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Abstract
Natural language processing and other areas of artificial intelligence have seen staggering progress in recent years, yet
much of this is reported with reference to somewhat limited benchmark datasets.
We see the deployment of these techniques in realistic use cases as the next step in this development. In particular, much
progress is still needed in educational settings, which can strongly improve users’ safety on social media. We present
our efforts to develop multi-modal machine learning algorithms to be integrated into a social media companion aimed at
supporting and educating users in dealing with fake news and other social media threats.
Inside the companion environment, such algorithms can automatically assess and enable users to contextualize different
aspects of their social media experience. They can estimate and display different characteristics of content in supported
users’ feeds, such as ‘fakeness’ and ‘sentiment’, and suggest related alternatives to enrich users’ perspectives. In addition,
they can evaluate the opinions, attitudes, and neighbourhoods of the users and of those appearing in their feeds. The
aim of the latter process is to raise users’ awareness and resilience to filter bubbles and echo chambers, which are
almost unnoticeable and rarely understood phenomena that may affect users’ information intake unconsciously and are
unexpectedly widespread.
The social media environment is rapidly changing and complex. While our algorithms show state-of-the-art performance,
they rely on task-specific datasets, and their reliability may decrease over time and be limited against novel threats. The
negative impact of these limits may be exasperated by users’ over-reliance on algorithmic tools.
Therefore, companion algorithms and educational activities are meant to increase users’ awareness of social media threats
while exposing the limits of such algorithms. This will also provide an educational example of the limits affecting the
machine-learning components of social media platforms.
We aim to devise, implement and test the impact of the companion and connected educational activities in acquiring and
supporting conscientious and autonomous social media usage.
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1 Introduction

Social media have become an integral part of society in
recent years. Besides all the benefits this has brought, it
has also uncovered a number of serious problems includ-
ing the increasing speed and the number of interactions
that go beyond the users’ ability to monitor and understand
such content, resulting in threats such as the pervasive dif-
fusion of fake news and biased as well as toxic content
such as hate speech. A common way to address such chal-
lenges is through the adoption of powerful natural language
processing approaches, triggered by the paradigmatic shift
that the introduction of transformer-based models (such as
BERT [35]) has led to. The adoption of common benchmark
collections has been another major driver in this context.
Several of those datasets focus on the detection of single
threats (e.g. in the domain of fake news detection [112]
or for hate speech detection [78]). Others try to unify ex-
isting text data collections, e.g. for classification of toxic
content [105, 126].

Such benchmarks have also increasingly been utilized in
a growing number of shared tasks and competitions (with
leaderboards), primarily led by the machine learning (ML)
community. However, a lot of work in this area remains in
a purely academic classification scenario and is not being
put to use in a practical context. Perhaps more importantly,
it has been observed that the performance levels reported
for common benchmarks do not necessarily reflect how well
the algorithms will work in a realistic use case as systems
are often very brittle and the performance levels do not ac-
tually transfer easily to different domains, datasets or even
variations of the same dataset [21].

Instead of adopting a well-controlled setting with no real
user involvement, we aim to address an actual practical use
case that does not lend itself to being modelled around
existing benchmark collections. Our starting point is the
observation that social media users often have a limited un-
derstanding of the platforms and their algorithms and, more
importantly, the effects of their actions on others’ experi-
ences and the proliferation of toxic phenomena [66, 123].
We present a framework that serves as a machine-learning-
based social media education tool that aims at integrating
solutions to the above-mentioned problems directly in the
users’ social media experience [96]1. As such the user’s feed
is augmented automatically with additional information on
the content and underlying producing social network, as can
be seen in Fig. 2. Machine learning is used to trigger per-
sonalized and contextualized educational experiences that
raise users’ awareness about social media and its threats.

1 This work is part of the COURAGE project, introducing solutions to
social media harm education for teenagers (https://www.upf.edu/web/
courage).

Fig. 1 Conceptual view of our proposed framework. Social Media
Analysis shows the tool that provides additional information while
browsing the feed; Education represents educational activities (ex-
ample here: machine learning models’ limitations, described in more
detail in Sect. 5.3)

At the same time, autonomous evaluation is encouraged by
highlighting the principles and limits of the involved algo-
rithmic components. The ultimate objective is to educate
and empower social media users. Fig. 1 gives a high-level
view of the educational framework we are proposing.

In this paper, we start by discussing threats arising
through social media, then present trends in how the
community works on solving such issues, and then contex-
tualize these developments in a scenario of practical use
taken from the COURAGE project.

2 Social Media Threats

Threats occurring on social media cover a broad range of
categories due to the vast amounts of multifaceted content
on such platforms. As a result, crucial ethical and practi-
cal issues, like preserving freedom of speech and allowing
users to be collectively satisfied while dealing with the con-
flicts generated by their different opinions and contrasting
interests, lead to negative influences on users and society.

Critical cases include the spread of fake news, biased
content and the growing trend of hate practices (which in-
deed is not a new phenomenon on the internet [26, 39,
109]). Even though social media platforms are presenting
policies against hate speech, discrimination or violent and
racist content, the mentioned threats are still part of these
websites2 [19, 51], underlining the need for raising aware-
ness to the users.

2 Simon Wiesenthal Center: http://www.digitalhate.net, Online Hate
and Harassment Report: The American Experience 2020: https://www.
adl.org/online-hate-2020.
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Fig. 2 Screenshot of social media content analysis results inside our Twitter demo interface. Here other user posts of the person connected to the
first tweet as well as sentiment and emotion analysis are displayed. The buttons under each post allow to show/hide these additional information

Before presenting ways of how to counteract these issues
in general, and how we do that with the help of our approach
in the COURAGE project, we want to give a brief overview
about the categories of social media threats, grouping them
in (1) content-based, (2) algorithmic, (3) dynamics, and (4)
cognitive and socio-emotional.

The transitions between these types of threats are fluid,
making it hard to provide clear distinctions. Our focus while
describing these issues lies on teenagers, which for example
are heavily affected by bullying [86, 116], addiction [111,
117], body stereotypes, and others [31, 79, 97]. This is also
the reason why we aim at supporting this exceptionally
vulnerable group of the society in the COURAGE project.

2.1 Content-Based Threats

Content-based threats are very common for all types of
media, including classical outlets, but they are especially
crucial in the context of social media platforms.

Examples of textual threats include toxic contents [63,
65], fake news/disinformation [12, 32] and bullying [44].

However, content is not only limited to text but can also
appear in form of image or video data, as for example
is dominant on platforms like Instagram and TikTok. Such

Fig. 3 Real but potentially misleading images (a and c) and DeepFake/
manipulated images (b and d)3
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user-created video and image content might convey any sort
of message (verbally, non-verbally, textually or by other vi-
sual means) which can be the source of a range of threats
on social media. Concrete examples are the propagation of
beauty stereotypes via image data [125] or hyper-realistic
videos/images showing people saying and doing things that
never happened [25, 132], so called “deep fakes”. Fig. 33

demonstrates how images can be hard to distinguish be-
tween real and fake. In general, they can be misleading
due to aspects like manipulation or because of the missing
context of the event depicted.

Given the importance of this category of threats, much
research is focused on the development of dedicated detec-
tion systems as we will discuss in Sect. 4.

2.2 Algorithmic Threats

Besides the content itself, additional threats are caused by
automatic algorithms that are used on social media plat-
forms. These lead to the selective exposure of digital media
users to news sources [110], risking to form closed-group
polarised structures; e.g. so-called ‘filter bubbles’ [40, 94]
and ‘echo chambers’ [34, 42]. Another undesired network
condition is gerrymandering [114], where users are exposed
to unbalanced neighbourhood configurations. Especially in
decision-making frameworks, such as elections, gerryman-
dering can overturn the decision of networks’ participants
biasing the outcome of a vote, such that one “party” wins up
to 60 percent of the time in simulated elections of two-party
situations where the opposing groups are equally popular
through this selective presentation. This phenomenon high-
lights the relevance of network structure and information
exposure in decision-making settings.

2.3 Dynamics-induced Threats

Another type of threat is dynamics on social media, in-
duced by the extended and fast-paced interaction between
algorithms, common social tendencies and stakeholders’ in-
terests [9, 83]. This may lead to an escalating acceptance of
toxic beliefs [93, 114] and thus making the users’ opinion
susceptible to phenomena such as the diffusion of hateful
content. In addition, these types of threats can lead to large-
scale outbreaks of fake news [34, 130].

3 Image sources: (A) https://www.theguardian.com/us-news/2019/
apr/25/joe-biden-2020-public-gaffes-mistakes-history, (B) https://
thisclimatedoesnot
exist.com/, (C) https://ritzherald.com/greening-the-gray-fighting-
floods-with-restoration-versus-riprap/ (D) https://www.bufale.net/
bufala-la-foto-di-hillary-clinton-e-osama-bin-laden/.

2.4 Cognitive and Socio-emotional Threats

A substantial body of work on analyzing the mechanisms
of content propagation on social media exists. However,
modeling the effects of the users’ emotional and cognitive
states as well as traits on the propagation of malicious con-
tent remains a major challenge. This is especially the case
considering the significant contribution of their cognitive
limits [5, 99].

Such cognitive factors refer to the users’ limited atten-
tion and error-prone information processing [131] that may
be worsened by the emotional features of the messages [22,
67]. Moreover, the lack of non-verbal communication and
limited social presence [48, 107] lead to carelessness and
misbehavior as the users perceive themselves as anony-
mous [36, 103]. Consequently, they do not feel judged
or exposed [133] and deindividualize themselves and oth-
ers [76].

Another recently recognized threat in this category is
digital addiction [6, 90] and it has several harmful conse-
quences, such as unconscious and hasty user actions [4, 7].
Some of them are especially relevant for teenagers affect-
ing their school performance and mood [1]. In the last few
years, it became clear that recognizing addiction to social
media cannot only be based on the “connection time” cri-
terion but also on how people behave [89, 118]. As with
other behavioral addictions, a crucial role may be played
by the environmental structure [64, 95].

2.5 Limited Social Media Literacy

Finally, the common lack of digital literacy among teen-
agers [82] has a strong impact on the escalation of other
threats, for example by favoring the spread of content-based
threats and engaging in toxic dynamics [136]. This under-
lines the need for education of young people in dealing
with social media threats and demonstrates that automatic
tools to support users in their behavior on such platforms
are very important.

Teenagers also show over-reliance on algorithmic recom-
mendations and a lack of awareness of the unwitting use of
toxic content. This results in a reduction of their ability to
make choices and leads towards an increasingly dangerous
behavior [14, 127].

3 RelatedWork

The effort of supporting users on social media aims at help-
ing them make the right decision for themselves and other
people using such platforms. Strategies developed in the
context of behavioral and cognitive sciences offer a well-
founded framework to address these issues. In particular,
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nudging [119] and boosting [56] can be considered as two
paradigms that have both been developed to minimize risk
and harm. They do this in a way that makes use of behav-
ioral patterns and is as unintrusive as possible, something
particularly important in contexts like social media.

Nudging [119] is a behavioral-public-policy approach
aiming to push people towards more beneficial decisions
through the “choice architecture” of people’s environment
(e.g., default settings). In a way, the machine learning-based
recommender systems integrated into the social media plat-
form already define a choice architecture that reduces the
amount of content users have to interact with, however,
such recommendations are not aimed at improving users’
choices in terms of collective wellbeing [95].

Some approaches have exploited machine learning tools
to support user interactions with social media. Kyza et al.
[69] propose a solution based on a web browser plugin that
would use AI to support citizens dealing with misinforma-
tion by showing measures of tweets’ credibility and em-
ploying a nudging mechanism that blurs out low-credibility
tweets according to user’s preferences. While their study
uses a fact-checked dataset, it shows that such an AI-based
tool may deter social media users from liking and spread-
ing misinformation. Another work [10] proposes a browser
plugin to extend Instagram with the result of inverse image
search algorithms to help users contextualize and detect
fake images.

Other forms of nudging are warning lights and informa-
tion nutrition labels as they offer the potential to reduce
harm and risks in web searches (e.g. [138]).

While nudges are particularly suitable for integration in
social media interfaces as they may not add additional cog-
nitive load on the users, their limitation is that they do
not typically teach any competencies, i.e. when a nudge
is removed, the user will behave as before (and not have
learned anything). This is where boosts come in as an al-
ternative approach. Boosts focus on interventions as an ap-
proach to improve people’s competence in making their
own choices [56].

The critical difference between a boosting and nudg-
ing approach is that boosting assumes that people are not
merely “irrational” and therefore need to be nudged toward
better decisions. However, such new competencies can be
acquired without too much time and effort and may be
hindered by the presence of stress and other sources of re-
duced cognitive resources. Both approaches nicely fit into
the overall approach proposed here. Nudges offer a way to
push content to users, making them aware of it. Boosting
is a particularly promising paradigm to strengthen online
users’ competencies and counteract the challenges of the
digital world. It also appears to be a good scenario for
addressing misinformation and false information, among
others. Both paradigms help us educate online users rather

than imposing rules, restrictions, or suggestions on them.
They have massive potential as general pathways to min-
imize and address harm in the modern online world [66,
74].

In particular, we refer to the concept of “media literacy”
that [13] defines as: the “ability of a citizen to access, ana-
lyze, and produce information for specific outcomes”. Sev-
eral definitions have been proposed in the literature high-
lighting the importance of critically approaching the media
also in the light of the propagation of fake news and other
toxic content as well as the influence that media can have
on other citizens [24, 123].

While in this paper we present a multi-modal approach
leveraging machine learning methodologies to support users
and their education, algorithms and automation have taken
control of many media processes such as content genera-
tion, recommendation, and filtering. Today, algorithms and
machine learning are used for tracking user profiling, tar-
geted advertising, and behaviour engineering. They have
played a role in the dissemination of disinformation and
misinformation as well as in impacting political opinion.
The need to understand algorithm-based media requires
new educational methodologies. In particular, [123] points
out the necessity of combining media literacy with comput-
ing education specific to these mechanisms to allow users
to cope with the changing media landscape, and [29] noted
interactivity is a positive factor that influences the efficacy
of digital media literacy.

For example, it is important to find methodologies to
explain and educate about how machine learning compo-
nents affect our decisions directly or by shaping our choice
and information architecture, in particular in social con-
texts [72]. It is also crucial to show the limits of such al-
gorithms and the trade-off we should consider between our
and their competencies [30].

4 Threat Detectors and Content Analyzers

The great variety of social media threats (as described in
Sect. 2) results in challenging issues and researchers are
studying how to automatically identify them. One way of
bringing together the community to working on solving
social media threats are workshops on these topics, e.g. [68,
91]. As introduced in the beginning, another way are shared
tasks. Examples include hate speech detection at SemEval
2019 [15] or Evalita 2020 [108] as well as toxic comment
detection at GermEval 2021 [106] or toxic span detection
at SemEval 2021 [98].

Solutions proposed to counteract threats on social media
are usually defined as classification tasks commonly solved
using deep learning. Depending on the type of threat the
input can include textual, visual or network signals. We
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present methods and models that have been developed as
part of this project and we are using them for the detection
of threats in our proposed framework. This includes (1)
classifying textual content, (2) analyzing visual content
and (3) revealing network structures like echo chambers.
The general architecture is flexible so that new classifiers
can easily be added or replaced in a plug-and-play fashion.

4.1 Text-Based Detectors

With a vast amount of social media threats taking a textual
form, we proceed to present text-based detectors catego-
rized by different threats.

4.1.1 Hate Speech and Toxic Content

An approach to profiling hate speech spreaders on Twitter
was submitted to CLEF2021 and features runs for multiple
languages [3]. For English, a pretrained BERT-model was
fine-tuned while for Spanish a language-agnostic BERT-
based sentence embedding model without fine-tuning was
used.

Transformer models are widely adopted in solving text
classification tasks and [57] use them to generate text rep-
resentations for their submission at the Evalita 2020 shared
task on hate speech detection.

Transformer models for hate speech detection were also
used for identifying irony in social media [122]. Ensembles
of transformer models and the automatic augmentation of
training data were proposed. Using the common SemEval
2018 Task 3 benchmark collection they demonstrate that
such models are well suited in ensemble classifiers for the
task at hand.

However, also other methods are introduced, for exam-
ple, an approach based on graph machine learning by [134].
The participation in the HASOC [87] campaign aimed at
examining the suitability of Graph Convolutional Neural
Networks (GCN), due to their capability to integrate flexi-
ble contextual priors, as a computationally effective solution
compared to more computationally expensive and relatively
data-hungry methods, such as fine-tuning of transformer
models. Specifically, the combination of two text-to-graph
strategies based on different language modeling objectives
was explored and compared to fine-tuned BERT.

Another graph-based method in the context of hate
speech detection, more specifically sexism detection, was
introduced in [135]. This method builds on Graph Convo-
lutional Neural Networks (GCN) exploring different edge
creation strategies and one combining graph embeddings
from different GCN through ensemble methods. In addi-
tion, different GCN models and text-to-graph strategies are
explored.

Despite the success achieved by these efforts, the ro-
bustness of these systems is still limited. They often can-
not generalize to new datasets and resist against attacks
(for example, word injection) [45, 58]. Some recent mod-
els can generalise the task while maintaining similar results
in different platforms and languages under certain condi-
tions [135]. In general this is important as small changes
impact the system performance making it challenging to ap-
plying these approaches in the dynamic contexts of social
media.

4.1.2 Fake News andMisinformation

To detect fake news an approach that applies automatic
text summarization to compress original input documents
before classifying them with a transformer model was pro-
posed. Promising performance was reported on the utilized
dataset while the system has also established a new state-
of-the-art benchmark performance on the commonly used
FakeNewsNet dataset [52].

Other recent methods apply ensembles of different mod-
els for fake news detection with a focus on transformer
models [120].

In general, fake news detection datasets have frequently
been proposed as part of shared tasks and we use them as for
example in [121] or [71]. While [121] apply automatic text
summarization, similarly as in [52], and combine this infor-
mation with automatic machine translation, [71] introduce
an approach that is based on text graphs and graph attention
convolution. Although submissions were very competitive,
the contributions by [121] demonstrate that this approach is
highly competitive as they resulted in winning the German
cross-lingual fake news detection challenge at CLEF 2022
“CheckThat!” [121].

4.1.3 User Beliefs and Opinions

We also use models to extract user-related properties, be-
liefs, and opinions as well as sentiments and emotions.
Inferring and interpreting human emotions [102] includes
distinguishing between sentiment analysis, the polarity of
content (e.g. [49, 50, 70]), and emotion recognition (e.g. [2,
16]). In comparison, opinion extraction aims at discover-
ing users’ interests and their corresponding opinions [129].
Similarly, the positive aspects of social media interaction,
crucial for estimating the “collective social well-being”,
could be extracted. Still, they have attracted less attention,
but see [28, 128].

As a lot of work in this area is going on in the NLP
community, we are mainly relying on methods proposed
in the literature. We use models for sentiment prediction in
English [101], German [47], Italian [18] and Spanish [101].
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In addition, we use models for the detection of emotions in
Italian [18], Spanish [11] and English [75].

4.2 Visual Content

One way of identifying threats in image or video data is
to use textual cues related to such postings, for example
associated user-comments [77], results of transcribing the
audio of a video via speech-to-text models [54, 137] or by
considering text located in images [12, 41, 60].

Other methods aim at operating directly on the level of
the image data: regarding the threats arising from beauty
stereotypes [125] (e.g. to learn whether someone’s feed is
predominantly occupied by posts of users promoting a spe-
cific body type) we have developed a body mass index
(BMI) detector that is based on a convolutional neural net-
work and partly makes use of OpenFace [8], an open source
face recognition model. It identifies a person’s face within
an image and predicts the BMI based on this cutout.

We also provide a gender predictor (again based on
OpenFace [8]), identifying the gender of people present
in an image, and an object detection algorithm that makes
use of YOLOv3 [104] to get further contextual information
about the setting displayed in an image, both based on con-
volutional neural networks. These tools provide metadata
about the image that can be used as a feature for the de-
tection of hate speech [33], violent content [37], and other
threats.

Approaches to counteract threats like the previously
mentioned “deep fakes” include the usage of deep neu-
ral networks for the detection of artifacts resulting from
the production of such content (for videos see for exam-
ple [20, 53, 62, 88, 115], for images see [27, 46, 59]). Such
artifacts are for example related to image blending, the
environment, behavioural anomalies, as well as audiovisual
synchronization issues [85].

To improve the understanding of image feature relevance
for misleadingness and correlations between user charac-
teristics and interpretations of visual content we propose
a partly crowd-sourcing-based image annotation schema.
The features we consider for that are inspired by criteria
used by fact-checking institutions such as the IFCN net-
work [43] and include a mixture of objective and subjective
concepts. For the crowd-sourcing-based annotation, we also
account for annotator characteristics using different scales
such as [23, 100, 113].

4.3 Echo Chambers and Information
Gerrymandering

Another function of our tool provides support for echo
chamber identification and thus helps in counteracting algo-
rithm-based social media threats as introduced in Sect. 2.2.

As there is no standard approach for the detection of echo
chambers [84] we adopt commonly used ideas to this ap-
proach. We first apply language models for topic identi-
fication to the user’s feed and the timeline posts of users
connected to them in a one-hop neighborhood. In addition,
we run sentiment detectors on these data. If we identify
a large proportion of posts with homogeneous topics and
sentiment (> 0.85 % of considered posts) we assume this
user to be located in an echo chamber, i.e. virtually sur-
rounded by similarly-minded people. However, note that
no information is usually available on the actual feed pre-
sented to the specific user by the platform. We suppose
that if the content is shared by most of their connections
it will have high chances to be presented. We thus present
this aggregated information on neighborhood posts to the
companion users to help evaluate the quality of their feed’s
sources as well as have a clearer view of the presence of
social media-specific phenomena such as echo chambers
and filter bubbles, which are difficult to detect for the users
while affecting their experience.

5 Educational Activities and Boosting

In this section, we present the educational activities inte-
grated complementing the companion interface’s nudging
functionalities with a boosting side. They aim at raising
users’ media literacy [61, 123]. In other words, they focus
on improving students’ understanding of social media dy-
namics and underlying computational mechanisms as well
as awareness of their threats, and the strategies to use them
conscientiously.

5.1 Narrative Scripts

One of our educational activities adopts the integration of
image classifiers within the educational approach of the nar-
rative scripts [55]. The narrative scripts notion combines
elements from computer supported collaborative learning
script mechanisms and storytelling techniques within a sim-
ulated social media platform.

The integration of machine learning tools can further as-
sist learning scenarios covering topics related to body im-
age stereotypes, social media algorithms and filter bubbles.
Specifically, students can engage with fictional scenarios
explaining the functionality of machine learning algorithms
and participate in games demonstrating their effect. The ob-
jective of this work is to provide a hands-on experience of
how social media algorithms work.

K



34 Datenbank Spektrum (2023) 23:27–39

5.2 Education about Echo Chambers

The goal of a second activity is to increase the percep-
tion of social media influence and the possible impact of
the distortions produced by echo chambers and filter bub-
bles. We opt for a game-oriented strategy that motivates
the students and gives them the opportunity to experience
the consequences of information personalisation on deci-
sion-making. The game is framed as repeated estimation
task where “wisdom of crowds” [17, 73, 92] is leveraged to
simulate a bias (towards the correct or wrong direction) of
the information filtering system [73]. During this activity,
participants are estimating the number of dots in an image
and can revise their answers once (after also providing an
aggregation of other participants’ answers to them).

The intuition is that direct exposition to consequences of
echo chambers and filter bubbles pushes students to being
more aware of these mechanisms and their effects (i.e. when
biased aggregation distorts users’ unbiased opinions and
its explanation). Results from a first study with around 50
students (including a baseline where the estimation task’s
results are not shown) confirm that explaining consequences
of information personalisation on their performances during
the task increase the students’ awareness [72].

5.3 Awareness of Model Misclassifications

To educate teenagers about limitations of machine learn-
ing models (as used in our companion), we provide a third
activity including an additional web page with examples
for prediction results and statistical diagrams showing the
models’ average performance. Our objective is to foster
the students’ competence in dealing with predictions made
by automatic systems, generally speaking a boosting activ-
ity [56].

A part of this interface can be seen in Fig. 4. We plan
to use it in upcoming experiments to see whether this has
positive effects on the social media literacy of teenagers.

Fig. 4 Sample predictions of the English emotion prediction model for
education

Fig. 5 Screenshot of the Trust in AI study (control condition). Partici-
pants were requested to select the prediction they trust more

5.4 Trust in AI and Reliance onMachine Learning

A fourth activity focuses on the reliance on machine learn-
ing algorithms. We investigate the role of trust in AI and
reliance on labelling systems to decorate visual content.
Labelling content to signal doubtful content to reduce the
spread of misinformation has been proven to be a helpful
tool to increase users’ capabilities to deal with fake news on
social media [38, 81] but people’s trust in machine learning
algorithms can also have a role in visual content misinter-
pretation.

We label multiple images both with the output from mul-
tiple predictors. More specifically we used the BMI, gender,
and object detectors presented in Sect. 4.2 to label a set of
images showing people. In addition, annotators were asked
to annotate the same set of images with the information the
models were producing.

The hypothesis is that people who trust more in AI will
be more prone to rely on mislabelled content by AI. We
present both sets of labels (human and AI generated) to
the participants and ask them to select those that are more
correct in their opinion. In the experimental condition the
participants are presented the labeling methods along with
the set of labels while this information is not given in the
baseline condition (Fig. 5).

Participants in both conditions are asked to answer a sur-
vey related to the trust in AI [80, 124]. We plan to compare
selection behavior to understand the role of trust in AI in
users’ image selection.

6 Conclusion

Big challenges are arising from social media usage, es-
pecially for vulnerable groups of society like teenagers,
which we have summarized as part of this work. Methods
for addressing these threats have been proposed and we are
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integrating support for multimodal content and otherwise
invisible network-based threats directly into the user feed.

However, it remains an open question to which extent
the analysis and visualization of the content lead to more
threat awareness among users of social media platforms.
As a next step, we plan to conduct controlled user studies
together with schools (in Italy, Spain and Germany) to find
out how our augmented feed affects teenagers perceiving
users’ attitudes and content, e.g. posts, on such platforms.

In addition, several challenges remain in terms of pro-
viding efficient, extensive, and reliable machine learning-
based user support tools. It is thus important to comple-
ment nudging interfaces supported by machine learning,
such as our companion, with boosting educational activ-
ities to guide students in learning to leverage these tools
to develop their own critical attitudes toward social media
interactions instead of over relying on them.

7 Ethical Considerations

With the use of personal data and the involvement of vulner-
able subjects (e.g. school children) ethical and privacy con-
cerns arise. We strictly follow the corresponding guidelines
of our institutions (and ethical approval has been obtained
before running any experiments).

We also need to stress that any individual user data (e.g.
extracted from the user’s social media feed) is only being
used in the interaction with that specific user.
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