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Abstract. In the present paper we consider a class of elliptic partial differential equations with
Dirichlet boundary conditions and where the operator is div (−a(x)∇·), with a continuous and posi-
tive over Ω, Ω being an open and bounded subset of Rd, d ≥ 1. For the numerical approximation we
consider the classical Pk Finite Elements, in the case of Friedrichs-Keller triangulations, leading, as
usual, to sequences of matrices of increasing size. The new results concern the spectral analysis of the
resulting matrix-sequences in the direction of the global distribution in the Weyl sense, with a concise
overview on localization, clustering, extremal eigenvalues, and asymptotic conditioning. We study in
detail the case of constant coefficients on Ω = (0, 1)2 and we give a brief account in the more involved
case of variable coefficients and more general domains. Tools are drawn from the Toeplitz technology
and from the rather new theory of Generalized Locally Toeplitz (GLT) sequences. Numerical results
are shown for a practical evidence of the theoretical findings.
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1. Introduction. The paper deals with the spectral analysis of matrix-sequences
arising in the Pk Lagrangian Finite Element approximation of the elliptic problem{

div (−a(x)∇u) = f, x ∈ Ω ⊆ Rd,
u|∂Ω = 0,

(1.1)

with Ω bounded connected subset of Rd, d ≥ 1, having smooth boundaries for d ≥ 2,
and a being continuous and positive on Ω.

Our theoretical analysis focuses on the case of stiffness matrix-sequences {An}n
related to Pk Finite Element approximations on uniform structured meshes [34, 8,
38, 7], such as Friedrichs-Keller triangulations, in which context the powerful spectral
tools derived from the Toeplitz theory [6, 41, 42, 22, 23] greatly facilitate the required
spectral analysis.

We give a detailed analysis in the case where a(x) ≡ 1 and then we sketch the
general setting, by considering a Riemann integrable diffusion coefficient a and/or
a domain Ω not necessarily of Cartesian structure. We recall that the same type
of analysis of the linear Finite Elements in two dimensions is already considered in
[3, 33] for the same equation considered in this note, while coupled partial differential
equations (PDEs) with stable pairs of Finite Element approximations again in two
dimension are considered in [16]. It is worth noticing the systematic work in [24],
where the case of tensor rectangular Finite Element approximations Qk of any degree
k = (k1, . . . , kd) and of any dimensionality d ≥ 1 is studied.
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Here, following the pattern indicated in [24], we start a systematic approach for
the Finite Element approximations Pk for k ≥ 2 and for d = 2. The analysis for
d = 1 is contained in [24] trivially because Qk ≡ Pk for every k ≥ 1, while for d = 2,
and even more for d ≥ 3, the situation is greatly complicated by the fact that we do
not encounter a tensor structure. Nevertheless, the spectral picture is quite similar
and the obtained information in terms of spectral symbol is sufficient for deducing a
quite accurate analysis concerning the distribution and the extremal behavior of the
eigenvalues of the resulting matrix-sequences.

More in details, regarding the resulting stiffness matrices, we will consider the
following items, from the perspective of (block) multilevel Toeplitz operators [6, 45]
and (block) Generalized Locally Toeplitz (GLT) sequences [41, 42]:

• spectral distribution in the Weyl sense,
• spectral clustering,

with a concise analysis also of the extremal eigenvalues, conditioning, spectral local-
ization, and where the final goal is

• the analysis and the design of fast iterative solvers for the associated linear
systems.

We recall that the spectral distribution and the clustering results represent key
ingredients in the design and in the convergence analysis of specialized multigrid meth-
ods and preconditioned Krylov solvers [37] such as preconditioned conjugate gradient
(PCG); see [42, Subsection 3.7] and [1, 2, 11, 12, 14, 19, 32]. In fact, the knowledge of
the spectral distribution is the key for explaining the superlinear convergence history
of (P)CG, thus improving the classical bounds; see [2] and references therein. Most
of this paper is actually focused on the identification of the spectral symbol via the
GLT technology and hence on the first item.

1.1. A comparison with the case of different approximation techniques.
This subsection is dedicated to make a short technical comparison with related works,
when different approximation techniques are considered. Both the similarities and the
differences are described in order to provide a clear global picture.

Recently, a very close spectral analysis has been conducted for the stiffness/colloca-
tion matrices coming from the k -degree B-spline Isogeometric Analysis (IgA) approx-
imation of maximal smoothness [9] of (1.1); see [20, 13]. The same kind of analysis
in the case of Qk Finite Elements approximating again (1.1) can be found in [24].
A review comparing the latter two approaches with a language tailored for engineers
can be found in [27].

In the IgA case, the (spectral) symbol fIgAk
describing the spectral distribution

is a scalar-valued d-variate function defined over [−π, π]d, and so the eigenvalues of
the IgA discretization matrices are approximated by a uniform sampling of fIgAk

over
[−π, π]d. In this context, the surprising behavior is that, when all the spline degrees
k increase, fIgAk

(θ) collapses exponentially to zero at all points θ = (θ1, . . . , θd) with
some component θj = π. In view of the interpretation based on the theory of Toeplitz
matrices and matrix algebras, this phenomenon implies that the IgA matrices are
ill-conditioned, not only in the low frequencies (as expected), but also in the high
frequencies, like in the approximation of integral operators [17]. The explicit use of
this spectral information allowed the design of ad hoc iterative solvers with an optimal
convergence rate, substantially independent of k and d; see [11, 12, 14].

In the Qk Lagrangian setting, we are still able to identify the spectral distribution,
as for the IgA case. The related symbol fQk

is d-variate and defined on [−π, π]d, but
the surprise is that fQk

is a N(k)×N(k) Hermitian matrix-valued function, with k =
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(k1, . . . , kd) vector of the partial degrees in the different directions, N(k) =
∏d
j=1 kj

(a similar situation is encountered in dealing with discontinuous Galerkin methods
[15, 4]). No specific pathologies regarding fQk

are observed for large k at the points θ
such that θj = π for some j, implying that the source of ill-conditioning, with respect
to the fineness parameters, is only in the low frequencies. However, exactly as in the
present Pk setting, where k is a scalar indicating the global polynomial degree, we
observe a serious problem of dimensionality, since, already for moderate k and d, the
quantity N(k, d) = kd is very large.

More specifically, the problem is that the spectrum of the Qk Lagrangian Finite
Element stiffness matrices is split into N(k) =

∏d
j=1 kj subsets, or branches in the

engineering terminology [10, 29, 30, 35], of approximately the same cardinality and
the i-th branch is approximately a uniform sampling of the scalar-valued function
λi(fQk

), i = 1, . . . , N(k). The exponential scattering (in k and d) of the eigenvalue
functions λi(fQk

) provides an explanation of the difficulties encountered by the solvers
in the literature, already for moderate k and d. Indeed, it is relatively easy to design
a mesh-independent solver, but the dependence on k and d is generally bad. In
the following we will also use the symbol Qk indicating that k = (k, . . . , k), i.e.,
k1 = k2 = · · · = kd = k: in the present case N(k) = N(k, d) = kd.

At this point it is worthwhile stressing that a cardinality of the branches equal
to N(k) is expected in the tensor setting Qk, k = (k1, . . . , kd), while it is somehow a
surprise with the current choice of Pk Finite Elements, where k is a scalar indicating
the global degree and N(k, d) = kd. We have in fact checked this formula only for
d = 2 and k = 2, 3, 4 and hence a deeper analysis of this phenomenon will be the
subject of future investigations.

1.2. Structure and Challenges of the paper. In Section 2 we present the
standard Galerkin approximation of (1.1) by Pk Lagrangian Finite Elements with
d = 2. Section 3 contains preliminaries concerning spectral distribution and cluster-
ing, special matrix structures such as multilevel block Toeplitz/Circulant matrices,
multilevel block diagonal structures, zero-distributed sequences, and the basics of the
theory of multilevel block GLT sequences. Sections 4, 5 describe the specific 1D, 2D
approximations with the related identification of the symbol for the different choice
of parameters, while Section 6 is devoted to the study of the analytical features of the
symbol and to the implications in terms of spectral distribution, clustering, localiza-
tion, extremal eigenvalues, and conditioning. A concise account on the case of variable
coefficients and non-Cartesian domains is contained in Section 7. Section 8 deals with
preconditioning and complexity issues. Lastly, Section 9 contains concluding remarks,
open problems, and perspectives.

In non-technical terms we report very concisely what is the challenge, how the
challenge is tackled, and the relevance of this task:

• Challenge: we extend the spectral analysis to the case of Pk discretizations
of the diffusion equation. This discretization does not provide the tensor
product structure observed in the Qk setting.

• Methodology: we use GLT technology described for non-experts to derive the
spectral distribution.

• Relevance: the final target is to develop preconditioners and specialized multi-
grid methods for these discretizations, especially higher-order discretizations
and for variable coefficient diffusion, as done in [18] in the context of multigrid
procedures for Qk Finite Elements.
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2. Finite Element approximation. Problem (1.1) can be formulated in vari-
ational form as follows:

find u ∈ H1
0 (Ω) such that

∫
Ω

(a∇u · ∇ϕ) =
∫

Ω
fϕ for all ϕ ∈ H1

0 (Ω), (2.1)

where H1
0 (Ω) is the space of square integrable functions vanishing on ∂Ω, with square

integrable weak derivatives. We assume that Ω ⊆ R2 is a bounded connected set with
smooth boundaries (in practice in our numerical tests Ω will be a polygonal domain).
Furthermore, we make the following hypotheses on the coefficients:

a ∈ C(Ω), with a(x) ≥ a0 > 0, and f ∈ L2(Ω), (2.2)

so that existence and uniqueness for problem (2.1) is guaranteed. Hereafter, we con-
sider Pk Lagrangian Finite Element approximation of problem (2.1). To this end, let
Th = {K} be a usual Finite Element partition of Ω into triangles, with hK = diam(K)
and h = maxK hK , and let Vh ⊂ H1

0 (Ω) be the space of Pk Lagrangian Finite Element,
i.e.

Vh = {ϕh : Ω→ R s.t. ϕh is continuous, ϕh|K is a polynomial of degree

less or equal to k, and ϕh|∂Ω = 0}.

The Finite Element approximation of problem (2.1) reads as follows:

find uh ∈ Vh such that
∫

Ω
(a∇uh · ∇ϕh) =

∫
Ω
fϕh for all ϕh ∈ Vh. (2.3)

For each internal node i of the mesh Th, meaning both vertices and additional nodal
values associated to the Pk approximation, let ϕi ∈ Vh be such that ϕi(node i) = 1,
and ϕi(node j) = 0 if i 6= j. Then, the collection of all ϕi’s is a basis for Vh and

we denote by n(h) its dimension. Then, we write uh as uh =
∑n(h)
j=1 ujϕj and the

variational equation (2.3) becomes an algebraic linear system:

n(h)∑
j=1

(∫
Ω

a∇ϕj · ∇ϕi
)
uj =

∫
Ω

fϕi, i = 1, . . . , n(h). (2.4)

The aim of this paper is to analyze the spectral properties of the matrix-sequences
{An(a,Ω,Pk)}n arising in the quoted linear systems (2.4), both from the theoretical
and numerical point of view.

3. Preliminaries on matrix-sequences, Toeplitz and GLT structures. As
recalled in the introduction, the main target of the paper is the spectral analysis of
the considered stiffness matrices, from the perspective of (block) multilevel Toeplitz
operators and (block) GLT sequences, with special attention to

• spectral distribution in the Weyl sense,
• spectral clustering,

and with a concise analysis also of the extremal eigenvalues, conditioning, and spectral
localization.

In this section, which is divided into three subsections, we furnish the tools for
handling such items. In the first subsection we introduce the notion of clustering and
distribution for general matrix-sequences (Subsection 3.1). The other two are devoted
to multilevel block Toeplitz matrices and further special matrix-sequences (Subsection
3.2) and to the ∗-algebra of GLT sequences (Subsection 3.3).
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3.1. Clustering and distribution. This subsection is devoted to the notion
of distribution (with a matrix-valued symbol), both in the sense of the eigenvalues
and singular values. The notion of clustering, both in the sense of eigenvalues and
singular values, can be seen as a special case of the distribution notions.
• Sequences of Matrices and Block Matrix-Sequences. Throughout this paper,
a sequence of matrices is any sequence of the form {An}n, where An is a square matrix
of size dn and dn →∞ as n→∞. Let r ≥ 1 be a fixed positive integer independent of
n; an r-block matrix-sequence (or simply a matrix-sequence if r can be inferred from
the context or we do not need/want to specify it) is a special sequence of matrices
{An}n in which the size of An is dn = rφn, with {φn}n being a sequence of positive
integers.
• Singular Value and Eigenvalue Distribution of a Sequence of Matrices. Let
µt be the Lebesgue measure in Rt, t ≥ 1. Throughout this paper, all the terminology
from measure theory (such as “measurable set”, “measurable function”, “a.e.”, etc.)
is referred to the Lebesgue measure. A matrix-valued function f : D ⊆ Rt → Cr×r
is said to be measurable (resp., continuous, Riemann-integrable, in Lp(D), etc.) if
its components fαβ : D → C, α, β = 1, . . . , r, are measurable (resp., continuous,
Riemann-integrable, in Lp(D), etc.). We denote by Cc(R) (resp., Cc(C)) the space
of continuous complex-valued functions with bounded support defined on R (resp.,
C). If A ∈ Cm×m, the singular values and the eigenvalues of A are denoted by
σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A), respectively.

Definition 3.1. Let {An}n be a sequence of matrices, with An of size dn, and let
f : D ⊂ Rt → Cr×r be a measurable function defined on a set D with 0 < µt(D) <∞.

• We say that {An}n has a (asymptotic) singular value distribution described
by f , and we write {An}n ∼σ f , if

lim
n→∞

1

dn

dn∑
i=1

F (σi(An)) =
1

µt(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx, ∀F ∈ Cc(R).

(3.1)
• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution

described by f , and we write {An}n ∼λ f , if

lim
n→∞

1

dn

dn∑
i=1

F (λi(An)) =
1

µt(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

(3.2)
If {An}n has both a singular value and an eigenvalue distribution described by f , we
write {An}n ∼σ,λ f .

We note that Definition 3.1 is well-posed because the functions

x 7→
r∑
i=1

F (σi(f(x))) and x 7→
r∑
i=1

F (λi(f(x)))

are measurable. Whenever we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it
is understood that f is as in Definition 3.1; that is, f is a measurable function defined
on a subset D of some Rt with 0 < µt(D) < ∞ and taking values in Cr×r for some
r ≥ 1. The informal meaning behind the spectral distribution (3.2) is the following: if
f is continuous, then a suitable ordering of the eigenvalues {λj(An)}j=1,...,dn , assigned
in correspondence with an equispaced grid on D, reconstructs approximately the r
surfaces x 7→ λi(f(x)), i = 1, . . . , r. For instance, if t = 1, dn = nr, and D = [a, b],
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then the eigenvalues of An are approximately equal to λi(f(a + j(b − a)/n)), j =
1, . . . , n, i = 1, . . . , r; if t = 2, dn = n2r, andD = [a1, b1]×[a2, b2], then the eigenvalues
of An are approximately equal to λi(f(a1 +j1(b1−a1)/n, a2 +j2(b2−a2)/n)), j1, j2 =
1, . . . , n, i = 1, . . . , r (and so on for t ≥ 3). This type of information is useful in
engineering applications [27], e.g. for the computation of the relevant vibrations, and
in the analysis of the (asymptotic) convergence speed of iterative solvers for large
linear systems or for improving the convergence rate by e.g. the design of appropriate
preconditioners [2, 3].

The next theorem gives useful tools for computing the spectral distribution of
sequences formed by Hermitian matrices. For the related proof, we refer the reader to
[32, Theorem 4.3]. In what follows, the conjugate transpose of the matrix A is denoted
by A∗. If A ∈ Cm×m and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A,
i.e., the p-norm of the vector (σ1(A), . . . , σm(A)). The Schatten∞-norm ‖A‖∞ is the
largest singular value of A and coincides with the spectral norm ‖A‖. The Schatten
1-norm ‖A‖1 is the sum of the singular values of A and is often referred to as the
trace-norm of A. The Schatten 2-norm ‖A‖2 coincides with the Frobenius norm of A.
For more on Schatten p-norms, see [5].

Theorem 3.2. Let {Xn}n be a sequence of matrices, with Xn Hermitian of size
dn, and let {Pn}n be a sequence such that Pn ∈ Cdn×δn , P ∗nPn = Iδn , δn ≤ dn and
δn/dn → 1 as n→∞. Then, {Xn}n ∼σ,λ κ if and only if {P ∗nXnPn}n ∼σ,λ κ.

Now we turn to the definition of clustering. For z ∈ C and ε > 0, let B(z, ε) the
disk with center z and radius ε, B(z, ε) := {w ∈ C : |w − z| < ε}. For S ⊆ C and
ε > 0, we denote by B(S, ε) the ε-expansion of S, defined as B(S, ε) :=

⋃
z∈S B(z, ε).

Definition 3.3. Let {Xn}n be a sequence of matrices, with Xn of size dn tend-
ing to infinity, and let S ⊆ C be a nonempty closed subset of C. {Xn}n is strongly
clustered at S in the sense of the eigenvalues if, for each ε > 0, the number of eigen-
values of Xn outside B(S, ε) is bounded by a constant qε independent of n. In symbols,

qε(n, S) := #{j ∈ {1, . . . , dn} : λj(Xn) /∈ B(S, ε)} = O(1), as n→∞.

{Xn}n is weakly clustered at S if, for each ε > 0,

qε(n, S) = o(dn), as n→∞.

If {Xn}n is strongly or weakly clustered at S and S is not connected, then the connected
components of S are called sub-clusters.

Recall that, for a measurable function g : D ⊆ Rt → C, the essential range
of g is defined as ER(g) := {z ∈ C : µt({g ∈ B(z, ε)}) > 0 for all ε > 0}, where
{g ∈ B(z, ε)} := {x ∈ D : g(x) ∈ B(z, ε)}. ER(g) is always closed; moreover, if g
is continuous and D is contained in the closure of its interior, then ER(g) coincides
with the closure of the image of g.

Now, if {Xn}n ∼λ f (with {Xn}n, f as in Definition 3.1), then, by [28, Theorem
4.2], {Xn}n is weakly clustered at the essential range of f , defined as the union
of the essential ranges of the eigenvalue functions λi(f), i = 1, . . . , r: ER(f) :=⋃s
i=1 ER(λi(f)).

3.2. Multilevel block Toeplitz/Circulant/diagonal matrices and zero-
distributed matrix-sequences. In this subsection we introduce three types of
matrix structures. The first two have an algebraic definition for every fixed di-
mension (multilevel block Toeplitz/Circulant matrices and multilevel block diagonal
structures), while the last has only an asymptotic sense (zero-distributed matrix-
sequences). In any case, we will be interested in matrix-sequences consisting of these
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three matrix structures, especially when defining the basics of the theory of multilevel
block GLT sequences.
•Multilevel Block Toeplitz/Circulant Matrices. We first briefly summarize the
definition and relevant properties of multilevel block Toeplitz matrices we will face in
the following sections.
Given n ∈ Nd, a matrix of the form

[Ai−j]
n
i,j=e ∈ CN(n)r×N(n)r

with e vector of all ones, with blocks Ak ∈ Cr×r, k = −(n− e), . . . ,n− e, is called a
multilevel block Toeplitz matrix, or, more precisely, a d-level r-block Toeplitz matrix.
Given a matrix-valued function f : [−π, π]d → Cr×r in L1([−π, π]d), we denote its
Fourier coefficients by

f̂k =
1

(2π)d

∫
[−π,π]d

f(θ)e−ı̂(k,θ)dθ ∈ Cr×r, k ∈ Zd, (3.3)

where the integrals are computed componentwise and (k,θ) = k1θ1 + . . .+ kdθd. For
every n ∈ Nd, the n-th Toeplitz matrix associated with f is defined as

Tn(f) := [f̂i−j]
n
i,j=e (3.4)

or, equivalently, as

Tn(f) =
∑
|j1|<n1

. . .
∑
|jd|<nd

[J (j1)
n1
⊗ . . .⊗ J (jd)

nd
]⊗ f̂(j1,...,jd) (3.5)

where ⊗ denotes the (Kronecker) tensor product of matrices, while J
(l)
m is the matrix of

order m whose (i, j) entry equals 1 if i−j = l and zero otherwise. We call {Tn(f)}n∈Nd

the family of (multilevel block) Toeplitz matrices associated with f , which, in turn, is
called the generating function of {Tn(f)}n∈Nd . In perfect analogy we define multilevel
block Circulant matrices. Given n ∈ Nd, a matrix of the form

[A(i−j) mod n]ni,j=e ∈ CN(n)r×N(n)r

with e vector of all ones, with blocks Ak ∈ Cr×r, k = 0, . . . ,n−e, is called a multilevel
block Circulant matrix, or, more precisely, a d-level r-block Circulant matrix.

The n-th Circulant matrix associated with f is defined as

Cn(f) =
∑
|j1|<n1

. . .
∑
|jd|<nd

[Z(j1)
n1
⊗ . . .⊗ Z(jd)

nd
]⊗ f̂(j1,...,jd) (3.6)

where Z
(l)
m = [Z

(1)
m ]l is the matrix of order m whose (i, j) entry equals 1 if (i −

j) mod m = l and zero otherwise.
• Block Diagonal Sampling Matrices. For n ∈ N, d = 1, and a : [0, 1] → Cr×r,
we define the block diagonal sampling matrix Dn(a) as the block diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i
n

)
=


a( 1
n )

a( 2
n )

. . .

a(1)

 ∈ Crn×rn.
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For a general dimensionality d ≥ 2, we consider a : [0, 1]d → Cr×r, n = (n1, . . . , nd)
and we define the block multilevel diagonal sampling matrix Dn(a) as the block di-
agonal matrix

Dn(a) = diag
i=e,...,n

a
( i

n

)
∈ CrN(n)×rN(n),

where the multi-index i/n has to be intended as (i1/n1, . . . , id/nd) and the ordering
is the lexicographical one as in the work by E. Tyrtyshnikov (see for instance [46]).
Zero-Distributed Sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0
is referred to as a zero-distributed sequence. Note that, for any r ≥ 1, {Zn}n ∼σ 0
is equivalent to {Zn}n ∼σ Or (throughout this paper, Om and Im denote the m×m
zero matrix and the m ×m identity matrix, respectively). Proposition 3.4 provides
an important characterization of zero-distributed sequences together with a useful
sufficient condition for detecting such sequences. Throughout this paper we use the
natural convention 1/∞ = 0.

Proposition 3.4. Let {Zn}n be a sequence of matrices, with Zn of size dn, and
let ‖ · ‖ be the spectral norm. Then

• {Zn}n is zero-distributed if and only if Zn = Rn+Nn with rank(Rn)/dn → 0
and ‖Nn‖ → 0 as n→∞.

• {Zn}n is zero-distributed if there exists a p ∈ [1,∞] such that ‖Zn‖p/(dn)1/p →
0 as n→∞.

3.3. The ∗-algebra of multilevel block GLT sequences. Let r ≥ 1 be a
fixed positive integer. An r-block GLT sequence (or simply a GLT sequence if r can
be inferred from the context or we do not need/want to specify it) is a special r-block
matrix-sequence {An}n equipped with a measurable function κ : [0, 1]d × [−π, π]d →
Cr×r, d ≥ 1, the so-called symbol. We use the notation {An}n ∼GLT κ to indicate
that {An}n is a GLT sequence with symbol κ. The symbol of a GLT sequence is
unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then κ = ς a.e. in
[0, 1]d × [−π, π]d.

The main properties of r-block GLT sequences proved in [25, 26] are listed below:
they represent a complete characterization of GLT sequences, equivalent to the full
constructive definition.

If A is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall
that A† = A−1 whenever A is invertible). If fm, f : D ⊆ Rt → Cr×r are measurable
matrix-valued functions, we say that fm converges to f in measure (resp., a.e., in
Lp(D), etc.) if (fm)αβ converges to fαβ in measure (resp., a.e., in Lp(D), etc.) for all
α, β = 1, . . . , r.
GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If moreover each An is Hermitian then

{An}n ∼λ κ.
GLT 2. We have:

• {Tn(f)}n ∼GLT κ(x,θ) = f(θ) if f : [−π, π]d → Cr×r is in L1([−π, π]d);
• {Dn(a)}n ∼GLT κ(x,θ) = a(x) if a : [0, 1]d → Cr×r is Riemann-

integrable;
• {Zn}n ∼GLT κ(x,θ) = Or if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς then:
• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ+ βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†n}n ∼GLT κ−1 provided that κ is invertible a.e.
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GLT 4. {An}n ∼GLT κ if and only if there exist r-block GLT sequences {Bn,m}n ∼GLT

κm such that {Bn,m}n
a.c.s.−→ {An}n and κm → κ in measure, where the a.c.s.

convergence is studied in [22].
Regarding notations on sequences associated with a multi-index, all the previous

definitions and notions apply with the convention that n→∞ has the meaning that
minj nj → ∞. Finally, it is worth noticing that in the derivations in the following
sections and in all the numerical experiments, the d-index is simplified that is n = n ·e
i.e. n1 = n2 = · · · = nd = n. In that setting we use the simplified notation Tn(f) =
Tn(f) and Dn(a) = Dn(a), where the number of levels d is understood by looking at
the number of variables characterizing the definition domains either of f or of a, or
by simply looking at the size rN(n, d), N(n, d) = nd, of the considered matrices.

4. A Few remarks on the monodimensional case: Qk ≡ Pk, d = 1. We
report some results derived in [24] for the Lagrangian Finite Elements Qk ≡ Pk,
d = 1. Let us consider the Lagrange polynomials L0, . . . , Lk associated with the
reference knots tj = j/k, j = 0, . . . , k:

Li(t) =

k∏
j=0
j 6=i

t− tj
ti − tj

=

k∏
j=0
j 6=i

kt− j
i− j

, i = 0, . . . , k,

Li(tj) = δij , i, j = 0, . . . , k,

(4.1)

and let the symbol 〈 , 〉 denote the scalar product in L2([0, 1]), i.e., 〈ϕ,ψ〉 :=
∫ 1

0
ϕψ.

In the case a(x) ≡ 1 and Ω = (0, 1) the Qk matrix An(a,Ω,Qk) equals the matrix

K
(k)
n in Theorem 4.1.
Theorem 4.1. Let k, n ≥ 1. Then

K(k)
n =


K0 KT

1

K1
. . .

. . .

. . .
. . . KT

1

K1 K0


−

(4.2)

where the subscript ‘−’ means that the last row and column of the matrix in square
brackets are deleted, while K0,K1 are k × k blocks given by

K0 =


〈L′1, L′1〉 · · · 〈L′k−1, L

′
1〉 〈L′k, L′1〉

...
...

...
〈L′1, L′k−1〉 · · · 〈L′k−1, L

′
k−1〉 〈L′k, L′k−1〉

〈L′1, L′k〉 · · · 〈L′k−1, L
′
k〉 〈L′k, L′k〉+ 〈L′0, L′0〉

 ,

K1 =


0 0 · · · 0 〈L′0, L′1〉
0 0 · · · 0 〈L′0, L′2〉
...

...
...

...
0 0 · · · 0 〈L′0, L′k〉

 ,
(4.3)

with L0, . . . , Lk being the Lagrange polynomials in (4.1). In particular, K
(k)
n is the

(nk − 1)× (nk − 1) leading principal submatrix of the block Toeplitz matrices Tn(fk)
and fk : [−π, π]→ Ck×k is an Hermitian matrix-valued function given by

fk(θ) := K0 +K1e
ı̂θ +KT

1 e
−ı̂θ. (4.4)
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Fig. 5.1. Friedrics-Keller meshes for Pk, k = 1, 2.

An interesting property of the Hermitian matrix-valued functions fk(θ) defined in
(4.4) is reported in the theorem below. From the point of view of the spectral distri-
bution, the message is that, independently of the parameter k, the spectral symbol
is of the same character as 2− 2 cos(θ) which is the symbol of the basic linear Finite
Elements and the most standard Finite Differences approximation.

Theorem 4.2. Let k ≥ 1, then

det(fk(θ)) = dk(2− 2 cos(θ)), (4.5)

where dk = det([〈L′j , L′i〉]ki,j=1) = det([〈L′j , L′i〉]
k−1
i,j=1) > 0 (with d1 = 1 being the

determinant of the empty matrix by convention) and L0, . . . , Lk are the Lagrange
polynomials (4.1).

5. Two dimensional case: Pk, d = 2 - symbol definition. Hereafter we
focus on Pk Lagrangian Finite Elements in the case of Friedrichs-Keller triangulations
{TK} of the domain Ω as reported in Fig. 5. Nodes, that is both vertices and
additional nodal values associated to the chosen Pk approximation, are ordered in
standard lexicographical way from left to right, from bottom to top.
The stiffness matrix is built by considering the standard assembling procedure with

respect to the reference element K̂ in Fig. 5.2. Let G be the affine transformation
mapping K̂ onto a generic K ∈ TK defined as

G

([
x̂
ŷ

])
=

[
(e3)1 −(e2)1

(e3)2 −(e2)2

] [
x̂
ŷ

]
+

[
xv1

yv1

]
,

where e1 = [xv3−xv2 , yv3−yv2 ]T , e2 = [xv1−xv3 , yv1−yv3 ]T , e3 = [xv2−xv1 , yv2−yv1 ]T

represent the oriented edge vectors and (xvi , yvi) are the coordinates of the ith vertex
vi. Thus,

AElK =

[∫
K

∇ϕj · ∇ϕi
]
i,j

with∫
K

∇ϕj · ∇ϕi = det(JG(x̂, ŷ))

∫
K̂

[JTG−1∇̂ϕ̂j(x̂, ŷ)] · [JTG−1∇̂ϕ̂i(x̂, ŷ)]dx̂dŷ, (5.1)
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Fig. 5.2. Reference element K̂ and nodal points for Pk, k = 1, . . . , 4.

where the ϕ̂s’s are the shape functions on K̂, det(JG(x̂, ŷ)) = 2|K| and JTG−1 is the
transpose of the Jacobian matrix of the inverse mapping G−1, that is,

JTG−1 =
1

2|K|

[
−(e2)2 −(e3)2

(e2)1 (e3)1

]
.

In the present section we will preliminarily consider the case a ≡ 1 and Ω = (0, 1)2.

5.1. Case k = 1. Even if well known, we start by considering the case k = 1,
that is the one of a linear Lagrangian FE approximation. The shape functions on K̂
are defined as

ϕ̂1(x̂, ŷ) = −x̂− ŷ + 1,

ϕ̂2(x̂, ŷ) = x̂, (5.2)

ϕ̂3(x̂, ŷ) = ŷ,



12 R.I. RAHLA, S. SERRA CAPIZZANO, C. TABLINO POSSIO

so that, according to (5.1), the elemental matrix for a generic triangle of the Friedrichs-
Keller triangulation, that is a right-angle triangle of constant edge h, equals

AElK1
=

1

2

 2 −1 −1
−1 1 0
−1 0 1

 or AElK2
=

1

2

 1 −1 0
−1 2 −1

0 −1 1

 , (5.3)

for triangles of type 1 (right angle in vertex 1) or type 2 (right angle in vertex 2),
respectively.
The stiffness matrix An = An(1,Ω,P1), that is with a ≡ 1, is the twolevel Toeplitz
matrix generated by the symbol fP1

(θ1, θ2) = 4− 2 cos(θ1)− 2 cos(θ2). In fact, An is
block tridiagonal, i.e.

An = tridiag(A1, A0, A−1),

where the triangular blocks are such thatA0 = tridiag(a0
1, a

0
0, a

0
−1) = tridiag(−1, 4,−1),

A1 = A−1 = diag(a1
1) = −I, I being the identity matrix. Thus we can easily read the

corresponding symbol as follows

fP1(θ1, θ2) = fA0(θ1) + fA−1(θ1)e−ı̂θ2 + fA1(θ1)eı̂θ2 , (5.4)

with fA0(θ1) = a0
0 + a0

−1e
−ı̂θ1 + a0

1e
ı̂θ1 and fA1(θ1) = fA−1(θ1) = a1

1.
Clearly, the natural arising question is: which properties are preserved in considering
Lagrangian FE of higher order?

5.2. Case k = 2. Hereafter, we will consider in full detail the case of quadratic
Lagrangian FE (k = 2), the aim being to introduce a suitable notation making easier
the analysis of higher order approximations as well. By referring to the reference
element (see Fig. 5.2), we have the following shape functions

ϕ̂1(x̂, ŷ) = 2x̂2 + 2ŷ2 + 4x̂ŷ − 3x̂− 3ŷ + 1,

ϕ̂2(x̂, ŷ) = x̂(2x̂− 1),

ϕ̂3(x̂, ŷ) = ŷ(2ŷ − 1),

ϕ̂4(x̂, ŷ) = 4x̂ŷ, (5.5)

ϕ̂5(x̂, ŷ) = −4ŷ(x̂+ ŷ − 1),

ϕ̂6(x̂, ŷ) = −4x̂(x̂+ ŷ − 1),

so that, according to (5.1), the elemental matrix for a generic triangle equals

AElK1
=



1 1
6

1
6 0 − 2

3 − 2
3

1
6

1
2 0 0 0 − 2

3
1
6 0 1

2 0 − 2
3 0

0 0 0 8
3 − 4

3 − 4
3

− 2
3 0 − 2

3 − 4
3

8
3 0

− 2
3 − 2

3 0 − 4
3 0 8

3


(5.6)

in the case of triangles of type 1, or a suitable permutation in the case of trian-
gles of type 2. Despite the use of Lagrangian quadratic approximation, the stiff-
ness matrix An = An(1,Ω,P2) shows again a block tridiagonal structure An =
tridiag(A1, A0, A−1) as in the linear case, the higher approximation stressing its in-
fluence just inside the blocks Ai. We might say that the quoted tridiagonal structure
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refers once again to triangles’ vertices, while the internal structure is stressing the
increased number of additional nodal points, that is three in the case at hand. In
fact, we observe in each block Ai a 2× 2 block structure as follows:

A0 =

[
B11

0 B12
0

(B12
0 )T B22

0

]
, A−1 =

[
0 0

B21
−1 B22

−1

]
, A1 = AT−1, (5.7)

where the superscripts i, j in Bijl denote the position inside the 2 × 2 block and the
subscript l the belonging to the block Al, so that

An =



B11
0 B12

0 0 0

(B12
0 )T B22

0 B21
−1 B22

−1

0 (B21
−1)T B11

0 B12
0 0 0

0 (B22
−1)T (B12

0 )T B22
0 B21

−1 B22
−1

. . .
. . .

. . .

0 (B21
−1)T B11

0 B12
0 0

0 (B22
−1)T (B12

0 )T B22
0 B21

−1

0 (B21
−1)T B11

0


. (5.8)

More important, the very same structure depicted in (5.8), including the very same
cutting in the lower right corner, appears in every block Bijl by considering suitable
2× 2 matrices as follows

Bijl = tridiag

(
a
Bij

l
1 , a

Bij
l

0 , a
Bij

l
−1

)
, l ∈ {−1, 0, 1}, i, j ∈ {1, 2},

where

a
B11

0
0 =

[
16
3 − 4

3

− 4
3

16
3

]
, a

B11
0
−1 =

[
0 0

− 4
3 0

]
, a

B11
0

1 =
(
a
B11

0
−1

)T
,

a
B22

0
0 =

[
16
3 − 4

3

− 4
3 4

]
, a

B22
0
−1 =

[
0 0

− 4
3

1
3

]
, a

B22
0

1 =
(
a
B22

0
−1

)T
,

a
B12

0
0 = −4

3
I2, a

B12
0
−1 = a

B12
0

1 = O2,

a
B21

−1

0 = −4

3
I2, a

B21
−1

−1 = a
B21

−1

1 = O2,

a
B22

−1

0 =

[
0 0
0 1

3

]
, a

B21
−1

−1 = a
B21

−1

1 = O2.

Thus, once again, just by taking into account that we are now facing a matrix-valued
symbol, we can easily read the underlying symbol as follows:

fP2
(θ1, θ2) = fA0

(θ1) + fA−1
(θ1)e−ı̂θ2 + fA1

(θ1)eı̂θ2 , (5.9)
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with

fA0
(θ1) =

[
fB11

0
(θ1) fB12

0
(θ1)

f(B12
0 )T (θ1) fB22

0
(θ1)

]
,
fBij

l
(θ1) = a

Bij
l

0 + a
Bij

l
−1 e

−ı̂θ1 + a
Bij

l
1 eı̂θ1 ,

f(Bij
l )T (θ1) = fBij

l
(θ1),

fA−1(θ1) =

[
0 0

fB21
−1

(θ1) fB22
−1

(θ1)

]
, fA1(θ1) =

[
0 f(B21

−1)T (θ1)

0 f(B22
−1)T (θ1)

]
.

To sum up, we have a matrix-valued symbol fP2 : [−π, π]2 −→ C4×4 with

fP2
(θ1, θ2) =


α −β(1 + eı̂θ1) −β(1 + eı̂θ2) 0

−β(1 + e−ı̂θ1) α 0 −β(1 + eı̂θ2)
−β(1 + e−ı̂θ2) 0 α −β(1 + eı̂θ1)

0 −β(1 + e−ı̂θ2) −β(1 + e−ı̂θ1) γ + β
2 (cos(θ1) + cos(θ2))


(5.10)

with α = 16/3, β = 4/3, and γ = 4.
Finally, it is worth stressing that the stiffness matrix An(1,Ω,P2) is a principal sub-
matrix of a suitable permutation of the Toeplitz matrix Tn(fP2

) defined according
to (3.5). Indeed, the size of the twolevel matrix An = An(1,Ω,P2) is intrinsically
odd both in inner and outer dimensions (see Theorem 4.1 and the explanation after
equation (4.2)), while Tn(fP2

) has even corresponding dimensions: it is enough to cut
every last row/column in each inner block, together with the last block with respect
rows and columns, in order to obtain An from Tn(fP2

). In other words An is a special
principal submatrix of Tn(fP2) according to the rule given in Theorem 4.1. As for
the permutation we have just to consider the one defined by ordering nodal values
as reported in Fig. 5.3, where internal nodal values are grouped four by four. As a
consequence the two matrix-sequences {Tn(fP2

)}n and {An(1,Ω,P2)}n share the same
spectral distribution, that is, the same spectral symbol fP2

, by invoking Theorem 3.2.
The following proposition holds.

Proposition 5.1. The two matrix-sequences {Tn(fP2)}n and {An(1,Ω,P2)}n
are spectrally distributed as fP2

in the sense of Definition 3.1.

As an immediate consequence of Proposition 5.1 we deduce a corollary regarding
the clustering and localization of the spectra of {Tn(fP2

)}n and {An(1,Ω,P2)}n.

Corollary 5.2. The range of fP2 is a weak cluster set for the spectra of the
two matrix-sequences {Tn(fP2)}n and {An(1,Ω,P2)}n in the sense of Definition 3.3.
Furthermore, the convex hull of the range of fP2

contains all the eigenvalues of the
involved matrices.

Proof. The proof of the first part is a direct consequence of Proposition 5.1, taking
into account [28, Theorem 4.2] and observing that in this setting the standard range
and the essential range coincide since fP2 is continuous (see also the end of Subsection
3.1). For the second part we observe that the result is known for Toeplitz matrices
with Hermitian valued symbols [40]: then the localization result for the eigenvalues
of An(1,Ω,P2) follows, because An(1,Ω,P2) is a principal submatrix of Tn(fP2

) and
since all the involved matrices are Hermitian.
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Fig. 5.3. Nodal points reordering in P2 and P3 cases.

5.3. Case k = 3. In the case of cubic Lagrangian FE (k = 3), by referring to
the reference element (see Fig. 5.2), we have the following shape functions

ϕ̂1(x̂, ŷ) = −9

2
x̂3 − 27

2
x̂2ŷ + 9x̂2 − 27

2
x̂ŷ2 + 18x̂ŷ − 11

2
x̂− 9

2
ŷ3 + 9ŷ2 − 11

2
ŷ + 1,

ϕ̂2(x̂, ŷ) =
x̂

2
(9x̂2 − 9x̂+ 2),

ϕ̂3(x̂, ŷ) =
ŷ

2
(9ŷ2 − 9ŷ + 2),

ϕ̂4(x̂, ŷ) =
9

2
x̂ŷ(3x̂− 1),

ϕ̂5(x̂, ŷ) =
9

2
x̂ŷ(3ŷ − 1),

ϕ̂6(x̂, ŷ) = −9

2
ŷ(3ŷ − 1)(x̂+ ŷ − 1),

ϕ̂7(x̂, ŷ) =
9

2
ŷ(3x̂2 + 6x̂ŷ − 5x̂+ 3ŷ2 − 5ŷ + 2),

ϕ̂8(x̂, ŷ) =
9

2
x̂(3x̂2 + 6x̂ŷ − 5x̂+ 3ŷ2 − 5ŷ + 2),

ϕ̂9(x̂, ŷ) = −9

2
x̂(3x̂− 1)(x̂+ ŷ − 1),

ϕ̂10(x̂, ŷ) = −27x̂ŷ(x̂+ ŷ − 1),
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so that, according to (5.1), the elemental matrix for a generic triangle equals

AElK1
=



17
20 − 7

80 − 7
80 − 3

40 − 3
40

3
8 − 51

80 − 51
80

3
8 0

− 7
80

17
40 0 3

80
3
80 − 3

80 − 3
80

27
80 − 27

40 0

− 7
80 0 17

40
3
80

3
80 − 27

40
27
80 − 3

80 − 3
80 0

− 3
40

3
80

3
80

27
8 − 27

40
27
80

27
80

27
80 − 27

16 − 81
40

− 3
40

3
80

3
80 − 27

40
27
8 − 27

16
27
80

27
80

27
80 − 81

40
3
8 − 3

80 − 27
40

27
80 − 27

16
27
8 − 27

16 0 0 0

− 51
80 − 3

80
27
80

27
80

27
80 − 27

16
27
8 0 0 − 81

40

− 51
80

27
80 − 3

80
27
80

27
80 0 0 27

8 − 27
16 − 81

40
3
8 − 27

40 − 3
80 − 27

16
27
8 0 0 − 27

16
27
8 0

0 0 0 − 81
40 − 81

40 0 − 81
40 − 81

40 0 81
10



(5.11)

in the case of triangles of type 1, or a suitable permutation in the case of triangles
of type 2. The stiffness matrix An = An(1,Ω,P3) shows again a block tridiagonal
structure An = tridiag(A1, A0, A−1) as in previous cases, the higher approximation
stressing its influence just inside the blocks Ai. In fact, we observe in each block Ai
a 3× 3 block structure as follows:

A0 =

 B11
0 B12

0 B13
0

(B12
0 )T B22

0 B23
0

(B13
0 )T B23

0 B33
0

 , A−1 =

 0 0 0
0 0 0

B31
−1 B32

−1 B33
−1

 , A1 = AT−1.

(5.12)
More important, the very same structure appears in every block Bijl by considering
suitable 3× 3 matrices and indeed we have

Bijl = tridiag

(
a
Bij

l
1 , a

Bij
l

0 , a
Bij

l
−1

)
, l ∈ {−1, 0, 1}, i, j ∈ {1, 2, 3},

where

a
B11

0
0 =


81
10 − 81

40 0

− 81
40

27
4 − 27

16

0 − 27
16

27
4

 , a
B11

0
−1 =

 0 0 0

0 0 0

− 81
40

27
80 0

 , a
B11

0
1 =

(
a
B11

0
−1

)T
,

a
B22

0
0 =


27
4 − 81

40
27
80

− 81
40

81
10 − 81

40
27
80 − 81

40
27
4

 , a
B22

0
−1 =

 0 0 0

0 0 0

− 27
16 0 0

 , a
B22

0
1 =

(
a
B22

0
−1

)T
,

a
B33

0
0 =


27
4 − 27

8
57
80

− 27
8

27
4 − 21

16
57
80 − 21

16
17
5

 , a
B33

0
−1 =

 0 0 0

0 0 0

− 21
16

57
80 − 7

40

 , a
B33

0
1 =

(
a
B33

0
−1

)T
,

a
B12

0
0 =

 −
81
40 0 0

− 27
20 − 81

40
27
80

27
80 0 − 27

8

 , a
B12

0
−1 =

 0 0 0

0 0 0
27
80 0 0

 , a
B12

0
1 =

 0 0 0

0 0 27
80

0 0 0

 ,
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a
B13

0
0 =

 0 0 0
27
80

27
80 − 3

40

0 0 57
80

 , a
B13

0
−1 = O3, a

B13
0

1 =

 0 0 0

0 0 3
40

0 0 − 3
80

 ,

a
B23

0
0 =

 −
27
16

27
80 − 3

40

0 − 81
40 0

0 0 − 21
16

 , a
B23

0
−1 = O3, a

B23
0

1 =

 0 0 3
40

0 0 0

0 0 − 3
80

 ,

a
B31

−1

0 =

 −
81
40

27
80 0

0 − 27
16 0

0 3
40 − 21

16

 , a
B31

−1

−1 =

 0 0 0

0 0 0

0 − 3
40 0

 , a
B31

−1

1 =

 0 0 0

0 0 0

0 0 − 3
80

 ,

a
B32

−1

0 =


27
80 0 0
27
80 0 0
3
40 0 57

80

 , a
B32

−1

−1 =

 0 0 0

0 0 0

− 3
40 0 0

 , a
B32

−1

1 =

 0 0 0

0 0 0

0 0 − 3
80

 ,

a
B33

−1

0 =

 0 0 0

0 0 0

− 3
80 − 3

80 − 7
40

 , a
B33

−1

−1 = O3, a
B33

−1

1 =

 0 0 − 3
80

0 0 − 3
80

0 0 0

 .
Thus, once again, just by taking into account that we are now facing a matrix-valued
symbol, we can easily read the underlying symbol as follows:

fP3
(θ1, θ2) = fA0

(θ1) + fA−1
(θ1)e−ı̂θ2 + fA1

(θ1)eı̂θ2 , (5.13)

with

fA0
(θ1) =

 fB11
0

(θ1) fB12
0

(θ1) fB13
0

(θ1)

f(B12
0 )T (θ1) fB22

0
(θ1) fB23

0
(θ1)

f(B13
0 )T (θ1) f(B23

0 )T (θ1) fB33
0

(θ1)

 , fBij
l

(θ1) = a
Bij

l
0 + a

Bij
l
−1 e

−ı̂θ1 + a
Bij

l
1 eı̂θ1 ,

f(Bij
l )T (θ1) = fBij

l
(θ1),

fA−1(θ1) =

 0 0 0
0 0 0

fB31
−1

(θ1) fB32
−1

(θ1) fB33
−1

(θ1)

 , fA1
(θ1) =

 0 0 f(B31
−1)T (θ1)

0 0 f(B32
−1)T (θ1)

0 0 f(B33
−1)T (θ1)

 .
To sum up, we find the expression of fP3

: [−π, π]2 −→ C9×9 with

fP3
(θ1, θ2) =



α −α
4

−α
4
eı̂θ1 −α

4
0 0 −α

4
eı̂θ2 0 0

−α
4

β −β
4

+ β
20
eı̂θ1 −β

5
−α

4
β
20

(1 + eı̂θ1 ) β
20

(1 + eı̂θ2 ) β
20
− β

4
eı̂θ2 f29

−α
4
e−ı̂θ1 −β

4
+ β

20
e−ı̂θ1 β β

20
(1 + e−ı̂θ1 ) 0 −β

2
0 0 f39

−α
4

−β
5

β
20

(1 + eı̂θ1 ) β −α
4

β
20
− β

4
eı̂θ1 −β

4
+ β

20
eı̂θ2 β

20
(1 + eı̂θ2 ) f49

0 −α
4

0 −α
4

α −α
4

0 −α
4

0

0 β
20

(1 + e−ı̂θ1 ) −β
2

β
20
− β

4
e−ı̂θ1 −α

4
β 0 0 f69

−α
4
e−ı̂θ2 β

20
(1 + e−ı̂θ2 ) 0 −β

4
+ β

20
e−ı̂θ2 0 0 β −β

2
f79

0 β
20
− β

4
e−ı̂θ2 0 β

20
(1 + e−ı̂θ2 ) −α

4
0 −β

2
β f89

0 f29 f39 f49 0 f69 f79 f89 f99


(5.14)
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where

f29 = −γ(1− eı̂θ1)(1− eı̂θ2), f39 = δ − γ
2 e
ı̂θ1 − εeı̂θ2 − γ

2 e
−ı̂θ1eı̂θ2 ,

f49 = −γ(1− eı̂θ1)(1− eı̂θ2), f69 = −ε− γ
2 e
ı̂θ1 + δeı̂θ2 − γ

2 e
−ı̂θ1eı̂θ2 ,

f79 = δ − εeı̂θ1 − γ
2 e
ı̂θ1e−ı̂θ2 − γ

2 e
ı̂θ2 , f89 = −ε+ δeı̂θ1 − γ

2 e
ı̂θ1e−ı̂θ2 − γ

2 e
ı̂θ2 ,

f99 = ζ − 2η(cos(θ1) + cos(θ2)),

and α = 81/10, β = 27/4, γ = 3/40, δ = 57/80, ε = 21/16, ζ = 17/5, η = 7/40.
Finally, the stiffness matrix An = An(1,Ω,P3) is a principal submatrix of a suitable
permutation of the Toeplitz matrix Tn(fP3). In order to obtain the stiffness matrix
An from Tn(fP3

) it is enough to group internal nodal values nine by nine. Again by
referring to Theorem 3.2, the following proposition holds.

Proposition 5.3. The two matrix-sequences {Tn(fP3
)}n and {An(1,Ω,P3)}n

are spectrally distributed as fP3
in the sense of Definition 3.1. As an immediate

consequence of Proposition 5.3 we deduce a corollary regarding the clustering and
localization of the spectra of {Tn(fP3)}n and {An(1,Ω,P3)}n as well.

Corollary 5.4. The range of fP3 is a weak cluster set for the spectra of the
two matrix-sequences {Tn(fP3)}n and {An(1,Ω,P3)}n in the sense of Definition 3.3.
Furthermore, the convex hull of the range of fP2

contains all the eigenvalues of the
involved matrices.

Proof. The thesis follows with the same reasoning considered in Corollary 5.2.

6. Symbol spectral analysis. We start the spectral analysis of symbols ob-
tained in the previous section from a numerical point of view. As well known, fP1

shows a zero of order 2 in (0, 0), while it is positive elsewhere. In the case k ≥ 2 the
symbol is a matrix-valued function, so we consider an equispaced sampling in [−π, π]2

of the symbol and for each point we evaluate the k2 eigenvalues, ordering them in
non-decreasing way. Thus, k2 surfaces si, i = 1, . . . , k2 , are defined, and the ith eigen-
value in a given point of the sampling being the value of the surface si in such a point.
In Table 6.1 the minimal and maximal values of each surface si, i = 1, . . . , k2, are
reported (for a comparison among the surfaces obtained by using the eigenvalues of
the considered matrix-sequence and the corresponding surfaces obtained by properly
sampling the symbol of the same matrix-sequence see the subsequent Figures 7.1-7.4).

In the case k = 2, it is worth stressing that the chosen sorting of the eigenvalues
influences the surfaces definition, the minimal value of the i-th surface being lower of
the maximal value of the (i− 1)-th surface: this implies that the union of the ranges
of the eigenvalue functions of the symbol produces a connected set which is a cluster
for the spectra of the given matrix-sequence. When k = 3 the union of the ranges of
the first four surfaces is well separated from the union of the remaining five surfaces
and hence the cluster is divided into two sub-clusters in the sense of Definition 3.3.
In the case k = 4, the union of the ranges of the first nine surfaces is well separated
from the union of the remaining seven surfaces and consequently, as in the case of
k = 3, the cluster is divided into two sub-clusters.

However, there is a phenomenon which is expected and it is independent of the
value of k: only the first surface reaches zero as minimum, while all the other surfaces
are strictly positive everywhere.

Now we give a general result regarding the main features of the involved symbols,
with the proof in various cases, including both Pk and Qk Finite Element approxima-
tions.
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i min(si) argmin(si) max(si) argmax(si)

k = 1

1 0 (0, 0) 8 (−π,−π)
k = 2

1 -2.122988181725368e-17 (0, 0) 2.666666666666667e+00 (−π,−π)
2 2.666666666666667e+00 (0,−π) 5.333333333333330e+00 (0, 0)
3 5.333333333333325e+00 (−u,−u) 7.415403750411773e+00 (0,−π)
4 5.333333333333333e+00 (−π,−π) 1.066666666666667e+01 (0, 0)

k = 3

1 -2.947870832408496e-16 (0, 0) 1.752299219210445e+00 (−π,−π)
2 1.077001420967619e+00 (−π, 0) 2.649326100400095e+00 (0, 0)
3 2.024999999999999e+00 (π,−π) 3.374999999999998e+00 (0, 0)
4 2.417725227846304e+00 (−π,−π) 5.473900873539699e+00 (0, 0)
5 6.074999999999998e+00 (0, 0) 8.150826984062711e+00 (−v, v)
6 6.075000000000001e+00 (0, 0) 9.450000000000005e+00 (−π,−π)
7 8.100000000000000e+00 (−π, 0) 1.145177302606021e+01 (0, 0)
8 1.012500000000000e+01 (−π,−π) 1.306461248424784e+01 (−π, 0)
9 1.215000000000001e+01 (0, 0) 1.542003087979332e+01 (−π,−π)

k = 4

1 8.665811124242140e-15 (0, 0) 1.154132889535501e+00 (π,−π)
2 6.091179158637314e-01 (−π, 0) 2.028216383055356e+00 (−π,−π)
3 1.183562035003593e+00 (w,−w) 2.278229389751864e+00 (−π, 0)
4 1.228189268889777e+00 (−π,−π) 2.796565325232735e+00 (z, π/10)
5 2.706589845271391e+00 (0, 0) 3.280192294561743e+00 (−π,−π)
6 3.100532625333826e+00 (0, 0) 4.876190476190478e+00 (π,−π)
7 4.086126343234464e+00 (a, b) 5.001164336911962e+00 (c,−c)
8 4.923102258884252e+00 (d,−d) 6.507154754218933e+00 (0,−π)
9 6.351060427971650e+00 (e, e) 7.524544180802064e+00 (f,−f)
10 1.124369260315089e+01 (−π, 0) 1.277464393947364e+01 (π,−π)
11 1.221231815611003e+01 (−g, g) 1.319265448651837e+01 (0,−π)
12 1.312292935024724e+01 (h, h) 1.551857649581396e+01 (i,−i)
13 1.403908928314477e+01 (π,−π) 1.715087064330462e+01 (l,−l)
14 1.715307867863427e+01 (l,−l) 2.041132693707404e+01 (−π,−π)
15 1.987073604165514e+01 (0, 0) 2.261907577519149e+01 (0, π)
16 2.236934933910699e+01 (m,−m) 2.492211941947813e+01 (0, 0)

Table 6.1
Minimum and maximum of surfaces si, i = 1, . . . , k2. u = −7.351326809400116e − 01,

v = 2.500707752257475e + 00, w = 3.053628059289279e + 00, z = 1.734159144781565e + 00,
a = 2.576105975943630e − 01, b = −2.224247598741574e + 00, c = 2.896548426609789e + 00,
d = 1.507964473723100e + 00, e = 1.043008760991811e + 00, f = 2.161415745669778e + 00,
g = 1.627344994559513e + 00, h = 2.796017461694915e + 00, i = 7.099999397112930e − 01,
l = 9.550441666912972e− 01, m = 2.519557308179014e+ 00.

Theorem 6.1. Given the symbols fPk
, fQk

in dimension d ≥ 1, the following
statements hold true. For every f ∈ {fPk

, fQk
}, setting

λ1(f(θ)) ≤ · · · ≤ λkd(f(θ)),

we obtain

1. f(0)e = 0, e vector of all ones, k ≥ 1;
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2. there exist constants C1, C2 > 0 (dependent on f) such that

C1

d∑
j=1

(2− 2 cos(θj)) ≤ λ1(f(θ)) ≤ C2

d∑
j=1

(2− 2 cos(θj)); (6.1)

3. there exist constants m,M > 0 (dependent on f) such that

0 < m ≤ λj(f(θ)) ≤M, j = 2, . . . , kd. (6.2)

For fQk
the proof is given for every k, d ≥ 1 (for d = 1 we notice again that fPk

≡ fQk
).

For fPk
the proof is given for d = 2 and k = 2, 3.

Remark 6.2. While in the case of Qk Finite Elements the analysis of the sym-
bol fQk

given in [24] and in Theorem 6.1 is general, for the Pk Finite Elements in
dimension d > 1 there is still room for a substantial improvement of the analysis and
this will be a target in future researches.

Proof. � Case Qk Finite Elements: any k ≥ 1, d = 1.
Claims 2. and 3. have been proved in Theorem 8 and Corollary 1 in [24]. Here, we
prove Claim 1.: as first thing we recall that the relation f(0)e = 0, with e vector
of all ones and k ≥ 1, is equivalent to say that every row of f(0) is a vector having
rowsum equal to zero. We now show the latter feature. Taking into consideration the
notations in Section 4, we have

(f(0)e)s =

k∑
j=1

(f(0))s,j =

k∑
j=1

(
K0 +K1 +KT

1

)
s,j

, s = 1, . . . , k.

We first observe that the Lagrange polynomial interpolating the constant 1 is ex-
actly equal to 1, by the uniqueness of the interpolant. Therefore

∑k
j=0 Lj = 1,(∑k

j=0 Lj

)′
=
∑k
j=0 L

′
j = 0, and hence, for 1 ≤ s ≤ k − 1,

k∑
j=1

(f(0))s,j =

k∑
j=1

〈
L′j , L

′
s

〉
+ 〈L′0, L′s〉

=

〈
k∑
j=0

L′j , L
′
s

〉
= 〈0, L′s〉 = 0.

Finally, for s = k we have

k∑
j=1

(f(0))k,j =

k∑
j=1

〈
L′j , L

′
k

〉
+ 〈L′0, L′0〉+ 〈L′0, L′k〉+

k∑
j=1

〈
L′0, L

′
j

〉
=

k∑
j=0

〈
L′j , L

′
k

〉
+

k∑
j=0

〈
L′0, L

′
j

〉
=

〈
k∑
j=0

L′j , L
′
k

〉
+

〈
L′0,

k∑
j=0

L′j

〉
= 0,

and consequently we conclude that f(0)e = 0.
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� Case Qk Finite Elements: any k ≥ 1, any d ≥ 2. Claim 1. is a direct
consequence of the proof for Qk Finite Elements, k ≥ 1, and d = 1, given its tensorial
structure (see formula (5.1) in [24]): in reality it is sufficient to observe that x⊗ y has
rowsum equal to zero if and only if either x or y has rowsum equal to zero, with any
x, y complex vectors of any size. The case of more than two vectors can be handled
by an inductive argument. Furthermore, Claims 2. and 3. are contained in Section
5.1 in [24].

� Case Pk Finite Elements: k = 2, d = 2. Claim 1. follows by direct check of
the zero rowsum property from the expression of the symbol fPk

in (5.10), taking into
account θ = (0, 0) and the numerical values of the involved parameters.

Now, since the determinant of a matrix is the product of its eigenvalues and since
f is bounded in infinity norm, in order to prove Claim 2. and 3. with d = 2 it is
sufficient to show that:

A. det(f(θ)) ∼
2∑
j=1

(2− 2 cos(θj)), θ = (θ1, θ2),

B. there exists C > 0 such that λ2(f(θ)) ≥ C > 0,

with f = fP2 .

We remind that the relation A. means there exist C1, C2 > 0 such that

C1

2∑
j=1

(2− 2 cos(θj)) ≤ det(fP2
(θ)) ≤ C2

2∑
j=1

(2− 2 cos(θj))

uniformly in the domain (θ1, θ2) ∈ [−π, π]2.

By direct computation, we find

det(fP2(θ)) = C ′ (−2 cos(θ1)− 2 cos(θ2)− cos(θ1) cos(θ2) + 5)

= C ′

 2∑
j=1

(2− 2 cos(θj)) + (1− cos(θ1) cos(θ2))


≥ C ′

 2∑
j=1

(2− 2 cos(θj))


with C ′ = 4096/81, being −1 ≤ cos(θ1) cos(θ2) ≤ 1 for all (θ1, θ2) ∈ [−π, π]2. Thus,
C1 = C ′.

Furthermore, for c = 1/2 it holds 1− cos(θ1) cos(θ2) ≤ c

 2∑
j=1

(2− 2 cos(θj))

 for

all (θ1, θ2) ∈ [−π, π]2. Thus, C2 = 3C ′/2.

Finally, let λ1 ≤ λ2 ≤ λ3 ≤ λ4 be the eigenvalues of the Hermitian matrix fP2(θ)
and let µ1 ≤ µ2 ≤ µ3 be the eigenvalues of the principal submatrix g(θ) chosen as
g(θ) = (fP2

(θ))4
i,j=2.

Since the approximation matrices of problem (1.1) are all positive definite due to

• coerciveness of the continuous problem,
• the use of Galerkin techniques such as the Finite Elements,

it follows that the symbol

fP2(θ)
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of the related matrix-sequence has to be Hermitian nonnegative definite which means
that λ1 ≥ 0 on the whole definition domain. By contradiction if λ1 is negative in a set
of positive measure then, by the distribution results (see [22, 23]), many eigenvalues
of the approximation matrices would be negative for a matrix size large enough and
this is impossible.

By using the interlacing theorem, we have

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ λ3 ≤ µ3 ≤ λ4, (6.3)

with λ1 equal to zero at θ = 0 and positive elsewhere. By direct computation of the
determinant we find that det(g(θ)) > 0 and hence, taking into account that g(θ) is
continuous and positive definite on the compact square [−π, π]2, we conclude that
all the eigenvalues of g(θ) are strictly positive and continuous on [−π, π]2 that is
µj > 0 for j = 1, 2, 3. Thus, using (6.3), we conclude λ2 ≥ µ1 ≥ minθ∈[−π,π]2 µ1 > 0.

� Case Pk Finite Elements: k = 3, d = 2. As in the case k = 2, Claim 1.
follows by direct inspection from the expression of the symbol fPk

in (5.14), taking
into account θ = (0, 0) and the numerical values of the involved parameters.

In order to prove Claims 2. and 3. we follow the very same steps as for the case
k = 2, that is, we prove A. and B. with f = fP3 .

By direct computation we have

det(fP3(θ)) = a(− cos(θ2) cos2(θ1)− cos(θ1) cos2(θ2) + 4 cos2(θ1) + 4 cos2(θ2)

−80 cos(θ1) cos(θ2)− 195 cos(θ1)− 195 cos(θ2) + 464)

where a = 205891132094649/81920000000. We write det(fP3
(θ)) in the form

det(fP3
(θ)) = a

h(θ) +
195

2

2∑
j=1

(2− 2 cos(θj))


where

h(θ) = − cos(θ2) cos2(θ1)−cos(θ1) cos2(θ2)+4 cos2(θ1)+4 cos2(θ2)−80 cos(θ1) cos(θ2)+74.

Since − cos2(θk) ≤ − cos(θj) cos2(θk) and 1− cos(θ1) cos(θ2) ≥ 0 we obtain

h(θ) ≥ 3 cos2(θ1) + 3 cos2(θ2)− 80 cos(θ1) cos(θ2) + 74

≥ 3(cos(θ1)− cos(θ2))2 − 74 cos(θ1) cos(θ2) + 74

≥ 0,

which implies directly det(fP3(θ)) ≥ C1

∑2
j=1(2− 2 cos(θj)) with C1 = 195

2 a.

On the other side, taking into account cos2(θj) ≤ 1, j = 1, 2, we deduce

h(θ) = cos2(θ1)(4− cos(θ2)) + cos2(θ2)(4− cos(θ1))− 80 cos(θ1) cos(θ2) + 74

≤ 8− cos(θ1)− cos(θ2)− 80 cos(θ1) cos(θ2) + 74

≤ 2− cos(θ1)− cos(θ2) + 80(1− cos(θ1) cos(θ2))

≤ 81

2

2∑
j=1

(2− 2 cos(θj)).

Owing to the relation 1 − cos(θ1) cos(θ2) ≤ 1
2 (4 − 2 cos(θ1) − 2 cos(θ2)), as already

observed in the case k = 2, we find det(fP3
(θ)) ≤ 138a

∑2
j=1(2 − 2 cos(θj)) with

C2 = 138a.
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Finally, let λ1 ≤ λ2 ≤ · · · ≤ λ9 be the eigenvalues of the Hermitian matrix
fP3

(θ), and let g(θ) = (fP3
(θ))8

i,j=1 be the principal submatrix and µ1 ≤ · · · ≤ µ8 its
eigenvalues.

Since the approximation matrices of problem (1.1) are all positive definite due to
• coerciveness of the continuous problem,
• the use of Galerkin techniques such as the Finite Elements,

it follows that the symbol fP3
(θ) of the related matrix-sequence has to be Hermitian

nonnegative definite which means that λ1 ≥ 0 on the whole definition domain. By
contradiction if λ1 is negative in a set of positive measure then, by the distribution re-
sults (see [22, 23]), many eigenvalues of the approximation matrices would be negative
for a matrix size large enough and this is impossible.

By using the interlacing theorem, we have

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µ8 ≤ λ9, (6.4)

with λ1 equal to zero at θ = 0 and positive elsewhere. By direct computation we

find det(g(θ)) =

8∏
j=1

µj > 0 so that, taking into account that g(θ) is continuous and

positive definite on the compact square [−π, π]2, we deduce µj > 0 for all j = 1, . . . , 8.
Consequently, by (6.4), we conclude λ2 ≥ µ1 ≥ minθ∈[−π,π]2 µ1 > 0.

6.1. Extremal eigenvalues and conditioning. As already observed, direct
consequences of Proposition 5.1, Corollary 5.2, Proposition 5.3, Corollary 5.4 are that
the sequences of Finite Element matrices are distributed as the symbol f and that
the union of the ranges of the eigenvalue functions of f represent a cluster for their
spectra, while the convex hull of the the union of the ranges of the eigenvalue functions
of f contains all the eigenvalues of the involved matrices.

On the other hand, Theorem 6.1 gives information on the analytical properties of
f , which are relevant for giving results on the extreme eigenvalues and the asymptotic
conditioning.

Indeed, from Theorem 6.1, we know that the minimal eigenvalue function of f
behaves as the symbol of the standard Finite Difference Laplacian, while the other
eigenvalue functions are well separated from zero and bounded. Furthermore, thanks
to the analysis in [40], the fact that the minimal eigenvalue of f has a zero of order
two implies that

• the minimal eigenvalue goes to zero as N−2/d,
• the maximal eigenvalue converges from below to the maximum of the maximal

eigenvalue function of f
• and hence the conditioning of the involved matrices grow asymptotically ex-

actly as N2/d,
with N being the global matrix size (see also the argument in Section 5.1 in [24] and
[39]).

7. The case of variable coefficients and non-Cartesian domains. When
the diffusion coefficient a(x) in (1.1) is not constant, the structure of the stiffness
matrix is no longer Toeplitz, but somehow the Toeplitz character is hidden in an
asymptotic sense and indeed the sequence of matrices {An(a,Ω,Pk)}n approximating
(1.1) can be spectrally treated with the help of the GLT technology with k = 1, 2, 3.

Below we report the essentials of the steps for computing the spectral symbol.
Step 1. If Ω = (0, 1)d, d ≥ 1, then {An(a,Ω,Pk)}n can be written as a sequence

of principal submatrices of a linear combination of products involving the
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multilevel block Toeplitz sequence generated by fPk
, the diagonal sampling

sequence of a(x)IN(k,d), and zero distributed sequences. The use of items
GLT 1.–GLT 3., combined with Theorem 3.2, leads to the conclusion

{An(a,Ω,Pk)}n ∼σ,λ a(x)fPk
(θ), x ∈ (0, 1)d, θ ∈ [−π, π]d. (7.1)

Step 2. If Ω is Peano-Jordan measurable, then without loss of generality, we as-
sume Ω ⊂ Ωd = (0, 1)d and d ≥ 2. Hence {An(a,Ω,Pk)}n can be seen,
up to zero-distributed sequences, as a sequence of principal submatrices of
{An(â,Ω,Pk)}n, where â is equal to a on the domain Ω and it is identically
zero in the complement Ωd\Ω. In this way we are reduced to Step 1. and
the use of a reduction argument (see Section 6 in [41] and Section 3.1.4 in
[42]) implies the distribution result

{An(a,Ω,Pk)}n ∼σ,λ a(x)fPk
(θ), x ∈ Ω, θ ∈ [−π, π]d. (7.2)

The rest of the section is now devoted to show that the predictions in (7.1) and (7.2)
are numerically confirmed. Indeed, in the constant coefficient case, we plotted the
surface of the different eigenvalue functions λj (fPk

(θ)), j = 1, . . . k2, k = 1, 2, 3, 4,
and this was technically possible because the functions are all bivariate as θ ∈ [−π, π]2.

In the variable coefficient case, the visualization is substantially more involved,
since the symbol is a(x)fPk

(θ) and hence the eigenvalue functions λj (a(x)fPk
(θ)),

j = 1, . . . k2, k = 1, 2, 3, 4, are all functions in 4 variables as x ∈ Ω, θ ∈ [−π, π]2.
Consequently, for visualization purposes, we choose a different technique: for a fixed k
and for a fixed matrix size, we make an ordering (nondecreasing) of all the eigenvalues
of An(a,Ω,Pk) and we take the same ordering (nondecreasing) of the values given by
an equispaced sampling of all the functions λj (a(x)fPk

(θ)), j = 1, . . . k2.
As it can be seen from Figures 7.1-7.4, all concerning the case Ω = (0, 1)2, the

match is perfect showing that the distribution result in (7.1) is fully confirmed with
a(x, y) = 1, a(x, y) = ex+y, a(x, y) = 1 + 2

√
x+y, a(x, y) = 1 if y ≥ x and a(x, y) = 2

otherwise.
We have four relevant remarks.
• As a general observation, the graph of the ordered equispaced sampling of
λj (a(x)fPk

(θ)), j = 1, . . . k2, represent a monotone rearrangement [31] of the
different eigenvalue functions and this global rearrangement is a fortiori a
univariate monotone function.

• When a(x) ≡ 1, the symbol in (7.1) reduces to fPk
and we observe jumps

which correspond to the existence of an index l such that

maxλl (fPk
(θ)) < λl+1 (fPk

(θ)) ,

with 1 ≤ l ≤ k2−1, k = 1, 2, 3, 4. In other words the rearranged function has
a few discontinuity points. When a(x) is not constant such a phenomenon
disappears, since the range of all eigenvalue functions becomes wider and all
the ranges intersect (there is not a range not intersecting at least another
range). Furthermore, beside the latter smoothing effect due to a(x), it is
worthwhile observing that the regularity of the diffusion coefficient does not
affect the qualitative behaviour of the eigenvalue distribution. In fact, the
reconstruction given by the symbol of the eigenvalues of An(a,Ω,Pk) is ac-
curate in all the considered examples and, more specifically, the figures look
very similar independently of the fact that the diffusion coefficient is smooth
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Fig. 7.1. Ordered equispaced samplings of λj
(
a(x, y)fPk (θ)

)
, j = 1, . . . k2 (green dots) and

ordered eigenvalues λl(An(a,Ω,Pk)) with a(x, y) ≡ 1.

(a(x) = ex+y in Figure 7.2), or is C0 but not C1 (a(x) = 1 + 2
√
x + y in

Figure 7.3), or is discontinuous (a(x) = 1 if y ≥ x and a(x) = 2 otherwise, in
Figure 7.4).

• In all Figures 7.2–7.4 the matrix size is quite moderate (of the order of 104),
showing that the spectral distribution effects, which represent an asymptotic
property, can be already visualized for small orders of the considered matrices.

• We did not show any figure regarding the distribution formula (7.2) just
because the check has been done and there is no difference with respect to
the case of Ω = (0, 1)2 as in (7.1).

8. Preconditioning and complexity issues. Lastly, we consider a few numer-
ical experiments on preconditioning. First of all, the interest in solving the constant
coefficient case a(x, y) ≡ 1 refers to its use in optimally preconditioning the noncon-
stant coefficient case whenever a is smooth enough (see [43, 36] for the case k = 1).
This is evident from Table 8.1, where we report the number of iterations required by
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Fig. 7.2. Ordered equispaced samplings of λj
(
a(x, y)fPk (θ)

)
, j = 1, . . . k2 (green dots) and

ordered eigenvalues λl(An(a,Ω,Pk)) with a(x, y) = ex+y.

PCG applied to An(a,Ω,Pk), with a(x, y) = exp(x+ y) in the case of preconditioning

with Pn(a) = D̃
1/2
n (a)An(1,Ω,Pk)D̃

1/2
n (a) with D̃n(a) = Dn(a)D−1

n (1), where Dn(a)
is the main diagonal of An(a,Ω,Pk) and Dn(1) is the main diagonal of An(1,Ω,Pk).
Therefore, we now focus our attention on the case a(x, y) ≡ 1. Taking into account
the Toeplitz nature of the matrices at hand, our aim is to preliminarily test a classical
preconditioner as the Circulant one, clearly by considering the Strang correction to
deal with its singularity. More precisely we will consider as preconditioner the Circu-
lant matrix generated by the very same function fPk

(θ) plus the correction h2eeT , e
being the vector of all ones and h the constant triangle edge. In the even columns of
Table 8.2 (case k = 2) we report the number of PCG iterations required to solve the
system with Toeplitz matrix Tn(fPk

), in the case of no preconditioning (Pn = In), pre-
conditioning by the incomplete Cholesky factorization, and by the Circulant Cn(fPk

)
plus the Strang correction, respectively. To this end, it is worth stressing that we have
to consider the dimension of the Toeplitz/Circulant matrix fitting with its natural di-
mension with respect to the symbol size. Therefore, when instead we want to solve the
system with the FEM matrix An(1,Ω,Pk), principal submatrix of the matrix Tn(fPk

),
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Fig. 7.3. Ordered equispaced samplings of λj
(
a(x, y)fPk (θ)

)
, j = 1, . . . k2 (green dots) and

ordered eigenvalues λl(An(a,Ω,Pk)) with a(x, y) = 1 + 2
√
x+ y.

we need to match its dimension with the one previously considered for the Circulant
preconditioner. We obtain that goal just by imposing boundary conditions to Tn(fPk

),
but keeping the size unchanged. The related numerical results are reported in odd
columns of Table 8.2. In both cases, the number of required iterations increases as
the dimension increases. No significant difference in even or odd column is observed
in the case of no preconditioning or incomplete Cholesky preconditioning (the results
are slightly better in the second case). In the case of the Circulant preconditioning
we observe a clear worsening in the effectiveness when the preconditioner is applied
not to the Toeplitz matrix, but to its principal submatrix plus boundary conditions,
though the iteration growth rate seems smaller than the one observed in the case of
incomplete Cholesky preconditioning. Furthermore, as expected from the theory, a
weak cluster around 1 is observed (see Table 8.3).

In Tables 8.4 and 8.5 the same numerical experiments are reported in the case
k = 3 and k = 4. The numerical behavior seems to be substantially of the same type,
independently of the parameter k, also in reference to the weak cluster phenomenon
observed for k = 2 in Table 8.3.
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k = 2 k = 3 k = 4

N Pn(a) N Pn(a) N Pn(a)

49 4 121 5 225 5
225 3 529 4 961 5
961 3 2209 4 3969 4
3969 3 9025 4 16129 4
16129 3 36481 4 65025 4

Table 8.1
Number of PCG’s iterations to reach convergence with respect to relative residual less than

1.e-6, Preconditioner Pn(a), a(x, y) = exp(x+ y).

k = 2

N P = I P = IC P = CS
64 26 19 11 10 14 19
256 47 42 18 17 19 30
1024 90 86 32 31 26 42
4096 174 170 56 55 38 59
16384 336 331 98 96 53 87

Table 8.2
Number of PCG’s iterations to reach convergence with respect to relative relative residual less

than 1.e-6 - case k = 2.

k = 2

N nout % nout %

64 27 4.2e-1 27 4.2e-1
256 59 2.3e-1 55 2.1e-1
1024 123 1.2e-1 111 1.1e-1
4096 251 6.1e-2 225 5.5e-2

Table 8.3
Number of outliers nout (eigenvalues not belonging to (1− ε, 1 + ε) with ε = 1.e− 1) and their

percentage with respect the dimension. The second and third columns refer to the Toeplitz case, the
fourth and fifth columns to the case of the FEM matrix.

k = 3

N P = I P = IC P = CS
144 45 39 16 15 19 30
576 82 78 28 27 26 42
2304 159 155 50 48 36 61
9216 306 301 86 84 49 90

Table 8.4
Number of PCG’s iterations to reach convergence with respect to relative relative residual less

than 1.e-6 - case k = 3.

k = 4

N P = I P = IC P = CS
256 74 66 10 10 23 38
1024 134 129 18 17 31 57
4096 261 254 31 30 43 81
16384 502 490 54 51 61 116

Table 8.5
Number of PCG’s iterations to reach convergence with respect to relative relative residual less

than 1.e-6 - case k = 4.
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Fig. 7.4. Ordered equispaced samplings of λj
(
a(x, y)fPk (θ)

)
, j = 1, . . . k2 (green dots) and

ordered eigenvalues λl(An(a,Ω,Pk) with a(x, y) = 1 if y ≥ x and a(x, y) = 2 otherwise.

9. Concluding remarks. We considered a class of elliptic partial differential
equations with Dirichlet boundary conditions, where the operator is div (−a(x)∇·)
with a continuous and positive on Ω. For the numerical approximation we have
chosen the classical Pk Finite Element Method, in the case of Friedrichs-Keller trian-
gulations, leading to sequence of matrices of increasing size. The new results concern
the spectral analysis of the resulting matrix-sequences both in the direction of the
global distribution in the Weyl sense and of the asymptotic conditioning. We consid-
ered in detail the case of constant coefficients and we have given a brief account in
the more involved case of variable coefficients. The mathematical tools stem out from
the Toeplitz technology and from the rather new theory of GLT matrix-sequences.
Numerical results are shown for a practical evidence of the theoretical findings.

Several open problems remain and here we make a short list of the most relevant
ones:

• it would be valuable to find a unified formula for the symbols of the Pk over
a d dimensional cube for every k, d as done for the case of Qk discretizations
[24];
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• the analysis in the variable coefficient case has to be completed, but this
seems now a reasonable target given the new findings in the theory of GLT
matrix-sequences (see [23, 21] and references therein);

• as expected in any multilevel setting [44], the standard preconditioning pro-
cedures fail to be optimal: it would be of great value an extension to this
context of the multigrid techniques developed for Toeplitz structures with
scalar-valued symbols. Of course the proof of optimality is the final goal in
this numerical setting.
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