aberrant SG biogenesis, is attributed to the fact that many ALS-associated mutations
affect the nuclear localization sequence (NLS), located in the C-terminal region of this
protein [107]. Mutated forms of FUS can bind to mRNAs, significantly altering target gene
expression [108] and/or alternative splicing [109]. In addition to RNA, FUS can bind to
several RNA-binding proteins from the hnRNP family [110]. Strikingly, SGs found in ALS
predominantly contain mutated forms of FUS, indicating that pathogenic FUS mutations
alter SG biogenesis [111].

FUS is a modular protein encompassing various functional modules that either include
or are included in at least one MoRF (see Table 1 and Figure 4A). These observations suggest
that the high interactability of this protein can be attributed to the presence of disorder-
based binding sites. In line with this hypothesis, STRING-generated PPI network centered
on FUS shows a dense network that includes 67 proteins connected by 523 interactions (see
Figure 3C). In line with the known capability of FUS to form liquid condensates [112], this
protein is predicted to have three long regions with high LLPS potential (see Table 1 and
Figure 3D,E).

TDP-43. TDP-43 is endowed with a multitude of functions that are mostly related to
RNA processing [113], including the regulation of pre-mRNA splicing, transcriptional reg-
ulation, and regulation of processing, stability, and transport of mRNA [114]. Furthermore,
TDP-43 is known to be engaged in numerous PPIs (see below), with examples of it most
notable binding partners being hnRNPA1, hnRNPA2, hnRNPB1, and FUS [115]. Further-
more, the C-terminal PrLD of this protein plays a crucial role in its self-aggregation [116].
In sporadic ALS, aggregated TDP-43 is found within insoluble protein aggregates in both
neurons and glial cells [117].

One of the best studied examples of LLPS is provided by the involvement of TDP-43
in the formation of SGs [118]. The association of TDP-43 with SGs is promoted by either
direct binding of TDP-43 to specific SG proteins, such as TIA1, or through interactions
with RNA [119]. Pathological aggregation of TDP-43 is linked to ALS and FTLD, and cell
cultures and pathological brain tissues contain detergent insoluble TDP-43 aggregates and
increased levels of TDP-43-containing SGs [119]. TDP-43 is capable of transitioning from
soluble droplet-like to solid-like aggregates, with these transitions being implicated in the
pathological aggregation and disease development [120].

TDP-43 contains four MoRFs indicating the capability of this region to serve as a major
“docking port” for its binding partners [121] (see also Table 1 and Supplementary Figure S1).
The binding promiscuity of TDP-43 is further witnessed by the highly connected PPI net-
work (average node degree is 29.5) generated for this protein by STRING (see Supplemen-
tary Figure S1) that contains 88 proteins connected by 1297 interactions. Furthermore, there
are two LLPS-prone regions in human TDP-43 (see Table 1).

hnRNPA2. hnRNPA2 is a highly and ubiquitously expressed protein involved in nu-
merous biological processes ranging from transcription to pre-mRNA processing, mRNA
translation, RNA nuclear export and subcellular location, and control of the stability of
mature mRNAs [122]. As such, it regulates the expression of a large number of genes.
Mutations in the PrLD of hnRNPA2 are associated with ALS and multisystem proteinopa-
thy [123]. These disease-associated mutations were shown to enhance the formation of
cytoplasmic inclusions, the intrinsic tendency of this protein to form self-seeding fibrils,
and the incorporation of hnRNPA2 into SGs [123,124].

Table 1 and Figure 4B show that the two Arg-Rich Motifs (RRMs) and the Prion-Like
Domain (PrLD) of hnRNPA2 contain MoRFs, indicating that intrinsic disorder in these
regions is important for the interactability of this protein. In line with this hypothesis,
Supplementary Figure S2 shows that the PPI network centered on hnRNPA2 includes
97 partners connected by 1861 interactions, indicating that, on average, each member of this
network is engaged in 38 interactions (note that hnRNPA2 itself interacts with 96 partners).
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2.5.2. MAVS/IPS1 and MDA5/IFIH1

MAVS. Mitochondrial antiviral signaling (MAVS) protein (also known as the interferon
promoter-stimulating factor 1, IPS1) plays a crucial role in host innate immune defense
against viruses [125–133]. It acts as an important adaptor protein in the toll-like receptor
(TLR)-independent recognition of pathogens [134]. The binding of double-stranded RNA
(dsRNA) or 5′-triphosphate RNA to cytosolic RNA-sensing receptors, RLRs (retinoid acid-
inducible gene I (RIG-I)-like receptors), initiate signaling pathway by promoting interaction
between the interferon (IFN)-inducible RNA helicases, such as RIG-I or MDA5 (melanoma
differentiation-associated protein 5), and the adaptor protein IPS1, ultimately resulting
in an antiviral response mediated by type I IFN production [132,135,136]. Interaction of
the adaptor IPS1 protein with the RIG-I and MDA5 helicases is driven by their caspase
recruitment domain (CARD) [130–133]. Although RIG-I and MDA5 share similar underly-
ing mechanisms, these helicases are involved in responses to different viruses (likely in a
dsRNA length-dependent manner [137]), with MDA5 being involved in the response to
norovirus and picornavirus, and RIG-I being mainly responsible for the response to IAV
and paramyxoviruses [138,139].

The numerous short functional motifs of this protein are located within or in close
proximity to MoRFs (see Table 1 and Figure 4C). Based on STRING analysis, MAVS is
involved in interaction with 86 proteins, with the resulting PPI network being characterized
by 786 edges (see Supplementary Figure S3). As per FuzDrop analysis (see Table 1), MAVS
contains five regions with strong LLPS potential.

MDA5. Melanoma differentiation-associated protein 5 (MDA5, also known as interferon-
induced helicase C domain-containing protein 1, IFIH1) is an innate immune receptor acting
as a cytoplasmic sensor of viral nucleic acids that activates a cascade of antiviral responses,
such as induction of pro-inflammatory cytokines and interferons (INF-α and INF-β) [140,141].
After binding to a viral nucleic acid, MDA5/IFIH1 interacts with the mitochondrial antiviral
signaling protein (MAVS/IPS1) and activates IKK-related kinases. Targets recognized by MDA5
include several viruses, including herpes simplex viruses (HSVs) [142], SARS-CoV-2 [143,144],
DENV [145], West Nile virus (WNV) [146], ZIKV [146], reovirus [147], and norovirus [148], as
well as dsDNA viruses, such as vaccinia virus [149].

It was shown that soon after infection with human RSV (hRSV, a negative-strand RNA
virus of the Pneumoviridae family, within the Mononegavirales order that causes bronchiolitis
in children), RIG-I and MDA5 colocalize with viral genomic RNA and N protein, and,
at a later step of infection, contribute to form large viral IBs [68]. Today we know that
these IBs, as in many negative-sense RNA viruses [31,48,150,151], are liquid and derived
from LLPS, but their name dates back to their discovery, which occurred well before
the role of LLPS in various biological processes and in the formation of liquid MLOs was
recognized. Although cytoplasmic IBs of various sizes found in late hRSV infections contain
all the components of the RSV polymerase complex, i.e., viral N, P, M2-1 (nucleocapsid-
associated transcription factor), and L (RNA-dependent RNA polymerase) proteins and
viral genomic RNA, the formation of such IB-like structures in hRSV-infected cells is driven
by N and P proteins alone [68,152]. In hRSV, IBs are heterotypic, complex MLOs exhibiting
functional and dynamic subcompartments. Indeed, newly synthetized viral mRNA and
the nucleocapsid-associated viral transcription factor M2-1 are condensed within specific
IB sub-compartments, referred to as IB-associated granules (BAGs), while viral genomic
RNA and N, L, and P proteins are excluded from IBAGs [153]. In the course of infection, N
is located in close proximity to MDA5 and MAVS within the hRSV IBs. As a result of the
N-driven localization of MDA5 and MAVS into these IBs, the innate immune response to
infection is modulated (e.g., expression of INF-β is significantly reduced) [68], indicating
that, in addition to acting as sites of viral RNA synthesis, cytoplasmic IBs clearly play a
role in controlling the innate immune response.

Curiously, of the four MoRFs found in this protein, two (residues 324–329 and 503–
515) are located within the helicase ATP-binding domain, with the two remaining MoRFs
being positioned within a long IDR connecting the second CARD domain to the helicase
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ATP-binding domain (see Table 1). It seems that intrinsic disorder confers high binding
promiscuity to MDA5/IFIH1, which, according to STRING (see Supplementary Figure
S4) forms a dense PPI network containing 96 proteins connected by 1162 interactions.
Furthermore, there are five LLPS-promoting regions in this protein (see Table 1).

2.5.3. Ras-GAP SH3 Domain-Binding Proteins 1 and 2 (G3BP1 and G3BP2)

The Ras-GTPase-activating protein binding protein (G3BP) family is relatively con-
served in eukaryotes [154], with mammals containing three highly homologous proteins,
G3BP1, G3BP2a, and G3BP2b, with the latter two being commonly known as G3BP2 [155].

G3BP1. G3BP1, which is the most studied member of the G3BP family, is a multifunc-
tional protein with a number of important roles in various biological processes, ranging
from cell proliferation to metastasis, apoptosis, differentiation, and RNA metabolism [156].
The roles of G3BP1 in RNA metabolism include regulation of the axonal mRNA translation,
ribosomal quality control, and regulation of RNA decay. G3BP1 also possesses an endori-
bonuclease activity that can be regulated by phosphorylation [157]. Furthermore, this ATP-
and magnesium-dependent helicase has crucial roles in innate immunity [158], acting as an
antiviral factor that can interact with viral proteins and regulate the assembly of SGs that
are crucially involved in the inhibition of viral replication [156]. Importantly, the capability
of G3BP1 to promote SG assembly is not limited to cases of viral infection, and this protein
is considered one of the key regulators of the SG biogenesis, promoting assembly of these
MLOs in response to various environmental stresses [159].

According to our analysis, G3BP1 contains nine MoRFs, which are spread through the
IDRs and RRM region (Table 1). Binding promiscuity of G3BP1 is illustrated by its dense
PPI network that includes 269 proteins connected via 5342 interactions (see Supplementary
Figure S5). Additionally, FuzDrop identified four regions with high potential to undergo
LLPS (see Table 1).

G3BP2. G3BP2 is a scaffold protein with an essential role in cytoplasmic SG formation,
acting as a platform for antiviral signaling [159]. G3BP2 is ubiquitously expressed and is
recruited into SGs [160].

Since this second member of the human G3PF family is 98% identical to G3BP1, it is not
surprising that these two proteins have a very similar domain organization [161]. Due to
alternative splicing, G3BP2 exists in two isoforms: G3BP2a (a 482-residue long “canonical”
isoform) and G3BP2b (a 449-residue-long isoform, which lacks residues 243–275). The N
protein of SARS-CoV-2 was found to interact with G3BP1 and G3BP2 and localize to SGs [70].
N attenuates SG formation by sequestering host G3BPs away from their physiological
interaction partners (e.g., Carpin-1 and Ubiquitin carboxyl-terminal hydrolase 10 (USP10)),
and can also rewire the mRNA-binding profile of G3BP1 [70].

Our structural predictions indicate that G3BP2 is slightly more disordered than G3BP1
(PPIDR values = 64.94 and 63.95%, respectively, see Table 1). Furthermore, G3BP2 contains
12 MoRFs (see Figure 4E and Table 1). This protein forms a PPI network containing 105
partners connected by 145 interactions (see Supplementary Figure S6) and has three LLPS-
prone regions (see Table 1). Note that due to the alternative splicing, one of the MoRFs
(residues 232–281) and one of the LLPS-prone motifs (251–322) are removed or distorted
in G3BP2b, suggesting that this isoform has expectedly both a different interactome and a
different LLPS behavior.

2.5.4. p53

Transcription factor p53 is a well-known tumor suppressor, exerting its protective
function inducing cell cycle-arrest or activating apoptosis in response to several cellular
stresses [162], including viral infections [163]. p53 displays a modular architecture, con-
sisting of a DNA-binding and a tetramerization domain, and of IDRs that account for
about 40% of the sequence of the entire protein [164]. These IDRs, which encompass a
negatively charged N-terminal transactivation domain (TAD), a short proline-rich region,
and a C-terminal regulatory domain, are functionally important. All the different functional
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domains coordinately achieve DNA binding and transactivation [165]. p53 has numer-
ous biological functions, is able to interact with many binding partners, can form both
homo-tetramers and isoform-based hetero-tetramers, and can also undergo LLPS and form
amyloid-like fibrils. This protein carries multiple PTMs and has several isoforms generated
by alternative splicing, alternative promoter usage, or alternative initiation of translation.
Therefore, p53 serves as a prototypical illustration of the protein structure–function con-
tinuum concept, where the ability of this protein to have a multitude of structurally and
functionally different states is determined by the existence of multiple proteoforms gen-
erated by various mechanisms [166]. Not by chance, p53 is targeted by the viral protein
machinery, as exemplified by the E6 oncoprotein from HPV that binds p53, impairing
its transcriptional activity and eventually inducing its degradation [167]. Furthermore,
p53 has been shown to form complexes with other tumor virus proteins, namely HSV40
T-antigen and E1B-58K adenovirus protein [168], thus providing a mechanistic explanation
for their oncogenic effect. Moreover, p53 was identified at the viral replication sites of SV40,
HSV-1, cytomegalovirus, and adenovirus [169–172]. Recently, the C-terminal DNA-binding
domain of HPV16 E2 protein was shown to undergo heterotypic condensation in vitro with
p53 [69]. In addition, transfection experiments revealed that E2 co-localizes with p53 in
the nucleus with a grainy pattern, with both proteins being found in chromatin-associated,
liquid-like foci likely resulting from LLPS [69]. In that study, p53 was proposed to serve
as a scaffold for biocondensation, while E2 was proposed to act as both a client and a
modulator. The authors proposed that biomolecular condensation of E2 with p53 enables
modulating HPV gene function, which is strictly dependent on the host cell replication and
transcription machinery [69].

p53 ranks fourth in terms of disorder content among the nineteen cellular proteins
herein studied. Indeed, Table 1 and Figure 4D indicate that more than 68% of p53 residues
are predicted to be disordered. The high disorder content of p53, readily inferable from
Figure 2D, is in line with the ability of this protein to interact with multiple partners,
reflected by the presence of eight MoRFs (see Figure 4D and Table 1). This protein forms a
PPI network containing 427 partners connected by 3677 interactions (see Supplementary
Figure S7) and has four LLPS-prone regions in agreement with its established ability to
undergo LLPS (see Table 1).

2.5.5. p65

Transcription factor p65, also known as nuclear factor NF-κB p65 subunit, is the most
investigated member of the NF-κB/Rel family of transcription factors [173], with important
activities in cell cycle regulation, cell differentiation, inflammatory and immune cell re-
sponse, and protection from apoptosis [174]. In mammals, this family includes Rel-A (p65),
Rel-B, c-Rel, NF-κB1 (p50/p105), and NF-κB2 (p52/p100) [174]. Since in the cytoplasm
NF-κB is bound to inhibitors of the IκB family, the activation of NF-κB factors and their
consequent translocation to the nucleus requires degradation of IκB [175,176]. Activation of
NF-κB factors can be triggered by various stimuli ranging from proinflammatory cytokines
to various growth factors, bacterial endotoxins, ultraviolet radiation, oxidants, viral pro-
teins, and double-stranded RNA. The p65 subunit is responsible for the strong transcription
activating potential of NF-κB [177].

During viral infection, NF-κB- and IRF-dependent signaling is induced by the ac-
tivation of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and
cytoplasmic nucleic acid receptors (RIG-I and MDA5) [178–180]. One of numerous strate-
gies utilized by RSV to overcome innate immune response is the inhibition of the NF-κB
activation by the RSV SH protein [181,182]. In RSV-infected cells, the NF-κB subunit p65
is rapidly sequestered into perinuclear intracytoplasmic puncta (>3 µm2 that increase as
infection progresses, eventually approaching a mean area of >22 µm2), which were shown
to correspond to RSV IBs formed via LLPS [71]. Sequestration of the transcription factor
NF-κB subunit p65 to IBs formed during viral infection is a common mechanism for human
and bovine RSVs. The process is driven by the viral N and P proteins and leads to an
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efficient suppression of the NF-κB p65 activation, thereby representing a novel mechanism
of immune evasion [71].

Figure 4F and Table 1 show that almost 64% of p65 residues are predicted to be
disordered, indicating that, like many transcription factors [183], p65 is a highly disordered
protein. It has 12 MoRFs and five LLPS-prone regions (see Table 1). Five MoRFs are located
within the Rel homology domain (RHD, residues 19–306), while the other MoRFs are found
within the three Transcriptional Activation Domains (TADs). The p65-centered PPI network
includes 323 partners connected by 5565 interactions (see Supplementary Figure S8).

2.5.6. Fibrillarin-2 and G3BP-like SG Nucleator from N. benthamiana

An interesting mechanism of virus-induced LLPS was described in N. benthamiana cells
infected with single-stranded, positive-sense RNA Pea enation mosaic virus 2 (PEMV2) [72].
Here, dense and poorly dynamic condensates containing PEMV2 p26, a protein required
for the trafficking of viral RNA through the vascular system of infected plants [184]), were
observed in the nucleolus of infected cells. These condensates, in addition to viral p26,
contain nucleolar protein fibrillarin (Fib2) and PEMV2 genomic RNAs [72]. The recruitment
of Fib2 into droplets and the ability to systemically traffic a virus vector requires p26′s
ability to phase separate, as both of these activities are suppressed in phase separation-
deficient p26 mutants [72]. Fib2, which is involved in the systemic trafficking of viral
ribonucleoprotein complexes [185,186], itself forms the dense fibrillar component of the
nucleolus [187], indicating that it acts as a scaffold responsible for recruiting client proteins
into the nucleolus [72]. Although there is no structural information on N. benthamiana Fib2,
its counterpart from Arabidopsis thaliana was shown to contain an N-terminal intrinsically
disordered glycine- and arginine-rich (GAR) domain (Fib2GAR) that is sufficient, per se, to
drive Fib2 phase separation [72]. In line with these data, we predicted three short IDRs and
a GAR domain (residues 1–83) in N. benthamiana Fib2 (see Table 1). Our analysis unveiled
the presence of three MoRFs located within the Fib2GAR, which, according to FuzDrop, also
shows high LLPS potential (see Table 1 and Supplementary Figure S9).

Furthermore, p26 was shown to partition into SGs [72], where it colocalizes with a
nuclear transport factor 2 (NTF2) protein endowed with an RNA-binding domain that
functions as a G3BP-like SG nucleator in plants [188], whose clustering after stress results
in SG assembly. Table 1 and Supplementary Figure S10 show that this G3BP-like SG
nucleator is predicted to have nine MoRFs and forms a dense PPI network with 410 partners
connected by 27,495 interactions. Furthermore, there are four droplet-promoting regions in
this protein (see Table 1).

2.5.7. p38MAPKα

The stress-activated p38 mitogen-activated protein kinase (p38MAPKα, also known
as Mitogen-activated protein kinase 14, MAPK14) is a central mediator involved in the
regulation of cellular inflammatory, stress responses, and cellular protein synthesis [189].
p38MAPKα (or p38α) is one of four members of the p38MAPK family (with the remaining
three being p38β, p38γ, and p38δ); it is activated by multiple extracellular stimuli and is
known to regulate more than sixty substrates [190].

Under stress conditions, p38MAPKα and MAPK2, another serine/threonine-protein
kinase that is activated by stress via p38MAPKα phosphorylation, were shown to play
important roles in post-transcriptional mRNA metabolism [77]. During RSV infection,
p38MAPKα is mostly sequestered within viral IBs, where it colocalizes with the viral M2-1
and P proteins [77]. Sequestration of p38MAPKα within IBs results in a dramatic decrease
in the cellular levels of MAPK2, with the remaining protein being mostly unphosphorylated,
inducing efficient inhibition of the downstream pathways [77].

From a structural point of view, human p38MAPKα is a globular protein containing an
N-terminal protein kinase domain (residues 24–308), which includes a TXY motif (residues
180–182) containing threonine and tyrosine residues whose phosphorylation activates the
MAP kinases. Although this protein is mostly ordered, it is predicted to have six short
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IDRs, with one of them acting as a droplet-promoting region (DPR, see Table 1). Since
p38MAPKα is a promiscuous kinase modulating the activities of multiple partners, it is not
surprising to find that this protein forms a very dense and highly connected PPI network
with 263 proteins and 3555 interactions (see Supplementary Figure S11).

2.5.8. FAK1

Focal adhesion kinase 1 (FAK1, also known as Protein-tyrosine kinase 2, PTK2) is a
cytoplasmic non-receptor protein-tyrosine kinase preferentially localized at cellular focal
contacts. FAK1 has a number of crucial roles in the regulation of angiogenesis, cell adhesion,
apoptosis, migration, proliferation, and spreading, as well as in the control of cell cycle
progression, formation, and disassembly of focal adhesions and cell protrusions, and the
reorganization of the actin cytoskeleton [191]. Among the important activities of FAK1
are regulation of integrin and growth factor signaling pathways [192]. This kinase is
most known for its role in many invasive and metastatic cancers, such as breast cancer,
lung cancer, neck cancer, ovarian cancer, and prostate cancer, where high FAK levels are
associated with poor prognosis.

FAK1 was shown to be involved in RABV infection via interaction with the viral P
protein, being one of the human interacting proteins isolated in a two-hybrid screen using
RABV P as a bait [73]. Importantly, FAK1 was shown to accumulate in Negri bodies during
RABV infection, and this recruitment is mediated by the interaction of P with FAK1 [73].

In terms of its architecture, FAK1 contains a central kinase domain flanked by long N-
and C-terminal domains [73]. While the N-terminal region is responsible for the regulation
of FAK1 activity, the C-terminal region includes a proline-rich IDR and the focal-adhesion-
targeting (FAT) domain, responsible for localizing FAK1 to focal adhesions [193].

Our analysis showed that FAK1 contains fourteen MoRFs, with two of them being
located within the FAT domain (see Table 1 and Supplementary Figure S12). It is likely
that the presence of such a large number of MoRFs dictates the binding promiscuity of
FAK1, which is predicted to form a PPI network containing 262 partners involved in 5082
interactions (see Supplementary Figure S12). With four DPRs and a pLLPS of 0.6417, FAK1
can be considered a LLPS driver. Surprisingly, however, the PSPredictor failed to recognize
FAK1 as a phase-separating protein.

2.5.9. TIAR1

Nucleolysin TIAR1 (T-cell intracellular antigen 1 (TIA-1)-related protein 1) is an RNA-
binding protein related to alternative pre-RNA splicing along with the formation, organiza-
tion, and function of SGs. In SG biogenesis, TIAR1 acts downstream of the stress-induced
phosphorylation of EIF2S1/EIF2A, promoting the recruitment of untranslated mRNAs to
cytoplasmic SGs [194].

The biogenesis of canonical and non-canonical SGs induced by a variety of pharma-
cological stresses is efficiently suppressed in cells infected by EBOV, a single-stranded
negative-sense RNA virus belonging to the Filoviridae family within the Mononegavirales
order, responsible for severe human hemorrhagic fever. Suppression of SG formation is
mediated by the EBOV protein 35 (VP35) [74] through the sequestration of SG-specific
host proteins, including TIAR1. Furthermore, VP35 was found to colocalize with TIAR1 in
cytoplasmic aggregates, which are likely to be viral inclusion bodies [74,195]. Therefore,
akin to many other viruses [196], EBOV is capable of blocking SG biogenesis and subverting
the SG components for its own benefits.

Structurally, TIAR1 is characterized by the presence of three RNA recognition motifs,
RRM1-3, that have different functions. The binding of TIAR1 to target RNA depends on RRM2,
which is both necessary and sufficient for this interaction, whereas RRM1 and RRM3 contribute
to the affinity of the interaction with RNA [197]. According to our computational analyses,
TIAR1 contains three MoRFs, one of which is embedded within RRM3, and one DPR (see
Table 1 and Supplementary Figure S13). The protein has at least nine phosphorylation sites.
Furthermore, its Lys122 can be either ubiquitinated or acetylated (see Supplementary Figure S13).
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It seems that disorder-based interaction sites and PTMs are related to the high interactivity of
this protein that forms a dense and highly connected PPI network including 22 proteins and
6457 interactions (see Supplementary Figure S13).

2.5.10. HSP70-1

Heat shock 70 kDa protein 1A (HSP70-1) is the major inducible heat shock protein
chaperone with well-established roles in protein homeostasis and regulation of various
cellular processes, ranging from protein translation to protein folding, intracellular traffick-
ing, and degradation. Beyond its activity as a chaperone preventing protein misfolding
and aggregation [198], HSP70-1 is also involved in the regulation of apoptosis, cell cycle
regulation, innate immunity, and signal transduction [199,200]. Therefore, it is not surpris-
ing that host chaperones, including HSP70-1, are in high demand during viral infection,
as viruses utilize them for controlling the correct folding of the massively produced viral
proteins and also for interfering with the regulation of fundamental cellular processes
controlled by chaperones. In line with these considerations, it was established that HSP70-1
is commonly recruited by viruses, being involved in different stages of the life cycle of
different viruses [201–204], and that many DNA, positive-strand RNA, and negative-strand
RNA viruses are capable of specifically inducing HSP70-1 expression [201,205]. Although
this enhanced HSP70-1 expression mostly has proviral effects, e.g., leading to elevated
expression of viral genes, in some cases, it can confer antiviral protection [206–210], and in
other cases can show both positive and negative regulatory effects [211]. Proviral effects
have been documented in the case of cells infected by RABV, in which HSP70-1 expression is
enhanced, and in which this chaperone accumulates within NBs [28]. The sequestration of
HSP70-1 within NBs is driven by the interaction with RABV N protein [212]. Furthermore,
HSP70-1 was also found in purified nucleocapsids and in purified RABV particles [212].
The proviral effect of HSP70-1 during RABV infection is supported by the fact that the
down-regulation of HSP70-1 expression is accompanied by the inhibition of different steps
of the viral cycle [212]. Likewise, HSP70 was found to be associated with the nucleocapsid
of various paramyxoviruses, including canine distemper virus (CDV) [213] and MeV, where
it was shown to stimulate viral transcription and replication [204] via interaction with the
C-terminal intrinsically disordered domain of MeV N protein [203].

Human HSP70-1 is a multidomain protein containing a nucleotide-binding domain
and a substrate-binding domain joined by a flexible linker. Table 1 and Supplementary
Figure S14 show that human HSP70-1 contains several short and two long IDRs. Although
four MoRFs and three DPRs are all located within the disordered C-tail (residues 490–641),
this protein is heavily decorated by a multitude of various PTMs, such as phosphorylation,
methylation, ubiquitination, and acetylation. Since HSP70-1 is a molecular chaperone, it
is expected to be a promiscuous binder. In line with this, HSP70-1 lies at the center of a
network of 4876 interactions among 214 binding partners (see Supplementary Figure S14).

2.5.11. RAB11

RAB11 is a small, globular protein belonging to a large family of GTPases called Ras-
related in brain (RAB), with 44 subfamilies encoded in the human genome [214]. Normally,
RAB11 is the main regulator of endocytic vesicle trafficking, used by the cell both to acquire
endocytosed material and to export vesicles transited through the Golgi apparatus to the
cell surface. The activity of each RAB depends on its association with GTP.

RAB11 was recently shown to play a key role in the viral cycle of IAV, a member of the
Orthomyxoviridae family [215]. A peculiar aspect of IAV virions is the host-derived plasma
membrane envelope surrounding its segmented genome consisting of eight negative-
sense single-stranded RNA segments. Each segment forms a rod-shaped ribonucleoprotein
particle (vRNP). In addition to RNA, all vRNPs contain several copies of viral nucleoprotein
(NP) and an RNA-dependent RNA-polymerase molecule.

The life cycle of IAV includes translocation of the vRNPs to the nucleus, where tran-
scription and replication of the viral RNA genome, nuclear export and assembly of the
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vRNPs near the host cell membrane, and release of new virions from the host cell take
place. The two most obscure steps are genome transport to the budding sites and genome
assembly, the latter made critical by the segmented nature of the IAV genome [215]. The
exact mechanism by which each virion contains an entire set of vRNPs in the correct as-
sortment is not clear [215]. It has been recently observed that, once out of the nucleus,
vRNPs accumulate into fluid, membrane-less droplets, in which RAB11 also colocalizes.
These cellular inclusions, which can be considered viral factories, enlarge as the infection
progresses [58]. Furthermore, as viral factories approach the plasma membrane from the
nucleus, they tend to become larger and contain more vRNPs, until they reach the final
arrangement of eight segments, in a spatiotemporal process of maturation. Viral inclusions
appear to be closely associated with endoplamsic reticulum (ER) tubules, which likely
guide their movements [58].

Recent findings cast doubt on whether RAB11-GTPase has a necessary function in
driving exocytosis of forming IAV virions to budding sites. On the contrary, some data are
in favor of a complete disruption of RAB11 natural function, which might be dampened
or annulled through its recruitment to viral inclusions. Consider in this regard also the
fact that RAB11 was found to be redirected towards the ER during IAV infection [216]. It
remains to be discovered whether RAB11 plays an active role in the formation of inclusions,
although its nature as a single-domain, globular protein, along with its low propensity to
LLPS, suggest a role as client.

Table 1 and Supplementary Figure S15 show that human RAB11 possesses two MoRFs,
one DPR, and multiple PTM sites. This protein interacts with 96 partners and the resulting
PPI network has 485 edges (see Supplementary Figure S15).

2.5.12. PP1

The human protein serine/threonine phosphatase type 1 (PP1) regulates important
cellular functions ranging from cell division to glycogen metabolism, muscle contractility,
and protein synthesis [217]. It is also involved in the regulation of ion conductance and long-
term synaptic plasticity and embryonic development. PP1 has an overall globular structure,
except for a C-terminal disordered region of ~30 residues and short loops connecting
secondary structure elements (see Table 1). PP1 was found to have a key role in the life
cycle of human RSV [75]. While this phosphatase has no propensity to form coacervates
on its own, it behaves as a client of viral P protein coacervates, in cytoplasmic IBs formed
in infected cells. Cellular IBs contain viral N and P proteins, viral polymerase, and the
viral transcription factor M2-1, and are sites where viral RNA synthesis occurs [153].
Within the cellular inclusions, the viral transcription factor M2-1 is juxtaposed to PP1 and
thus de-phosphorylated, a modification that causes its activation as an anti-terminator of
viral transcription.

How does PP1 serve viral replication? PP1 is a pleiotropic enzyme. The ability of
PP1 to catalyze about one third of all dephosphorylation reactions occurring inside a
mammalian cell depends on its ability to interact with over 200 different cell adaptors and
regulatory proteins, often IDPs/IDRs, while retaining high specificity [218,219]. In line with
these observations, the STRING-generated PPI network of this protein includes 190 partners
(see Supplementary Figure S16). The viral P protein acts both as a condensation scaffold
and an adaptor that allows further expansion of the PP1 substrate specificity to include
the viral M2-1 protein. In RSV, P protein contains a well-conserved ‘RVxF’ motif required
for the interaction with PP1. On the other hand, the degenerate RKPLVSF motif, with the
consensus KxxVxF, is also shared among the P proteins of all Pneumoviridae members. This
suggests that the P proteins of pneumoviruses may also interact with PP1 to regulate the
phosphorylation of their M2-1 proteins [75]. The sharing of this molecular mechanism
suggests a certain probability of interspecific spillover, and this knowledge might represent
an important contribution to the design of new broad-spectrum antiviral drugs.
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2.5.13. CAD

Carbamoyl-phosphate synthase (CAD) is a giant 1.5 mDa protein composed of six
identical protomers. Each protomer is divided into domains that catalyze reactions from
the de novo biosynthetic pathway of pyrimidine nucleotides starting from bicarbonate.
The de novo pathway produces uridine 5-monophosphate (UMP), from which all other
pyrimidine nucleotides are obtained through several reactions catalyzed by individual
catalytic domains linked by IDRs and acting in a coordinated manner [220]. This type of
architecture is found in the CAD of all metazoans and is also found in human glutamine-
dependent CAD.

It is known that CAD localizes in the cytoplasm of resting cells, and growth and
proliferation stimuli are transmitted via the MAP kinase-mediated phosphorylation of its
Thr-456. This PTM is followed by the translocation of a small fraction of CAD into the
nucleus, suggesting a specific but yet to be elucidated function.

The role of CAD was explored in relation to EBOV infection. Like other members of
the Filoviridae family, upon infection, EBOV forms cytoplasmic IBs, where transcription
and replication take place. The minimal element for the formation of IBs is the viral
nucleoprotein (N) that also acts as a scaffold for CAD recruitment [76]. The latter relies on
interaction between N and the first N-terminal globular domain of CAD with glutaminase
activity. It is likely that EBOV exploits the catalytic activity of this cell enzyme to fulfill
its replicative needs and provide enough pyrimidines for replication and transcription of
the EBOV genome. This hypothesis is consistent with the observation that pyrimidine
synthesis inhibitors are effective against EBOV in vitro, underlining the importance of the
pyrimidine pathway for this virus [221,222].

Human glutamine-dependent CAD contains multiple functional domains bearing
various enzymatic activities. Therefore, it is not surprising that it is predicted to be a mostly
ordered protein. Nevertheless, data shown in Table 1 and Supplementary Figure S17 indi-
cate that human CAD contains multiple IDRs, most of which are relatively short, with the
exception of two long IDRs (residues 360–402 and 1807–1923). Despite its overall relatively
high level of order, CAD is predicted to have nine MoRFs and one droplet-promoting
region (DPR, see Table 1 and Supplementary Figure S17). Therefore, CAD belongs to the
category of LLPS client proteins (it is characterized by a low pLLPS score of 0.2011, but
contains a DPR). According to the STRING analysis, human CAD is positioned at the
center of a broad PPI network containing 119 partners connected by 1358 interactions (see
Supplementary Figure S17). In line with the ability of CAD to undergo phosphorylation,
our analysis revealed that CAD contains multiple sites of different PTMs, such as phospho-
rylation, ubiquitination, and acetylation (see Supplementary Figure S17), suggesting that at
least some biological functions are PTM-controlled.

2.5.14. OGT

The O-linked N-acetylglucosamine transferase 110 kDa subunit (OGT, also known
as UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase 110 kDa subunit)
catalyzes the transfer of a single N-acetylglucosamine (OGN) from UDP-GlcNAc to a serine
or threonine residue in proteins destined for extracellular export. OGT is an ER-resident
protein that glycosylates the Thr residue located between the fifth and sixth conserved
cysteine of EGF-like folded domains. The post-translational addition of OGN to target
proteins regulates various cellular processes, including signal transduction, transcription,
translation, and stress response.

A variety of stresses that alter proteostasis can activate an integrated stress response
(ISR) in mammalian cells. ISR is an adaptive mechanism that involves the phosphory-
lation, through various kinases, of eIF2a translation initiation factor. This results in the
blockade of protein translation, promoting intracellular accumulation of ribonucleoproteins
and untranslated mRNA that eventually condense into SGs. It is noteworthy that the
formation of SGs requires the addition of OGN to various ribosomal proteins that form
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ribonucleoprotein complexes [223–226]. SGs are rapidly dissolved in the cytoplasm after
stress release [227–229], but can promote apoptosis when they persist [230].

Although the role of SGs in viral infections is still unclear, data are accumulating
to support the hypothesis that their formation is altered or counteracted during viral
infections, which could represent a persistent stress for the cell. OGT has been found in IBs
formed in the cytoplasm of RSV-infected cells. We hypothesize that this does not depend
on its intrinsic ability to form condensates and rather likely depends on OGT recruitment
by viral scaffold proteins through structural motifs that are not known yet [77].

The structure of OGT has not yet been determined experimentally, and AlphaFold2
predicts a predominantly globular structure for it (see Figure 2S), making it the most
ordered protein among the proteins in our data set. FuzDrop identified one short droplet-
promoting region (see Table 1 and Supplementary Figure S18). Although it is predicted to
possess 16 short IDRs (see Table 1), it does not contain any MoRFs. However, according to
the STRING analysis (see Supplementary Figure S18), OGT is expected to be involved in
interaction with 188 partners forming a dense PPI network with 1609 interactions.

3. Discussion

The work presented here is based on a manually curated list of 19 cellular proteins
derived from an unbiased search with respect to their disorder content and LLPS propensity.
The data set includes either host proteins recruited to viral factories or proteins responsible
for the recruitment of viral proteins within cellular MLOs, with both types of liquid-like
compartments having been referred to as “viral infection-related MLOs” (vir-MLOs). In
spite of its small size, the data set enabled us to consider a broad cross-section of possible
behaviors in different virus families. Computational analysis of the data set revealed that
cellular proteins found in vir-MLOs have, on average, a high disorder content and are
enriched in intrinsically disordered binding sites (i.e., MoRFs), as well as in sites of various
PTMs. In agreement, these proteins are highly promiscuous and typically characterized
by very well developed and dense PPI networks, as unveiled by STRING-based analysis.
Their functions are mainly, though not exclusively, related to SG biogenesis, innate immune
response, and viral nucleic acid sensing.

A correlation was found between the content of intrinsic disorder in the analyzed
proteins and their propensity to undergo LLPS. Although there is a well-known correlation
between the intrinsic disorder status of a protein and its LLPS propensity [14], the actual
disorder–LLPS relationship is not very obvious. In fact, not all IDPs are unequivocally
engaged in LLPS, and not all proteins undergoing LLPS are highly disordered. This is
exemplified by our results that show that although most cellular proteins recruited to
vir-MLOs are enriched in disorder, a few of them are not, which is per se a novel and non-
predictable finding. Furthermore, the relationship between LLPS and disorder has never
been systematically analyzed before for cellular proteins recruited to vir-MLOs. Therefore,
the observations reported in this study contribute to the enlargement of our knowledge in
the field and pave the way towards new investigations.

With few exceptions, when the disorder content is >50%, the vir-MLO proteins of our
data set were found to fall in the category of bona fide drivers according to experimental
evidence collated in MLOsMetaDB [98]. A complementary observation is that more ordered
cellular proteins tend instead to be clients or even regulators of viral factories. This role is
enabled by their strong promiscuity, evidenced by their ability to interact with multiple
adaptor molecules that modulate their physiological function (see, for example, RAB11
and PP1). It is, therefore, tempting to hypothesize that the higher the disorder content,
the higher the chances that a phase-separating protein behaves as a driver. It should be
emphasized that the role of (co)-driver or client/regulator we herein proposed based on
disorder content has to be taken with caution, considering that vir-MLOs form in the
context of viral infection, which can significantly affect protein concentration, thus adding
extra complexity to the system. In particular, the ability to drive phase separation is not just
an intrinsic property of a protein, but it also depends on its concentration and environment
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(temperature, pH, partners, etc.) [13]. In addition, one should keep in mind that some
proteins may act as drivers in some MLOs but behave as clients in others, and that the
current classification used in MLOsMetaDB is susceptible to evolve, as Orti and co-workers
emphasized [98]. It is, nevertheless, conceivable that viral proteins participating in vir-
MLOs may play roles as clients and regulators, thus taking advantage of the scaffolding
abilities provided by cellular proteins. This might be regarded as good news, because it
would provide a conceptual basis for designing new antiviral drugs aimed at interfering
and abrogating a specific viral function, without altering the intrinsic LLPS behavior of
host cell proteins.

Finally, we would like to emphasize that the emerging trend, whereby cellular proteins
with a more globular structure tend to be clients of viral factories, cannot be generalized
at this stage, considering the size of the data set, the latter being intrinsically limited by
the availability of reported examples in the literature. Future enlargements of the data
set will rely on new examples of host cell proteins colocalizing in vir-MLOs that will be
reported in the literature. For instance, candidates to be included in this data set are proteins
found in SGs or involved in the NF-κB pathway [65,66], as well as specific kinases and
phosphatases expected to be client proteins of IBs formed by MeV N and P proteins [48,67],
whose participation in vir-MLOs has been only hypothesized and not yet experimentally
demonstrated [48,67]. We anticipate that in the future, the list of cellular proteins recruited
to vir-MLOs will grow fast and we hope that the present work will stimulate future studies
aiming to experimentally assess this trend. Considering that many proteins that undergo
LLPS in cellula also phase separate in vitro, with the resulting condensates recapitulating
those observed in vivo, it should be possible for any given cellular protein recruited to
vir-MLOs to experimentally assess its proposed role as client or (co)-driver by combining
information on its predicted/experimental disorder content with in vitro LLPS assays with
purified proteins.

4. Materials and Methods
4.1. Data Set Generation

The data set of bona fide cellular proteins that are either recruited to virus-specific
condensates or are found in cellular MLOs into which viral proteins colocalize was gener-
ated manually through literature data mining. Specifically, research articles pertaining to
the viral condensates resulting from LLPS were retrieved by using the following search
criteria in PUBMED: (“virus” OR “viral”) AND (“condensates” OR “liquid” OR “LLPS” OR
“phase separation”). Then, a list of cellular proteins shown to be recruited to liquid viral
condensates or of cell proteins found in cell MLOs recruiting viral proteins was generated.
This resulted in a relatively short list of targets whose sequences, in FASTA format, were
retrieved from UniProt [231].

4.2. Predictions of LLPS Propensity

Phase separation predictions were conducted using the FuzDrop web server (https:
//fuzdrop.bio.unipd.it/predictor) (last accessed on 11 January 2023), which performs
a sequence-based identification of both droplet-promoting and aggregation promoting
regions on the query sequence (UniProt code [231] or FASTA file as an input) [232–234].
The FuzDrop output provides a probability score of spontaneous LLPS (pLLPS ≥ 0.60 for
droplet drivers) and an interactive graph with droplet-promoting probabilities (pDP) per
single residue. Proteins with pLLPS < 0.60 yet with at least one droplet-promoting region
are classified as droplet–client proteins, as they partition into droplets interacting with
a partner. Below this graph, a scheme represents the droplet promoting regions (DPRs)
with blue boxes, defined as a window of ≥10 residues with pDP ≥ 0.60. Analogously,
aggregation hotspots, defined as part of droplet-promoting regions with large binding
mode diversity (Sbind ≥ 2.20), are shown as orange boxes. These regions have a minimum
length of five residues with a gap of a maximum of two residues. The droplet-promoting
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and aggregation promoting regions are then displayed by Mol* [235] on the structure
predicted with AlphaFold2 [236] and stored in the AlphaFold2 database [237].

The propensity of a query protein for phase separation was also analyzed by the
PSPredictor (http://www.pkumdl.cn:8000/PSPredictor/) (last accessed on 9 January 2023),
which is a sequence-based tool for the prediction of potential phase separation proteins
(PSPs) [238]. PSPredictor takes up to 100 proteins in FASTA format and generates PSP
score(s) for query protein(s) in a tabulated form showing PSP scores ranging from 0 to 1
and information on the PSP status of a query protein in a “Yes/No” form. A query protein
can be considered a potential phase separating protein if its PSP score is ≥0.50.

4.3. Disorder Predictions

Disorder predictions were run using an in-house modified version of the MeDor disor-
der metaserver [87]. This version includes all the predictors implemented in MobiDB-lite
3.0 [239]. MobiDB-lite uses eight different predictors, namely GlobPlot [240], three versions
of eSpritz (DisProt, eSpritz-D; NMR, eSpritz-N; and X-ray, eSpritz-X), two versions of
IUPred (long and short), and two versions of DisEMBL (465 and hotloops) to derive a con-
sensus that is refined to remove short disordered regions and keep only those that consist of
at least 20 consecutive residues predicted to be disordered. In addition, MeDor aggregates
the results of four additional predictors, i.e., DorA, MoreRONN [241], FoldIndex [242], and
FoldUnfold [243] (see below).

The MeDor output displays the MobiDB-lite consensus (referred to as Consensus
MobiDB) and two other types of global consensus: Consensus 1, which corresponds to
regions predicted to be disordered by more than half of the implemented predictors, and
Consensus 2, which corresponds to regions consistently predicted to be disordered by all
the implemented predictors. The eight individual predictors included in MobiDB-lite 3.0, as
well as the four additional disorder predictors implemented in MeDor, are described below.

GlobPlot is a web server for the identification of regions of globularity and disorder
within protein sequences that is based on a running sum of the propensity for amino acids
to be in an ordered or disordered state [240]. ESpritz is an ensemble of protein disorder
predictors, which are based on bidirectional recursive neural networks and trained on three
different “flavors” of disorder, X-ray disorder (regions with missing electron density in
crystallographic structures), DisProt disorder (regions/proteins annotated as IDR/IDPs
in the DisProt database [82,244]), and NMR mobility (data sets calculated using the Mobi
server based on a simple algorithm to find regions with different conformations among
all models in an NMR ensemble) [245,246]. IUPred2A predicts whether a protein (or
protein region) is structured or disordered based on the estimation of the total pairwise
inter-residue interaction energy. This approach is based on the assumption that the lack
of structure in IDPs/IDRs is defined by their inability to form sufficient stabilizing inter-
residue interactions. Since amino acid sequence features of long and short IDRs are
known to be different, the long option of IUPred2A predicts global structural disorder
that encompasses at least 30 consecutive residues of the protein, whereas the short option
of IUPred2A uses a parameter set best suited for predicting short IDRs [92,93]. Finally,
DisEMBL is another computational tool for the prediction of IDRs within a protein sequence,
which is based on artificial neural networks trained for predicting several definitions of
disorder from protein crystal structures, such as hotloops (i.e., loops with a high degree of
mobility as determined from Cα temperature factors (B factors)) and missing coordinates
in X-Ray structure as defined by remark465 entries in PDB [247].

DorA is an unpublished predictor developed in the AFMB lab that uses the size
and abundance of hydrophobic clusters in the Hydrophobic Cluster Analysis (HCA)
plot [248,249] to predict disorder. MoreRONN [250] is based on a Bio-Basis Function
Neural Network. It relies on a set of curated disordered sequences and it does not need
any other information (e.g., amino-acid characteristics or secondary structure predictions),
which makes it a solid and fast predictor. FoldIndex distinguishes globular and intrinsi-
cally disordered proteins based on the ratio of net charge versus hydropathy. It computes
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the charge/hydropathy ratio using a sliding window along the protein and provides a
per-residue (dis)order score [242]. FoldUnfold calculates the expected average number of
contacts per residue from the amino acid sequence alone, where the average number of
contacts per residue was computed from a data set of globular proteins [243]. A region is
considered to be natively unfolded if the expected number of close residues is less than 20.4
for its amino acids and the region is greater or equal in size to the averaging window [243].

Beyond aggregating disorder predictions, the output of MeDor also displays low-
complexity regions (as predicted by SEG [251]), transmembrane regions (as predicted
by Phobius, http://phobius.sbc.su.se/index.html, last accessed on 9 December 2022),
secondary structure elements (as predicted based on the StrBioLib library of the Pred2ary
program [252]), and a HCA plot [248,249] (see Appendix A).

Intrinsic disorder predisposition analysis of all the proteins was also conducted using the
high-efficiency web-based disorder predictor Rapid Intrinsic Disorder Analysis Online (RIDAO)
designed to facilitate the application of protein intrinsic disorder analysis in genome-scale
structural bioinformatics and comparative genomics/proteomics [253]. RIDAO aggregates
the outputs of six well-known disorder predictors: PONDR® VLXT [88], PONDR® VL3 [89],
PONDR® VLS2 [90], PONDR® FIT [91], IUPred2A (Short), and IUPred2A (Long) [92,93], and
also provides mean disorder predictions for query proteins by averaging the outputs of these
six predictors. Individual predictors included in RIDAO are briefly described below.

PONDR® VLXT utilizes different neural networks to separately analyze N- and C-
terminal regions and the internal region of the sequence of a query protein. Each of these
neural networks is trained using a specific data set encompassing only the amino acid
residues of that specific region, and their input features include selected compositions and
profiles from the primary sequences. The final prediction combines the outputs of the
individual predictors in their respective regions, with the transition from one predictor
to another being accomplished by computing the average scores of the two predictors
for a short region of overlap at the boundary between the two regions [88]. Although
PONDR® VLXT may underestimate the occurrence of long disordered regions in proteins
and is not the most accurate disorder predictor, this tool was shown to be sensitive to
the local sequence peculiarities, and, therefore, to have significant advantages in finding
potential disorder-based binding sites [95,254]. PONDR® VL3 was specifically designed
to predict long IDRs. This predictor employs ten neural networks that use different
sequence attributes as inputs and selects the final prediction by simple majority voting [89].
PONDR® VSL2 combines neural network predictors for both short (<30 residues) and
long (≥30 residues) IDRs, with each individual predictor being trained using the data
sets of sequences with that specific length. The final prediction is a weighted average
determined by a second layer predictor. PONDR® VSL2 is the most accurate stand-alone
disorder predictor from the PONDR family [90]. PONDR® FIT is a consensus artificial
neural network (ANN) prediction method (a meta-predictor) that uses the outputs of
several individual disorder predictors, such as PONDR® VLXT [88], PONDR® VL3 [89],
PONDR® VLS2 [90], PONDR® FIT [91], IUPred [93], FoldIndex [242], and TopIDP [255].
PONDR® FIT is characterized by an improved prediction accuracy over a range of 3 to 20%
with an average of 11% compared to the single predictors, depending on the datasets being
used [91].

In this study, in addition to generating composite disorder profiles for each query
protein, the predicted percentage of intrinsically disordered residues (PPIDR, i.e., percent
of residues with disorder scores exceeding 0.5) was calculated based on the outputs of
PONDR® VLS2, which is characterized by high predictive power, as evidenced by the
results of the recently conducted ‘Critical assessment of protein intrinsic disorder predic-
tion’ (CAID) experiment, where this tool was found to rank as predictor #3 among the
43 evaluated methods [79].

Disorder-based binding sites, also known as molecular recognition features, MoRFs,
i.e., short disordered regions that fold upon interaction with binding partners [95,96], were
identified from the D2P2 output, in which MoRFs are predicted using ANCHOR [256].

http://phobius.sbc.su.se/index.html
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Since D2P2 does not have data for Fib2 (UniProt ID: B7VCB9), MoRFs for this protein were
predicted by IUPred2A using the option ANCHOR2 [97].

The global disorder status of query proteins was assessed by CH–CDF analysis [84,257–259]
that combines the outputs of two binary predictors, the charge-hydropathy (CH) plot [260,261]
and the cumulative distribution function (CDF) plot [257,261,262], to create a CH–CDF phase
space, where proteins are classified as ordered (proteins predicted to be ordered by both binary
predictors), putative native “molten globules” or hybrid proteins (proteins predicted to be
ordered/compact by CH, but disordered by CDF), putative native coils and native pre-molten
globules (proteins predicted to be disordered by both methods), and proteins predicted to be
disordered by CH-plot, but ordered by CDF.

4.4. Generation of Functional Disorder Profiles

The potential disorder-related functionality of query proteins was analyzed using the
D2P2 platform, which is a database of predicted disorder for proteins from completely
sequenced genomes (http://d2p2.pro/) (last accessed on 9 December 2022) [94]. D2P2 uses
the outputs of ESpritz [246], PONDR® VLXT [88], PONDR® VSL2B [78,89], PrDOS [263],
PV2 [94], and IUPred [92,93] to show disorder predispositions of query proteins and to
evaluate their agreement. The platform also shows the positions of functional SCOP
domains [264,265] predicted by the SUPERFAMILY predictor [266]. The functional disorder
profile also includes information on the location of predicted disorder-based binding sites
(molecular recognition features, MoRFs) identified by the ANCHOR algorithm [267] and
various PTMs assigned using the outputs of the PhosphoSitePlus [268].

4.5. Analysis of Protein Interactivity

The Search Tool for the Retrieval of Interacting Genes, STRING, http://string-db.
org/ (last accessed on 9 December 2022) [269], was used to acquire information on the
interactome of the target eukaryotic proteins. The STRING output represents a network of
predicted and experimentally validated protein–protein interactions using seven types of
evidence, such as co-expression evidence, co-occurrence evidence, neighborhood evidence,
database evidence, experimental evidence, fusion evidence, and text mining evidence [269].
Protein–protein interaction networks of Fibrillarin 2 (UniProt ID: B7VCB9) could not be
obtained as STRING does not have any information on this protein.

Accession numbers. UniProt IDs: P35637, Q7Z434, P22626, P04637, Q9UN86, Q04206,
Q13283, Q13148, Q84JH2, Q9BYX4, B7VCB9, Q05397, Q01085, P0DMV8, P62491, P62136,
P27708, Q16539, and O15294.

5. Conclusions

In conclusion, our work constitutes the first building block towards the generation
of a database meant to gather experimental or predictive data on LLPS propensity and
disordered nature of cellular proteins recruited to vir-MLOs. Work to generate such a
publicly available database is in progress. We expect that such a database will be rapidly
expanding and hope that the present study will foster future efforts aiming to decipher
general rules and molecular patterns underlying the function of these cellular proteins,
thus paving the way towards the rational design of innovative antiviral strategies.
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Appendix A

The hydrophobic cluster analysis (HCA) provides a graphical representation of the
sequence that enables identifying disordered regions [249]. Although HCA was not orig-
inally conceived to predict disorder, it is very useful for identifying disordered regions.
HCA outputs can be obtained from https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/
portal.py#forms::HCA (accessed on 1 December 2022). HCA provides a two-dimensional
helical representation of protein sequences in which hydrophobic clusters are plotted along
the sequence. Glycine residues are represented as diamonds, prolines as stars, threonines
as squares, and serines as squares containing a dot. Acidic and basic residues are in red and
in blue, respectively, and hydrophobic residues are shown in green. Disordered regions are
recognizable as they are depleted in (or devoid of) hydrophobic clusters. HCA also enables
identifying short regions with propensity to fold as they look like regions locally enriched
in small hydrophobic clusters within regions otherwise devoid of such clusters.
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