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1 Introduction

The strongest form of the AdS/CFT correspondence states that every conformal field theory

(CFTd) is dual to a theory of quantum gravity living in a higher-dimensional anti-de Sitter

space (AdSd+1). For a generic CFT, the dual theory of quantum gravity at low energies

will look nothing like semi-classical Einstein gravity. One of the most interesting questions

in the context of holography is then to understand which CFTs — when interpreted as

theories of quantum gravity in AdS — have a semi-classical Einstein gravity limit.

The most straightforward constraint emerging from the AdS/CFT dictionary for a

semi-classical bulk is that the CFT should have a large number of degrees of freedom,

usually parameterized by N . Large N in the field theory implies a semi-classical bulk

since its inverse scales as a positive power of the Planck length in AdS units: N−1 ∼
(`P/`AdS)# for # > 0. This is the bulk expansion parameter controlling AdS-scale quantum

gravitational effects.1

Besides large N , a semi-classical theory of gravity in anti-de Sitter space has many uni-

versal features that must be encoded in any putative dual CFT. To explore the emergence

of gravity from field-theoretic degrees of freedom, it is natural to try to reproduce these uni-

versal features by implementing some additional assumptions on a generic large-N CFT.

There has been tremendous progress in this direction for the case of three-dimensional

gravity [1–14], throughout which large central charge and a sparse low-energy spectrum

play a prominent role. These powerful methods for the most part rely on the fact that

all stress tensor interactions in the CFT are captured by the Virasoro block of the iden-

tity, which is assumed to dominate. The success of this particular approach is related to

the topological nature of gravity in three dimensions, which precludes obvious generaliza-

tions to higher dimensions. Nevertheless, it is a compelling problem to reproduce features

of higher-dimensional AdS gravity purely from the CFT. A small sample of work in this

direction includes [15–26].

In this paper, we will focus on a technical tool that has received little exposure in

higher dimensions: modular invariance. For 2d CFTs, modular invariance can be used

to precisely determine how sparse the spectrum should be to reproduce the thermal phase

structure of 3d gravity [10] (see [27] for a similar consideration in supersymmetric theories).

For theories obeying this sparseness constraint, the Cardy formula [28] — which is usually

only valid asymptotically as ∆/c → ∞ — has an extended regime of validity down to

energies ∆ ∼ c. This precisely matches the bulk phase structure since the black holes

begin dominating the ensemble at ∆ ∼ c.
The relevance of modular invariance in higher-dimensional holographic CFTs has been

much less explored. In [29, 30], it was shown that modular invariance of the torus par-

tition function implies the existence of an asymptotic formula that correctly reproduces

1To have a theory that looks like Einstein gravity at low energies, we also need an expansion parameter

that can suppress higher-spin fields. The ’t Hooft coupling in gauge theory usually plays the role of this

expansion parameter. Interestingly, like in the D1–D5 duality, certain features of Einstein gravity can be

reproduced without explicitly invoking this assumption. We will not explicitly implement any constraints

on our field theories with the purpose of decoupling higher-spin fields.
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the Bekenstein-Hawking entropy of the dual black brane. This formula is the higher-

dimensional generalization of the Cardy formula and only holds in the limit of large energy

for generic CFTs. Holographic CFTs, on the other hand, must have an extended range of

validity of this formula as implied by the bulk phase structure. The goal of this paper is

to further exploit modular invariance and place constraints on CFTs such that they have

this extended range of validity. We also want to match the precise phase structure of grav-

ity, which is much richer than in two dimensions and exhibits both quantum and thermal

phase transitions. One of the key challenges that we will face is that the functional form

of the vacuum energy in higher dimensions is not uniquely fixed by conformal invariance,

although we will discover several nontrivial constraints due to modular invariance.

We can summarize our results as follows. A general CFT on Td will have an extended

Cardy formula and a universal phase structure if and only if the partition function is

dominated by the vacuum contribution when quantizing along any cycle but the shortest

one. Proving this will require using the modular constraints on the vacuum energy alluded

to above. From here, we will consider large-N theories and exhibit distinct sets of necessary

and sufficient sparseness conditions on the spectrum to achieve this vacuum domination.

In analyzing calculable theories that satisfy these necessary and sufficient conditions,

and which therefore have a universal free energy, we are led to the construction of symmet-

ric orbifold theories in higher dimensions. Symmetric orbifolds have been analyzed in great

depth in two dimensions [31–37], and play an explicit role in the D1–D5 duality [38–40].

Still, they have not explicitly appeared in holographic dualities in higher dimensions nor,

to the best of our knowledge, have they been constructed. For their construction, we use

a similar procedure as in two dimensions to build a modular invariant partition function.

This includes both untwisted and twisted sectors. For large-N symmetric product orb-

ifolds, the density of states of the untwisted sector is shown to be slightly sub-Hagedorn,

whereas for the twisted sector it is precisely Hagedorn. Saturation of the necessary and

sufficient conditions for universality is then guaranteed by assuming that the subextensive

parts of the vacuum energy vanish. This assumption constrains the choice of seed the-

ory we can pick. This is somewhat of a loss of generality compared to two dimensions

but can be expected by the increasing richness of CFTs in higher dimensions. Provided

we pick the seed accordingly, the symmetric orbifolds reproduce the phase structure of

higher-dimensional AdS gravity: they have an extended regime of validity of the Cardy

formula and a Hagedorn transition at precisely the same temperature as the Hawking-Page

transition in the bulk.

The paper is organized as follows. We start in section 2 with a general discussion of

CFTs on d-dimensional tori and modular invariance. In section 3 we summarize the phase

structure of toroidally compactified gravity in anti-de Sitter spacetime. These two sections

set the stage for the meat of the paper. Section 4 is dedicated to a detailed discussion of

the necessary and sufficient conditions that are required to have a universal free energy.

The implementation of these conditions is then explored in section 5. We discuss the

construction of orbifold theories on d-dimensional tori and show that symmetric product

orbifolds have a universal free energy. We conclude with a discussion and outlook in

section 6. The appendices contain additional material, including extensions to the case with
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angular momentum and calculations translating the results from the canonical partition

function to the microcanonical density of states.

2 Generalities of CFTd

We now introduce some of the basic technology of modular invariance that we will use to

derive our general CFT results. For more details see [29, 30]. In this paper we will study

conformal field theories defined on a Euclidean d-torus Td. We fix the metric on this torus

to be

ds2 = dx2
0 + dx2

1 + · · ·+ dx2
d−1 (2.1)

with identifications

(x0, x1, . . . , xd−1) ∼ (x0, x1, . . . , xd−1) +
d−1∑
i=0

niUi . (2.2)

where Ui are vectors defining the torus Td and the ni are integers. These vectors can be

conveniently organized in a matrix as

U = (U0 · · · Ud−1)T =


L0 θ01 · · · θ0,(d−2) θ0,(d−1)

0 L1 · · · θ1,(d−2) θ1,(d−1)
...

...
. . .

...
...

0 0 · · · Ld−2 θ(d−2),(d−1)

0 0 · · · 0 Ld−1

 (2.3)

and define a d-dimensional lattice of identifications. This matrix contains the lengths of the

cycles along its diagonal and the θij capture all possible twists of the torus Td. Modular

invariance of the torus partition function for conformal field theories is a powerful constraint

on the theory. The invariance can be stated as the action of large conformal transformations

on the lattice spanned by the set {Ui}. These large conformal transformations form the

group SL(d,Z) and act on the matrix U in (2.3) by left multiplication. SL(d,Z) is generated

by two elements [41]

S =


0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

(−1)d+1 0 0 . . . 0 0

 , T =


1 1 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

 . (2.4)

They can be shown to generate any pairwise swap and a twist along any direction. For even

d, we quotient by the center of the group {−1, 1} to obtain PSL(d,Z), but for simplicity

we will universally refer to the group as SL(d,Z). Using scale invariance to unit-normalize

one of the cycle lengths shows that we have (d− 1)(d+ 2)/2 real moduli captured by the

matrix U .

In spacetime dimension greater than two, modular transformations generically change

the spatial background of the theory (i.e. change the Hilbert space), making it difficult
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to relate the low-lying states to the high-lying states on a fixed background. However, as

discussed in [29] there exist two choices of torus which allow for a high-temperature/low-

temperature duality to be considered. The first is the background S1
β × S1

L × Td−2
L∞

, where

L∞ � β, L, β2/L. In this case by appealing to extensivity in the large directions we have

the approximate invariance

logZ(β) ≈ (L/β)d−2 logZ(L2/β) . (2.5)

This can be transformed into an exact high-temperature/low-temperature duality by pass-

ing to a density defined by dividing logZ(β) by the volume of the large torus as it decom-

pactifies, but we will not pursue that here.

To produce an exact invariance on a compact manifold, we can also consider a special

torus given by S1
β × S1

L × S1
L2/β × · · · × S

1
Ld−1/βd−2 , for which

Z(β) = Z(Ld/βd−1) . (2.6)

This invariance is obtained by an SL(d,Z) transformation and a scale transformation. It

will play an important role in our CFT analysis.

To deal with the case of a general torus where there is no high-temperature/low-

temperature duality, we will find it useful to define some notation. For a d-dimensional

torus of side lengths L0, L1, . . . , Ld−1, where β = L0, we will denote the partition function

quantized in an arbitrary channel as:

Z[Md] = Z(Li)Mi =
∑

e−LiEMi . (2.7)

Z[Md] denotes the Euclidean path-integral representation of our partition function, which

treats space and time democratically. The next form of the partition function picks di-

rection i as time and gives a Hilbert space interpretation of the path integral. Since the

spatial manifold will change depending on which direction is chosen as time, we use the

notation Mi to explicitly denote the spatial manifold. It is defined as Md = Mi × S1
Li

.

Brackets will always imply a Euclidean path-integral representation while parentheses will

imply a Hilbert-space representation.

2.1 Review of higher-dimensional Cardy formulas

Now we will provide a derivation of the higher-dimensional Cardy formula on an arbitrary

spatial manifold S1
β × X. We will only need the result for a spatial torus, but we will

keep the discussion general. The fact that modular transformations generically change

the Hilbert space of the torus partition function will not provide an obstruction, although

we will see in the resulting formulas that our high-temperature partition function and

asymptotic density of states refer to the vacuum energy on a different spatial background

in general.

We assume our theory to be local, modular invariant, and to have a spectrum of real

energies on the torus that is bounded below by an energy that is discretely gapped from

the rest of the spectrum. At asymptotically high temperature β/V
1/(d−1)
X → 0, we can
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use extensivity of the free energy to replace our spatial manifold X with a torus Td−1 of

cycle lengths L1 ≤ L2 ≤ · · · ≤ Ld−1 and no twists, with VX = L1 · · ·Ld−1 ≡ VM0 . We

therefore have

Z[S1
β ×X] = Z(β)X ≈ Z(β)M0 =

∑
e−βEM0 ≈ ec̃VM0

/βd−1
(2.8)

at asymptotically small β for some thermal coefficient c̃ > 0. This thermal coefficient is

not a priori related to any anomalies except in two dimensions. Considering a quantization

along Ld−1 gives us

Z(Ld−1)Md−1
=
∑

e−Ld−1EMd−1 = e−Ld−1Evac,Md−1

∑
e−Ld−1(E−Evac)Md−1 . (2.9)

For d = 2 in a scale-invariant theory, β becoming asymptotically small is equivalent to

Ld−1 becoming asymptotically large, since only the ratio Ld−1/β is meaningful. However,

for d > 2 we have the additional directions Li which may prevent us from interpreting the

quantization in the Ld−1 channel as a low-temperature partition function which projects

to the vacuum. To deal with this, consider the limit Ld−1 → ∞ where we indeed project

efficiently to the vacuum:

lim
Ld−1→∞

logZ(Ld−1)Md−1

Ld−1
= −Evac,Md−1

. (2.10)

Using Z(β)M0 = Z(Ld−1)Md−1
gives us Evac,Md−1

= −c̃VMd−1
/βd. We are therefore able

to extract the scaling of the vacuum energy as Evac,Md−1
∝ −VMd−1

/βd as β → 0. The

proportionality coefficient, which we define as εvac, is εvac = c̃. Furthermore, notice that

Evac,Md−1
is clearly independent of Ld−1, so this result is general even though we took the

limit Ld−1 →∞ to obtain it. In the general case of arbitrary Ld−1 we can therefore write

for β → 0

Z(Ld−1)Md−1
= ec̃VM0

/βd−1
∑

e−Ld−1(E−Evac)Md−1 . (2.11)

Again equating with Z(β)M0 , we see that the excited states must contribute at subleading

order, since the vacuum contribution is sufficient to obtain Z(Ld−1)Md−1
= Z(β)M0 at

leading order in small β. The concern over the directions Li and poor projection to the

vacuum alluded to earlier is therefore not a problem at leading order. We are finally

left with

S(β) = (1− β∂β) logZ(β)X ≈ dVXεvac/β
d−1 (2.12)

for the high-temperature entropy of a modular-invariant CFT on an arbitrary spatial back-

ground X.

Now we consider the implications for the density of states:

ρ(Es) =
1

2πi

∫ α+i∞

α−i∞
dβ Z(β)Xe

βEs (2.13)

=
1

2πi

∫ α+i∞

α−i∞
dβ
(
e−εvacVX/β

d−1
∑

e−βE
)
eεvacVX/β

d−1+βEs , (2.14)
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for some α > 0. Performing a saddle-point on the part of the integrand outside of the

parentheses and evaluating the integrand on this saddle βs ∝ E
−1/d
s gives us the higher-

dimensional Cardy formula:

log ρ(Es) =
d

(d− 1)
d−1
d

(εvacVX)
1
dE

d−1
d

s . (2.15)

The saddle point implies βs → 0 as Es →∞. To ensure that this saddle point is valid, we

need to check that the part of the integrand in the parentheses, which we call Z̃X(β), does

not give a big contribution on the saddle:

Z̃X(βs) = e−εvacVX/β
d−1
s
∑

e−βsE . (2.16)

From high-temperature (βs → 0) extensivity (2.8), we know that we can write this as

Z̃X(βs) ≈ e−εvacVX/β
d−1
s ec̃VX/β

d−1
s = 1 , (2.17)

where we used c̃ = εvac (and one notices c̃ is independent of spatial background by replacing

the high-temperature partition function on the given manifold with the high-temperature

partition function on a torus of spatial lengths L1, . . . Ld−1 with VM0 = VX). Our saddle-

point approximation is therefore justified, and we have the higher-dimensional Cardy for-

mula as advertised.

In particular, considering the spatial background to be X = Sd−1 gives the asymptotic

density of local operators by the state-operator correspondence. In the rest of this paper

we will only be interested in the CFT on Td.

2.2 Review of vacuum energies in CFT

2.2.1 Normalization of vacuum energy

In a generic field theory, one is always free to shift the Hamiltonian by an arbitrary constant.

This therefore shifts what we call the vacuum energy. Indeed, the well-known Casimir effect

demonstrates that derivatives with respect to spatial directions dEvac/dLi are the physical

observables, leaving an ambiguity in the normalization of Evac. Additional structure, such

as supersymmetry or modular invariance, disallows such an ambiguity. Even in a purely

scale-invariant theory one can fix the normalization of the vacuum energy. Scale invariance

requires that energies, and in particular the ground state energy, scale as inverse lengths

under a rescaling of the spatial manifold: Evac(λL1, λL2, . . .) = λ−1Evac(L1, L2, . . .). This

fixes the shift ambiguity in Evac.

2.2.2 Subextensive corrections to the vacuum energy

The higher-dimensional Cardy formulas involves the vacuum energy density on S1×Rd−2,

which by its relation to the extensive free energy density in a different channel is negative

and has a fixed functional form. If we compactify more directions and make them compa-

rable to the size of the original S1, then we will in general get corrections to the asymptotic

formula. For two-dimensional CFT there is only one spatial cycle so no such corrections

– 7 –
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Figure 1. The functional form of f(L1/L2) in the vacuum energy (defined in (2.18)) of a free

boson in 2 + 1 dimensions on a two-torus T2 with sides L1 and L2. As can be seen in the plot,

f(L1/L2) is positive and monotonically increasing.

can enter. To capture the essence of what happens, let us consider a three-dimensional

CFT on S1
β×S1

L1
×S1

L2
with L1 < L2. The low-temperature partition function will project

to the vacuum state on S1
L1
× S1

L2
, which can be parameterized as

Evac,L1×L2 = −εvacL2

L2
1

(1 + f(L1/L2)) . (2.18)

Let us define y = L1/L2. The function f(y) is capturing all of the corrections beyond the

asymptotic formula, so we have f(0) = 0 and f(y → ∞) = −1 + y3. In general, f(y) is a

nontrivial function of y. Later in the text we will derive some positivity and monotonicity

constraints on f(y) by using modular invariance, but for now let us exhibit its functional

form for the free boson theory, shown in figure 1.

In higher dimensions, there are more independent ratios that can be varied, and in

general the corrections beyond the asymptotic formula are given by some nontrivial function

of d − 2 dimensionless ratios yi = L1/Li which for simplicity we will often write as f(y)

with y = (y2, y3, . . . , yd−1).

We will also find it useful to consider the parameterization of the vacuum energy in

arbitrary dimension as

Evac = −εvacVd−1

Ldmin

(
1 + f̃(y)

)
, (2.19)

which always has the smallest cycle in the denominator. The key difference between f̃(y)

and f(y) is that it is possible for f̃(y) to be identically zero for all values of its arguments,

whereas this is not the case for f(y) as discussed in three dimensions above. We will find,

for example, that gravity implies a vacuum energy structure with f̃(y) = 0 up to 1/N

corrections. We will often just write f̃(y) = 0, by which we mean the equality up to 1/N

corrections.
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3 Phase structure of toroidally compactified AdS gravity

In this section we will recap what is known about the phase structure of gravity in AdS

with a toroidally compactified boundary. This phase structure is easy to deduce for pure

gravity without spontaneous breaking of translation invariance, which is the case we will

restrict ourselves to. The most remarkable feature of this phase structure is the absence

of any nontrivial finite-size corrections to the vacuum energy and free energy, up to sharp

phase transitions as circles become comparably sized. In other words, the function f̃(y)

defined in the previous section vanishes for all values of its arguments. As usual there will

be nonzero contributions suppressed by 1/N . Note that weakly coupled theories, including

e.g. N = 4 super Yang-Mills, do not realize this sort of structure [42]. We will not consider

the possibility that the singular solutions used in [42] are relevant for the phase structure.

An argument against them is as follows. Assume that such a singular solution provides the

vacuum energy of the theory under multiple compactifications. By the higher-dimensional

Cardy formula, there must therefore exist a black brane with higher entropy than AdS-

Schwarzschild. Any such black brane should be modular S-related to the singular solution.

But that means the “black brane” will be horizonless and singular, and if e.g. α′ effects

resolve the singularity and pop out a horizon, then the entropy should be proportional to

some power of α′. But the ground state energy is a boundary term and is not proportional

to α′. This is inconsistent, by the Cardy formula which relates the two.

We consider our theory at inverse temperature β on a spatial torus of side lengths

Li. The Euclidean solutions with the correct periodicity conditions are the toroidally

compactified Poincaré patch, black brane, and d− 1 AdS solitons

ds2
pp = r2dx2

0 +
dr2

r2
+ r2dφidφ

i , (3.1)

ds2
bb = r2

(
1− (rh/r)

d
)
dx2

0 +
dr2

r2 (1− (rh/r)d)
+ r2dφidφ

i , (3.2)

ds2
sol,k = r2dx2

0 +
dr2

r2 (1− (r0,k/r)d)
+ r2

(
1− (r0,k/r)

d
)
dφ2

k + r2dφjdφ
j , (3.3)

all of which have the identification x0 ∼ x0 +β. There are d−1 AdS solitons since there are

d − 1 circles that are allowed to pinch off in the interior. This means that we are picking

supersymmetry-breaking boundary conditions around all cycles, which is motivated by

maintaining S-invariance of our thermal partition function.

The parameter rh (r0,k) is fixed by demanding the x0 (φk) circle caps off smoothly:

rh =
4π

dβ
, r0,k =

4π

dLk
. (3.4)

Considering the ensemble at finite temperature and zero angular velocity, we need to com-

pare the free energy of these solutions:

Fbb = −
rdhVd−1

16πG
, Fsol,k = −

rd0,kVd−1

16πG
, Fpp = 0 . (3.5)
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The Poincaré patch solution never dominates so we will not consider it in what follows.

We will also assume that the AdS soliton of minimal energy gives the vacuum energy of

the theory under a toroidal compactification [43].

3.1 Thermal phase structure

We will first consider the thermal phase structure, which can be illustrated by fixing a

spatial torus and varying the inverse temperature β. The AdS soliton with the cycle of

smallest length Lmin pinching off has minimal free energy and dominates all the other ones.

We will denote this as the k = min soliton. Thus, the two relevant solutions are this k =

min soliton and the black brane. These two exhibit a thermal phase transition at β = Lmin

with the black brane dominating the ensemble at high temperature β < Lmin. The energy

at the phase transition is

E
∣∣
rh= 4π

dLmin

= −∂β logZ = −(d− 1)Evac , (3.6)

where Esol,k=min = Fsol,k=min = Evac is the vacuum energy of the theory.

3.2 Quantum phase structure

A very important new feature in the phase structure of higher-dimensional toroidally com-

pactified AdS spacetime is the existence of quantum phase transitions. These are phase

transitions that can occur at zero temperature and are therefore driven by quantum fluctu-

ations and not thermal fluctuations. They occur as we vary the spatial cycle sizes and reach

a point where two spatial cycle sizes coincide and are minimal with respect to the rest.

Let us call these cycle lengths L1 and L2 and pass from L1 < L2 to L1 > L2. In this case

the vacuum energy exhibits a sharp transition from the k = 1 soliton to the k = 2 soliton.

This is precisely the behavior that fixes f̃(y) = 0, as alluded to earlier. To exhibit a phase

transition in the free energy instead of the vacuum energy, we need to restrict ourselves to

the low-temperature phase β > Lmin where the black brane does not dominate.

4 Necessary and sufficient conditions for universality

In this section we would like to highlight a few difficulties in generalizing a discussion from

two dimensions to higher dimensions. Let us first consider a two-dimensional CFT with

cycle lengths β and L. For such a theory, vacuum domination of the torus partition function

in channel L, for arbitrary cycle size L > β, is necessary and sufficient for universality of the

partition function for all β. To see this, we write vacuum domination in the L channel as

Z(β)L = Z(L)β =
∑
Eβ

exp (−LEβ) ≈ exp (−LEvac,β) = exp

(
πcL

6β

)
. (4.1)

Due to the fact that the vacuum energy for two-dimensional CFT is uniquely fixed by

conformal invariance, we get a universal answer for the partition function. In the β channel,

this form is that of an extensive free energy, and gives the Cardy formula in the canonical

ensemble S(β) = πcL/(3β).
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In higher dimensions, vacuum domination of the torus partition function in one channel

seems neither necessary nor sufficient for extensive Cardy growth in a different channel.

This is because the vacuum energy on a generic torus is not uniquely fixed by conformal

invariance. But it turns out we can use SL(d,Z) invariance to show that a slightly modified

version of the statement is valid. In particular, we will show that vacuum domination in all

channels except that of the smallest cycle is necessary and sufficient for universality of the

partition function for all β. Before we begin, we will prove some useful properties of the

function f(y) which characterizes the subextensive corrections to the vacuum energy and

will play a starring role in our general CFT and symmetric orbifold analyses. Sections 4.1

and 4.2 will contain results about generic modular-invariant CFTs. Sections 4.3 and 4.4

will then specify to large-N theories.

4.1 Modular constraints on vacuum energy

We now utilize the connection between the vacuum energy and the excited states implied

by modular invariance, as first pointed out in appendix A of [29]. We will find that,

somewhat surprisingly, modular invariance constrains all subextensive corrections to the

vacuum energy to have a fixed sign and monotonic behavior.

Consider a spatial torus with side lengths L1 ≤ · · · ≤ Ld−1 and take the quantization

along β at low temperature, which efficiently projects to the vacuum:

lim
β→∞

logZ(β)M0

β
= −Evac,M0 =

εvacVM0

Ld1
(1 + f(y)) . (4.2)

We also consider the d− 2 quantizations L2, . . . , Ld−1, which give

lim
β→∞

logZ(Li)Mi

β
=
εvacVM0

Ld1
(1 + f(y \ yi, 0)) + lim

β→∞

1

β
log

(∑
E

e−Li(E−Evac)Mi

)
, (4.3)

where y\yi is the vector y without the yi-th element. The reason for the different arguments

of f is that in the Li quantization, instead of the ratio L1/Li we have L1/β = 0 as β →∞.

The second term on the right-hand-side does not vanish since the logarithm of the shifted

partition function becomes linear in β at large β due to extensivity.

We want to analyze the monotonicity properties of f(y) with respect to its d − 2

arguments. To analyze any given ratio yi, we can equate the quantization along β with the

quantization along Li. This gives

εvacVM0

Ld1
(f(y)− f(y \ yi, 0)) = lim

β→∞

1

β
log

(∑
E

exp (−Li(E − Evac)Mi)

)
. (4.4)

By unitarity, the right-hand-side is manifestly non-negative, so we conclude

f(y)− f(y \ yi, 0) ≥ 0 . (4.5)

Furthermore, the right-hand-side of (4.4) is a monotonically decreasing function of Li. This

means we can differentiate the left-hand-side with respect to Li and obtain

f(y)− f(y \ yi, 0) + Li∂Lif(y) ≤ 0 =⇒ ∂Lif(y) ≤ 0 =⇒ ∂yif(y) ≥ 0 , (4.6)
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where the first implication follows from the previous positivity property. The second im-

plication follows from the fact that increasing Li is the same as keeping all ratios yj fixed

except for the ratio yi = L1/Li, which is decreased. In particular, this means that the

function increases under any possible variation. Furthermore, since f(0) = 0 this means

that f(y) ≥ 0. These facts will be used heavily in what follows.

Modular invariance can also be used to constrain the behavior of the vacuum energy

under spatial twists. By re-interpreting the spatial twist as an angular potential in a

different channel, we can see that the vacuum energy cannot increase due to a spatial

twist. The proof goes as follows. Consider the following partition function in the low-

temperature limit with twist θkj between two spatial directions k and j:

lim
β→∞

logZ(β; θkj)M0

β
= −Evac(L1, . . . , Ld−1; θkj) . (4.7)

Since the spatial directions are twisted, we may quantize along direction k, in which case

the twist becomes an angular potential:

lim
β→∞

logZ(Lk; θkj)Mk

β
= lim

β→∞

1

β
log

(∑
E

exp (−LkEMk
+ iPjθkj)

)
. (4.8)

The introduction of θkj only adds phases to the partition function in this channel, which

decreases its real part. The vacuum energy is always manifestly real, so when equating the

two quantizations it will be the case that the partition function with angular potential will

evaluate to a real number. This means that the vacuum energy, which is negative, will be

strictly greater or equal to its value without twists. This will be used in section 5.

4.2 Necessary and sufficient conditions

With the properties of the vacuum energy in hand, we are now ready to show that vacuum

domination in all but the smallest channel is necessary and sufficient to have a universal

free energy.

First we show sufficiency. We consider an ordering β < L1 ≤ · · · ≤ Ld−1. Vacuum

domination in the channels Li means

Z(Li)Mi = exp (−LiEvac,Mi) . (4.9)

As we saw in the previous section, the vacuum energy is not uniquely fixed for higher-

dimensional CFTs. However, equating the d− 2 quantizations lets us extract the vacuum

energy:

Z(L1)M1 = Z(L2)M2 = · · · = Z(Ld−1)Md−1
(4.10)

=⇒ −L1Evac,M1 = −L2Evac,M2 = · · · = −Ld−1Evac,Md−1
. (4.11)

Since Evac,Mi is independent of Li, we conclude that Evac,Mi is linear in the cycle lengths

Lj 6=i. The β dependence is then fixed by dimensional analysis, and the coefficient is fixed

by matching onto the asymptotic case of small β:

Evac,Mi = −εvacVMi/β
d. (4.12)
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Thus, we see that vacuum domination in all but the smallest channel determines the

functional form of the vacuum energy. We can now use Z(β)M0 = Z(Li)Mi to get

Z(β)M0 = exp
(
εvacLiVMi/β

d
)

= exp
(
εvacVM0/β

d−1
)
. (4.13)

This is just the Cardy formula. In a regular CFT it holds only asymptotically in small β,

but here we have shown that vacuum domination in the spatial channels Li is sufficient to

make it valid for all temperatures β < Li. For β > L1 we again have a universal expression

for Z(β)M0 , which by assumption is given by the contribution of the vacuum only.

Showing that vacuum domination in all but the smallest cycle is necessary for uni-

versality requires the properties of f(y) proven in the previous subsection. Consider the

quantization along an arbitrary channel of cycle size Li

Z(Li)Mi =
∑

e−LiEMi = e−LiEvac,Mi

∑
e−Li(E−E0)Mi . (4.14)

In two spacetime dimensions, it is the vacuum contribution in this channel that gives

Cardy behavior in the β channel and therefore universality. The excited states contribute

as positive numbers, and would ruin the Cardy behavior. Therefore it is necessary that

they not contribute, i.e. necessary that we are vacuum dominated in this channel. In

higher dimensions, one may worry that the excited state contributions cancel against the

non-universal pieces of the vacuum energy, precluding the necessity of vacuum domination.

However, by the positivity of f(y) this can never happen. Thus, to get the correct Cardy

behavior in the β channel it is necessary that the excited states do not contribute. This is

true for arbitrary channel i. We conclude that it is necessary to be vacuum dominated in

all but the smallest cycle.

It is interesting that for a universal free energy it is necessary and sufficient to have

vacuum domination in all but the smallest channel. One could have suspected that explicit

assumptions about the subextensive corrections to the vacuum energy would have to enter,

but they do not.

We can state an equivalent set of necessary and sufficient conditions. To obtain a

universal free energy for all β on an arbitrary rectangular torus, it is necessary and sufficient

to have vacuum domination in the largest spatial cycle, with the vacuum energy taking

the universal form with no subleading corrections. In fact, by using the non-negativity

and monotonicity of the subextensive corrections, we can state the necessary and sufficient

condition as vacuum domination in the largest spatial cycle, with the vacuum energy on a

square torus of side length L equal to εvac/L.

In the rest of this section we will restrict attention to large-N theories.

4.3 Sparseness constraints without assuming f̃(y) = 0

It is difficult to make progress in the case where we make no explicit assumptions about

the functional form of the vacuum energy. To achieve vacuum domination in all but the

smallest channel of a large-N theory, we can bound the entire spectrum on an arbitrary

spatial torus of side lengths L1 ≤ L2 ≤ · · · ≤ Ld−1 as

ρ(∆M0) . exp (L1∆M0) , ∆M0 ≡ (E − Evac)M0 . (4.15)
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This is a necessary and sufficient condition, although it is possible that it is implied by a

more minimal set of necessary and sufficient conditions. To see how this condition arises,

one writes the partition function as

Z(β)M0 = exp (−βEvac)
∑

exp (−β∆M0) ρ(∆M0) (4.16)

and bounds the density of states as (4.15) for the entire spectrum. At large N , with

a vacuum contribution that scales exponentially in N , this suppresses all excited state

contributions as soon as β > L1. This means all cycles except the smallest will be vacuum-

dominated, as required. We give another method of proof for vacuum domination in

appendix A which restricts the sparseness bound to only the light states, but requires an

additional assumption on the field theory.

We can also show that it is necessary and sufficient to solve the problem on a spatial

square torus, i.e. that the free energy is universal for all β on a spatial square torus of side

length L. The necessary direction is obvious. To show sufficiency, consider the quantization

along L:

Z(L)Md−1
= exp

(
−LEvac,Md−1

)∑
∆

exp
(
−L∆Md−1

)
= Z(β)M0 ≈ exp

(
εvacL

d−1/βd−1
)
. (4.17)

where the final expression is by assumption of universality. The only way to satisfy this

equality is for the contribution of the excited states and the subextensive corrections to

the vacuum energy in the L channel to vanish. In particular we are vacuum dominated in

the L channel. Taking arbitrary Ld−1 > L keeps us vacuum dominated since it is at even

lower temperature:

Z(Ld−1)Md−1
≈ exp

(
εvacLd−1L

d−2/βd−1
)
. (4.18)

In the β channel this gives us the ordinary Cardy formula with no subextensive corrections,

and in another L channel we have

Z(L)Md−2
= exp

(
−LEvac,Md−2

)∑
∆

exp
(
−L∆Md−2

)
= Z(Ld−1)Md−1

≈ exp
(
εvacLd−1L

d−2/βd−1
)
. (4.19)

Again, this means that we are vacuum dominated in the L channel. Now we can consider

arbitrary Ld−2 satisfying L < Ld−2 < Ld−1, for which we will remain vacuum dominated:

Z(Ld−2)Md−2
≈ exp

(
εvacLd−1Ld−2L

d−3/βd−1
)
. (4.20)

By equating this expression with the partition function in the Ld−1 channel, we see that

we are still vacuum dominated in that channel. By continuing this procedure we are able

to generalize to an arbitrary torus β < L1 < · · · < Ld−1, and we obtain

logZ(β) =

{
εvacVM0/β

d−1, β < L1

εvacVM1/L
d−1
1 , β > L1

. (4.21)
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Altogether, we have that the free energy is universal at all temperatures on an arbitrary

spatial torus. So solving the problem on a spatial square torus is both necessary and

sufficient to solving the general problem, thanks to properties of the positivity of f(y).

4.4 Sparseness constraints assuming f̃(y) = 0

In this section we will show that assuming f̃(y) = 0 (up to 1/N corrections) allows us to

exhibit a constraint on the light spectrum that naturally generalizes the two-dimensional

case. This is not too surprising, as f̃(y) = 0 is automatically true in two dimensions,

although some more work will be required in higher dimensions.

We start by considering the special torus with ordering β < L < L2/β < · · · <
Ld−1/βd−2. As discussed in the introduction, this special torus has an exact low-tempera-

ture/high-temperature duality Z(β)M0 = Z(Ld/βd−1)M0 . This will allow us to uplift the

arguments of [10] to our case. In the upcoming manipulations, we will not keep explicitly

the specification of the spatial manifoldM0, since this duality allows us to keep our spatial

manifold fixed once and for all.

By following the steps in [10], one can show that the partition function is dominated

by the light states up to a theory-independent error. We will denote light states as those

with energy E < ε for some arbitrary ε. We have

logZlight(L
d/βd−1) ≤ logZ(β) ≤ logZlight(L

d/βd−1)− log
(

1− eε(β−Ld/βd−1)
)
. (4.22)

This error grows arbitrarily large as β → L or ε → 0. For β > L we can derive a similar

upper and lower bound.

For a family of CFTs labeled by N , we assume that the vacuum energy also scales

with N . This will be true in all examples we consider. When taking N large, we can scale

ε→ 0, in which case the partition function is squeezed by its bounds and given just by the

light states up to O(1) corrections. In the context of assuming f̃(y) = 0, we then obtain

universality

logZ(β) =

{
logZlight(L

d/βd−1) = − Ld

βd−1Evac β < L

logZlight(β) = −βEvac β > L
, (4.23)

if and only if the density of light states is bounded as

ρ(∆) . exp

(
Ld

βd−1
∆

)
, ∆ ≤ −Evac , (4.24)

where ∆ = E − Evac. Notice that if we did not assume a universal form for the vacuum

energy with f̃(y) = 0, the free energy would still be very theory-dependent.

To generalize the argument above to an arbitrary d-torus, the idea will be to push the

special torus very close to the square torus. From here, we can use the fact that whenever

a partition function is dominated by the vacuum contribution at some inverse temperature

β, then it will also be dominated by that contribution for larger β. Channel by channel,

we will see that we will be able to generalize to an arbitrary torus. Assuming a universal

form of the vacuum energy will be crucial for this argument.
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It will be convenient to consider starting with a quantization along the Ld−1/βd−2

channel, because it is the largest cycle when β < L. We will now restore the explicit spatial

manifold dependence since we will be considering quantizations along different channels.

We have

Z(Ld−1/βd−2)Md−1
= Z(Ld/βd−1)M0 = Z(β)M0 . (4.25)

By using (4.23) we can write this as

Z(Ld−1/βd−2)Md−1
= exp

(
− Ld

βd−1
Evac,M0

)
= exp

(
−L

d−1

βd−2
Evac,Md−1

)
. (4.26)

This means that we are vacuum-dominated in the Ld−1/βd−2 channel.

Let us now take a larger cycle Ld−1 > Ld−1/βd−2, for which we will remain vacuum-

dominated:

Z(Ld−1)Md−1
= exp

(
−Ld−1Evac,Md−1

)
. (4.27)

Quantizing now along the the second largest cycle Ld−2/βd−3 < Ld−1 gives us

Z(Ld−2/βd−3) = exp
(
−Ld−2/βd−3Evac,Md−2

)∑
∆

exp
(
−Ld−2∆Md−2

/βd−3
)
. (4.28)

But by our assumption f̃(y) = 0, we have

Ld−1Evac,Md−1
= Ld−2Evac,Md−2

/βd−3 , (4.29)

which means that Z(Ld−2/βd−3) is given by its vacuum contribution only. One can now

consider Ld−2 > Ld−2/βd−3, for which we will remain vacuum-dominated in the Ld−2 chan-

nel. By comparing to the Ld−1 channel, we can verify that we remain vacuum-dominated

there as well. We can now move to the Ld−3/βd−4 channel and continue this procedure up

to and including the L channel. In a final step, we can compare to the β channel and see

that it indeed has universal Cardy behavior:

logZ(β) =
εvacVM0

βd
. (4.30)

There is no need now to consider smaller β since we have already considered general

variations of the other d − 1 cycles. Since the partition function is a function of d − 1

independent dimensionless ratios, we have already captured all possible variations.

The generality of the torus that results from this procedure is restricted by the special

torus with which we began. But notice that the special torus can be arbitrarily close to a

d-dimensional square torus, which means this procedure results in a universal free energy

on an arbitrary torus. From this argument it is clear that the only assumption made on

the spectrum is the bound in (4.24). In fact, it is enough to impose this constraint for

the square torus, since our procedure begins from that case (or arbitrarily close to it) and

generalizes to an arbitrary torus. The sparseness constraint is therefore

ρ(∆) . exp (L∆L×L×···×L) (4.31)

and is imposed only on the states with energies E = ∆ + Evac < 0.
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5 Symmetric product orbifolds in d > 2

In this section we construct orbifold conformal field theories in higher dimensions using a

procedure analogous to the one in two dimensions. We will see that these theories contain

both twisted and untwisted sector states and will give an estimate for the density of states

within these sectors. Finally, we will show that under the assumption that f̃(y) = 0, the

free energy has a universal behavior at large N which agrees with Einstein gravity.

5.1 A review of permutation orbifolds in two dimensions

In two dimensions, symmetric product orbifolds (or the more general permutation orbifolds)

provide a vast landscape of two-dimensional CFTs with large central charge that have a

potentially sparse spectrum and are thus of interest in the context of holography [44–47].

The goal of this section will be to extend these constructions to higher dimensions. We start

by a review of permutation orbifolds in two dimensions which will set most of the notation

that we will then carry over to higher dimensions. Permutation orbifolds are defined by

the choice of two parameters: a “seed” CFT C and a permutation group GN ⊂ SN . A

permutation orbifold CN is then defined to be

CN ≡
C⊗N

GN
. (5.1)

The procedure by which we take this quotient is called an orbifold. It projects out all states

of the product theory that are not invariant under the action of the group. The Hilbert

space thus gets restricted to

H⊗N −→ H⊗N

GN
, (5.2)

where H is the Hilbert space of C. This projection onto invariant states is crucial as

it gets rid of most of the low-lying states and hence provides some hope of obtaining

a sparse spectrum. When computing the torus partition function, this projection onto

invariant states is implemented by a sum over all possible insertions of group elements in

the Euclidean time direction. This is summarized by the following formula

Zuntw =
1

|GN |
∑
g∈GN

g (5.3)

where the box represents the torus with the vertical direction being Euclidean time.

However, (5.3) is obviously not modular invariant as it singles out the time direction.

Modular invariance is restored in the following way

Ztot =
1

|GN |
∑

g,h∈GN |gh=hg

g

h

. (5.4)

The requirement that the two group elements must commute comes from demanding that

the fields have well-defined boundary conditions [48]. The insertion of elements h in the

spatial direction are interpreted as twisted sectors, where the boundary conditions of the

fields are twisted by group elements. There is one twisted sector per conjugacy class of
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the group, which in the case of GN = SN gives one twisted sector per Young diagram.

In [44–46], the space of permutation orbifolds was explored and a criterion was given for

these theories to have a well-defined large N limit (and thus a potential holographic dual).

It was found that many properties of the spectrum depends solely on the group GN and

not on the choice of the seed theory. Groups that give a good large-N limit are called

oligomorphic permutation groups [49–51]. Although a complete proof is still missing, it is

believed permutation orbifolds by oligomorphic groups all have at least a Hagedorn density

of light states, but the growth may be even faster [44, 46]. For the symmetric group, it was

shown in [10, 37] that the growth is exactly Hagedorn with the precise coefficient saturating

the bound on the density of light states produced in [10].

Symmetric product orbifolds thus reproduce the phase structure of 3d gravity. Note

that they are still far from local theories of gravity such as supergravity on AdS3 × S3, as

their low-lying spectrum is Hagedorn and so they look more like classical string theories.

The D1–D5 CFT has a moduli space that is proposed to contain a point, known as the

orbifold point, where the theory becomes a free symmetric product orbifold theory. Ac-

cording to this proposal, the orbifold point is connected to the point where the supergravity

description is valid by an exactly marginal deformation. It is only the strongly coupled

theory that is dual to supergravity, and from this point of view it is surprising that the

free theory realizes the phase structure of gravity.

5.2 Symmetric product orbifolds in higher dimensions

In two dimensions, we saw that symmetric product orbifolds are examples of theories with

a sparse enough spectrum to satisfy the bound from [10] and thus have a universal phase

structure at large N . We would now like to construct weakly coupled examples of theories

satisfying our new criteria in higher dimensions. In dimensions greater than two, it is in

general much harder to construct large-N CFTs. One may of course take tensor products

but these will never have a sparse enough spectrum. In fact, the spectrum below some fixed

energy level will not even converge as N →∞. Imposing some form of Gauss’ law to project

out many of the low-lying states is usually done by introducing some coupling to a gauge

field, which makes preserving conformal invariance highly non-trivial. A natural way to

achieve this same projection is through the construction of orbifold conformal field theories

familiar from two dimensions. To the best of our knowledge, there is no construction of

orbifold conformal field theories in higher dimensions, which as explained in the previous

subsection is perhaps the most natural way of obtaining theories that are conformal, have

a large number of degrees of freedom, but also a sparse low-lying spectrum.

We will now describe the construction of symmetric product orbifolds in d dimensions.2

We will construct the partition function, i.e. the Hilbert space and the spectrum of the

Hamiltonian on Td−1. We comment on other properties of the theory such as correlation

functions in the discussion section.

2Here we will assume that the group is SN but the generalization to other permutation groups follows

trivially from our construction.
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The starting point is again to consider a seed CFTd C and to define the orbifold theory

CN as

CN ≡
C⊗N

SN
. (5.5)

The orbifolding procedure goes as follows. We start by projecting onto invariant states by

inserting all elements of the group in the time direction. This gives

Zuntw =
1

N !

∑
g∈SN

g . (5.6)

The box of the 2d case has now been lifted to a d-dimensional hypercube which again

describes the torus. We will represent it by a 3d cube and leave the other dimensions

implicit. Again, the mere projection is obviously not modular invariant. By applying

elements of SL(d,Z) (for instance the S element given in (2.4)), we quickly see that group

elements must also be inserted in the space directions. Having well-defined boundary

conditions for the fields constrains the d group elements to be commuting. The partition

function of the orbifold theory is then defined as

Zorb =
1

N !

∑
g0,...,gd−1∈SN
gigj=gjgi∀i,j

g0

g1
gd−1

. (5.7)

Twisted sector states will correspond to any states with non-trivial insertions in any of

the space directions. The different twisted sectors are no longer labeled just by conjugacy

classes, but by sets of d−1 commuting elements, up to overall conjugation. This orbifolding

procedure describes a well-defined SL(d,Z)-invariant partition function.

5.3 Spectrum of the theory

5.3.1 The untwisted sector states

We now turn our attention to the spectrum of these orbifold theories. Other properties will

depend strongly on the choice of seed. We start by considering the untwisted sector states.

These are given by states of the product theory, up to symmetrization. From the point of

view of the partition function, their contribution consists of all elements in the sum (5.7)

where g1 = . . . = gd−1 = 1. Consider the contribution of a K-tuple to the density of states.

A K-tuple is a state where K of the N CFTs are excited, while the other N −K are in

the vacuum. The contributions of all possible K-tuples of distinct states are encapsulated

by the following expression:

ρ(∆) =

∫
dK

∫
d∆1 . . . .d∆K

1

K!
ρ0(∆1) . . . .ρ0(∆K)δ

∆−
K∑
j=1

∆j

 , (5.8)

where ∆ = E − NEvac, ∆i = Ei − Evac and ρ0 is the density of states of the seed the-

ory.3 It can be shown that the contribution of K-tuples with subsets of identical states

3Here we use the notation that ∆ is a shifted energy that satisfies ∆ ≥ 0, but we wish to emphasize that

it is not in any way related to the scaling dimension of a local operator.
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do not give a larger contribution than the one considered here, so it is sufficient to focus

on this case. The combinatorial prefactor 1/K! was introduced to remove the equiva-

lent permutations of the K states. One way to understand its inclusion is to consider

how the orbifold projection is done. A given K-tuple in the product theory is made SN
invariant by summing over all of its possible permutations. For example, the 3-tuples

{a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b}, {c, b, a} of the pre-orbifolded theory lead to the

same orbifolded 3-tuple and thus should only be counted once. The triple integral giving

ρ(∆), when left to its own devices without combinatorial prefactor, would count all six

configurations.

Along with the states being distinct, let us first assume that each of the individual

degeneracies can be approximated by the Cardy formula of the seed theory. The Cardy

formula in higher dimensions was given in (2.15) and reads

log ρ(E) =
d

(d− 1)
d−1
d

(εvacVd−1)
1
dE

d−1
d . (5.9)

Now let us proceed as in [44] to find the density of states. Performing the integrals over

energies Ei by a saddle-point approximation where the large parameter is the total energy

E, we find saddle-point values Ei = E/K for all i. To assure that the state in each

copy is distinct, we need the degeneracy to pick from to be much larger than K. Thus

the validity of this assumption and the validity of the Cardy formula in each seed theory

require, respectively,

exp

[
d

(d− 1)
d−1
d

(εvacVd−1)
1
d (∆/K + Evac)

d−1
d

]
� K, ∆/K � |Evac| . (5.10)

We will check whether these conditions are satisfied at the end. Note that the second

constraint implies that we can drop Evac in the Cardy formula when expressed in terms of

∆. We thus have

ρ(∆) ∼
∫
dK exp

[
daK

1
d∆

d−1
d −K logK +K

]
(5.11)

with

a ≡ 1

(d− 1)
d−1
d

(εvacVd−1)
1
d . (5.12)

We can now do a second saddle-point approximation to evaluate the integral over K. The

large parameter is again given by the total shifted energy ∆. The saddle point equation is

a∆
d−1
d K

1−d
d

s − logKs = 0 , (5.13)

which gives

Ks ∼
a

d
d−1 ∆(

log
[
a

d
d−1 ∆

]) d
d−1

(5.14)
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at large ∆. Plugging this back in the density of states we find

ρ(E) ∼ exp

(d− 1)
a

d
d−1 ∆(

log
[
a

d
d−1 ∆

]) 1
d−1

 , (5.15)

where we have used large ∆ to drop subleading pieces which either have a larger power of

the logarithm in the denominator or are terms proportional to log log ∆. We find a growth

of states that is slightly sub-Hagedorn and the growth increases with the dimension of the

field theory. Inserting Ks in our necessary assumptions shows that they can be satisfied

for large enough ∆. In particular, the second condition becomes

a
d
d−1 ∆� exp

[
a |Evac|

d−1
d

]
(5.16)

which is then sufficient to satisfy the first condition. Here Evac is the vacuum energy of

the seed theory and does not scale with N . Notice also that Ks grows with ∆ and must

not violate the bound Ks ≤ N . This implies a bound on our energies from the saddle:

a
d
d−1 ∆ . N [log(N)]

d
d−1 . (5.17)

So altogether our density of states formula is reliable in the range

exp
[
a |Evac|

d−1
d

]
� a

d
d−1 ∆ . N [log(N)]

d
d−1 . (5.18)

In particular we can consider energies that scale with N . However, as we will shortly see,

the density of states quickly becomes dominated by the twisted sectors. Note that this

growth of states is also a lower bound for any permutation orbifold as orbifolding by a

subgroup of SN always projects out fewer states.

5.3.2 The twisted sector states

We will now give a lower bound on the density of states coming from the twisted sectors.

If the intuition from two dimensions carries over, it will be the twisted sectors that give

the dominant contribution to the density of states. Indeed, this is the result we will find.

We start by a more general discussion of twisted sector states and their contribution to the

partition function.

A twisted sector is given by d−1 commuting elements g1, . . . , gd−1 of SN , up to overall

conjugation. There is also a projection onto SN -invariant states by summing over elements

in the time direction but at this point we only focus on the identity contribution in that

direction. We define T to be the original d-torus used to compute the partition function.

We leave the dependence on the vectors U0, . . . , Ud−1 implicit. Let us consider the action

of the subgroup Gg1,...,gd−1
of SN (defined to be the group generated by g1, . . . , gd−1) on

the N copies of the CFT. The action of this group will be to glue certain copies of the

CFT together. Concretely, let Φk denote a field on T of the k-th CFT, then in the twisted

sector defined by Gg1,...gd−1
this field has boundary conditions

Φk(x0, x1, . . . , xj + Lj , . . . , xd−1) = Φgj(k)(x0, x1, . . . , xj , . . . , xd−1) . (5.19)
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Tracking the orbit of the k-th copy under Gg1,...gd−1
allows us to define a single field Φ̃ with

modified boundary conditions. In particular it will have larger periods. A field Φ̃i can be

defined for each orbit of the group Gg1,...gd−1
and we will denote the set of these orbits by

{Oi} , i = 1, . . . imax , (5.20)

where imax depends on the precise choice of g1, . . . , gd−1. As the different orbits do not talk

to each other, the path integral will split into a product of imax independent path integrals,

one over each field Φ̃i. The new boundary conditions of the fields in a given Oi under the

action of Gg1,...,gd−1
enable us to rewrite that particular contribution to the path integral

as a torus partition function, but now with T replaced by a new torus T̃i. The original

identifications coming from (2.3) were

(x0, x1, . . . , xd−1) ∼ (x0, x1, . . . , xd−1) +

d−1∑
i=0

niUi . (5.21)

for any integers ni. Once the elements g1, . . . , gd−1 are inserted the identifications are

changed and they are encoded in a new torus. As these boundary conditions follow from

the orbits, the identifications from the new torus are given by the elements in Gg1,...,gd−1

that leave the orbit invariant, i.e.

gm1
1 . . . g

md−1

d−1 Oi = Oi . (5.22)

This means that the identifications become

(x0, x1, . . . , xd−1) ∼ (x0, x1, . . . , xd−1) +

d−1∑
i=0

miUi . (5.23)

with the mi such that (5.22) is satisfied. Alternatively, one can define new vectors in the

following way

Ũ1 = mmin
1 U1 +m1,2U2 + . . .+m1,d−1Ud−1 ,

...

Ũd−2 = mmin
d−2Ud−2 +md−2,d−1Ud−1 , (5.24)

Ũd−1 = mmin
d−1Ud−1 ,

where mmin
d−1 is the smallest integer md−1 such that g

md−1

d−1 Oi = Oi, (md−2,d−1,m
min
d−2)

are the pair with smallest non-zero md−2 such that g
md−2,d−1

d−1 g
mmin
d−2

d−2 Oi = Oi and the

(mmin
1 , . . . ,m1,d−1) are the set of integers with minimal non-zero m1 such that (5.22) is

satisfied. These vectors define a new torus T̃i with volume

Vol(T̃i) =

∏
j

mmin
j

Vol(T) ≡ |Oi|Vol(T) . (5.25)

Since the gi commute, |Oi| is just the number of elements in the orbit Oi.
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A twisted sector will thus give a set of new tori T̃i whose different volumes depend on

the orbits of the action of Gg1,...,gd−1
. For each orbit of that action, we will get a separate

torus and schematically, this will give a contribution to the partition function of the form

Ztot ∼
∏
i

Z(T̃i) , (5.26)

where the product over i is a product over the orbits. This is a generalization of Bantay’s

formula [33] to higher dimensions. For every orbit Oi we have

Vol(T̃i) = |Oi|Vol(T) , (5.27)

where |Oi| is the length of the orbit. We will now calculate the contribution to the partition

function from a single non-trivial orbit of length L = Md−1 giving a torus with equal

rescaling M in all spatial directions. For simplicity, we also consider a case with mi,j =

0 ∀i 6= j. The torus T̃i corresponding to this orbit is then

(Ũ0, . . . , Ũd−1) = (U0,MU1, . . . ,MUd−1) . (5.28)

We can always find elements g1, . . . , gd−1 that produce the desired torus with equal scaling

of the spatial cycles. To produce the new torus given in (5.28), we use for example the

following elements:

g1 = (1 . . . M) (M + 1 . . . 2M) . . . (Md−1 −M + 1 . . . Md−1)(Md−1 + 1) . . . (N)

g2 = (1 M + 1 . . . M(M − 1) + 1) . . .

(Md−1 −M(M − 1) Md−1 −M(M − 2) . . . Md−1)(Md−1 + 1) . . . (N)

... (5.29)

gd−1 = (1 Md−2 + 1 . . . Md−2(M − 1) + 1) . . . (Md−2 2Md−2 . . . Md−1)

(Md−1 + 1) . . . (N)

for L = Md−1. For example in d = 3 and for L = 9, we get

g1 = (1 2 3)(4 5 6)(7 8 9)(10) . . . (N) ,

g2 = (1 4 7)(2 5 8)(3 6 9)(10) . . . (N) . (5.30)

One can quickly check that all these elements commute and that they define an orbit of

length L as well as N − L singlets. One can also check that mmin
1 = . . . = mmin

d−1 = M . We

will call Zsq this particular contribution to the partition function, and it reads

Zsq = Z(U0, U1, . . . , Ud−1)N−LZ(U0,MU1, . . . ,MUd−1)

= Z(U0, U1, . . . , Ud−1)N−LZ
(
U0

/
L

1
d−1 , U1, . . . , Ud−1

)
, (5.31)

where we uniformly rescaled the torus and used L = Md−1. From this, we can infer the

behaviour of the density of states:

Zsq =
∑
E

ρsq(E)e−βE = e−βEvac(N−L) (1 + . . . )
∑
E

ρ0(E)e
−βE

/
L

1
d−1

. (5.32)
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We can ignore the excited states encapsulated in “. . . ” as they will only increase ρsq(E),

which will increase our final answer. In this section, we are only after a lower bound for

the density of states so we can ignore such terms. Shifting E to L
1
d−1 (E − Evac(N − L))

gives us

ρsq(E) = ρ0

(
L

1
d−1 (E − Evac(N − L))

)
. (5.33)

This will be the key formula to derive the final result.

In the full partition function we sum over all L ≤ N and for large L, we are in a regime

where we may use the Cardy formula of the seed theory given in (2.15). To find the twisted

sector that gives the maximal contribution at energy E, we evaluate the sum over L using

a saddle point approximation. The resulting saddle point equation for L is solved by

Ls =
(EvacN − E)

dEvac
, (5.34)

which will be a good approximation provided Ls � 1. We now plug this back in (5.33)

and use the Cardy formula (2.15) to obtain

ρ(E) ∼ exp

[
a

(d− 1)
d−1
d

|Evac|1/d
(E −NEvac)

]
. (5.35)

Note that this is a Hagedorn growth as in two dimensions but the coefficient of the Hagedorn

growth depends on the vacuum energy of the seed theory. This is somewhat a loss of

universality compared to two dimensions and it will be very important in what follows to

understand precisely the properties of the vacuum energy of the orbifold theory. This will

be the task of the next subsection. The regime in which this expression is reliable is for

1� Ls ≤ N which in terms of energies is

1� E −NEvac

|Evac|
≤ dN . (5.36)

Finally, it is important to emphasize that this is merely a lower bound on the density

of states.4 We have only given the contribution from one type of twisted sectors and

other sectors might dominate. We have also not taken into account the projection onto

SN invariant states by inserting commuting elements of the group in the time direction.

In two dimensions, one can show that the estimate coming from this particular twisted

sector (called long strings in 2d) actually gives the dominant contribution. We will discuss

this further when analyzing the free energy but we first turn our attention to the vacuum

energy.

5.4 Vacuum energy of the orbifold theory

We want to understand precisely the properties of the vacuum energy of the orbifold theory.

In two dimensions, it is clear that the central charge gets multiplied by N when going from

4In fact, the method used in this section only gives an estimate for the lower bound. We have only

inserted one element — the identity — in the time direction and have not taken into account the projection

to SN invariant states. Following the method we will use in section 5.5 one can show that this estimate is

actually precise.
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the seed theory to the product (or orbifold) theory. Since the vacuum energy is fixed by the

central charge, it also gets multiplied by N . Naively, one would expect a similar behavior

in higher dimensions. The all-vacuum contribution in the untwisted sector indeed has

energy NEvac, but it may be possible that other twisted sectors give even more negative

contributions. We will now address this possibility and show that it is impossible, so that

the vacuum energy of the orbifold theory is in fact given as

Eorbi
vac = NEvac . (5.37)

To prove this, first recall that it is not necessary to consider twisted sectors inducing

twists between any of the dimensions because they always increase the vacuum energy, as

explained in section 4.1. The only thing we need to check is that rescalings of the torus

do not give a contribution that is more negative than (5.37). A twisted sector in principle

gives a product of partition functions if there is more than one orbit, but it will suffice to

consider the case of a single orbit. This is because if there are different orbits, the vacuum

energy is simply the sum of the vacuum energy for each orbit. In the case of a single orbit,

the partition function looks like

Z =
∑
E

e−βE . (5.38)

For a generic torus there can be angular potentials, but we have suppressed them since

they will not influence the vacuum energy. Note that these values E are not directly the

energy on the new spatial torus as there may have been a rescaling of the time direction.

The vacuum energy of the orbifold theory Eorbi
vac is simply the smallest such value of E.

Now consider a twisted sector giving an arbitrary rescaling Ui →MiUi such that

d−1∏
i=0

Mi = N . (5.39)

This is needed as the scaling of the full torus must be equal to N if there is only one orbit.

On such a torus, the vacuum contribution will be of the form

Eorbi
vac (Mi) = −M0

εvacVd−1
∏
i>0Mi

Md
1L

d
1

(1 + f(y1))

= − N

Md
1

εvacVd−1

Ld1
(1 + f(y1)) , (5.40)

where we used (5.39) and

y1 =

(
M1L1

M2L2
, . . . ,

M1L1

Md−1Ld−1

)
. (5.41)

From (5.40) and using the monotonicity property of f(y) under the increase of any of its

arguments, it is clear that this expression is maximized for all Mi = 1 except for M1. At

first glance, it is not clear if increasing M1 increases or decreases the energy as it appears

both in the denominator and in f(y) which change in opposite directions. However, one

can alternatively write the vacuum energy as

Evac(Mi) = − N

Md
2

εvacVd−1

Ld2
(1 + f(y2)) , (5.42)
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with

y2 =

(
M2L2

M1L1
, . . . ,

M2L2

Md−1Ld−1

)
. (5.43)

In this form, it is clear that M1 > 1 would only give a less negative value to the free energy.

We have thus showed that to get the minimal contribution, we need

M0 = N, Mi = 1 ∀ i , (5.44)

which then gives precisely the vacuum energy (5.37).

Although this might appear as good news for the orbifold theory to be a “nice” theory,

it is very bad news for any chance of universality at large N . We have shown in the previous

section that having f̃(y) = 0 is a necessary condition for a universal free energy and an

extended regime of the Cardy formula. Here, we see that the orbifold theory has f̃(y) = 0

only if the seed theory does. The choice of seed becomes crucial to reproduce the phase

structure of gravity. In fact, this result is not so surprising. In two dimensions, we could

consider ourselves lucky that the SN orbifold theory, which is a free theory, reproduces

the phase structure of Einstein gravity. It is only the strong coupling deformation of the

orbifold theory that is dual to Einstein gravity so there is no a priori reason why one

should have expected the orbifold theory to reproduce the phase structure of gravity. In

higher dimensions, it appears that for a general seed, some form of coupling between the

N CFTs must be introduced to force f̃(y) to vanish. One might consider deforming the

orbifold theory by some operator to achieve this effect. In particular, the existence of any

exactly marginal deformations might allow reducing the Hagedorn density of light states to

something compatible with Einstein gravity, as is proposed to occur in the D1–D5 duality.

This could be directly connected to the vanishing of f̃(y).

In the following subsection, we will show that choosing a seed theory with f̃(y) = 0

both gives a theory that saturates the sparseness bound and reproduces the phase structure

of gravity.

5.5 Universality for f̃(y) = 0 and free energy at large N

If f̃(y) = 0, we have Evac = −εvacVd−1/L
d
1 where L1 is the length of the smallest cycle.

Inserting this expression in (5.35), we obtain

ρ(E) ∼ exp (L1(E −NEvac)) (5.45)

for the growth coming from the specific twisted sector we previously considered. Note that

the coefficient of the Hagedorn growth precisely saturates the bound on the light states

given in (4.31) if we put the theory on the square torus. At the upper end of the range

of validity of (5.35) where E = −(d− 1)NEvac, we precisely recover the Cardy growth at

the same energy. This indicates that the spectrum transitions sharply from Hagedorn to

Cardy exactly where expected. However, we have only given a lower bound for the density

of states as we only computed the contribution coming from a particular twisted sector.

We will now show that for f̃(y) = 0 it is also an upper bound. We will do so by computing

the free energy and see that it precisely reproduces the universal behavior discussed in
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section 4. This implies that the density of low-lying states is bounded above by (5.45),

which becomes both a lower and upper bound. This means that no other twisted sector

can give a bigger contribution and the density of states is well-approximated by (5.45).

To compute the free energy at large N , we will follow a similar procedure as that in

two dimensions [37]. The starting point is a combinatorics formula first introduced by

Bantay [34]. Let G be a finitely generated group and Z a function on the finite index

subgroups of G that takes values in a commutative ring and is constant on conjugacy

classes of subgroups. We have the following identity

∞∑
N=0

pN

N !

∑
φ:G→SN

∏
ξ∈O(φ)

Z(Gξ) = exp

(∑
H<G

p[G:H] Z(H)

[G : H]

)
, (5.46)

where φ is an homomorphism from G to SN and H are subgroups of G with finite index

given by [G : H]. In our case, Z will be the partition function and G = π1(Td) = Zd.
This group is abelian and the sum over homomorphisms φ is equivalent to the sum over

commuting elements introduced earlier. The image of φ acts on N letters (momentarily

this will be the N copies of the CFT) by the usual SN action and its orbit is denoted by

O(φ). The subgroup Gξ consists of those elements of g such that φ(g) leaves ξ invariant.

In fact, the left hand side is simply the generating function for the partition functions of

the symmetric product orbifolds. It corresponds to

Z =
∑
N

pNZN , (5.47)

where ZN is the partition function of C⊗N/SN and thus the action of φ can be thought of

as permuting the copies in C⊗N . Just like in two dimensions, it is often more convenient

to work with this generating function and to later find the coefficient of the term pN to

extract ZN .

Bantay’s formula equates the generating function to an exponential of a sum over new

partition functions. This sum over partition functions really corresponds to a sum over

new tori, and for a given index, the volume of the new tori will be the original volume

times the index. Just as for SL(2,Z), there is a very natural way to include all tori of a

given index by using Hecke operators. Consider a torus to be described by the matrix U

given in (2.3), which is upper triangular. Now consider the following set of matrices

ΩL =




a0 a01 · · · a0,(d−2) a0,(d−1)

0 a1 · · · a1,(d−2) a1,(d−1)
...

...
. . .

...
...

0 0 · · · ad−2 a(d−2),(d−1)

0 0 · · · 0 ad−1



∣∣∣∣∣∣∣∣∣∣∣∣
∏
i

ai = L, 0 ≤ aj,i < ai ∀ i, j


(5.48)

with L fixed. These matrices are elements of GL(d,Z) and act on the lattice vectors Ui
defining the torus according to Ũ = HU with H an element of ΩL. These new tori will

have a volume L times larger than the original torus U . Consequently, the new lattice

defined by the new torus is a sublattice H of Zd and the index [G : H] of H in G = Zd
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is L. The purpose of these matrices is to parameterize the finite index subgroups of G so

that we can write ∑
H<G

p[G:H] Z(H)

[G : H]
=
∑
L>0

pL

L

∑
A∈ΩL

Z(AU) . (5.49)

Fortunately, the right hand side can be rewritten in terms of Hecke operators for SL(d,Z),

TLZ(U) ≡
∑
A∈ΩL

Z(AU) , (5.50)

which encapsulate the sum over different tori mentioned earlier. Note that the Hecke

transform of Z is also an SL(d,Z) modular invariant. Bantay’s formula then becomes

Z(U) = exp

(∑
L>0

pL

L
TLZ(U)

)
. (5.51)

Because TLZ(U) is a function invariant under SL(d,Z) [52], and it has a corresponding

extensive free energy, its asymptotic growth is also given by the higher-dimensional Cardy

formula. To see this directly, notice that TLZ(U) is a sum over partition functions of

different tori. Each of these obeys the higher-dimensional Cardy formula, although the

explicit dependence on the volume of the torus in our higher-dimensional Cardy formula

may seem confusing. Note however that at asymptotically large energies we have E ∝
V
−1/(d−1)
d−1 , so the volume of the torus cancels out and the formula can be written in terms

of a dimensionless energy. Thus, there is no confusion as to “which volume” enters into the

Cardy formula for TLZ(U). In fact, the situation is even better. The gap between the first

excited state and the vacuum grows with L indicating that at large L, the Cardy formula

will become a good estimate for the Hecke transformed partition function.

We are now ready to estimate the free energy. Let us take a rectangular d-torus with

sides β, L1, . . . , Ld−1, i.e.

U =


β 0 · · · 0 0

0 L1 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ld−2 0

0 0 · · · 0 Ld−1

 , (5.52)

and let us assume L1 is the smallest spatial cycle. Writing p̃ = peβEvac ,

Z = exp

(∑
L>0

p̃L

L
+
∑
L>0

p̃L

L

∑
E>0

ρ̃TL(E)e−βE

)

=

( ∞∑
K=0

p̃K

)
exp

(∑
L>0

p̃L

L

∑
E>0

ρ̃TL(E)e−βE

)
, (5.53)

where we have defined ρ̃TL(E) such that

eLβEvacTLZ(U) = 1 +
∑
E>0

ρ̃TL(E)e−βE . (5.54)
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Using the Cardy formula, the sum over energies in (5.53) becomes

∑
E>0

e

(
daL

1
d (E+EvacL)

d−1
d

)
e−βE ∼ exp

(
L|Evac|

(
Ld1
βd−1

− β
))

, (5.55)

where we assumed L1 to be the smallest cycle and used (5.12) as well as

Evac =
−εvacVd−1

Ld1
. (5.56)

The saddle point value for E is

Es = |Evac|L
(

1 +
(d− 1)Ld1

βd

)
, (5.57)

which will be large for large L. This justifies the use of the Cardy formula. The terms

with low E will of course not be in the Cardy regime but these will only give a subleading

contribution. Overall, the error on the each term in the sum over L will be of order

e−uL/β
d−1

for some positive order one number u that is theory dependent. Plugging (5.55)

into (5.53) we get

Z =

( ∞∑
K=0

p̃K

)
exp

(∑
L>0

1

L

(
p̃ exp

(
|Evac|

(
Ld1
βd−1

− β
)))L)

=

( ∞∑
K=0

p̃K

)
exp

(
− log

(
1− p̃e|Evac|β(Ld1/β

d−1)
))

=

( ∞∑
K=0

p̃K

)
1

1− p̃e|Evac|β(Ld1/β
d−1)

. (5.58)

We can now extract the free energy. Note that because the vacuum energy is negative and

proportional to N , the partition function diverges as N → ∞ so we need to consider the

shifted partition function and shifted free energy

Z̃ ≡ eEvacβZ ,

F̃ ≡ − log Z̃

β
. (5.59)

The shifted partition function will then simply be the term p̃N in (5.58), which is given by

Z̃N =
exp

(
(N + 1)|Evac|β

(
Ld1
βd
− 1
))
− 1

exp
(
|Evac|β

(
Ld1
βd
− 1
))
− 1

. (5.60)

The free energy as N →∞ for β < L1 is thus

F̃N (U) = −N |Evac|
(
Ld1
βd
− 1

)
. (5.61)
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For β > L1, we get

F̃N (U) =
1

β
log

(
1− exp

(
|Evac|β

(
Ld1
βd
− 1

)))
+ Fcor(β) , (5.62)

where the Fcor(β) corresponds to another O(1) contribution coming from subleading cor-

rections to the saddle point as well as the low energy contributions. The free energy thus

has a phase transition at β = L1 and goes from being O(1) to O(N). This precisely

matches the phase structure of the bulk gravitational theory.

Modular invariance is not manifest in the shifted free energy above. In order to recover

it, we consider the quantity

F (U) = lim
N→∞

1

N
FN (U) , (5.63)

where FN (U) is the unshifted free energy and F (U) = F (β, L1, . . . , Ld−1). Using the

results obtained above,

F (U) =

−
εvacVd−1

βd
β < L1

− εvacVd−1

Ld1
β > L1

, (5.64)

where L1 is the smallest cycle. The free energy is a modular covariant quantity which

transforms under the S transform of SL(d,Z) as

F (β, L1, . . . , Ld−1) =
L1

β
F (L1, . . . , Ld−1, β). (5.65)

Upon checking this transformation rule for (5.64), we see that in both regimes the free

energy transforms as expected.

6 Discussion

In this paper we have studied conformal field theories in dimensions d > 2 compacti-

fied on tori. The main goal was to explore the implications of the assumed invariance

under the SL(d,Z) modular group and see what additional constraints on the spectrum

would reproduce the phase diagram of gravity in anti-de Sitter space. We have uncov-

ered both similarities and differences with the two-dimensional case. We have presumably

only scratched the surface of this interesting subject and many issues and open questions

remain, some of which we list below.

6.1 Modular invariance

The modular group SL(d,Z) consists of the large diffeomorphisms (i.e. not continuously

connected to the identity element) which map a d-dimensional torus to itself. In two

dimensions, there are well-known systems, such as the chiral fermion, whose partition

function is not modular invariant. However, such theories have gravitational anomalies

and can therefore a priori not be consistently defined on arbitrary manifolds. Moreover,

when such theories appear in nature, as in the edge modes in the quantum Hall effect,
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the relevant anomalies are canceled due to an anomaly inflow mechanism which crucially

relies on the existence of a higher-dimensional system to which the theory is coupled (for a

higher-dimensional version of this statement see e.g. [53]). We are not aware of a local and

unitary conformal field theory which is free of local gravitational anomalies and not mod-

ular invariant. But modular invariance is weaker than the absence of local gravitational

anomalies. There are many modular invariant CFTs with cL − cR 6= 0 which have gravi-

tational anomalies, while modular invariance only implies that cL − cR must be an integer

multiple of 24. It would be interesting to explore the generalizations of these statements

to higher dimensions.

Another approach to using modular invariance to learn about conformal field theories

on tori is to consider bounds coming from the fixed points of SL(d,Z). This would be a

generalization of the “modular bootstrap” [54–61] to higher dimensions. This is valid for

general conformal field theories, and taking a large-N limit may give insight into holo-

graphic theories.

6.2 State-operator correspondence

The usual arguments for the state-operator correspondence in conformal field theory rely

on radial quantization and apply to the theory on the spatial sphere Sd−1 times time. The

local operators obtained in this way can be inserted on other manifolds as well but the

one-to-one correspondence with states in the Hilbert space no longer applies. The main

problem in applying radial quantization to the torus is that, as opposed to spheres, one can

not smoothly shrink a torus of dimension larger than one to a point. Stated more precisely,

the metric ds2 = dr2 + r2dΩ2 is not smooth at r = 0 unless Ω is the round unit sphere.

One cannot even apply the standard radial quantization argument to the conformal

field theory on S1×Rd−2 times time. At r = 0, the metric ds2 = dr2+r2dφ2+r2dxidxi looks

like a singular Rd−2-dimensional plane, suggesting that some sort of surface operators might

be relevant. That such operators are generically needed can for example be seen using the

orbifold theories we studied in this paper. Orbifold theories can be thought of as theories

with a discrete gauge symmetry, and in case the theory lives on S1 × Rd−2 we should

include twisted sectors which involve twisted boundary conditions when going around the

S1. These twisted boundary conditions can be detected by a Wilson line operator for

the discrete gauge field around the S1. To create a non-trivial expectation value for the

Wilson line operator, we need an operator which creates non-contractible loops, and for

this we need an operator localized along a (d − 2)-dimensional surface. One can think of

such operators as a higher-dimensional generalization of the ’t Hooft line operators. A

local operator in d > 2 is unable to generate a non-trivial vev for the discrete Wilson line

operator and can therefore not create twisted sector states. Surface operators of dimension

d−2 which create twisted boundary conditions also feature prominently in the replica trick

computations of entanglement entropy in dimensions d > 2; they are the generalized twist

fields associated to the boundary of the entangling area.

If (d− 2)-dimensional surface operators are the right operators for the theory on S1×
Rd−2, it is plausible they are also relevant for CFT’s on tori. One can for example consider

the surface operators dual to periodic field configurations on Rd−2, but it is not clear
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the resulting surface operator will have the right periodicity as well. Alternatively, one

can study the Euclidean theory on an annulus times Td−2, with the annulus having inner

radius R1 and outer radius R2. The Euclidean path integral in principle provides a map

from states on the torus S1
R1
× Td−2 to S1

R2
× Td−2, and by taking the limit R1 → 0 one

can imagine obtaining singular boundary conditions for a surface operator localized along

a (d− 2)-torus.

Clearly, more work is required to understand whether the above construction provides

a useful version of the state-operator correspondence for field theories on tori, and if it

does, what a useful basis for the space of surface operators could possibly be. There seems

to be a significant overcounting, as one can construct a surface operator for any choice of

state on the torus and for any choice of one-cycle on the torus. Currently, we do not even

have a compelling compact Euclidean path integral representation of the ground state of

the theory on the torus.

It might also be interesting to explore the state-operator correspondence from an

AdS/CFT point of view. One would then need to glue Euclidean caps to the Lorentzian

solutions discussed in section 3. Since the Lorentzian solutions require a choice of one-cycle

which is smoothly being contracted in the interior, a similar choice will be needed for the

Euclidean caps, leading apparently once more to the same overcounting as we observed

above. It would still be interesting to construct the explicit form of the geometry where a

Euclidean cap without the insertion of surface operators is smoothly glued to the Lorentzian

AdS solutions. If such solutions could be found, its boundary geometry would provide a

Euclidean path integral description of the ground state of the corresponding CFT, at least

in the large N and strong coupling approximation.

6.3 Defining the orbifold theory

In section 5, we defined a prescription to compute the partition function of the orbifold

theory. This prescription describes both the Hilbert space and the spectrum of the Hamil-

tonian on the torus. In two dimensions, the orbifolding prescription also fully describes the

procedure to compute arbitrary correlation functions of (un)twisted sector local operators,

at least in principle. In higher dimensions, because of the lack of a precise state-operator

correspondence, it is not clear wether we have really fully specified a theory. For that, we

need to determine the full set of correlation functions and hence know the set of operators

in the theory. It is clear that all untwisted sector correlation functions make sense in the

orbifold theory so all local correlation functions are well-defined and calculable. Further-

more, the theory possesses a stress tensor as the stress tensor is always in the untwisted

sector. Nevertheless, the questions touching the twisted sector states and/or line operators

is much more obscure and it would be very interesting to understand the extent to which

the orbifolding prescription fully determines these.

One way orbifold theories in higher dimensions can potentially appear (and therefore

inherit a natural definition) are as discrete gauge theories that arise in the infrared limit of

a gauge theory with spontaneously broken continuous gauge symmetry (e.g. SU(N)→ SN ).

This would also explain how to couple the theory to other manifolds, an issue we turn to

in the next section.
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6.4 Orbifold theories on other manifolds

The orbifold theories we studied are most easily defined on tori. However, if we have fully

defined a theory we should be able to put it on any manifold. Viewing them as theories

with a discrete gauge group also provides a prescription for the sum over twisted sectors

when computing the path integral for other manifolds. The sum over twisted sectors is the

same as the sum over the space of flat connections modulo an overall conjugation, and for

a manifold M this space is Hom(π1(M), G)/G. But even for flat space, where no sum over

twisted sectors needs to be taken, there are still signs of the discrete gauge symmetry. In

particular, one can consider surface operators which create twisted sector states even on the

plane, and their correlation functions contain interesting new information. Such operators

naturally arise in the context of Renyi entropy calculation in higher dimensions [62, 63].

6.5 Outlook

We have only begun to explore the properties of modular-invariant field theories on tori

and their role in AdS/CFT. The interesting relations between the form of the ground state

energy, universal free energy at high-temperature, sparseness conditions on the spectrum

and vacuum dominance in the partition function beg for a deeper understanding. Is there

a more precise relation between the low- and high-energy spectrum that can be rigorously

established? Can subleading corrections be systematically analyzed? How much of the rich

structure in d = 2 and the mathematics of SL(2,Z) can be carried over to d > 2? Does all

this shed any new light on which theories can have weakly coupled gravitational duals?
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A Alternate proof without assuming f̃(y) = 0

In this section we will try to generalize the proof in section 4.3 to the case where we make

no assumptions on the form of the vacuum energy. To illustrate the point, we will work in

three spacetime dimensions and make the spatial manifold explicit. We will again be using

a proof like that of [10], but this time we will take N →∞ from the start.5

5Thanks to Tom Hartman for discussions about this simpler form of proof.
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Consider a rectangular three-torus with side lengths β, L1, and L2 with β < L1 < L2.

We have the relations

Z(β)L1×L2 − Z(L1)β×L2 = Z(β)L1×L2 − Z(L2)β×L1 = 0 =⇒ (A.1)(∑
L

e−βEL1×L2 −
∑
L

e−L1Eβ×L2

)
+

(∑
H

e−βEL1×L2 −
∑
H

e−L1Eβ×L2

)
= 0 , (A.2)

(∑
L

e−βEL1×L2 −
∑
L

e−L2Eβ×L1

)
+

(∑
H

e−βEL1×L2 −
∑
H

e−L2Eβ×L1

)
= 0 . (A.3)

Notice that light states L and heavy states H are playing triple duty, since the spatial

background changes in the different quantizations. In any given quantization, the states

L refer to negative energy states that scale with a positive power of N while H refers to

positive energy states that scale with a positive power of N . We eliminate the consideration

of states with O(1) energies by bounding their density of states so that their contribution

is O(1) and therefore subleading.

We now assume that for β < L1 and β < L2, we have∑
L

e−L1Eβ×L2 �
∑
L

e−βEL1×L2 ,
∑
H

e−L1Eβ×L2 �
∑
H

e−βEL1×L2 , (A.4)

∑
L

e−L2Eβ×L1 �
∑
L

e−βEL1×L2 ,
∑
H

e−L2Eβ×L1 �
∑
H

e−βEL1×L2 . (A.5)

These inequalities can be proven to be true in two spacetime dimensions and for the special

torus in a general number of dimensions. In fact, it is what makes a proof like that

of [10] work.

Using these inequalities, we can approximate the above equalities as∑
L

e−L1Eβ×L2 ≈
∑
H

e−βEL1×L2 ,
∑
L

e−L2Eβ×L1 ≈
∑
H

e−βEL1×L2 . (A.6)

Then we can use ZH(L1)β×L2�ZH(β)L1×L2≈ZL(L1)β×L2 and ZH(L2)β×L1�ZH(β)L1×L2

≈ ZL(L2)β×L1 to approximate the partition function in the L1 and L2 channels as

Z(L1)β×L2 = ZL(L1)β×L2 + ZH(L1)β×L2 ≈ ZL(L1)β×L2 , (A.7)

Z(L2)β×L1 = ZL(L2)β×L1 + ZH(L2)β×L1 ≈ ZL(L2)β×L1 . (A.8)

We see that under the assumptions (A.4) and (A.5), the partition function is vacuum

dominated in the L1 and L2 channels if and only if

ρ(EL1×L2 < 0) . eL1(E−Evac)L1×L2 . (A.9)

As explained in section 4 this is necessary and sufficient for a universal free energy at all

temperatures on an arbitrary spatial torus.

In general dimension, the sufficient conditions for a universal free energy are the d− 1

inequalities that generalize (A.5) and a sparse light spectrum:

ρ(∆) . exp (Lmin∆) , (A.10)

where Lmin is the minimum cycle size of the spatial torus.
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B Microcanonical density of states

The results derived in the main text are phrased in terms of the canonical partition func-

tion Z(β). In general such results do not immediately translate into statements about

the microcanonical density of states. However, as discussed carefully for two dimensions

in [10], the limit N → ∞ is a good thermodynamic limit which allows us to conclude

ρ(〈E〉) ≈ eS(〈E〉) for 〈E〉 = −∂β logZ(β). Large N suppresses the fluctuations in 〈E〉 and

unambiguously defines an energy E ≡ 〈E〉. The arguments of [10] carry over straightfor-

wardly and imply that the Cardy density of states has an extended range of validity that

holds down to E = −(d− 1)Evac, which is the energy corresponding to β = L1. Instead of

repeating those arguments we will give an alternative way of understanding the thermo-

dynamic limit which gives additional intuition. In the next sections we will evaluate the

inverse Laplace transform connecting the canonical partition function to the microcanon-

ical density of states in several examples. The existence of a stable saddle point is the

statement of an equivalence between the two ensembles.

In section B.1 we will consider the case of two-dimensional CFT and use the fact that

the partition function is dominated by the light states [10]. In section B.2 we will assume

f̃(y) = 0, in which case the special torus allows us to get away with only bounding the

density of light states, just as in two dimensions and as we saw in the main text. Finally,

in section B.3 we will consider an extension to angular momentum. Here, to extend the

regime of validity we will have to bound the density of states for the entire spectrum, again

as we saw in the main text.

B.1 d = 2

We will begin by considering the case of two-dimensional conformal field theories, treated

in [10]. Here we will directly evaluate the inverse Laplace transform connecting the canon-

ical partition function to the density of states.

We begin with the expression for the degeneracy

ρ(hs, h̄s) =

∫ iα+∞

iα−∞
dτ

∫ −iα+∞

−iα−∞
dτ̄ I(τ, τ̄) Z̃(−1/τ,−1/τ̄) , (B.1)

for α > 0, where

I(τ, τ̄) ≡ e−2πiτ(hs−c/24)e2πiτ̄(h̄s−c̄/24) × e−2πi/τ(−c/24)e2πi/τ̄(−c̄/24) . (B.2)

Evaluating the integral using the saddle point approximation for large hs and h̄s requires

solving the saddle equations I(1,0)(τ, τ̄) = I(0,1)(τ, τ̄) = 0, which gives the dominant saddle

τs = τ s1 + iτ s2 = +i

√
c

24hs − c
, (B.3)

τ̄s = τ s1 − iτ s2 = −i
√

c̄

24h̄s − c̄
. (B.4)

Evaluating the integrand on this saddle gives the entropy

S = log ρ(hs, h̄s) = 2π

(√
c

6

(
hs −

c

24

)
+

√
c̄

6

(
h̄s −

c̄

24

))
. (B.5)
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To ensure the saddle point approximation is justified, we have to check that Z̃ does not

make big contributions on the saddle:

Z̃(−1/τs,−1/τ̄s) =
∑
h,h̄

ρ(h, h̄) exp

 −2πh√
c

24hs−c

− 2πh̄√
c̄

24h̄s−c̄

 . (B.6)

As hs → ∞ and h̄s → ∞ with c finite, all terms except for the vacuum contribution are

infinitely exponentially suppressed, justifying our saddle point approximation. This is the

ordinary Cardy formula.

Now let us consider the limit c → ∞ with hs = mc. For simplicity we set c = c̄ and

τ1 = 0. So we have the canonical partition function at inverse temperature β = τ2/(2π).

We will have the same saddle as before but need to check again that Z̃ does not give a big

contribution on the saddle. If we take m → ∞, then again all terms except the vacuum

contribution are infinitely exponentially suppressed and our saddle is justified. But now

we want to see how small we can make m. We will use the fact that Z(β) is dominated by

the light states as long as β > 2π. This means that Z̃(β) is also dominated by the light

states. We can therefore write

Z̃(4π2/βs) ≈
∑

∆≤c/12+ε

ρ(∆) exp

 2π∆√
c

12∆s−c

 (B.7)

for ∆ = h+ h̄. We need all terms on the right-hand-side to contribute exponential suppres-

sions, except for the identity operator which will contribute +1. To push the validity of

the saddle down to ∆s = c/6, which is the result expected from gravity, we need to bound

the degeneracy as

ρ(∆ ≤ c/12 + ε) . exp (2π∆) = exp (2π(E + c/12)) . (B.8)

This is the same bound on the light states as in [10].

B.2 d > 2

In this case, we consider the high-temperature/low-temperature duality on the special

torus, for which Z(β) = Z(Ld/βd−1). We have

ρ(Es) =
1

2πi

∫ α+i∞

α−i∞
dβ Z(β) eβEs (B.9)

for α > 0. Performing a modular transformation and multiplying and dividing by a common

factor gives (omitting the integration limits and 1/2πi)

ρ(Es) =

∫
dβ
(
e−εvacVd−1/β

d−1
Z(Ld/βd−1)

)
eεvacVd−1/β

d−1+βEs . (B.10)

We will hold off on defining Vd−1 for the moment, which will actually be defined to be

independent of β. At large N with Es scaling as a positive power of N the saddle point

(ignoring the term in parentheses) occurs at

βs =

(
(d− 1)εvacVd−1

Es

) 1
d

, (B.11)
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which gives an on-shell entropy of

ρ(Es) = exp

(
d

(d− 1)
d−1
d

(εvacVd−1)
1
dE

d−1
d

s

)
. (B.12)

To make sure the saddle is controlled, we again want the term in parentheses to contribute

as 1 + e−(... ) on the saddle. To show this, we will use the fact from the main text that for

Z(Ld/βd−1) is dominated by the contribution of the light states for L > β. This lets us

write the term in parentheses on the saddle as∑
E<ε

exp

(
−(LdE + εvacVd−1)

(
Es

(d− 1)εvacVd−1

) d−1
d

)
. (B.13)

We now want to define Vd−1 = VM0 = L · · ·Ld−1/βd−2
s as the volume of the special torus.

Since βs depends on Vd−1, this is an equation that can easily be solved for Vd−1 in terms

of only εvac and Es, but all we need to know is that it gives the volume of the special torus

on the saddle. Now using our assumption that the subextensive corrections to the vacuum

energy vanish, we see that the vacuum state contributes as +1. To approach the square

torus as in the main text we want to push Es down to −(d − 1)Evac, which will require

bounding the density of light states as

ρ(E) . exp(L(E − Evac)), E ≤ −(d− 1)Evac , (B.14)

where the energies are taken to be on a square torus. This is the same bound as we saw in

the main text. At this point we can perform a similar bootstrapping procedure to obtain

this density of states on an arbitrary spatial torus and at arbitrarily higher energies.

B.3 Cardy extension with angular momentum on TTT2 ×RRRd−2

We will show in this section that similar manipulations can be performed once angular

momentum is included. In particular, assuming sparseness on the low-lying spectrum, we

can extend the generalized Cardy formula with angular momentum to include the entire

range

J2 < (E − Evac)(E + (d− 1)Evac) . (B.15)

Note that this has the correct limits. For d = 2 we recover ELER > c2/576, and for J = 0,

d > 2 we get E > −(d− 1)Evac.

Before we perform our CFT analysis, we should analyze the phase structure of gravity

with the appropriate boundary conditions. We are introducing a chemical potential for

angular momentum, which corresponds to adding a twist in the periodicity of Euclidean

time. The solutions are the same as in the main text, but with angular velocity added.

The Poincaré patch and soliton geometries can be written as before except with the new

identification t ∼ t+ iβ + θ, while the black brane is written as

ds2 =
(

(rh/r)
duµuν + r2ηµν

)
dxµdxν +

dr2

r2 (1− (rh/r)d)
, (B.16)

uµ =

(
−1√

1− a2
,

a√
1− a2

,~0

)
. (B.17)
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The free energies of the solutions are given by

Fbb = −
rdhLL

d−2
∞

16πG
, Fsol = −r

d
0LL

d−2
∞

16πG
, Fpp = 0 , (B.18)

with

rh =
4π

d

√
1

β2 + θ2
, r0 =

4π

dL
. (B.19)

The energy and the angular momentum of the black brane are given by the usual ther-

modynamic relations in terms of a Euclidean partition function Z(β, θ) = Σ e−βH+iθJ =

Σ e−β(H+aJ):

E = − ∂

∂β

∣∣∣∣
θ

logZ =
rdhLL

d−2
∞

16πG

d− 1 + a2

1− a2
, (B.20)

J = −i ∂
∂θ

∣∣∣∣
β

logZ =
rdhLL

d−2
∞

16πG

da

(1− a2)
. (B.21)

From the expressions for the free energies, we see that the soliton dominates the ensemble

for r0 > rh. At the phase transition rh = 4π
dL , the energy and angular momentum are

related by

J2 = (E − Evac)(E + (d− 1)Evac) . (B.22)

We now turn to our CFT analysis. The canonical partition function at finite temperature

and angular velocity is defined as

Z(τ, τ̄) = Tr
(
e2πiτERe−2πiτ̄EL

)
,

ER + EL = E , ER − EL = J ,

where τ = reiφ is the modular parameter whose imaginary part acts as the inverse tem-

perature, and the real part acts as the chemical potential for angular momentum. We

have only turned on a single angular momentum generator. The microcanonical density of

states is given by the usual inverse Laplace transform (up to subleading Jacobian factors

which we ignore):

ρ(Es, Js) =

∫
drdφ Z(r, φ) exp

[
−πireiφ(Es + Js) + πire−iφ(Es − Js)

]
. (B.23)

For simplicity, we will work in the special case of T2 × Td−2
∞ and consider the angular

momentum to be along the spatial cycle of the T2. On this background, modular invariance

gives

logZ(r, φ) ≈ r2−d logZ(−r−1,−φ) . (B.24)

As before we define a shifted partition function as

Z̃(r, φ) ≡ Tr exp
[
πireiφ(Es + Js − Evac)− πire−iφ(Es − Js − Evac)

]
. (B.25)
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Using the above we write the density of states as

ρ(Es, Js) =

∫
dr dφ Z̃

(
−1

r
,−φ

)r2−d
exp

[
−πiEvac

rd−1eiφ
+

πiEvac

rd−1e−iφ

]
× exp

[
−πireiφ(Es + Js) + πire−iφ(Es − Js)

]
. (B.26)

At large N , we can approximate the above integral by its saddle-point value, which gives

ρ(Es, Js) = exp

[
π
√
d

(
2

(d− 1)d−1

) 1
d (√

d2E2
s − 4(d− 1)J2

s − (d− 2)Es

) d−2
2d

×
(√

d2E2
s − 4(d− 1)J2

s + dEs

)1/2
(−Evac)

1
d

]
. (B.27)

This is the higher-dimensional Cardy formula with angular momentum. To ensure that

our saddle is controlled and this formula is valid, we need to check that the neglected piece

Z̃ is not large on the saddle. By definition

Z̃

(
− 1

rs
,−φs

)
=

∫
light

dEdJ ρ(E, J) exp

[
−πi
rs

(
e−iφs (∆ + J)− eiφs (∆− J)

)]

+

∫
heavy

dEdJ ρCardy(E, J) exp

[
−πi
rs

(
e−iφs (∆ + J)− eiφs (∆− J)

)]
,

(B.28)

where we have used ∆ = E − Evac. We would like to find and maximize the range in

the spectrum where the heavy states lie. The first line stands for the contribution of light

states and is O(1) as long as the density of light states obeys a Hagedorn bound. The

second line is small if

log ρCardy −
πi

rs

(
e−iφs (∆ + J)− eiφs (∆− J)

)
< 0 . (B.29)

Let us denote the left hand side of this expression by T (Es, Js, E, J). The dependence of

T on Es and Js comes through rs and φs. Using the values of the saddle and the Cardy

formula gives a messy expression for T (Es, Js, E, J).

We would like to find the region in the E, J plane where T (Es, Js, E, J) < 0. Note

that since T (Es, Js, E, J) is also a function of Es and Js, this region will depend on the

values of Es and Js. This means we need to find the values of Es and Js for which the

region in the E, J plane is maximized. To guarantee that T is less than zero in a given

region in the E, J plane, it will be sufficient to show that the maximum value of T with

respect to E and J is smaller than zero in that region. Saturating this bound will give us

the extended range of validity of the Cardy formula. In other words, maximization of T
with respect to E and J will give us E and J in terms of Es and Js. Then demanding the

maximum of T to be smaller than zero will give a constraint on how small we can make

Es and Js.
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Let’s see this in the simpler case of d = 2 and J = 0:

T (∆,∆s) = 2π

√
c

3

(
∆− c

12

)
− 2π∆√

c
12∆s−c

. (B.30)

Extremizing with respect to ∆ gives

∆? =
c∆s

12∆s − c
, Tmax =

π

3
(c− 6∆s)

√
c

12∆s − c
. (B.31)

Imposing Tmax ≤ 0 gives

∆s ≥ c/6 . (B.32)

Hence, we find that using this method we can safely extend the validity of the Cardy

formula to the range ∆s ≥ c/6. For energies smaller than that Z̃ stops being O(1) and the

saddle point analysis is not valid. Note that in this method the contribution of light states

(∆ < c/6) was made O(1) by imposing a Hagedorn bound ρ(∆ < c/6) . exp(2π∆). Here

we have not used the result from [10] that the partition function at large N is dominated

by the states with ∆ . c/12, which would allow us to only place a Hagedorn bound on

those states.

Proceeding similarly for arbitrary d and nonzero J , we find Cardy behavior for the

range

(d− 1)EEvac − dE2
vac + E2 > J2 , (B.33)

which is identical to the bulk result (B.22).
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