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Abstract

According to the hierarchical formation paradigm, galaxies form through merg-
ers of smaller entities and super massive black holes (SMBHs), if present, tend
to shrink to the center where they may form binary systems. The formation
and evolution of SMBH binaries, and in particular their coalescence timescale,
are particularly relevant for current and future facilities aimed at detecting the
gravitational-wave signal produced by the SMBH close to coalescence.

In the first part of my thesis, I explore the impact of the rotation of the
stellar host on the efficacy of bound binary hardening, driven by three-body
stellar interactions. In line with previous investigations, I observe that the
center of mass (CoM) of a prograde super massive black hole binary (SMBHB)
within a rotating environment starts moving around the system’s center on
nearly circular orbits shortly after the formation of a bound SMBHB. In our
simulations, the oscillation radius is approximately 0.25 (0.1) times the binary
influence radius for equal-mass SMBHBs (SMBHBs with a mass ratio of 1:4).
Conversely, retrograde binaries remain fixed at the center of the host. The
binary shrinking rate is twice as rapid when the binary CoM exhibits net
orbital motion, facilitated by a more effective repopulation of the loss cone,
even in our spherical stellar systems.

I develop a model that captures the CoM oscillations of prograde binaries.
I posit that the gain in CoM angular momentum per unit time correlates with
the internal angular momentum of the binary, resulting in the majority of the
displacement being triggered by stellar interactions around the time of forma-
tion of a bound SMBHB. However, the subsequent enhancement of angular
momentum is ultimately suppressed by the impact of dynamical friction.

In the second part of my thesis I investigate minor galactic merger, partic-
ularly focusing on the effect of tidal forces in eroding the satellite mass. While
most of the studies targeting this process are based on N-body simulations, the
high computational cost makes a complete parameter exploration prohibitive.
Semi-analytic approaches represent a valid alternative, but they require ad-hoc
prescriptions for the mass loss of the merging galaxies in minor mergers due
to tidal stripping, which is not commonly considered or at most assumes very
idealised geometries. In this work, I propose a novel, effective model for the
tidal stripping in axisymmetric potentials, to be implemented in semi-analytic
models. I validate my semi-analytic approach against N-body simulations con-
sidering different galaxy sizes, inclinations, and eccentricities, finding only a
moderate dependence on the orbit eccentricity. In particular, I find that, for
almost circular orbits, our model mildly overestimates the mass loss, and this
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is due to the adjustment of the stellar distribution after the mass is removed.
Nonetheless, the model exhibits a very good agreement with simulations in all
the considered conditions, and thus represents an extremely powerful addition
to semi-analytic calculations.

This thesis contributes to a deeper knowledge of SMBHBs and their path
towards the coalescence. When combined with a detailed modelling of galactic
mergers, where SMBHB are formed, it can provide valuable insights for future
LISA (Amaro-Seoane et al., 2023) predictions.
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1
Super massive black holes

and galaxy mergers

Black holes (BHs) – regions of spacetime with such extreme gravity that not
even light can escape – stand as some of the most captivating objects in our
Universe. As one of the most fascinating predictions of Einstein’s General
Relativity, these objects have drawn scientific attention since the early decades
of the 20th century. Although their existence is now well-established, just a few
decades ago they were considered mere mathematical curiosities, with severe
doubts about their actual existence in Nature. The concept of a black hole dates
back to 1783 when Michell proposed the idea of “dark stars” (Michell, 1784),
which, according to Newtonian dynamics, were believed to possess enough mass
to prevent any object from escaping their gravitational pull. In 1915, Einstein
published the theory of General Relativity, laying the foundation for the study
of black holes. However, for a long time, the idea that Nature could permit
the existence of such extreme and exotic objects was deemed impossible, to
the extent that Einstein himself, in 1939, employed his own general relativity
to argue against the possibility of black hole existence (Einstein, 1939).

Subsequently, extensive research has been conducted on general relativity
and, in particular, on black holes.

In the 1960s, the discovery of the first quasar by Schmidt (1963) marked
a pivotal moment making the concept of black holes transitioning from be-
ing purely theoretical to a subject of active investigation. This breakthrough
initiated an era of intense efforts in searching for BH candidates.

1.1 Astrophysical black holes

Despite being the most extreme environments in the Universe, astrophysical
BHs are very simple entities, fully characterized by two parameters: mass and
spin. From a theoretical point of view, the recipe to create a BH is very simple
too. The only ingredients needed are a mass M and a physical process capable
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1.1 Astrophysical black holes SMBHs and galaxy mergers

of confining it within its horizon, whose linear size can be approximated by (or
is equal to, in the case of a non-rotating BH) the Schwarzschild radius:

RS =
2GM

c2
, (1.1)

where G is the gravitational constant, M is the BH mass and c is the speed of
light. In this perspective, indeed, any object can turn into a BH, on the only
condition that its mass is squeezed to a size smaller than RS.

Due to the paucity of information about the BH spin, astrophysical BH
are typically classified by their mass only: stellar-mass BHs, intermediate-mass
BHs (IMBHs), and supermassive BHs (SMBHs). Stellar-mass black holes, with
masses spanning the range 2M⊙ ≲ M• ≲ 100M⊙, are formed as a consequence
of the gravitational collapse of massive stars. When massive stars reach the
end of their lives, most of their material is ejected during a violent supernova
event. If the mass of the resulting remnant exceeds the Tolman-Oppenheimer-
Volkoff limit (Kippenhahn et al., 2012), it undergoes direct collapse into a BH.
The first evidence of the existence of stellar-mass black holes arose in the 1970s
with observations in X-rays of stellar binaries, identifying Cyg X-1 as the first
candidate to host a BH of stellar origin (Webster & Murdin, 1972).

The high end of the BH mass distribution is populated by SMBHs, with
masses ranging from 105M⊙ up to several 1010M⊙. The origin of these sources
is still under debate. Among the plausible possibilities there is the collapse of
popIII stars - stars of the first generation made up of the pristine gas from
the cosmological nucleosynthesis - which may lead to the formation of a BH
with a mass of about 100M⊙ (e.g. Heger et al., 2003; Madau & Rees, 2001).
This BH seed then needs to steadily accrete mass to grow up to the enormous
masses observed. Other possibilities include the direct collapse of gas clouds
at the center of proto-galaxies (e.g. Haehnelt & Rees, 1993; Luo et al., 2018;
Shlosman et al., 2016), runaway stellar collisions in dense stellar clusters, where
the cluster does not collapse, but the central stars merge into a very massive
star around ∼ 1000M⊙ (e.g. Devecchi & Volonteri, 2009; Devecchi et al., 2010,
2012; Reinoso et al., 2020), and the runaway merger of stellar-mass BHs in the
cluster core, again leading to masses around ∼ 1000M⊙ (e.g. Lupi et al., 2014).

Bridging the gap between stellar BHs and SMBHs, IMBHs, including the
population of seed SMBH formed through the mechanism above-mentioned,
cover a mass range of 100M⊙ ≲ M• ≲ 105M⊙. So far, only a handful of
sources have been indicated as IMBH candidates. The reasons why this mass
range is so poorly populated is uncertain. It is unclear whether there are
physical processes that render these objects effectively rare in our Universe
or if the reason is to be attributed to observational biases that make IMBHs
challenging to detect.
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SMBHs and galaxy mergers 1.2 Super massive black holes

1.2 Super massive black holes

SMBHs serve as fundamental building blocks in the formation and evolution of
galaxies, making the understanding of their formation and evolution a funda-
mental objective in modern cosmology and astrophysics. Since their discovery
in the 1960s, it has become clear that the highly energetic emissions character-
izing quasars have a gravitational origin (see e.g. Salpeter, 1964; Zel’dovich &
Novikov, 1964). Having excluded all alternative explanations, the luminosity
of such sources has been attributed to the accretion of matter onto a lurk-
ing black hole. Further, given the Eddington limit, to justify the production
of such enormous luminosities, the central engine should possess a mass mil-
lions or even billions time larger than the solar mass, thus providing strong
indications of the existence of SMBHS.

1.2.1 SMBH and stellar host

It is now well known that SMBHs inhabits most of galactic nuclei featuring a
sizable spheroidal stellar component, the latter being either the approximately
spherical stellar distributions of elliptical galaxies, or the bulge component
present in the centeral region of many spiral galaxies. The surface brightness
profile I(R) - where R represents the projected distance from the center of the
galaxy - of spheroidal distribution of stars is typically well fitted with a simple
parametric model called the Sérsic profile (Sersic, 1968):

ln I(R) = ln I(Re) − b(n)

[(
R

Re

)1/n

− 1

]
. (1.2)

Here, the b parameter is usually chosen such that Re, the effective radius,
coincides with the projected radius containing half of the total galaxy light.
The shape parameter n, usually called Sérsic index, shows a dependence with
the size of the stellar distribution, with higher values of n corresponding to a
better fit for larger spheroids. Besides it simple form, the widespread use of
the Sérsic profile is justified by the fact that it well fits the surface brightess of
many galaxies over a vast range of radii.

SMBH influence on stellar dynamics

The gravitational field generated by a SMBH is so strong to significantly in-
fluence the dynamics of the surrounding material at distances up to million
times the extent of its event horizon. The region wherein the gravitational
potential dominates the dynamics of gas and stars is referred to as the “sphere
of influence” of the SMBH. The outer boundary of this region is the “influence
radius radius”, rm, and it is determined such that the enclosed mass in stars
is twice the mass of the SMBH:

M∗(r < rm) = 2M•. (1.3)
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1.2 Super massive black holes SMBHs and galaxy mergers

An alternative definition for the influence radius, that we denote as rh, has been
proposed based on more easily measurable quantities. In this formulation, rh
is defined requiring that the circular velocity of a test particle, at a distance
rh from the SMBH, equals the velocity dispersion σ:

rh =
GM•

σ2
. (1.4)

At r = rm, the gravitational force is contributed to one-third by the SMBH and
the remaining portion by the stars. At higher distances the SMBH’s contri-
bution becomes negligible, and the dynamics is dominated by the distribution
of stars. Conversely, on smaller scales, as the distance approaches the event
horizon, the velocities increase, reaching values of significant fractions of the
speed of light. Here, general relativity effects must be taken into account to
properly describe the orbital motions.

SMBH-host relations

Even if SMBHs are able to influence the motion of objects at distances of many
orders of magnitude larger than their own event horizon, a comparison of the
SMBH influence radius with the characteristic dimension of the whole galaxy
shows that the influence sphere is just a tiny region of the entire host galaxy,
rh being ∼ 10−5 − 10−6Re. Nonetheless, numerous observational studies have
consistently demonstrated a tight correlation between the mass of SMBHs and
the large-scale properties of their host galaxies. Suprisingly, the SMBH mass
was found to correlate with the velocity dispersion of the stellar component of
its host (e.g. Ferrarese & Merritt, 2000; Gebhardt et al., 2000; Gültekin et al.,
2009; Tremaine et al., 2002). The M•−σ relation proposed by (Gültekin et al.,
2009) is:

log(M/M⊙) = (8.12 ± 0.08) + (4.24 ± 0.41) log(σ/200 km s−1) (1.5)

The M• − σ relation for a sample of 49 SMBH-host-galaxy pairs is shown in
fig. 1.1.

Similar correlations have been found to exist between the SMBH mass and
the bulge luminosity in the K-band (M•−Lbulge)(Kormendy & Richstone, 1995;
Marconi & Hunt, 2003) and the bulge mass M• −Mbulge(Häring & Rix, 2004;
Magorrian et al., 1998; Marconi & Hunt, 2003).

The small intrinsic scatter of the scaling relations between SMBHs and
bulges has widely been interpreted with a co-evolutionary scenario (Di Matteo
et al., 2005; Granato et al., 2004). The growth of SMBHs occurs primarily
through the accretion of gas. As the SMBH attains sufficient mass - thus lying
on the aforementioned relations -, the active galactic nucleus (AGN) feedback,
which operates on galactic scales (Silk & Rees, 1998), becomes intense enough
to suppress both accretion and star formation.
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SMBHs and galaxy mergers 1.2 Super massive black holes

Figure 1. from The M- and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter
GÜLTEKIN ET AL. 2009 ApJ 698 198 doi:10.1088/0004-637X/698/1/198
https://dx.doi.org/10.1088/0004-637X/698/1/198
© 2009. The American Astronomical Society. All rights reserved.

Figure 1.1: The plot, taken from (Gültekin et al., 2009), shows SMBH masses as a function
of the stellar velocity dispersion for a sample of 49 sources. The black solid line
display the best fit to the sample, given by eq. 1.5.
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1.2 Super massive black holes SMBHs and galaxy mergers

An alternative explanation explores a non-causal origin, negating the ne-
cessity for a synchronized growth of SMBHs and their host bulges. This expla-
nation relies instead on a process of statistical convergence. If we consider an
initially arbitrary distribution of M•/M∗ at high redshifts, repeated merging
events may cause the mass ratios of black holes to bulges to converge to a linear
relation. In this scenario, akin to the central limit theorem, if the number of
mergers is sufficiently large, the extreme values in the initial distribution of
M•/M∗ will be effectively averaged out (Jahnke & Macciò, 2011; Peng, 2007).

1.2.2 Observational techniques for SMBHmass estimates

Detecting SMBHs practically translates in the ability of measuring their mass
M•. Various techniques have been developed for this purpose, which are pri-
marly divided in two categories: direct and indirect methods (see e.g. Peterson,
2014, for a review). Direct methods are based on the dynamics of gas and star
in the vicinity of the SMBH, being therefore, due to resolution limitations,
feasible in a restricted number of cases. The most reliable technique is based
on the detection of the orbital motion of individual stars accelerated by the
SMBH gravity, as done in the case of Sgr A* at the center of the Milky Way
(Genzel et al., 2010; Meyer et al., 2012). Other possibilities rely on fitting the
dynamics of megamaser disks or detecting the line of sight velocity rise, which
goes as:

v2 ∝ GM•

r
, (1.6)

in the integrated emission of the whole unresolved stars/gas population in the
proximity of the SMBH. Finally, an alternative direct method is available for
measuring M• in Type I AGNs. These systems have a near face-on orientation
with respect to our line of sight, therefore the innermost regions surround-
ing the central MBH remain unobscured by the dusty torus, allowing the nu-
clear continuum emission and the broad lines to be visible. For such sources,
the method known as “reverberation mapping” can be employed, wherein the
SMBH mass is measured using an analogous equation to eq. 1.6. Here the
velocity v of the emitting gas is measured from the Doppler broadening of the
gas emission lines, while the extension r of the emitting region - the Broad
Line Region (BLR) - is estimated by the time delay in the variability of the
broad emission lines with respect to the variability of the continuum emission.

On the contrary, indirect methods infer the SMBH mass using the phe-
nomenological relations described above (M•−σ, M•−Lbulge and M•−Mbulge).
Despite being very useful for estimating the SMBH mass of a large number of
sources, this methods inherently preclude the detection of potential modifica-
tions to these relations over cosmological timescales.
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1.3 Galaxy mergers

Galaxies, along with the dark matter (DM) halos in which they are embedded,
do not exist in isolation. The ΛCDM model of cosmology predicts a hierarchical
aggregation of structures over cosmic time (Press & Schechter, 1974; White &
Rees, 1978). In this framework, galaxies and their host DM halos experience
growth through mergers with systems of comparable mass in the so-called
“major mergers” (q ≳ 1/4, where q is the ratio between the more massive and
the less massive systems), as well as through the accretion of smaller systems,
leading to “minor mergers” (q < 1/4).

1.3.1 Minor mergers

While the literature extensively explores the effects of major mergers on the
final mass and morphology of massive galaxies (e.g. Darg et al., 2010), recent
studies emphasize the significant contribution that minor mergers can bring.
Minor mergers occur frequently, with a recurrence approximately 3-4 times
higher than major mergers in late epochs (e.g. Kaviraj et al., 2009), as in-
dicated by both theoretical and observational studies. Although individual
minor merger events may have a almost paltry impact on massive galaxies,
their cumulative effect over cosmic time is substantial, influencing both the
stellar content and the structural properties of the primary merging galaxy.

As we delve into further detail in the following section and in Chapter 4,
the proper characterization the evolution of galaxies during mergers is crucial.
This importance stems from the fact that these merging processes serve as the
factories where binary SMBHs are formed and evolve.

1.3.2 Mass removal due to tidal forces

When minor mergers occur, satellite galaxies, while orbiting within their hosts,
are subjected to tidal forces that remove part of their mass, sometimes leading
to their complete disruption even after a single pericenter passage. Two main
mechanisms have been identified for removing mass from the satellite, depend-
ing on the rapidity at which the external tidal field varies. When the satellite
experiences a slowly changing tidal field, the effect of the tidal forces is that
of stripping material from the outer regions of the satellite, forming a clear
external boundary often called the tidal radius (Rt). This process is identified
as tidal stripping. On the contrary, when the satellite undergoes a rapid change
in the external tidal field, part of its orbital energy is converted into internal
energy, leading to an overall heating of the satellite. The amount of energy
injected into the system during fast pericenter passages and transferred to the
stars can be enough to unbind a significant fraction of the satellite mass. This
effect is known as tidal heating or tidal shocking.
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1.3 Galaxy mergers SMBHs and galaxy mergers

Tidal heating

The most severe tidal heating takes place during close and fast encounters. An
interaction gives rise to tidal shocking when the duration of the encounter is
shorter compared to the satellite dynamical time.

Consider a system composed of a satellite galaxy orbiting within its host
galaxy. We denote as rs(t) the trajectory of the satellite center in the inertial
frame of the host, and with r the distance of a test star from the satellite center.
The radius vector of the test star in the galaxy reference frame is r∗ = rs(t)+r.
Thus, the equation of motion can be written as:

r̈s + r̈ = −
(
∂ΦG

∂rs

)
rs

−
(
∂Φc

∂r

)
r∗

−
(

∂2ΦG

∂rs∂rs

)
rs

· r− ..., (1.7)

where ΦG and Φc are the potentials of the galaxy and the satellite respectively.
The leading term ∂ΦG/∂rs in the above equation defines the trajectory of the
satellite center, thus in the tidal approximation:

r̈ = −
(
∂Φc

∂r

)
−

(
∂2ΦG

∂rs∂rs

)
· r (1.8)

If the host galaxy is spherically symmetric, its gravitational potential can be
expressed as:

ΦG = −GM(r)

r
− 4πG

∫ ∞

r

ρ(r′)r′dr′, (1.9)

from which the resulting tidal force per unit mass is:

Ftid ≡ −
(

∂2ΦG

∂rs∂rs

)
· r =

GMG

r3s
[(3µ− µ′)(n · r)n− µr], (1.10)

where MG is the total mass of the host and n is the direction to the satellite
center, µ(r) and µ′(r) are defined as follows:

µ(r) =
M(r)

Ms

, (1.11)

and

µ′(r) =
dµ(r)

d ln(r)
. (1.12)

Under the impulsive approximation, i.e. assuming that the particle motions
are negligible during the encounter, the change in the velocity of stars is given
by:

∆v =

∫
Ftid dt, (1.13)

8



SMBHs and galaxy mergers 1.3 Galaxy mergers

where the integral is evaluated over the satellite orbit. This time-dependent
perturbation leads to a net heating of the satellite by increasing the stellar
random motions. The corresponding averaged energy gain of stars with initial
energy E is:

⟨∆E⟩E = ⟨1

2
(∆v)2⟩ (1.14)

Assuming an eccentric orbit, the resulting velocity variation can be expressed
as:

∆v =

(
GMG

a3

) 1
2 1

j(α, e)
{(B1 −B3)x, (B2 −B3)y,B3z}, (1.15)

with:

B1 =

∫ θm

−θm

3µ(r) − µ′(r)

r/a
cos2 θd θ, (1.16)

B2 =

∫ θm

−θm

3µ(r) − µ′(r)

r/a
sin2 θd θ, (1.17)

B3 =

∫ θm

−θm

µ(r)

r/a
d θ. (1.18)

In the above equations a is the host galaxy scale length, e is the satellite orbital
eccentricity and j is its dimensionless angular momentum. α is a dimension-
less parameter defined as the ratio between a and the pericenter distance Rp.
Finally, the variable θ represents the position angle in polar coordinates. θ = 0
corresponds to the pericenter, while −θm and θm refers to two subsequent
apocenters. The change in the energy of stars is 1:

⟨∆E⟩E =
GMG

a3
r2

(B1 −B3)
2 + (B2 −B3)

2 + B2
3

6j2(α, e)
A(ω, τ). (1.19)

Here, the term A(ω, τ) is needed to account for adiabatic corrections, which
depends only on the duration of the encounter τ and on the orbital frequency
of the stellar particles in the satellite ω. Indeed, the impulsive approximation
is only valid for the the least bound stars. For the highly bound stars, residing
in the most internal regions of the satellite, the dynamical time can result to
be significantly shorter than the duration of the encounter. For these particles,
the pericenter passage is adiabatic, and the adiabatic invariants conservation
prevents these stars to gain energy (see e.g. Spitzer, 1987).

The energy injected in the satellite during tidal shocks can be so high to
unbind a large fraction of the satellite mass, and, in some cases, leading to its
complete disruption even during a single pericenter passage.

1For the details of the derivation see Gnedin et al. (1999)
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1.3 Galaxy mergers SMBHs and galaxy mergers

Tidal stripping

While the tidal shocks occur when the external tidal field changes rapidly in
time, another effect drives the satellite mass loss in the opposite scenario, when
the external tidal field is almost static: the tidal stripping.

In these context, a quantitative assessment of how mass is stripped from
infalling satellite galaxies requires a careful estimation of the tidal radius. Be-
yond this limit, the object’s material undergoes stripping due to tidal forces
exerted by the larger host. First introduced by von Hoerner (1957) within
the context of Milky Way globular clusters, the tidal radius was theoretically
defined strictly for satellites following circular orbits, where it coincides with
the position of L1/L2 Lagrange points (Binney & Tremaine, 1987). A differ-
ent attempt to define such radius also for eccentric motion was explored by
King (1962), who argued that instead of using the instantaneous value of the
tidal radius along the orbit, satellites are truncated to the size indicated by the
pericentric tidal radius. This is because the most significant mass truncation
occurs in correspondence with the pericenter passage, while the internal relax-
ation does not proceed rapidly enough to increase the satellite size between
two successive pericenter passages.

The idea under the definition of the King’s tidal radius is the following.
Consider a satellite galaxy orbiting within the potential of a spherically sym-
metric host galaxy. Let RS and θs represent the polar coordinates specifying
the location of the satellite center in relation to the host center. Consider a
rotating coordinate system (x, y) with the origin at the center of the satel-
lite, where the x-axis consistently points in the opposite direction to the host
center. During the pericenter passage, stars situated at considerable distances
from the satellite center will become unbound due to the tidal force exerted by
the host, while stars in close proximity will remain bound. Consequently, the
limiting radius, beyond which the satellite mass is stripped, can be identified as
the distance from the satellite center along the direction connecting the centers
of the two systems where a test star is neither accelerated toward the satellite
nor toward the host. The acceleration of the satellite with respect to the host
center at the pericenter can be evaluated as:

d2RS

dt2
= −dΦG(R)

dR

∣∣∣∣
RS

+ RS Ω2, (1.20)

where Ω is the satellite angular velocity and ΦG(R) the host galaxy potential.
At the same moment, the acceleration of the test star, located at a distance
R∗ form the host center, is:

d2R∗

dt2
=

dΦG(R)

dR

∣∣∣∣
R∗

−GMS(|R∗ −RS|)
(R∗ −RS)

|R∗ −RS|3
+ R∗ Ω2. (1.21)

Here MS(R) is the mass profile of the satellite galaxy. Thus, the relative
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acceleration results:

d2

dt2
(R∗−RS) = (R∗−RS)Ω2−dΦG(R)

dR

∣∣∣∣
R∗

+
dΦG(R)

dR

∣∣∣∣
RS

−GMs(|R∗−RS|)
(R∗ −RS)

|R∗ −RS|3
(1.22)

In the distant-tide approximation, where |r∗ −RS| ≪ RS, it becomes:

d2

dt2
(R∗−RS) ≃

(
Ω2− d2ΦG(R)

dR2

∣∣∣∣
RS

− GMs(|R∗ −RS|)
|R∗ −RS|3

)
(R∗−RS). (1.23)

The value of |R∗ − RS| for which eq. 1.23 vanishes determines the amplitude
of the tidal radius:

Rt =

[
GMS(Rt)

Ω2 − d2ΦG(R)
dR2

∣∣
RS

]1/3
, (1.24)

or alternatively:

Rt = RS

[
MS(Rt)/MG(RS)

2 +
Ω2R3

S

GMG(RS)
− d lnMG

d lnR

∣∣
RS

]1/3
, (1.25)

where MG(R) is the host galaxy mass distribution. In the approximation of
circular orbits Ω = vc(R)/R, thus eq. 1.24 can be rewritten as:

Rt = RS

[
MS(Rt)/MG(RS)

3 − d lnMG

d lnR

∣∣
RS

]1/3
. (1.26)

Despite being widely used in literature, eqs. 1.24, 1.25, 1.26 represents only
approximate estimations for the limiting radius generated by tidal forces on
the satellite, and for this reason is worthwhile making some considerations:

1. The locus of points determined by the distances from the satellite at
which the radial acceleration of a test star vanishes is not a spherical
surface, and therefore cannot be defined by a single value of the tidal
radius.

2. The above calculation neglects the impact of the internal motion of the
satellite stars. In a more recent study, Read et al. (2006) derived an
expression for the tidal radius taking into account different orbit types
of the stars within the satellite: prograde, radial, and retrograde. The
analysis revealed that the tidal radius for retrograde orbits exceeds that
of radial orbits, which, in turn, is larger than the tidal radius for prograde
orbits.

11
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3. The definitions of Rt were derived under the assumption of distant tides,
requiring that the separation between the centers of the two systems is
significantly larger than Rt. This condition holds true for quasi-circular
and distant orbits. However, on eccentric orbits, the pericenter may be
located at distances from the host center that are comparable to or even
smaller than the dimensions of the satellite.

4. Eqs. 1.24, 1.25, 1.26, along with the majority of attempts to estimate
the tidal radius, have predominantly focused on spherically symmetric
host galaxies. This makes them particularly well-suited for investigating
systems such as merging DM halos (see e.g., van den Bosch et al., 2018).
However, a significant portion of systems, where the primary object un-
dergoing minor mergers deviates considerably from spherical symmetry, is
not adequately addressed by these methods. Examples include the disk
component of spiral galaxies with flattened potentials or regions near
galactic bars characterized by a strongly non-axisymmetric potential.

Chapter 4 of the present thesis will be fully devoted to address these issues,
proposing a new prescription for the mass loss of satellite galaxies driven by
tidal-stripping in generic potentials.

1.3.3 Dynamical friction

Another process that plays a pivotal role in the evolution of satellite galaxies –
and massive perturbers in general – is dynamical friction. When a massive ob-
ject with mass MS and velocity vS moves across a collisionless system2 consist-
ing of particles with mass m ≪ MS (the field stars), it is subjected to a dragging
force, known as dynamical friction, through which energy and momentum are
transferred from MS to the background particles. Intuitively, dynamical fric-
tion can be explained by the fact that two-body interactions cause particles to
exchange energy in such a way that the whole system evolves towards the ther-
modynamic equilibrium. In systems composed of multiple mass populations,
each characterized by a different mass mi, due to two-body interactions the sys-
tem will tend to the energy equipartition, where locally the mean kinetic energy
per particle is the same for all the populations m1⟨v21⟩ = m2⟨v22⟩ = ... = mn⟨v2n⟩.
In the scenerio of a massive perturber travelling within a sea of lighter stars,
there are two distinct populations: the first composed of the subject mass MS

while the second includes all the field stars. Since MS ≫ m and given the fact
that in an inhomogeneous self-gravitating system particles at similar radii have
comparable orbital velocities, the subject mass will have typically a larger ki-
netic energy with respect to the surrounding field stars with which it interacts.
As a consequence, the overall effect of the encounters will be a net tendency of
the subject mass to lose energy and momentum. A schematic representation
of the effect of dynamical friction is shown in fig. 1.2

2Refer to sec. 2.1.2 for the definition of a collisionless system
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Figure 1.2: Schematic representation of DF acting on a massive perturber moving within a
system of lighter collisionless particles. Image credits: Massimo Dotti.
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The first derivation for the dynamical friction was performed by Chan-
drasekhar (1943a), who considered the deceleration of a massive perturber
moving in a sea of background particles as the cumulative effect of uncor-
related hyperbolic two-body encounters with field stars. When a point-like
particle with mass MS and initial velocity vS undergoes to a two-body inter-
action with another point-like particle of mass m, the change in the subject
velocity, decomposed along the directions parallel and perpendicular to the
initial direction of vS will be:

|∆vS,∥| =
2mbv3∞

G(MS + m)2

[
1 +

b2v4∞
G2(MS + m)2

]−1

, (1.27)

and

|∆vS,⊥| =
2mv∞

(MS + m)

[
1 +

b2v4∞
G2(MS + m)2

]−1

, (1.28)

where b is the impact parameter of the encounter and v∞ = |vm − vS| is the
relative velocity of the two particles before the encounter. The above equations
neglect the contribution of the external potential generated by all the other
particles, thus the derivation in valid only under the assumption of an infinite
and homogeneous distribution of field stars. As the massive perturber moves
within its host system of background particles, it will be subjected to repeated
encounters, each occurring with different values of b and v∞. The total velocity
change of vS due to the cumulative effect of all the interactions is given by:(

dvS

dt

)
(∥/⊥)

=

∫ ∫
∆vS(∥/⊥)

(b,vm)
dN

db d3vm dt
db d3vm, (1.29)

with N number of interactions. For a homogeneous distribution of particles,
the distribution function f(x,v) only depends on v, and the net velocity change
in the perpendicular direction vanishes due to the compensation of the induced
changes, effectively averaging to zero. The dominant contribution determining
dynamical friction is therefore the velocity change occurring along the parallel
direction. Finally, the number of interactions with impact parameter in the
range [b, b + db] occurring in a time interval of ∆t is:

dN

db d3vm dt
= 2πb|vm − vS|f(vm). (1.30)

Using eq. 1.27 and eq. 1.30 in eq. 1.29 and integrating over the impact
parameter, leads to:(

dvS

dt

)
=

(
dvS

dt

)
∥

= −4πG2(MS + m)m

∫
d3vm f(vm) ln Λ

vS − vm

|vS − vm|3
(1.31)
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where:

ln Λ ≡ 1

2
ln

[
1 +

bmax

bmin

]
≃ ln

(
bmax

bmin

)
(1.32)

is called Coulomb Logarithm and is simply the logarithm of the ratio between
the maximum and minimum impact parameters. bmax is generally chosen as
the maximum scale length of the system under study in order to prevent 1.29
to logarithmically diverge for large values of b.3 The minimum impact pa-
rameter bmin is typically chosen to correspond to the impact parameter of a
90◦-deflection in the two-body interaction bmin = b90 ≡ G(MS + m)/v2∞. Al-
though the minimum impact parameter depends on v∞, in principle requiring
integration of ln Λ over the velocity space, the large ratio bmax/bmin allows for
the approximation of v∞ with a constant value vtyp representing a typical en-
counter speed. In this way the Coulomb logarithm can be placed outside the
integration.

Under the assumption of an isotropic velocity distribution, and recalling
that MS ≫ m, the dynamical friction acceleration results:

aDF =
dvS

dt
= −16π2G2MSm ln Λ

[∫ vs

0

f(vm)v2m dvm

]
vS

v3S

= −4πMS

(
G

vs

)2

ln ρ(< vS)
vS

v3S
,

(1.33)

with ρ(< vS) representing the density of field stars with a pre-encounter veloc-
ity lower than the subject particle. In the limit of low velocities the dynamical
friction acceleration is linear in vS, while as the velocities approaches to vS it
decreases as v−2

S .

Accurately characterizing dynamical friction acting on massive perturbers
is crucial in various astrophysical scenarios. In the context of this work, it
holds significant relevance on multiple fronts. Firstly, it determines the orbital
decay time of SMBHBs, strongly shaping the chance of forming a bound bi-
nary system that may potentially undergo coalescence within a Hubble time.
Secondly, it plays a pivotal role in the evolutionary dynamics of satellite galax-
ies involved in minor mergers, establishing a tight connection with the mass
removal triggered by tidal forces imparted by the host galaxy. Dynamical fric-
tion induces the sinking of the satellite towards the host center, where tidal
forces are more pronounced, thereby facilitating mass removal. Conversely, the
process of tidal-driven mass loss, through the erosion of the satellite’s mass, di-
minishes the efficiency of dynamical friction, thus decelerating its decay within
the host system.

3The introduction of a large scale cutoff is intrinsically connected with the fact that the
gravitational interaction (as well as the electromagnetic one) is a long large interaction that
formally vanishes only at infinity.
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Limitations and extensions of Chandrasekhar formula

Despite being extensively used in literature, it is important to recall that the
Chandrasekhar formula has been derived under the simplistic assumption of
an infinite and homogeneous stellar background. For finite-size host systems,
with masses Mh ≫ MS, the value of the maximum impact parameter is usually
chosen to correspond to the size of the host system rh, and if one considers
the subject mass to be on a circular orbit about the host center, the Coulomb
logarithm can be approximate as ln Λ ≃ ln(Mh/MS). More recent studies
showed that 1.33 can be quite easily extended to well reproduce the result of
N-body simulations for more realistic systems by adopting position-dependent
maximum and minimum impact parameter (see e.g. Hashimoto et al., 2003;
Just et al., 2011; Just & Peñarrubia, 2005).

Another crucial assumption in the Chandrasekhar formula is that the mas-
sive perturber is a point-like particle. However, an accurate prescription for dy-
namical friction is essential for predicting the orbital evolution and decay time
of extended objects, such as satellite galaxies, globular clusters, and dark mat-
ter subhalos. Therefore, for systems with non-zero sizes, the physical dimen-
sions of the perturber must be considered. It has been demonstrated that the
extension of the perturber contributes to dynamical friction only by influencing
the amplitude of the Coulomb logarithm, which results to be smaller compared
to cases of point-like perturbers. In this context, White (1976) showed that
the Coulomb logarithm for extended bodies can be expressed as:

ln Λ =
1

MS

∫ bmax

0

I2S(b)b3 db, (1.34)

with

IS(b) =
1

MS

∫ bmax

0

I2S(b)b3 db, (1.35)

Moreover, if the mass of the extended massive perturber is allowed to vary,
i.e. if the mass loss due to tidal forces is taken into account, eq. 1.3.3 can be
rewritten as:

ln Λ = ln

(
bmax

kRt

)
. (1.36)

Here Rt is the perturber tidal radius, while k = 1/MS

∫ bmax

0
I2S(b)b3 db which

for realistic density distribution k ≈ 0.2 − 0.3 (White, 1976).

Dynamical friction in flattened and rotating systems

Eq. 1.33, along with all its aforementioned extensions, is valid when the host
system exhibits an isotropic velocity distribution. Conversely, in situations
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where the host system displays a net rotation - as initially observed by Dotti
et al. (2006) in the context of SMBH in circumnuclear discs - a massive ob-
ject undergoes orbit circularization as a result of its interaction with the sur-
rounding medium. Specifically, massive perturbers corotating orbits tend to
decrease in eccentricity, while initially counter-rotating orbits tend to reverse
the angular momentum direction to align it with the angular momentum of
the background, than proceeding towards circularization. Interestingly, this
effect is observed to arise independently of the (stellar or gaseous) nature of
the surrounding medium.

In contrast to isotropic scenarios, the dynamical friction acceleration ex-
erted on massive perturbers within rotationally supported discs does not con-
sistently oppose the motion of the massive object relative to the center of the
whole system. Instead, for counter-rotating or co-rotating eccentric orbits, the
dynamical friction acceleration instantaneously acts in the opposite direction
with respect to the relative velocity between the massive perturber and the
matter in the near proximity. In such configuration, the main dependence
of the dynamical friction direction is given by the velocity more than on the
density profile. Despite this tendency toward corotational circularization - of-
ten called “drag towards circular corotation” - emerged from several numerical
studies (see e.g. Callegari et al., 2011; Dotti et al., 2006; Fiacconi et al., 2013),
only recently Bonetti et al. (2021a, 2020a) proposed a semi-analytical pre-
scription for the dynamical friction induced on massive perturbers by flattened
and rotationally supported hosts, successfully validated against N-body exper-
iments. Fig 1.3 shows the comparison of the semi-analytical model proposed
in Bonetti et al. (2021a) with N-body simulations.

The resulting expression for the dynamical friction acceleration induced by
a rotating disc is qualitatively very similar to the Chandrasekhar formula and
is given by:

aDF, disk = −2πG2 ln(1 + Λ2)mpρp(R, z)×

×
(

erf(X) − 2Xe−X2

π1/2

)
vrel

|vrel|3
.

(1.37)

Here, mp is the perturber mass and ρd(R, z) is the disk density profile, while
vrel = vp − vrot(R) and X = |vrel|/(

√
2σR), with σR representing the radial

velocity dispersion. Eq. 1.3.3 is derived under the assumption that the veloci-
ties of the disk particles are distributed as an isotropic Gaussian with center in
the local rotational velocity. Finally, in the Coulomb logarithm the maximum
impact parameter is taken to be equal to the disk scale height bmax, disk = zd,
while the minimum impact parameter is given by:

bmin, disk =
Gmp

v2rel + σ2
R

, (1.38)

thus setting a minimum effective distance for the massive perturber-disk par-
ticles interactions.
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Figure 1.3: From top to bottom, evolution of the radial separation, the z component of
the angular momentum- normalized to its initial value- and eccentricity for a
massive perturber in a multi-component host galaxy, composed of a DM halo,
an exponential disk and a central bulge. Solid lines show the evolution obtained
from the semi-analytical model (in blue with vrot computed as , and in green
using a vrot profile fitted on the N-body simulations), while the orange dashed
line displays the result from the N-body runs. Left panels refers to a system
hosting a co-rotating massive perturber, while right panels show the same system
but in an intitially counter-rotation configuration. Image credits: Bonetti et al.
(2021a).
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1.4 Super massive black hole binaries

As discussed in the previous sections, the ΛCDM model of hierarchical forma-
tion of cosmic structures predicts galaxies to aggregate in a “bottom-up fash-
ion”, with a large number of galactic merger occurring along the cosmic time.
Concurrently it is well-established that the center of most galaxies is inhabited
by a SMBH. Therefore as natural outcome of galaxy mergers, binary SMBH
(SMBHB) are expected to form (Begelman et al., 1980a). From observations
of galactic centers, a number of SMBHB candidates have been proposed on the
basis on different observational features. These features includes, “X-shaped”
jets emission displayed by some radio galaxies (Capetti et al., 2002; Leahy &
Williams, 1984; Wang et al., 2003, e.g.), which has been proposed to be associ-
ated to a sudden re-orientation of the BH spin direction induced by the merger
with another SMBH (Ekers et al., 1978). Double-lobed radio galactic sources
(Schoenmakers et al., 2000), showing a pair - internal and external- of radio
emitting structures aligned along the same axis, suggest a phase of interrup-
tion of the jet emission. This suspension is typically ascribed to a temporary
quenching of the accretion activity - and of the jet emission it powers- possi-
bly caused by the infalling secondary SMBH (Liu et al., 2003). The presence
of binary SMBHs can also been inferred by periodic variability in the optical
emission (Pursimo et al., 2000; Valtaoja et al., 2000). This can arise as a con-
sequence of tidal perturbations due to the secondary SMBH approaching the
primary BH accretion disc, thus leading to a boost in the accretion activity,
which result in a peak in the light-curve (Lehto & Valtonen, 1996; Sillanpaa
et al., 1988). Alternatively, the torques exerted on the accretion disc by the
presence of the companion SMBH induce disc precession. As a consequence
jets start oscillating, thus generating a modulation of the light intensity pro-
duced by Doppler-boosting (Katz, 1997). Another observational feature that
can hint for the presence of SMBHBs is the shift in the velocity peak of the
broad lines, emitted from a region close to at least one SMBH, in comparison
to the velocity of the host galaxy traced from the velocity peak of the narrow
lines. The narrow line region, being situated further out from the center of the
host, is not affected by the motion of the binary (Begelman et al., 1980b).

More recently, spatially resolved pairs of emitting regions embedded in a
common host galaxy have been discovered, at projected separations of few hun-
dreds of parsec or lower, which have been suggested as potential candidates for
SMBH pairs. X-ray observation performed with Chandra showed the presence
of dual AGNs at the center of both the starburst galaxy NGC 6240 (Komossa
et al., 2003) and the spiral galaxy NGC 3393 (Fabbiano et al., 2011). The
most compact spatially resolved SMBHB discovered so far is hosted in the ra-
dio galaxy 0402+379. VLBA observations of this source show a inter-SMBH
projected distance of ∼ 7 pc (Rodriguez et al., 2006).

The investigation of how SMBHB form, evolve and reach the coalescence
has always been a focal point in astrophysical research. This significance is
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particularly highlighted by the critical role SMBHBs play in understanding
the connection between SMBHs and their host galaxies, as detailed in sec.
1.2.1. In the last decade the interest toward these sources has surged as the
gravitational waves (GW) astronomy era begun.

Gravitational waves represent distortions in space-time induced by the ac-
celeration of massive objects, propagating through the Universe at the speed
of light carrying with them invaluable information about the systems that gen-
erated them. First predicted as a consequence of Einstein’s General Relativity
(Einstein & Lawson., 1961), the actual direct observation of gravitational waves
occurred only ∼ half a century later, specifically in 2015 when the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) collaboration (Abbott
et al., 2016) revealed signals produced by the coalescence of a stellar-mass BH
binary.

The final evolutionary stage of SMBHBs is expected to produce the loud-
est source of gravitational waves in the Universe. These sources will be the
main target of the forthcoming gravitational wave observatory LISA (Laser
Interferometer Space Antenna, Amaro-Seoane et al., 2023), covering the fre-
quency range of 10−4− 1 Hz. This ambitious experiment will be able to detect
the last month-to-year of the pre-merger phase of SMBHBs in the mass range
104−106M⊙. At even lower frequencies (10−9−10−7 Hz) Pulsar Timing Array
(PTA) (Agazie et al., 2023; Antoniadis et al., 2023) experiments are constantly
monitoring the time of arrival of radio pulses from arrays of millisecond pulsars
in our Galaxy. Tiny deviations from the expected time of arrival of the radio
signals can reveal the specific pattern perturbation ascribable to low frequency
GWs. The main PTA collaborations have recently claimed the detection of a
GW signal possibly generated by the incoherent superposition of the GW ra-
diation emitted by the whole SMBHB population across the Universe (Agazie
et al., 2023; EPTA Collaboration et al., 2023; Reardon et al., 2023). With re-
fined and prolonged observations the nature of the signal will be dissected and
will possibly also reveal single SMBHBs sources shining in the GW spectrum.
The possibility of exploring such low frequency ranges is crucial for many astro-
physical reasons. Concerning SMBHBs, it will allow to obtain unprecedented
estimations of SMBH masses, spins and distances.

1.4.1 SMBHB evolution

As first presented in the seminal paper by Begelman, Blandfors and Rees
(Begelman et al., 1980b), the journey towards the coalescence of SMBHBs
in gas-poor environments can be roughly divided in three subsequent phases.

Pairing phase and dynamical friction driven inspiral

As a consequence of galactic mergers the SMBHs hosted at the center of the
progenitor systems are injected in the newly formed galaxy remnant. In the
case of major mergers the two SMBHs linger bound to their high density cusps,
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Figure 1.4: Plot of the characteristic strain versus GW frequency for various sources. The
black solid lines represent sensitivity curves corresponding to different GW de-
tectors. Image credits: http://gwplotter.com.

gradually decaying toward the center of the whole system surrounded by their
original stellar environment, until the two nuclear galactic cores merge and
the two SMBHs start orbiting as individual entities. Conversely, in minor
mergers tidal forces erodes the mass of the smaller galaxy and the secondary
SMBH sinks towards the primary SMBH with just a partial or, if tidal forces
are strong enough and the satellite core is loosely bound, even no residual of
the progenitor stellar environment. In both scenarios, the initial stage of the
evolution of the SMBH pair is driven by dynamical friction (see section 1.3).

This initial pairing phase is characterized by a fast shrinking of the inter-
SMBH distance as dynamical friction efficiently extract energy and angular
momentum from the SMBHs. The typical decay time can be estimated on the
basis of eq. 1.33. Considering a SMBH of mass M•, embedded in a stellar
system, whose density profile is assumed to be that of an isothermal sphere
ρ(r) = σ2/(2πGr2), with a Maxwellian velocity distribution, the dynamical
friction decay time results (Binney & Tremaine, 2008):

tDF =
19Gyr

ln Λ

(
Ri

5kpc

)2
σ

200kpc s−1

108M⊙

M
, (1.39)

where Ri is the initial distance of the SMBH from the host system center.
This estimate assumes the scenario of a SMBH orbiting within the main host
galaxy completely deprived of its original stellar host, thus possibly leading to
a substantial overestimation of the real SMBH decay time and a consequest

21



1.4 Super massive black hole binaries SMBHs and galaxy mergers

inaccurate estimate SMBHB merger rates. A more realistic dynamical friction
timescale was proposed by (Dosopoulou & Antonini, 2017), which consider the
sinking SMBH to be surrounded by a tidally-truncated remnant of the original
stellar host4, yielding to the following estimate for the dynamical friction decay
time:

tssDF ∼ 0.15Gyr
2

ln Λ

(
Re

10kpc

)(
σ

300km s−1

)2(
σss

100km s−1

)−3

, (1.40)

with Re representing the effective radius of the primary host galaxy. σ and
σss are the velocity dispersions of the primary galaxy and of the SMBH stellar
surrounding, respectively.

Slingshot ejection phase

After a galaxy merger the SMBHs have an initially large mutual separation (∼
kpc), thus the BH-pair in the first stages of its evolution is unbound.

However, as the SMBHs migrate towards the nuclear region, the relative
distance diminishes, eventually leading to formation of a bound binary system
when the SMBH separation reaches the influence radius (see eq. 1.3) of the
less massive BH af = ah2. The time corresponding to the instant of the binary
formation is denoted as tf .

Once the binary has formed, its orbit can be described trough the Keplerian
orbital parameters. Consider a SMBHB whose constituent objects have masses
M1• and M2•. M1• refers to the most massive SMBH, such that the mass ratio is
q = M2•/M1• ≤ 1. Let M• = M1•+M2• be the total mass, µ = M1•M2•/M• the
binary reduced mass and r the binary separation. Neglecting the contribution
from the surrounding stars, the binary binding energy is:

E = −GM1•M2•

2a
. (1.41)

Here a denotes the binary semi-major axis, which together with the eccentricity
e is defined as:

a =

(
2

r
− v2

GM

)−1

, (1.42)

e =

(
1 − h2

GM•a

)1/2

, (1.43)

where h = |r×v| is the binary specific angular momentum and v is the module
of the relative velocity.

4In this derivation, the truncation radius for the SMBH stellar surrounding is assumed to
be the Hill’s radius, defined as Rt = (GMhr

2/4σ2)1/3 (see Binney & Tremaine, 2008), where
Mh is the total mass of the primary host galaxy.
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After the formation of a bound SMBHBs, the strong self-gravity makes the
action of dynamical friction to become less efficient. This happens as the bound
system partially decouples from the stellar environment. This means that only
quite nearby stars can effectively interact with the SMBHBs. Those stars play
a crucial role in further reducing the binary separation, which occurs through
the slingshot ejection mechanism. Under the combined effect of both slingshot
ejection and dynamical friction, the binary undergoes a phase of fast decrease
in the relative separation between the BHs. However, as the system becomes
more tightly bound and reaches the so-called hard binary separation:

ah =
GM•

4σ2
, (1.44)

the binary shrinking slows down. Indeed, at this stage dynamical friction
becomes totally inefficient and the slingshot ejection becomes the only efficient
mechanism for extracting energy and angular momentum from the binary.

Practically, the slingshot mechanism is a complex three-body interaction in-
volving the SMBHB and stars in its close proximity. When a field star passes
at a distance of few times the the binary semi-major axis from the SMBHB, the
latter preferentially transfers energy and angular momentum to the interacting
star due to the tendency of the system toward energy equipartiton. Due to the
huge mass difference, the amount of energy gained by the star in the interaction
can be sufficient to cause the star to be expelled from the system. As a con-
sequence, after each encounter, the binary becomes more tightly bound. The
cumulative effect of many successive interaction will make the SMBHB pro-
gressively tighter (or harder using the terminology of stellar binaries evolving
in stellar clusters).

The rate at which the binary semi-major axis shrinks as a consequence of
interactions with the surrounding stars is commonly referred to as the binary
hardening rate, denoted by s, and is defined as follows:

s ≡
(

d

dt

)
1

a
= H

Gρ∗
σ∗

, (1.45)

where ρ∗ and σ∗ represent the mass density and velocity dispersion of the
surrounding stellar system, respectively, while H is a dimensionless parameter
that parametrizes the efficiency of energy transfer between the SMBHBs and
stars. The value of the hardening rate parameter H can be estimated through
three-body scattering experiments, as conducted in previous studies such as
Quinlan (1996) and Sesana et al. (2006), resulting in H ≈ 15 − 18.

If the stellar reservoir that fuels the three body interactions is assumed to
be unlimited - which we will see that is not the case in real SMBHBs - the time
required for a binary to shrink its semi-major axis to a value a is via slingshot
ejection is (Colpi, 2014):

thard ≈ σ

πGρ∗a
≈ 70Myr

(
σ∗

100kms−1

)(
10−3pc

a

)(
104M⊙pc−3

ρ

)
. (1.46)
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Interestingly, the hardening timescale increases with decreasing a. This hints
to a possible binary stalling that can arise at small binary separations.

Gravitational waves emission and binary coalescence

If the slingshot ejection mechanism is efficient enough to bring the SMBHs
at a separation of ∼ 10−2 − 10−3 pc, further hardening of the binary occurs
through the emission of GWs, which efficiently reduces the SMBHB separa-
tion eventually leading the binary to coalesce. A first investigation of the GW
emission from two point-like masses orbiting each other under the mutual grav-
itational influence was conducted by Peters (1964). In his seminal work, Peters
presented a model for GW emission and provided an approximate expression
detailing the consequent evolution of the binary eccentricity and semi-major
axis:

da

dt

∣∣∣∣
GW

= −64

5

G3

c5
M1•M2•M•

a3(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

(1.47)

de

dt

∣∣∣∣
GW

= −304

15

G3

c5
M1•M2•M•

a4(1 − e2)5/2
e

(
1 +

121

304
e2
)
. (1.48)

Those equations reveal that the rate at which the binary evolves is a strong
function of the separation, meaning that only very tight binaries can sub-
stantially shrink via GW emission on timescales shorter than the age of the
Universe. Additionally, as appear clear from eq. 1.48, GW emission causes
the orbital eccentricity to decrease. From eq. 1.47 it is possible to estimate
the time required for the binary to coalesce through GW emission, under the
simplifying assumption of a constant eccentricity:

tGW =
5

256

c5

G3

1

F (e)

a4

µM•
≈ 580 Gyr

1

F (e)

(
a

0.1pc

)4(
µ

107M⊙

)−1(
M⊙

108M⊙

)−2

,

(1.49)

with F (e) = (1−e2)7/2
(
1+ 73

24
e2+ 37

96
e4
)
. From the definition of F (e) it is possible

to infer that the binary shrinking via GW emission is more efficient for highly
eccentric binaries (i.e. close pericentre passages) for which the coalescence time
result to be significantly smaller.

1.4.2 Final parsec problem and possible solutions

In the framework of the SMBHB formation and evolution discussed in the pre-
vious section, the transition between the stellar driven hardening phase and the
GW emission regime is recognized as a bottleneck in the binary path towards
coalescence. A generic star can undergo an efficient slingshot ejection during
its interaction with the SMBHB only when on a sufficiently centrophilic orbit,
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such that its periapsis distance is comparable to the binary semi-major axis.
This criterion is essential for the efficient extraction of energy from the binary
during the encounter and can be expressed as a condition on the magnitude of
the angular momentum L of the interacting stars, which must satisfy

L ≤ LLC =
√

2GM•a. (1.50)

The region of the phase-space populated by the stars with angular momenta
lower than LLC is denoted as loss-cone(Merritt, 2013). When a star interacts
with the SMBHB in such a way that it undergoes a slingshot ejection, it leaves
the central region of the host galaxy and is consequently removed from the
binary loss cone. Repeated interaction result in a gradual depletion of the
binary loss cone, which is efficiently emptied within a dynamical time. The
ultimate fate of the binary critically hinges on the efficiency with which new
stars are led to repopulate the loss cone. If the loss cone refilling is inefficient,
the binary hardening ceases, making the binary to stall at separations of the
order of ∼ 1 pc thus preventing the binary from reaching the GW emission
phase and the final coalescence. This scenario became known as the Final
parsec problem(Milosavljević & Merritt, 2001).

To overcome the binary stallation, the most direct mechanism capable of
repopulating the binary loss cone is two-body relaxation (Milosavljević & Mer-
ritt, 2003a; Valtonen, 1996; Yu, 2002). However, the relaxation timescale -
over which two-body relaxation takes place - exceeds the Hubble time in the
majority of massive galaxies hosting SMBHB of ∼ 106M⊙ or more, making
this process highly inefficient.

Several alternative processes have been proposed in the literature to ef-
ficiently replenish the loss cone on timescales shorter than the age of the
Universe. The so-called “secondary slingshot” mechanism involves repeated
interactions between the SMBHB and a star. This star, having undergone
acceleration in a prior encounter with the binary, failed to acquire sufficient
energy to completely escape the system (Milosavljević & Merritt, 2003b), thus
possibly undergoing repeated interactions with the binary before being defini-
tively expelled from the central region of the host, where the binary resides.

Moreover, as proposed by (Perets & Alexander, 2008), the presence of ex-
tended massive perturbers, such as clusters or giant molecular clouds, promote
the relaxation process which can become significantly more efficient if compared
to the stellar relaxation alone.

Another mechanism that can affect the refilling of the loss cone is the Brow-
nian motion of the binary center of mass induced by repeated recoils result-
ing from interactions with stars. As the slingshot ejection process proceeds,
stars are progressively ejected from the host nuclear region, causing a reduc-
tion in the central density distribution of stars. Consequently, the potential
well responsible for maintaining the binary at the center of the host becomes
shallower, allowing for a wider binary wandering. This, in turn, permits in-
teractions with an increased number of stars(Bortolas et al., 2016; Chatterjee
et al., 2003).
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All the possible solutions of the final parsec problem mentioned so far apply
for gas-poor environments. Escala et al. (2005) investigated the impact of
nuclear gas discs on the evolution and hardening of SMBHBs. They found
that in the initial stages of the binary pairing the relative distance between the
SMBHs is decreased due to the dynamical friction exerted by the surrounding
gaseous medium. In the later phases, the gas distribution responds by forming
an ellipsoidal over-density whose axis rotates lagging behind the binary major
axis. In this configuration, the resulting gravitational torques exerted on the
binary promote continuing loss of angular momentum, thus reducing the binary
semi-major axis down to distances at which GW emission becomes efficient.

Returning to collisionless system, a very efficient way to refill the binary
loss cone, which has been claimed to be the ultimate solution of the final parsec
problem (Gualandris et al., 2017; Vasiliev et al., 2014; Yu, 2002), is the devia-
tion of the host galaxy potential from the spherical symmetry naturally arising
as a consequence of galaxy mergers. In spherical potentials, the total specific
angular momentum L of stars is conserved along their orbits. Consequently,
once the majority of stars initially populating the loss cone are expelled, no
physical processes can efficiently lead to loss cone refilling. Conversely, in host
potential deviating from spherical symmetry, the total angular momentum of
each stars is not conserved and instead undergoes oscillations exerted by the
torques induced by the non-spherical potential. Thus, in such configurations
a larger fraction of stars during their evolution can at some point have small
enough total angular momenta such that L < LLC. In axisymmetric systems,
the angular momentum of stars is conserved only along the direction parallel
to the symmetry axis of the host Lz. In such galaxies, it is possible that some
stars initially laying out of the loss cone (due to their total angular momen-
tum exceeding LLC) have the conserved component of the angular momentum
Lz < LLC. Such stars may at some point attain a total angular momentum
L ∼ Lz < LLC, thus entering the loss cone and interacting with the binary.
Finally if the host potential is triaxial, none of the angular momentum com-
ponents of a star is conserved, and during its evolution can at some point have
L < LLC (Merritt & Vasiliev, 2011; Poon & Merritt, 2004).

This scenario suggests that the final parsec problem may arise as a conse-
quence of the oversimplified assumption of the purely spherical symmetry of
the host galaxy, and that the collisionless loss-cone refilling in more realistic
systems may efficiently lead the binary to the GW emission phase with the
subsequent coalescence.

Numerous N-body experiments have been conducted to substantiate this
scenario, starting with two initially isolated merging galaxies (Gualandris &
Merritt, 2012; Khan et al., 2011; Preto et al., 2011) and subsequently tracking
the evolution of the SMBHB from its initial phases. These investigations have
demonstrated that the collisionless loss cone repopulation, occurring in more
realistic, merger-induced non-spherical systems, efficiently shrink the binary
separation, facilitating its coalescence with estimates ranging between ∼ 10
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Myr and 10 Gyr (Khan et al., 2016, 2012), i.e. generally well within the
Hubble time.

However due to the limitation in the number of particles that can be sim-
ulated using direct summation methods, typically N ≲ 107, the reliability of
these results has not been completely verified. This limitation introduces con-
cerns about the robustness of the results. Indeed, restricted number of particles
may accentuate the Brownian motion of the binary center of mass (Merritt,
2001b) and induce unrealistically efficient two-body relaxation (Vasiliev et al.,
2014). These effects may lead to a significant underestimation of the time
required for the binary to achieve coalescence.

In ch. 3 I extensively investigate another possible mechanism of collisionless
loss cone repopulation: the impact of the rotation of the host galaxy spherical
bulge on the evolution and hardening of SMBHBs.
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2
Galaxy models and

numerical codes

This chapter is dedicated to the exploration of stellar dynamics within galaxies.
Here, the fundamental concept of stellar dynamics is introduced, emphasising
its significance in understanding the behaviour of stars within galactic environ-
ments. The N-body problem is discussed in detail, highlighting the distinction
between collisional and collisionless systems. Furthermore, I provide an insight
into the numerical codes utilised for performing the numerical simulations pre-
sented in this work, along with a comprehensive overview of the galactic models
employed in this thesis. This chapter serves as a foundation for understanding
the behaviour of the stellar component of galaxies, setting the stage for the
subsequent investigations presented in this thesis.

2.1 Stellar dynamics

Albeit being the weakest among the fundamental forces in nature, at least 29
orders of magnitude weaker than the other forces at subatomic scales, gravity
dominates at large distances. The vast majority of astrophysical systems, from
planetary systems up to the large-scale structures in the Universe can be treated
as an ensamble of point-like masses gravitationally interacting among each
others.

The branch of astrophysics that tackles this problem is stellar dynamics,
which aims at statistically describing the evolution of stellar systems influenced
by mutual gravitational attraction. Stellar dynamics encompasses the study
of isolated or interacting self-gravitating systems. The latter being defined as
systems whose dynamics is completely determined by their mass distribution.
Examples of self-gravitating systems include stellar clusters and galaxies, and,
on larger scales and under specific conditions, extend to galaxies within clusters
and even the clustering of galaxies.
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2.1.1 Nbody problem

The N-body problem is the long-standing issue of predicting individual motions
of a system of N particles interacting with each other under their mutual
gravitational attraction solely. Considering such a system, equations of motion
governing the dynamics are:

r̈i = −G

j=N∑
j=1, j ̸=i

mj
ri − rj
|ri − rj|3

. (2.1)

Here, ri and mi are the position and mass of the i-th particle. Eq. 2.1 is analyt-
ically solvable only for system with a number of particle N < 3 - however, under
specific conditions also systems with N = 3 allow for analytical solutions, such
as in the case of the “restricted three-body problem”. For larger numbers of
particles, the resolution of the equations of motion necessitates the application
of numerical methods. First N-body simulations dates back to 1960s. In 1960,
von Hoerner (von Hoerner, 1960) conducted the first computer simulation for
a 16-body system. Just few years later, Aarseth started his seminal work, be-
coming in 1963 the first to reach N = 100 (Aarseth, 1963). Since then, the
rapid development and optimization of N-body simulations have promoted a
significant increase in the number of simulated particles, which, in accordance
with Moore’s Law, has seen an approximately twofold increase every two years.
Nowadays, N-body simulations can be performed including a large number of
particles, with N ∼ 1011 for collisionless simulations and N ∼ 106 for the col-
lisional ones. These two distinct classes of simulations have been specifically
tailored for different astrophysical systems, as elucidated below.

2.1.2 Collisional vs collisionless systems

Gravitational systems can be essentially divided into two categories: collisional
and collisionless systems. This distinction is based on whether the two-body
relaxation timescale trel is shorter than the characteristic lifetime of the system
(collisional systems) or not (collisionless systems). The relaxation time is de-
fined as the timescale over which the two-body encounters between stars cause
a significant change in the stars orbital energy and angular momentum. In
other words, after one relaxation time a star in the system has lost memory of
its initial conditions. A standard definition of the relaxation time is (Spitzer,
1987):

trel =
σ3

G2m∗ρ ln Λ
, (2.2)

where σ is the one-dimensional stellar velocity dispersion, m∗ is the mass of a
single star, ρ is the density of stars, and ln Λ is the Coulomb logarithm. The
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relaxation time can also be express as a function of the crossing time of the
system tC ≡ R/σ, where R is the typical radius of the system:

trel ∼
N

lnN
tC (2.3)

Galaxies are typically composed of 1011 stars and are just few hundred crossing
times old, thus - a part for their nuclear region- are well approximated as
collisionless systems.

Collisional dynamics concerns those systems for which stellar interactions
are efficient within the system life-time. Conversely, in collisionless systems,
encounters between stars are negligible, and its components can be treated as
moving within the gravitational potential of a smooth distribution of mass.

2.1.3 Collisionless Boltzmann equation

Since in collisionless systems individual stellar interactions are negligible, the
stars can be represented by means of a distribution function (DF) f(x, ẋ, t) ≥ 0.
At any time t, the number of particles in the six-dimensional volume element
dx3d ẋ3 of the phase space centered in (x, ẋ) is given by f(x, ẋ, t) dx3dẋ3.
The spatial density and the gravitational potential generated by the stellar
distribution can be expressed as:

ρ(x, t) =

∫
d3ẋ f(x, ẋ, t), (2.4)

Φ(x, t) = −G

∫
d3x′ ρ(x′, t)

|x− x′| = −G

∫ ∫
dẋdx′f(x, ẋ, t)

|x− x′| , (2.5)

respectively. If the trajectories of stars are continuous and smooth, the DF f
obeys a continuity equation (Binney & Tremaine, 2008):

∂f

∂t
+ ẋ · ∂f

∂x
− ∂Φ

∂x

∂f

∂ẋ
= 0, (2.6)

where the accelerations have been written as ẍ = −∂Φ/∂x. Eq. 2.6 is known
as the collisionless Boltzmann equation and states that the phase-space density
of the fluid around a specific star remains unchanged. In a steady state, i.e.
if ∂f/∂t = 0, f is constant along the trajectories. Moreover, ∂f/∂t = 0
also implies ∂Φ/∂t, which means that the trajectories of stars are the orbits
determined by the time-independent gravitational potential Φ(x).

Both the avenues of investigation presented in the present thesis involve the
study of collisionless systems.

2.2 N-body codes

In this section I briefly describe the numerical codes used in the present work.
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2.2.1 Force softening

Consider a collisionless system composed of N particle. Let ri and mi be the
position and the mass of the a subject particle. The gravitational potential felt
by the subject particle due to the presence of a second point mass mj at rj is:

Φij ≡ Φ(ri) = −G
mimj

|ri − rj|
. (2.7)

This form of the potential makes numerically solving the N-body problem
a quite difficult task. Indeed, as the distance between the two bodies ap-
proaches zero, both gravitational potential in eq. 2.7 and the gravitational
force Fij = −∇Φij diverges to infinity, giving rise to the so-called ultraviolet
divergence. This divergence is completely unphysical in collisionless systems
since the gravitational potential to be modelled is smooth, and is caused by the
particle sampling. This may lead to an incorrect system evolution. A widely
used method to overcame the ultraviolet divergence is the introduction of the
softening parameter ϵ. In this approximation, the gravitational potential Φ(ri)
felt by a particle and generated by the contribution of all the other bodies is
replaced by:

Φ(rij) = −G
i=N∑

i=1, i ̸=j

S(rij, ϵ)mimj, (2.8)

where the function S(rij, ϵ) is the softening kernel density and rij = |ri − rj|.
Consequently, the gravitational force exerted on the subject particle can be
expressed as:

Fi = −Gmi

i=N∑
i=1, i ̸=j

Sf (rij, ϵ)mj
ri − rj
rij

. (2.9)

Here Sf (rij, ϵ) represents the force softening kernel, which is the first derivative
of S(rij) with respect of rij. The force softening kernel employed in the evalu-
ation of the force suppresses the divergence at small separation -thus making
collisionless simulation more realistic-, while decreases as rij−2 for separations
much larger than ϵ. The most commonly used form of the softening kernel
function is that of the Plummer softening:

S(rij, ϵ) = − 1√
r2ij + ϵ2

. (2.10)

With this expression, the softened gravitational force takes the form of the
force acting between a point-like mass and a spherical Plummer distribution
with scale radius ϵ.
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2.2.2 HiGPUs

The investigation of the hardening of SMBHBs driven by the encounters with
single stars detailed in ch. 3 was carried out with the direct-summation N-body
code HiGPUs (Capuzzo-Dolcetta et al., 2013), which combines the efficiency
of GPUs as computational accelerators used for the evaluation of pairwise
forces, with the precision of a high order Hermite integrator. The coarse-
grained parallelization ensures a one-to-one correspondence between the MPI
processes and the computational nodes, with the MPI process managing all
the available GPUs per node.

Hermite scheme

The equation of motion in HiGPUs are integrated using a 6th order Hermite
predictor-corrector integrator with individual blocked timesteps.

Consider system composed of N bodies, at a time t0, the i-th particles has
position xi,0, velocity vi,0, acceleration ai,0, and acceleration time derivatives
ȧi,0, äi,0,

...
a i,0

1 The first step of the integrator consists of predicting the particle
velocity and acceleration. These quantities can be predicted at a time t1 > t0
using:

ri,1 pred = ri,0+vi,0∆t+
1

2
ai,0∆t2+

1

6
ȧi,0∆t3+

1

24
äi,0∆t4+

1

120

...
a i,0∆t5, (2.11)

vi,1 pred = vi,0 + ai,0∆t +
1

2
ȧi,0∆t2 +

1

6
äi,0∆t3 +

1

24

...
a i,0∆t4, (2.12)

ai,1 pred = ai,0 + ȧi,0∆t +
1

2
äi,0∆t2 +

1

6

...
a i,0∆t3, (2.13)

where ∆t = t1 − t0. The particle acceleration, along with its first and second
derivatives can be evaluated directly, thus not requiring any differentiation,
using the predicted position, velocity and acceleration, through the following
relations:

ai,1 =

j=N∑
j=1,j ̸=i

aij,1 =

j=N∑
j=1,j ̸=i

mj
rij
rij

3

, (2.14)

ȧi,1 =

j=N∑
j=1,j ̸=i

ȧij,1 =

j=N∑
j=1,j ̸=i

(
mj

vij

rij

3

− 3αijaij,1

)
, (2.15)

1The first, second and third time derivative of acceleration, ȧ, ä,
...
a , are called jerk, snap

and crackle, respectively.
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äi,1 =

j=N∑
j=1,j ̸=i

äij,1 =

j=N∑
j=1,j ̸=i

(
mj

aij

rij

3

− 6αijȧij,1 − 3βaij,1

)
, (2.16)

with α = rij ·vij/r
2
ij, β = (v2ij + rij ·vij +α2

ijr
2
ij)/rij and rij = r1,pred,i− r1,pred,j,

where the subscripts i and j refer to the ith and the jth particle. Similar holds
for vij, aij and ȧij.

Finally, positions and velocity are corrected using the acceleration and its
time derivatives evaluated above, resulting in :

vi,corr = vi,0 +
∆ti,0

2
(ai,1 +ai,0)−

∆t2i,0
10

(ȧi,1 + ȧi,0) +
∆t3i,0
120

(äi,1 + äi,0), (2.17)

ri,corr = ri,0 +
∆ti,0

2
(vi,1 +vi,0)−

∆t2i,0
10

(ai,1 +ai,0) +
∆t3i,0
120

(ȧi,1 + ȧi,0). (2.18)

Timestep

In general, given the wide range of timescales involved in N-body problems,
spanning from days up to Gyrs, it is not convenient employing a fixed timestep
for evolving an N-body system. Consequently, a more effective approach in-
volves assigning an appropriate timestep to each particle based on its accelera-
tion. During close encounters, a particle experiences an increase in acceleration,
requiring a smaller timestep for accurate integration. Conversely, an isolated
particle undergoes minimal changes in velocity over time, enabling the use of
a longer timestep to avoid unnecessary computational overhead. The particle
step in HiGPUs is computed using the generalized Aarseth criterion (Aarseth,
2003; Nitadori & Makino, 2008):

∆ti = η

(
A(1)

A(p−2)

)1/(p−3)

, (2.19)

where p is the order of the integrator and Ak =
√

|a(k−1)||a(k+1)| + |a(k)|2 ,
where A(k) indicates the kth derivative of the acceleration.

2.2.3 GADGET-4

Direct summation of the gravitational force for each particle is computation-
ally very expensive (O(N2)), thus limiting the number of particle that can be
simulated. Different methods have been proposed for reducing the algorithmic
complexity, the most commonly used being the tree algorithm. The underlying
idea behind tree codes is that the gravitational potential of distant particles can
be effectively approximated through a (low-order) multipole expansion centred
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around their common centre of mass. Exploiting this concept, tree codes are
designed to organise particles into a hierarchical tree-like structure.

In our investigation of the tidal stripping-driven mass loss of satellite galax-
ies in minor mergers presented in ch. 4, we validated our semi-analytical
model against N-body simulations. In order to obtain a realistic evolution
of the merger, not significantly affected by numerical effects, the total sys-
tem to simulate is composed of N ≳ 107 particles. Direct-summation codes
are too computationally expensive for such a number of particles. For this
reason, the N-body simulations for this investigation have been carried out us-
ing GADGET-4. GADGET-4 is an openly accessible parallel cosmological
N-body/SPH code, suitable for investigating a vast range of astrophysically
significant phenomena, spanning from merging of galaxies to the large-scale
structure formation in the Universe.

Out of the variety of methods with which GADGET-4 is equipped, in
this section, we briefly describe only those that we have employed for our
simulations.

Hierarchical tree structure

The idea under this method is the following: the entire space of the simulation
is embedded in a 3-dimensional ideal cube, which is divided into eight equal
cubes. If any of these cubes is populated by more than one particle, it is in
turn divided in other identical eight sub-cubes. This procedure is recursively
repeated until each cube contains only one particle. This hierarchical partition
of the space is called oct-tree, a schematic representation of which is shown in
fig. 2.1

The gravitational potential generated by the particles in a cube can be
expressed as:

Φ(x) = −G
∑

j∈cube

mj g(xj − x), (2.20)

where g(x) is the Green’s function, which for the Newtonian case is g(x) =
1/|x|. Denoting with s the center of mass of the particles in the cube, a Taylor
expansion of the order p of Φ(x) around s is:

Φ(x) = −G

p∑
n=0

1

n!
Qn ·Dn(s− x) + O(θp+1), (2.21)

where θ represent the angular extension under which the cube is seen. Qn and
Dn(x) are the cartesian multiple moments and the derivative tensor, defined
as:

Qn ≡
∑

j∈cube

mj (s− x)(n), (2.22)
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Figure 2.1: 2-dimensional representation of an oct-tree hierarchical space partition. Image
credits: Barnes & Hut (1986).

Dn = ∇(n)g(x). (2.23)

where the superscript (n) refers to the nth outer product of the vector. Note
that since the expansion is performed around the cube center of mass, the
dipole moment always vanishes. Analogously, the acceleration exereted on a
particle at a location x can be expressed as:

a(x) = −∇Φ(x) = −G

p−1∑
n=0

1

n!
Qn ·Dn+1(s− x) + O(θp) (2.24)

Once the hierarchical tree structure is set, the gravitational forces acting
on the particles are computed by performing a walk through the tree, starting
from the root. As the tree walk advances, each cube is sequentially examined.
In order to decide if the multiple expansion of the present cube is to be accepted
or not, different criteria can be used. In GADGET-4, the criterion is based
on the comparison between an approximation of the error of the expected force
with the magnitude of the total force:

M

r2

(
l

r

)p

< α|a|, (2.25)

where |a| is the total acceleration, l is the length of the side of the cube, r is the
separation between the target point coordinates and the cube center of mass
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location. If the criterion is not accepted, the multiple expansion is discarded,
and smaller sub-cubes are considered.

In GADGET-4, the pure tree algorithm can be replaced by a hybrid
method in which the tree algorithm is combined with the PM method. In short,
the potential Φ(x) of the system of particles can be split in the Fourier space
into two components: a long-range term Φlong

k and Φshort
k , Φk = Φlong

k + Φshort
k .

The short-range term is computed using the tree algorithm, which thus has to
be applied on a small region in the proximity of the each target particle. The
long term instead, is almost exact and not approximated as in the pure tree
case.

Symplectic leapfrog method

Symplectic schemes are integration methods that preserve geometric structures
by exactly solving the perturbed Hamiltonian. As a result, the numerical time
evolution is described by a canonical map, ensuring the exact conservation of
certain quantities, such as energy and angular momentum.

In a very general way, in typical N-body problems, the Hamiltonian is
separable into two components:

H = Hkin + Hpot. (2.26)

If this holds, for each of the parts the time-evolution operators can be computed
exactly. Consequently, the drift and kick operator can be expressed as:

Dt(∆t) :

{
pi 7→ pi

xi 7→ xi + pi

mi

∫ t+∆t

t
dt
a2

(2.27)

Kt(∆t) :

{
xi 7→ xi

pi 7→ pi + fi
∫ t+∆t

t
dt
a

(2.28)

where fi is the force on the ith particle, and a is the cosmic scale factor.
The time integration scheme can be derived via operator splitting. Thus,

it is possible to approximate the time evolution operator U(∆t) for a time
interval ∆t by:

Ũ(∆t) = K

(
∆t

2

)
D(∆t)K

(
∆t

2

)
(2.29)

which corresponds to the kick-drift-kick leapfrog integrators.

Hierarchical timestepping

One of the main novelties of the present version of GADGET with respect
to the previous ones consists in the possibility of adopting a hierarchical time
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integration, based on a hierarchical and systematic decomposition of the dy-
namics of the Hamiltonian. In general, for system in which the Hamiltonian
can be expressed in the form H = H1 +H2, the second-order split method used
to integrate the Hamiltonian can be applied, which can be written for instance
as:

E(H,∆t) ≃ E

(
H1,

∆t

2

)
◦ E(H2,∆t) ◦ E

(
H1,

∆t

2

)
, (2.30)

where E(H, τ) represents the system time evolution operator over a time τ and
for a Hamiltionan H .

Consider a system of particles P described by an Hamiltonian that can be
written as in 2.26. Assuming to be in a certain timestep ∆t, the particles of
the system can be split into a “slow” S and a “fast” F part: P = F + S. The
particles in S are selected such that an integrator with the given timestep is
sufficiently accurate. Conversely, F is composed of all the particles requiring
to be evolved on shorter timesteps. After this partition of the particles, the
Hamiltonian can be written as:

H = HS
kin + HS

pot + HF
kin + HF

pot + HFS
pot , (2.31)

where the term HFS
pot includes all the potential terms involving mixed particle

pairs.
At this point, the system can be evolved in time as:

E(H,∆t) ≃ E

(
HFS

pot ,
∆t

2

)
◦ E

(
HF

pot,
∆t

2

)
◦ E(HS,∆t)◦

E

(
HF

pot,
∆t

2

)
◦ E

(
HFS

pot ,
∆t

2

)
.

(2.32)

Here, the particles in S are evolved over ∆t,whereas for the particles in F
the timestep size is set to be ∆t/2. Note that this timestep can not be sufficient
for an accurate time evolution of all the particles in F, thus requiring further
iteration of the procedure. Finally, the term HFS

pot , is assumed to be accurately
evolved on the timestep ∆t/2, since involving one of the slow particles.

Focusing on kick and drift operators for the time evolution, one can write:

E(H,∆t) ≃KS
F

(
∆t

2

)
KF

S

(
∆t

2

)
E

(
HF ,

∆t

2

)
KS

S

(
∆t

2

)
D(∆t)KS

S

(
∆t

2

)
E

(
HF ,

∆t

2

)
KF

S

(
∆t

2

)
KS

F

(
∆t

2

) (2.33)

Since the term KS
S commutes with E(HF ), DS can be interchanged with all

the terms involving exclusively the fast components, and all the kick operators
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can be interchanged, the above equation can be rewritten as:

E(H,∆t) ≃KP
P

(
∆t

2

)
KF

F

(
− ∆t

2

)
E

(
HF ,

∆t

2

)
D(∆t)

E

(
HF ,

∆t

2

)
KF

F

(
− ∆t

2

)
KP

P

(
∆t

2

) (2.34)

The process is reiterated as follows. First the force on the whole system P
is computed and is used to distinguish among fast and slow particles with a
timestep criterion. For the particles belonging to F , the forces are recomputed
only accounting for the fast particles. At this point the F systems becomes
the “new” global system P ′ which in turn will be split in a slow and in a
fast component, this time with the reference timestep size being ∆t/2. This
approach can then be recursively repeated until all the particles are evolved
over an appropriate timestep.

Differences between GADGET-4 and previous versions

Besides the adoption of the hierarchical time stepping discussed above, the
main novelties implemented in GADGET-4 with respect of previous version
are:

• Integer coordinates: Floating-point numbers, commonly employed for
particle coordinates, exhibit variable absolute positional accuracy in dif-
ferent regions of the simulation box. GADGET-4, to ensure uniform
resolution, stores particle coordinates as integers. This approach also
streamlines the construction of the oct-tree, as it allows for the employ-
ment of fast bit-shift operations to determine the sub-cube to which the
particles belong. The relative distances between particles are first com-
puted as integers and then are re-converted to floating-point values which
can be used for subsequent calculations.

• Parallelization: New parallelization techniques have been implemented
based on an improved domain decomposition, in which the domain is sub-
divided as though each MPI rank resided in an independent distributed
memory node, which allow for a an extended scalability of GADGET-4.

Here we just referred to the new features directly employed in our simula-
tions.

2.3 Galaxy models and initial conditions

2.3.1 Spherical models

In order to initialize numerical simulations involving galaxies, it is crucial that
the model describing the system is in a state of dynamical equilibrium. The
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simplest cases involve spherically symmetric isotropic models. In such systems,
the gravitational potential and the mass density depend solely on the distance
r from the system center, i.e. Φ(r) = Φ(r) and ρ(r) = ρ(r). The relation
between density and potential is governed by the Poisson equation:

∇2Φ(r) = 4πGρ(r). (2.35)

Moreover, from the density profile ρ(r) it is possible to obtain the cumulative
mass distribution by simply performing a volume integral:

M(r) = 4π

∫ r

0

dr′ r′2ρ(r′). (2.36)

Spherical isotropic models have a phase space distribution which only de-
pends on the energy E , which is defined as E = −1

2
v2+Ψ(r) where Ψ = −Φ+Φ0

is the relative potential. Here, Φ0 is a constant which for isolated and infinitely
extended system is Φ0 = 0. The phase space distribution can be computed from
the Eddington formula (Binney & Tremaine, 2008):

f(E) =
1√
8π2

d

dE

∫ E

0

dρ

dΦ

dΦ√
E − Φ

. (2.37)

Below, I present the galactic models utilized in my numerical investigations.

2.3.2 Dehnen models

For the investigation into minor mergers detailed in ch. 4, I assume that
the less massive satellite galaxy follows a Hernquist (Hernquist, 1990) density
distribution, which belongs to the family of Dehnen models (Dehnen, 1993).
Dehnen models exhibit spherically symmetric potentials and density profiles.
Specifically, these models have a density distribution that behaves as r−γ at
small radii, while at larger radii, it decreases as r−4. The parameter γ can take
values in the range 0 ≤ γ < 3. The model corresponding to γ = 1 is known as
the Hernquist model. The density profile in Dehnen models is:

ρ(r) =
(3 − γ)M

4π

a

rγ(r + a)4−γ
, (2.38)

where M is the total mass of the system and a is its scale radius. Solving
the Poisson equation allows for the evaluation of the gravitational potential
associated with Dehnen density profiles, which takes the form:

Φ(r) =
GM

a
×

{
− 1

2−γ

[
1 −

(
r

r+a

)2−γ]
if γ ̸= 2

log
(

r
r+a

)
if γ = 2,

(2.39)

where is assumed that Φ → 0 as r → ∞.
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Dehnen models with central super massive black hole

Just one year following the publication of the Dehnen models, Tremaine et al.
(1994) proposed a characterization of the same family of models, also including
a description of the model when hosting a central black hole. The addition of
the black hole introduces another parameter µ in the model, which represents
the SMBH mass as a fraction of the total mass of the system M .

This family of models is of particular interest for the first part of the present
work (see ch. 3), since the host galaxy embedding the SMBHB is initially con-
structed using a Hernquist profile with a single central SMBH. The secondary
SMBH is subsequently introduced in orbit around the primary one. The grav-
itational potential and density profile for this class of models are the following:

Φ(r) = −GµM

r
+

GM

a
×

{
− 1

η−1

[
1 −

(
r

r+a

)η−1]
if η ̸= 1

log
(

r
r+a

)
if η = 1,

(2.40)

ρ(r) =
η

4π

a

r3−η(r + a)1+η
, (2.41)

where the parameter η is the equivalent of γ in eqs 2.38 and 2.39, with η = 3−γ
and 0 ≤ η < 3. Note that when µ = 0, the above expressions for the potential
and density equal eq. 2.39 and 2.38, respectively.

2.3.3 Generation of the initial conditions

To generate the initial conditions for the spherically symmetric models of galax-
ies we used the so-called Monte-Carlo inverse transfor method which, as sug-
gested by the name, is based on the inversion of the cumulative distribution
function (CDF) F (X):

F (X) =

∫ X

−∞
f(x)dx, (2.42)

where f(x) is the probability distribution function (PDF). The CDF represents
the probability that x takes on a value equal or lower than X and, by definition,
is a monotonically increasing function of X. Moreover, since f(x) is normalized
such that f(x) =

∫∞
−∞ = 1, F (x) takes values on the range [0, 1].

Given the PDF f(x) of a random variable x and the associated CDF F (X),
it is possible to demonstrate that Y = F (X) is itself a random variable, uni-
formly distributed in the range of values [0, 1]. Consequently, for any set of
values Y uniformly distributed in [0, 1], the univocally associated values x:

x = F−1(Y ) (2.43)

are distributed following the original PDF.
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In general, for spherically symmetric systems, the 3-dimensional PDF in
polar coordinates can be expressed as the product of three 1-dimensional PDFs,
each of which being a function of one of the three coordinates only:

f(r, θ, ϕ)r2dr sin θdθdϕ = fr(r)dr · fθ(θ)dθ · fϕ(ϕ)dϕ, (2.44)

where:

fr(r) = f(r)r2

fθ(θ) = A sin(θ)

fϕ = B,

(2.45)

here A and B are proper normalization constants.
In our framework, regarding the spatial distribution, the radial PDF f(r)

is:

fr(r) = r2f(r) = 4πρ(r)r2, (2.46)

where the term 4π comes from the normalization. Consequently, the associated
CDF is nothing but the mass enclosed within r:

Fr =

∫ r

0

4πρ(r′)r′2dr′ ≡ M(r), (2.47)

which holds for any spherical distribution. At this point, inverting M(r), the
particle radii can be assigned by simply extracting N random number Y from
a uniform distribution within the range [0, 1], with N being the total number
of particle of the galaxy, and for each computing M−1(Y ).

An analogous procedure is adopter for generating the angular components
of the particle positions and velocities, for which the CDF are:

F−1
θ (Y ) = arccos(1 − 2Y ) (2.48)

F−1
ϕ (Y ) = 2πY, (2.49)

and for the amplitudes of the particle velocities. More specifically, in order
to generate the particle velocities, the distribution function to be used is f(E),
which can be computed using the Eddington formula (see eq. 2.37). For a
given f(E) the associated CDF is:

Fv(r, E) =
1

ρ(r)

∫ Ψ

− v2

2
+Ψ

4π
√

2(Ψ − E)f(E)dE (2.50)

At this point the values of the velocities to be assigned to each particle
has been computed as follows. We produce an equally spaced grid of energies
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in range [Φ(ri), 0] . The minimum energy corresponds to that of a stationary
star, while Emax = 0 since for E > 0 the star is unbound. We generate an
array of Fv(ri, E) numerically integrating eq. 2.50 for each value of E in the
grid with a fixed radius ri. Then, we generate a random number Y uniformally
distributed in the range [0, F (ri,Φ(ri))] and we interpolated it with the array
of energies in the grid to obtain the energy Ei of the ith particle. Finally, we
compute the particle velocity as: vi =

√
2(Φ(ri) − E).

2.3.4 Disc model

In my investigation on minor galaxy mergers, the primary galaxy was modelled
as a multi-component system composed of a dark matter halo and a disc. As
detailed in 4.1.3, in my simulations the halo is modelled as an analytical poten-
tial, thus the only “live” (i.e. modelled with collisionless particles) component
of the primary galaxy is the disc. In this work, the disc component is modelled
as an exponential disc, whose associated density profile is:

ρd(R, z) =
Md

4πR2
dzd

e
− R

Rd sech2

(
z

zd

)
. (2.51)

The initial condition in this case were performed using the publicly available
code GALIC (Yurin & Springel, 2014). GALIC uses an iterative method
to built N-body galactic models at equilibrium. A broad description of the
procedure is described as follows. Consider a system of N collisionless particles,
with initial positions xi, distributed according to a given ρ0(x), and initial
velocities vi. The particle velocities has to be properly generated in order to
obtain a stationary solution for the collisionless Boltzmann equation (see eq.
2.6).

Denoting as ρ(x,t,v1, ...,vN) the density field generated by the system while
it evolves and with ρ(x,v1, ...,vN) = 1

T
limT→∞

∫
ρ(x, t,v1, ...,vN) dt the den-

sity response averaged in time for the initial velocity chosen, the best steady
state of the system is determined by the minimum value of the difference be-
tween the initial density field and the time-averaged density. In other words,
the initial particle velocities must be such that the function:

S(v1, ...,vN) =

∫
|ρ(x,v1, ...,vN) − ρ0(x)| dx (2.52)

is minimized.
However, in general, the velocity structure of an equilibrium model is not

uniquely determined by its density structure, i.e. any given density structure
can have more than one steady-state solution for the collisionless Boltzmann
equation. Thus, additional constraints have to be imposed in order to reduce
the space of possible solutions. For this reason, merit functions are introduced
on the basis of symmetry assumptions concerning the velocity structure of the
system. More specifically, three merit functions are defined QR, Qz and Qϕ
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which measure the deviation of the actual realized velocity dispersion (along the
R, z, and ϕ directions respectively) from the expected values. The initial guess
for the velocities is obtained randomly sampling from Gaussian distributions
with appropriate local dispersions.

At this point the initial velocities vi are recursively adjusted such that S,
QR, Qz and Qϕ are simultaneously minimized. It is possible to combine the
quantities to be minimized in a single parameter Sglobal, defined as:

Sglobal = S + χ(QR + Qz + Qϕ) (2.53)

where χ is introduced to ensure that χ(QR + Qz + Qϕ) has the same unit as
S. The minimization procedure is performed by considering one single particle
randomly picked at a time, and then its velocity is optimized to reduce Sglobal.
To achieve this, a new random velocity is assigned to the particle. The merit
functions are re-evaluated for the new guessed particle velocity, and the new
velocity value is only accepted if it improves the fit. Otherwise, the particle
maintains the old velocity value, and the minimization process continues with
a new particle. This procedure is repeated until the fit does not significantly
improve further.

2.3.5 Semi analytical code - GALCODE

To investigate the tidal stripping of satellite galaxies in minor mergers, I em-
ployed GALCODE (Bonetti et al., 2021b), a semi-analytical code designed
for orbit integration within generic galactic potentials. Specifically, I enhanced
the functionality of GALCODE by integrating a novel semi-analytical model
for evaluating the tidal radius of an extended massive perturber and tracking
its mass evolution, as elaborated in ch. 4. The code leverages on the C++ im-
plementation of the Bulirsch-Stoer (BS) method (Bulirsch & Stoer, 1966; Press
et al., 2002) widely used to integrate ordinary differential equations (ODEs).
The BS method is particularly suited for ODEs with widely varying timescales
for different components of the system. The BS method progresses the so-
lution of a system of ordinary differential equations through “macroscopic”
steps. Such macroscopic steps are splitted in several sub-steps, each of which
is integrated using the Modified Midpoint method. The result obtained with
the sub-steps are finally extrapolated to infinitesimally small steps using the
Richardson extrapolation technique, therefore ensuring a high accuracy.

GALCODE is designed to study the dynamics of massive perturbers (both
point-like, as BHs, or extended, as satellite galaxies or stellar clusters) in their
galactic potential. The semi-analytical framework features a comprehensive
treatment of the dynamical friction specifically tailored to account for flattened
and rotating systems (Bonetti et al., 2021b, 2020b) (see sec. 1.3.3). It is also
equipped with a prescription for the interactions of massive perturbers with
galactic substructures such as bars (Bortolas et al., 2022). The inexpensive
computational cost makes the semi-analytical code a perfect tool when a large
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exploration of the configuration space is needed. Furthermore, its modularity
allows to implement new recipes to account for additional physics driving the
evolution of massive perturbers in galaxies (see e.g. sec. 4.1.1).
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3
Stellar hardening of
massive black hole

binaries: the impact of the
host rotation

In this chapter, we investigate the impact of the rotation of the stellar bulge
on the evolution of SMBHBs. The results presented in this chapter have been
published in Varisco et al. (2021).

Indeed, apart from geometry (sphericity, axisymmetry, triaxiality), the net
rotation has been recognized as a fundamental property of a stellar the bulge
that can significantly influence the evolution of the hosted SMBHB. It is known
that retrograde stars extract more efficiently angular momentum leading to
eccentricity growth, whereas prograde stars promote circularization1 (Sesana
et al., 2011). Moreover, a SMBHB embedded in retrograde stellar systems sec-
ularly change its orbital plane to align its orbital angular momentum to that
of the stars (Gualandris et al., 2012a). The importance of these findings stem
from the fact that GW emission is much more efficient in eccentric binaries (Pe-
ters, 1964), thus significantly reducing SMBHB merger timescales. Moreover,
LISA will have the capability of measuring the SMBHB eccentricity (Nishizawa
et al., 2016), thus providing important information in the reconstruction of the
dynamical processes driving the pairing and hardening phase.

The aforementioned early results have been subsequently more rigorously
formalized in Rasskazov & Merritt (2017) and extensively investigated numeri-
cally in Holley-Bockelmann & Khan (2015); Mirza et al. (2017) and Khan et al.
(2020). These latter works found that the center of mass (CoM) of a prograde
binary within rotating systems does not stay put in the centre (except for the
traditional Brownian motion that was already studied e.g. by Bortolas et al.

1Assuming a cartesian reference centered in the SMBHB center of mass, and the binary
orbiting in the x− y plane, a prograde (retrograde) star has the z component of its angular
momentum aligned (antialigned) to the SMBHB angular momentum.
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2016; Chatterjee et al. 2003; Merritt 2001a; Milosavljević & Merritt 2003a), but
starts to move in approximately circular orbits around the CoM of the stellar
system. Contextually, the binary is found to shrink more effectively. Since in
those simulations the stellar system is also flattened by rotation, it is not clear
whether those effects are purely induced by rotation, and their physical origin
has not been investigated in depth.

We perform a detailed study of the wandering of the SMBHB CoM in a
rotating stellar system. By means of controlled N-body experiments that keep
the shape of the stellar distribution spherically symmetric while introducing
net rotation, we isolate the role of rotation in the dynamical evolution of the
SMBHB CoM and build a sound analytical model that describes the outcome
of the simulations.

3.1 Simulations setup

In order study the effects of the system rotation on the evolution of SMBHBs,
we chose to initialize the host system as a spherically symmetric distribution
of stars. This allows us to isolate the effect of the system rotation from the
impact of galaxy morphology, thus preventing the SMBHB evolution to be
affected by the combined effect of both rotation and deviation from spherical
symmetry. The host system is first initialized following an Hernquist (1990)
density profile:

ρ(r) =
Mtot

2π

r0
r

1

(r0 + r)3
(3.1)

with total mass of stars Mtot, inner density slope γ = 1 and scale radius r0. We
set our model units (MU) such that Mtot = G = r0 = 1, with G gravitational
constant.

The stellar velocities are initialized at equilibrium in the potential well
generated by the stellar distribution itself and by a primary SMBH of M• =
0.005Mtot, at rest in the origin of the system.

To introduce rotation into our model, we followed a procedure akin to
that employed by Khan et al. (2020). Specifically, for co-rotating cases, we
flipped the z-component of the angular momentum (Lz) for particles initially
possessing negative Lz. This was realized by inverting the sign of all the velocity
components of the selected stars. Analogously, for the counter-rotating case
the particles with positive initial Lz were flipped to assume a negative Lz. It
is important to note that the initial conditions employed do not correspond
to any specific galaxy type. The spherically simmetric-rotating model used in
our investigation is far from resembling early type slow rotators or classical
dispersion-dominated elliptical galaxies due to its pronounced net rotation.
Deviating from disk galaxies in terms of its structure, it bears some resemblance
to rotating early-type galaxies. Indeed, in principle we could initialize a more
realistic flattened system with a morphology directly linked to the degree of
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Table 3.1: Parameters of the simulations presented in this work. The model names have
been chosen as follows: the capital letter ‘P’ refers to prograde rotators while ‘R’
refers to the retrograde rotators, the number indicates number of particles of the
simulation (1 for N = 256 k particles, 2 for N = 512 k particles and 3 for N = 1
M particles); finally, the letter ‘e’ refers to equal mass binaries (q = 1) while ‘u’
indicates unequal mass binaries (q = 0.25). See the text for more details.

Model N q Rotation
P1e 256 k 1 co-rotating
P1u 256 k 0.25 co-rotating
P2e 512 k 1 co-rotating
P2u 512 k 0.25 co-rotating
P3e 1 M 1 co-rotating
P3u 1 M 0.25 co-rotating
R2e 512 k 1 counter-rotating

AP3e 1 M 1 co-rotating, anchored

rotation by sampling a distribution function of the form f(E,Lz), as done, e.g.,
in Wang et al. (2014). We however decided to enforce the spherical symmetry of
the stellar spatial distribution, to isolate the effect of rotation only, as clarified
above.

A secondary SMBH is introduced in the system at an initial separation of r0
with initial tangential velocity equal to 70% the circular velocity at r0 and with
null radial velocity. In all simulations, the angular momentum of the SMBH
pair is initially perfectly aligned (or anti-aligned, for the counter-rotating case)
with the system angular momentum.

We performed a suite of direct summation N-body simulations varying the
mass resolution (i.e. the total number of particles N) and the binary mass ratio
q ≤ 1 (q = 1, 0.25). The simulations initializing parameters are summarized
in Tab. 3.1. The labels of the runs are assigned so that the trailing capital
letter refers to whether the (spherical) host system rotation is prograde (‘P’)
or retrograde (‘R’) with respect to the SMBHB initial orbit; the subsequent
number indicates the number of particles in the simulation (1 for N = 256 k,
2 for N = 512 k and 3 for N = 1 M); finally, the letter ‘e’ refers to equal mass
SMBHs (q = 1) while ‘u’ indicates unequal mass SMBHs (q = 0.25). Note that
the parameters of run P3e and P3u are similar to the runs P1.00 and P0.25 in
Khan et al. (2020). In particular, the aforementioned runs present the same
total number of particles (N = 1M) and the same SMBH mass ratios (q = 1 and
q = 0.25, respectively). However, it is important to remember that the main
difference of our work with respect to Khan et al. (2020) consists in the different
geometry of the host system: while Khan et al. (2020) study the evolution of a
SMBHB in a rotating flattened Dehnen profile (with γ = 1 and with a minor to
major axis ratio of 0.8), we study how a SMBHB evolve in a spherical rotating
stellar system. This is because we are interested in investigating the effect of
the pure net system rotation on the SMBHB evolution and hardening, and the
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introduction of a flattening would entangle the interpretation of our results.

We additionally performed a simulation with the same parameters as the
P3e model (i.e. the highest resolution simulation with equal-mass binary co-
rotating with the spherical stellar distribution) in which we forced the binary
to stay anchored in the center of the system; we labelled this run as AP3e.
More specifically, we took the snapshot at time t = 30.375 (shortly after the
formation of the bound binary): at this time we restarted the run forcing
the binary centre of mass to sit at the centre of the system. Every ∆t =
1.5625×10−2 we recursively computed the centre of mass position and velocity
of all particles (excluding the SMBHs) within 2.35r0, which roughly coincides
with the half mass radius of the system.2 Then, we set the centre of mass
position and velocity of the binary equal to the aforementioned one for the
entire duration of the run. Note that the recentering significantly slowed down
the integration: for this, AP3e was only evolved for t ≈ 45 time units after the
restart, while all other runs were evolved for at least 160 time units.

The initial conditions were evolved using the direct-summation N-body
code HiGPUs, designed to run on GPU accelerators. HiGPUs features a very
accurate, sixth order Hermite scheme with block time-steps (Capuzzo-Dolcetta
et al., 2013). The computation of the timestep is performed by combining the
fourth and sixth order Aarseth criterion (Aarseth, 2003; Nitadori & Makino,
2008), with the respective accuracy parameters equal to 0.01, 0.45. We set the
softening parameter ϵ = 10−4 for star-star interactions, ϵ = 10−6 for SMBH-
MBH interactions, while the softening for mixed stellar-MBH interactions is
set equal to the geometric average of the two. For a typical run with 1M
particles, evolved for ≈ 200 time units, the wall clock time needed is ≈ 110
hours, using one node equipped with two NVIDIA TeslaTM V100 GPUs, and
four cpu cores.

3.2 Results

The evolution of the SMBHB with its host in the P1e model is illustrated in
Fig. 3.1, where the color code indicates the projected density on the SMBHB
orbital plane.

Since the two black holes are generated at an inital relatively small separa-
tion, the pairing phase (t ≲ 12), during which the binary shrinking is dominated
by dynamical friction, is short and soon ends with the binary formation.

Figure 3.2 displays the relative separation of the SMBHs as a function of
time. It is evident that for equal-mass binaries (q = 1), the binary forma-
tion time tbf (dashed vertical line in the figure) is shorter compared to the
corresponding case with a smaller mass ratio, q = 1/4. This result is easily ex-
plained by dynamical friction considerations: the more massive the perturbing

2The recentering is performed 5 times per step, with the binary centre of mass as the
initial guess.
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Figure 3.1: Evolution of the stellar density surface for the model P1e at different times. The
time of the snapshot is reported on the top right of each panel. The two white
empty circles represents the position of the two massive black holes. The color
scaling is the same for all the panels.
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Figure 3.2: Evolution of the relative SMBH distance in time. The dashed vertical lines show
the binary formation time for each simulation.

object, the more efficient the dynamical friction brake, leading to faster initial
binary shrinking. Another trend with the mass ratio becomes evident: lower
mass-ratio binaries reach smaller relative separations at later times.

Figure 3.2 illustrates two phases of the binary evolution described in sec.
1.4.1. Once the binary has formed, the SMBHB undergoes a phase of rapid
shrinking due to the combined effects of dynamical friction and slingshot ejec-
tion of stars. This phase is evident in figure 3.2 as the rapid decrease in relative
distance soon after binary formation. Subsequently, when the binary separa-
tion becomes comparable to the binary influence radius, dynamical friction
becomes inefficient, and further shrinking of the binary slows down, proceed-
ing via the slingshot ejection mechanism. This is reflected in the figure by the
decrease in the slope of the relative distance.

3.2.1 Evolution of the orbital parameters

Fig. 3.3 shows the evolution of the SMBHB properties as a function of time, and
specifically the binary eccentricity e and the inverse of its semi-major axis, 1/a.
The dashed vertical lines indicate the binary formation time tbf , chosen as the
instant at which a bound Keplerian binary forms. Note that the eccentricity
and semimajor axis are computed as the standard Keplerian parameters from
the binary formation time. Prior to that, these quantities are evaluated as:

aunbound =
ra + rp

2

eunbound =
ra − rp
ra + rp

(3.2)
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Figure 3.3: Time evolution of eccentricity (upper panel) and inverse semi-major axis (bot-
tom panel) for each simulation. Note that prior to the binary formation time
(indicated with a vertical dashed line) the binary orbital parameters are com-
puted via Eq. 3.2, while the standard Keplerian parameters are shown after the
binary formation time.
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Table 3.2: For each run, the binary CoM radius is averaged over the time interval from t =
75, where all models have settled around a nearly constant value, to t = 175. The
binary influence radius is computed using the definition in Eq. 3.3 and averaged
over the same time interval of Rb, while the Brownian radius is computed via
Eq. 3.5, as better detailed in the text.

Model Binary CoM Binary influence Binary Brownian
final radius (MU) radius (MU) radius (MU)

P1e 0.047 0.22 0.011
P1u 0.020 0.16 0.014
P2e 0.058 0.22 0.008
P2u 0.012 0.16 0.010
P3e 0.065 0.22 0.006
P3u 0.026 0.15 0.007
R2e 0.010 0.20 0.008

where rp and ra respectively represent the pericentre and apocentre separations,
computed once for each complete radial oscillation.

Fig. 3.3 shows the different stages characterizing the SMBHs orbital evolu-
tion. Initially, the SMBHs mutual separation is reduced via dynamical friction
(Chandrasekhar, 1943b). In our models, the two SMBHs are initially placed at
a relatively small separation, thus this phase is very short, and it ends roughly
with the formation of a bound binary. When the binary reaches a separation
comparable to the SMBHB influence radius, defined as the radius of a sphere
containing twice the SMBHB mass in stars:

M∗(r < rinf) = 2Mb (3.3)

three body scatterings with stars start to efficiently extract energy and angular
momentum from the binary, adding up to the effect of dynamical friction and
excavating a core in the stellar density profile (e.g. Milosavljević & Merritt,
2003a; Sesana et al., 2008); the scouring of the density profile in time is shown
in Fig. 3.4 for model P3e. The SMBHB eventually reaches the hard binary
separation ah, i.e. the separation at which the binary binding energy exceeds
the kinetic energy of the field stars:

ah =
GM2

4σ2
∗

(3.4)

where M2 is the mass of the secondary SMBH and σ∗ is the velocity dispersion
of field stars. At this stage, the binary hardening occurs by stellar interactions
only, and the binary hardens at a slower pace, until it reaches the separation
at which GWs start to dominate its evolution.3

Fig. 3.3 shows that the dynamical friction (DF) driven inspiral is more
efficient for equal mass binaries, as the intruding SMBH has a larger mass.

3Note that the integrator implements a purely Newtonian approach and the GW phase
cannot be followed in the current setup.
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After the binary formation, the binary tends to circularize in all the prograde
models. In the retrograde rotators instead the binary eccentricity follows a
significantly different trend: after a short phase of slow decrease, e starts rising
and it reaches e ≃ 0.8 by the end of the run. This result is aligned with
what found in previous studies addressing the binary eccentricity evolution
in rotationally supported systems (e.g. Gualandris et al., 2012a) in which the
perturber interacts with stars with a net tangential (prograde or retrograde)
motion. The evolution of the inverse semi-major axis, showed in the lower panel
of Fig. 3.3, is an important measure of the binary energy change as a function
of time. All the simulated models follow a similar qualitative evolution: once
the binary forms, the inverse semi-major axis undergoes a short phase of fast
increase after which it increases almost linearly with time. As expected, the
models with lower mass-ratio show a faster binary shrinking compared to the
corresponding equal mass case (Sesana et al., 2006).

In all runs, the slight dependence of the shrinking efficiency on the total
number of particles may be at least partially ascribed to two-body relaxation,
which refills the binary loss cone more efficiently for the less resolved runs. We
would like to stress once more that, in our runs, the idealized assumption of
spherical symmetry in the mass distribution is made in order to isolate the
impact of the system rotation on the binary shrinking rate; deviations from
sphericity would tangle the interpretation of our results, as global gravitational
torques induced by a non-spherical morphology would non-trivially impact the
evolution of the binary hardening; the impact of rotation and axisymmetry
combined have been investigated in Holley-Bockelmann & Khan (2015); Khan
et al. (2020); Mirza et al. (2017). It is important to note that the counter-
rotating case shows a significantly lower binary hardening compared to all the
co-rotating models. This aspect is better dissected in the sections below.

3.2.2 Center of mass evolution

In line with previous literature on the topic (Holley-Bockelmann & Khan, 2015;
Khan et al., 2020; Mirza et al., 2017), we found that the binary CoM in the
prograde runs starts moving on a nearly circular orbit about the centre of the
system shortly after the binary formation time. In this section, we investigate
such behaviour in detail. In order to characterize the binary CoM motion we
first need to define a reference centre of the host stellar system. To define the
system centre we proceed as follows. As a first guess we set the system CoM
to coincide with the binary CoM. We proceed computing the CoM of the stars
contained within a radius of 2.35 r0 and then re-centering the whole system at
that position. The iteration is repeated five times per snapshot.

All our results are presented in a reference frame centered in the above
defined position.4

4Note that the strategy described here to find the centre of the stellar distribution is
the same used for anchoring the binary at runtime for run AP3e. In addition, we explored
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Figure 3.4: Evolution of the stellar density profile at different simulated times for model
P3e. Density profiles are drawn at six different times: from the dark purple
line at t = 0 to the yellow line at t = 150. Each profile was obtained averaging
over five subsequent time-steps. The black solid line is the initialized theoretical
Hernquist profile. The vertical dashed lines, with the same color code of the
density profiles, indicate the binary CoM radius at the corresponding time. The
position of the binary CoM is not shown for t = 0 since a bound binary has not
formed yet. It is evident that, even though at larger radii all the profiles are
consistent with the model, the central density is progressively reduced with time
as an effect of slingshot interactions; the binary CoM always remains within the
carved, almost constant density inner region.
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Fig. 3.5 shows the 3-dimensional trajectory of the SMBHB CoM for all the
simulated models. The top panel in Fig. 3.6 reports the temporal evolution
of the distance between the SMBHB CoM and the host centre (Rb) after the
binary formation time. For co-rotating models, soon after the binary forma-
tion time tbf , the SMBHB CoM starts orbiting the host centre with a rapidly
increasing Rb. After just few tens of time units the CoM settles on a nearly
stable orbit. In particular, equal mass binaries show a faster rise of the CoM
radius compared to the lower mass ratio cases. Moreover, the higher the binary
mass ratio, the larger the final orbital radius: the two differ by nearly a factor
2. The retrograde run does not show the same behaviour, and the binary CoM
remains very close to the centre, only experiencing the traditional Brownian
wandering (as detailed below). Table 3.2 reports the mean value of the final
CoM radius for each model, computed averaging Rb over the time interval
from t = 75, where all models have settled around a nearly constant value, to
t = 175, along with the binary influence radius, Rinf , averaged over the same
time interval. Bottom panels of Fig 3.6 show the time evolution of the binary
CoM orbit in the x and y-coordinate (left and right panel, respectively) for the
run 3Pe, thus pointing out the quasi-periodicity of the binary CoM orbit. In
co-rotating runs hosting equal-mass binaries the influence radius is Rinf = 0.22
while for co-rotating unequal-mass binaries is Rinf ≃ 0.16. This difference is,
at least partially, due to the different total mass of the SMBHB (Mb = 0.01 if
q = 1, Mb = 0.00625 for q = 1/4). The binary CoM oscillation in the prograde
runs is much larger than the binary separation (see e.g. the values of 1/a in
Fig. 3.3), but smaller than the SMBHB influence radius by a factor 3 − 5 for
the equal mass and by a factor 6 − 13 for the unequal mass cases.

Note that the binary CoM oscillation found in the prograde runs is differ-
ent than the traditional SMBHB Brownian motion (see e.g. Bortolas et al.
2016; Chatterjee et al. 2003; Merritt 2001a; Milosavljević & Merritt 2003a).
The latter is caused by the fact that slingshot ejections of stars with isotropic
velocities w.r.t. the binary CoM induce a recoil in the binary CoM in random
directions. The associated displacement is contrasted by the effect of dynam-
ical friction onto the binary as a whole: These two phenomena balance each
other and result in a small and non-coherent wandering of the binary CoM,
which however does not exhibit, on average, any net angular momentum. The
typical scale of the traditional Brownian wandering is smaller than the oscilla-
tion radius we find in prograde runs. In fact, the Brownian wandering radius
scales as

rBrown ∝ (m⋆/Mb)1/2 (3.5)

where m⋆ is the typical particle mass in the run and Mb is the binary total

another possibility for computing the centre of the system: we recursively computed the
CoM of particles in a shrinking sphere whose maximum (minimum) radius was set to 100r0
(1.5r0); the radius was halved at each iteration. We found a very good match between the
two described centering strategies, with mismatches much smaller that the wandering radius
Rb.
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mass (Merritt, 2001a). Bortolas et al. (2016) report a value of rBrown ≈ 0.008
for m⋆/Mb ≈ 2×10−4 in a system whose initializing properties are analogue to
the ones considered in the present work (i.e. an initial Hernquist profile with
unitary scale radius and total mass). By rescaling this value via Eq. 3.5 we
can infer the magnitude of the Brownian wandering in our runs: the computed
values are shown in the left-hand column of Tab. 3.2, and as error-bars in
the upper-right panel of Fig. 3.6. The Brownian radius is significantly smaller
than the oscillation radius for prograde runs with the best adopted resolution,
especially for the equal mass cases. The binary CoM displacement found in
the retrograde case is instead compatible with being caused by the traditional
Brownian motion. It is reasonable to interpret the trends shown in the upper
panel of Fig. 3.6 for prograde runs as the combination of the net rotation of
the binary CoM, induced by the system rotation, and the traditional Brownian
motion, that is likely responsible for at least part of the noise in the plotted
curves. This idea is supported by the fact that the runs featuring a larger N
are less noisy than the lower resolution ones, as expected from Eq. 3.5; part of
the oscillations in the trend of the CoM radius (especially at early times, and
in the low-resolution cases) is due to the fact that the CoM orbital motion does
not span a perfectly circular orbit, but exhibits some residual eccentricity. It is
also important to notice that the final radius at which the SMBHB CoM settles
does not depend on the number of particles adopted in the run, supporting the
fact that the CoM oscillations are not an effect of limited resolution (which
instead plays a significant role in the traditional Brownian motion, Eq. 3.5).

3.2.3 Effect of the SMBHB center of mass motion on
binary hardening

In this section we explore the impact of the CoM oscillation on the SMBHB
hardening rate. This aspect is relevant as the SMBHB CoM wandering allows
it to explore a region of space where it can interact with stars which otherwise
would not be able to approach the binary. In this way, the binary loss cone
can be considered to be always full: the CoM oscillation may thus enhance the
binary shrinking efficiency even for spherical systems in the collisionless limit.

To quantify the efficiency at which the binary shrinks, it is customary to
define the binary hardening rate s as the time derivative of the inverse semi-
major axis:

s =
d

dt

(
1

a

)
. (3.6)

This quantity is a measure of the binary energy loss as a function of time. Fig
3.7 shows the time evolution of the hardening rate for the presented runs, and
it is computed by fitting the slope of the inverse semi-major axis over short
time intervals (∆t = 1.25). The hardening rate evolution for the prograde
runs does not show a substantial dependence on the number of particles for
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each fixed mass ratio, and it stabilizes to s ≈ 10 (s ≈ 15) for equal (unequal)
mass binaries. On the other hand, the retrograde run (R2e) features a sig-
nificantly smaller hardening rate (nearly a factor 2 smaller) compared to the
prograde equal mass runs. The fact that the retrograde run does not feature
any oscillation about the centre apart from the traditional Brownian wander-
ing, contrarily to the prograde cases, is an indication of the fact that the binary
coherent oscillations ensure a more efficient loss cone refilling.

In order to have a deeper insight on the role of the binary oscillation on
the loss-cone refilling, we performed a run forcing the co-rotating binary in the
P3e model to stay anchored to the system’s center (A3Pe model), as detailed
in Sec. 3.1. In Fig. 3.8 the hardening rate of the anchored binary in AP3e is
compared to that of the free co-rotating binary in the same resolution run, P3e,
and of the counter rotating run, R2e. What emerges is that once the binary
CoM orbital motion is inhibited, the binary hardening rate is nearly equal to
that of the counter-rotating case. This is a very strong indication of the fact
that the loss cone refilling within rotating systems hosting a prograde binary
is induced by the SMBHB CoM oscillation.

3.2.4 CoM evolution for a single SMBH

In order to better understand the nature of the SMBHB wandering, and es-
pecially if slingshot interactions with passing stars are the responsible for the
non-Brownian oscillation of prograde binaries, we perform an additional run
in which we manually merge the SMBHB in model P2e into a single SMBH
at time t = 70. From this moment on, we track the displacement of the single
SMBH from the centre of the stellar distribution as a function of time. Fig. 3.9
shows that, after the forced binary coalescence the SMBH gradually sinks back
towards the center of the stellar distribution, and it stabilizes its oscillation
radius to ≈ 0.01 by t ≈ 100; the final radius nearly coincides with its expected
Brownian wandering radius (see Eq. 3.5 and Tab. 3.2).5 This behavior is a
strong indication of the fact that slingshot interactions with the binary sustain
its CoM displacement and oscillation about the centre; once the binary has
merged, the single SMBH can sink back near the origin of the distribution as
a result of dynamical friction. This proves that single SMBHs only experience
the traditional Brownian wandering, regardless of the system rotation.

3.3 Modelling of the CoM evolution

To explain the behavior of the SMBHB CoM in spherical rotating models,
it is important to consider that, in the prograde scenario, virtually all stars
approach the binary with a z component of their angular momentum aligned

5Note that the Brownian wandering radius of a single SMBH is expected to be nearly
equal to the one of a binary with the same mass (Eq. 3.5, Merritt 2001a).
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Figure 3.5: The figures show the three dimensional evolution of the SMBHB CoM trajectory
for each of the runs presented in the current study. In each panel, the color code
maps different time intervals in the orbital evolution, as shown in the legend.
The initial time corresponds to the instant at which a bound Keplerian binary
forms.
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Figure 3.6: Upper panel : on the left is shown time evolution of the SMBHB CoM radius
Rb for the different runs presented in the paper; on the right, the dots indicate,
for each run, the value of the binary CoM radius averaged between t = 75 and
t = 175, while the error bars show the amplitude of the Brownian wandering
radius (see Tab. 3.2). Bottom panels: on the left is shown the time evolution of
the binary CoM orbit in the x-coordinate for run P3e, the dots indicating the
local maxima. The analogus is shown on the right panel for the orbit in the
y-coordinate.
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Figure 3.7: Time evolution of the hardening rates (Eq. 3.6) for the different runs presented
in the paper.
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Figure 3.8: Time evolution of the hardening rates (Eq. 3.6) for the prograde equal mass
run P3e, the retrograde equal mass run R2e and the model AP3e, in which the
CoM of the equal mass, prograde binary is fixed at the centre of the stellar
distribution. If the binary is anchored in the centre, its hardening rate gets very
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Figure 3.9: Displacement from the centre of the stellar distribution of a single SMBH initial-
ized by manually merging the binary in run P2e. Time t = 0 corresponds to the
instant at which the SMBHs in the progenitor binary are merged. The SMBH
gradually inspirals towards the centre of the system in response to dynamical
friction, and it does no longer exhibit coherent oscillations about the system
centre.

64



Stellar hardening of SMBHBs 3.3 Modelling of the CoM evolution

0 25 50 75 100 125 150 175
t (MU)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

B
in

ar
y

C
O

M
ra

d
iu

s
(M

U
)

Nbody, P3e

Nbody, P3u

Model, P3e

Model, P3u

Figure 3.10: Time evolution of the binary CoM displacement from the centre of the system,
Rb, as obtained from the simulations (solid lines) and from our theoretical
modelling (Eq. 3.11). For model P3e we solved Eq. (3.11) assuming ρ = 0.8,
σ = 0.7, a0 = 0.05, s = 10 and we initialize Rb = 0 at t = 7.5; for model P3u
we set ρ = 2, σ = 0.75 a0 = 0.01, s = 15 and we initialize Rb = 0 at t = 12.
These are characteristic values we extracted from the simulation. The most
uncertaity is associated to the choice of a0, as better detailed in the text and
in footnote 8.
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with the binary angular momentum and typically larger than that of the binary,
at least for the stages just after the binary formation, during which the binary
external angular momentum experiences a significant growth. In addition, in
the prograde runs, the binary eccentricity remains always very close to 0, or in
other words, the SMBHB has nearly the maximum angular momentum allowed
for that given semi-major axis. At each prograde interaction, each star is thus
likely to enhance the binary angular momentum. This enhancement can result
in (i) an enlargement of the binary semi-major axis, but this almost never
happens, as the interactions are typically found to shrink the binary (Fig. 3.3);
(ii) a reduction of the binary eccentricity, which is however already near its
minimum, and it cannot decrease further; (iii) an enhancement of the external
angular momentum of the binary, which is then the only viable option. In
this situation, the time variation of the external binary angular momentum6

Lext = MbRbvb, with Rb, vb radius and velocity of the binary CoM, should be
equal to the rate at which the binary encounters stars times the typical angular
momentum gained by the binary for each encounter. The stellar encounter rate
can be written as dN/dt = 2πGMban⋆/σ, where a is the binary semimajor
axis, while n⋆ and σ respectively represent the stellar number density and
velocity dispersion about the binary; the typical angular momentum exchange
per stellar interaction is ∆L⋆ ≈ (m⋆/Mb)Lint, where Lint = µ

√
GMba is its

internal angular momentum (in the – verified – assumption of a circular binary),
and µ is the reduced mass of the binary. It follows that

dLext

dt
=

2πGρ

σ
µ
√

GMba3, (3.7)

where ρ = m⋆n⋆. The CoM velocity vb is the circular velocity at the radius
of the binary CoM; since the density profile remains nearly flat in the central
region after the initial scouring, we can write

vb =

√
4πGρ

3
Rb, (3.8)

i.e. the expected circular velocity at Rb; we checked the validity of this expres-
sion, and we found a very good match in our runs. On the right-hand side of
Eq. 3.7, a exhibits the strongest dependence on time (see e.g. 1/a in Fig. 3.3):
from Eq. 3.6 we can write

a(t) =
a0

1 + a0st
, (3.9)

with a0 = a(t = 0).7 In this model we neglect the much milder time dependence
of σ (whose value within a radius of ≈ Rb only varies by nearly 10 per cent

6Here we assume that the external binary angular momentum is aligned with the system
rotation, as we find in our runs, and that the binary CoM orbital motion remains perfectly
circular.

7Note that, in principle, this expression is valid only when the binary is hard, but for
simplicity we assume it to be valid from the moment Rb starts increasing; this is an approx-
imation, but it is supported by the relatively limited variation of s(t) in Fig. 3.7.
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in our models) and ρ (which nearly halves its value at ≈ Rb by the end of the
integrations). Combining Equations (3.7, 3.8, 3.9) we obtain

d

dt
R2

b =

√
3πG2ρ

σ2

µ2

Mb

a3(t), (3.10)

whose solution reads, setting R2
b = 0 at t = t0;

Rb =

√
2A

B

(
1 − 1√

1 + B(t− t0)

)

A =

√
3πG2ρ

σ2

µ2

Mb

a30 B = a0s;

(3.11)

it is obviously valid only for t ≥ t0.
Fig. 3.10 compares the evolution of Rb in the simulations to what obtained

from the above equation, for models P3e and P3u: our model seems to well
reproduce the data. It is worth noting that the normalization of the curve in
the plots (i.e., the value of

√
2A/B) is somewhat arbitrary, depending on the

value one picks for the SMBHB semimajor-axis a0 at which Rb starts growing.8

This is due to the fact that the angular momentum exchange is proportional to
the internal binary angular momentum, which is much larger near the binary
formation time and strongly declines later. This also means that the inter-
actions effectively displacing the binary from the centre are those occurring
shortly after the binary formation time, while the ones occurring later impact
less and less the external binary angular momentum evolution.

It is also worth accounting for the fact that dynamical friction should be
acting on the binary CoM to bring it back to the centre, as it happens for the
single SMBH (Fig. 3.9). While in the beginning of the evolution the simula-
tions clearly show that dynamical friction is subdominant compared to stellar
interactions in inducing the evolution of Rb, this could be no longer true at
later times. In order to check the relative importance of the two effects, we
can compare the torque on the binary CoM on the right-hand side of Eq. 3.7
to the torque we expect from dynamical friction.

However, the magnitude of dynamical friction in the present configuration
cannot be trivially estimated, owing to the fact that the binary moves very
close to the centre of a cored stellar distribution, in which fast moving stars
may have an important contribution, and in which the estimate of the mini-
mum and maximum impact parameter can be somewhat arbitrary. For this, we
estimated the DF empirically, only focussing on the equal mass prograde runs.

8 Shortly after the binary formation (and in coincidence with the onset of the growth of

Rb) the binary shrinks very quickly. Given the dependence of Rb ∝ a
3/4
0 , by picking different

values of a0 we obtain curves whose value gets larger or smaller by a factor of a few; we
believe this uncertainty is intrinsic in our simple treatment and we still believe our modelling
can capture the evolution of Rb to a decent degree.
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We start considering the time over which the single SMBH of run P2u shown
in Fig. 3.9 is dragged back into the centre, given its initial angular momentum
Lext = MbRbvb(Rb) ≈ 6 × 10−5 (Tab. 3.2 and Eq. 3.8), to write the associated
dynamical friction torque as dLDF/dt ≈ ∆Lext/∆t ≈ 5 × 10−7. This should
be compared to the right hand side of Eq. 3.7, which can be rewritten, for the
equal mass prograde cases, as dLext/dt ≈ 1.8 × 10−3a3/2; this implies the two
contributions to the evolution of the binary external angular momentum to be
equal for a ≈ 4.3×10−3, and dynamical friction to be a factor 10 more efficient
than stellar interactions at a ≈ 9.2 × 10−4. As a consequence, we expect that
the binary should sink back towards the centre less than a hundred time units
after the end of our prograde runs at t ≈ 180.

The model presented so far also allows to understand why the CoM does
not undergo analogous oscillations in the retrograde scenario: in that case,
stars can only deposit angular momentum that has opposite sign compared
to the binary one, thus they reduce the binary internal angular momentum
instead of inducing a net oscillation in its CoM: this is supported by the fact
that the eccentricity undergoes a continuous growth in the counter-rotating run
(Fig. 3.3). In principle, over sufficiently long timescales, the counter-rotating
binary is expected to eventually flip the sign of its angular momentum and
finally circularize (Gualandris et al., 2012a; Sesana et al., 2011). However, since
the external angular momentum growth occurs about the binary binding, and
it is much less efficient at later times, we expect counter-rotating binaries to
always remain close to the centre, even once they become prograde.

3.4 Conclusion

We investigated the impact of spherical rotating stellar systems on the hard-
ening of SMBHBs through N-body simulations.

We found that the CoM of prograde binaries starts moving on quasi-circular
orbits around the centre of the host galaxy. Such motion is considerably larger
than the typical Brownian wandering experienced by SMBHBs evolving in
isotropic backgrounds, and introduces a time-dependence in the loss-cone of
the binaries, that remains full during their whole shrinking. We demonstrated
through dedicated numerical experiments that such results (the enhanced bi-
nary CoM wandering and the fast hardening rate) are not valid for retrograde
binaries nor for single SMBHs.

A key distinction in our study from previous research (Holley-Bockelmann
& Khan, 2015; Khan et al., 2020; Mirza et al., 2017) resides in the fact that we
model the host galaxy with a spherical distribution. In this way, by avoiding
effects induced by deviations from spherical symmetry, we showed that rotation
alone can drive both SMBHB circling and increased hardening.

Complementing our numerical findings, we present a phenomenological an-
alytical model supporting the observed binary CoM evolution in prograde runs.
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An important departure from Holley-Bockelmann & Khan (2015) lies in our
discovery regarding the hardening rates of retrograde binaries. In the rotating-
spherical scenario, retrograde binaries exhibit slower shrinkage compared to
their prograde counterparts, a discrepancy not observed in the rotating-flattened
scenario. Our analytical model attributes this difference to the absence of sig-
nificant CoM motion in retrograde binaries, hindering collisionless loss-cone
refilling.

Both from our semianalytical model and in the numerical simualtions emerges
that SMBHBs experience substantial external angular momentum growth im-
mediately after formation, especially at large semi-major axes. This implies
that binaries with internal angular momentum significantly differing from their
surroundings would not undergo CoM circling and consequent enhanced hard-
ening.
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4
An effective model for the
tidal disruption of satellite
galaxies in minor mergers

Minor mergers are recurring events throughout galaxy lifetimes. In these sce-
narios, secondary galaxies act as massive perturbers to the primary galaxy
potential, which make this systems particularly suitable for semi-analytical
modelling, facilitating investigations with low computational demands. Of par-
ticular interest within the context of galactic mergers are the MBHs residing
in the progenitor nuclei. Indeed, galaxy mergers can bring multiple MBHs into
a single host, potentially forming MBHBs. These systems are prime targets
for space based GW experiments, including PTA (Agazie et al., 2023; Anto-
niadis et al., 2023) and LISA (Amaro-Seoane et al., 2017). Before MBHs form
bound systems in galactic nuclei, they must migrate towards the central re-
gions of the newly formed host galaxy, primarily driven by dynamical friction
(Chandrasekhar, 1943b). During this phase, MBHs are often surrounded by
remnants of their progenitors’ cores, enhancing their effective sinking mass and
promoting dynamical friction. However, the surrounding material is gradually
stripped by the host galaxy’s tidal field (Binney & Tremaine, 2008). This mass
loss significantly influences the dynamics of MBH inspiral and the efficiency of
dynamical friction. Quantifying the stripping of material from infalling satellite
galaxies necessitates estimating the tidal radius, which defines the boundary
between bound and unbound mass. Initially proposed by von Hoerner (1957)
the tidal radius was theoretically defined for satellites orbiting in circular or-
bits, where coincides with the L1/L2 Lagrange points (Binney & Tremaine,
2008). King (1962) attempted to extend this definition to eccentric orbits,
suggesting that during pericenter passages, satellites are truncated to the size
indicated by the pericentric tidal radius. Later, Henon (1970) and Keenan &
Innanen (1975) observed that retrograde orbits in the context of the restricted
three-body problem are stable over greater distances compared to prograde
orbits, further out the tidal radius defined by King (1962). In a more recent
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study, Read et al. (2006) derived an expression for the tidal radius taking into
different orbit types: prograde, radial, and retrograde. Interestingly, the anal-
ysis revealed that the tidal radius for retrograde orbits exceeds that of radial
orbits, which, in turn, is larger than the tidal radius for prograde orbits. To
date, the vast majority of attempts to estimate the tidal radius focused on
spherically symmetric host galaxies (see however Gajda &  Lokas, 2016). Real
galaxies show quite diverse morphologies, that can strongly deviate from spher-
ical symmetry, calling for a dedicated investigation. In this study, I aimed to
establish a general description of the tidal radius when axisymmetric systems
are involved. Such systems, representative of, for example, spiral galaxies,
are quite common, and many minor mergers occur in such galaxies. As addi-
tional elements of novelty, the proposed model allows for close encounters of
the satellite with the host center along eccentric orbits, and it also accounts
for non-instantaneous satellite mass loss. Ultimately, this new prescription for
the tidal-stripping-driven mass loss of satellite galaxies enhances the accuracy
of semi-analytical models in predicting the mass evolution of satellite galax-
ies and their pace of dynamical friction-driven inspiral within host galaxies of
varying morphologies.

4.1 Methods

The mass loss caused by tidal effects can significantly impact the orbital decay
of the satellite, as it reduces the efficiency at which dynamical friction drags
the satellite galaxy towards the center of its host, thus increasing its orbital
decay time.

4.1.1 Tidal Radius

To characterize the mass loss of satellite galaxies due to tidal stripping in
minor mergers, the first step consists of defining the tidal radius. The standard
approach in literature considers two spherically symmetric systems, with mass
profiles m(r) for the satellite, and M(r) for the host galaxy, whose centres
are separated by a distance R. The satellite tidal radius Rt is defined as the
distance from the center of the satellite at which the acceleration of a test
particle along the direction connecting the center of the two systems vanishes.
In a minor merger scenario where m ≪ M , under the assumptions that Rt ≪
R at any time, and that the test particle has null velocity in the satellite’s
reference frame, Rt is given by:

Rt = R

[
Gm(Rt)

Ω2 − d2Φh

dr2

] 1
3

. (4.1)
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This expression was first derived in King (1962) 1, where r and Ω are the radial
coordinate and the angular velocity of the satellite in the reference frame of
the host galaxy, and Φh(r) is its gravitational potential. It is worth noting that
this formula is strictly valid for circular orbits, but can be easily extended to
eccentric orbits if one considers instantaneous values for Ω and R. Additionally,
it is important to emphasize that Eq. (4.1) holds only under the simplistic
assumption of a spherical host.

In this study, we aim to present a novel prescription for Rt that is adapt-
able to various host geometries. For this purpose, we consider a spherically
symmetric satellite galaxy embedded in the generic potential of its host. We
define the galactic inertial frame with the origin in the galactic center denoted
as S and the non-inertial frame of the satellite as S ′. In this work, all the
quantities evaluated in the non-inertial frame of the satellite are primed, while
the unprimed are relative to the inertial frame of the host galaxy. Consider-
ing a test satellite star, its position is identified by the radius vector r∗. The
acceleration of the test star in the reference frame of the satellite is:

a′ = a−A− dΩ

dt
× r′∗ −Ω× (Ω× r′∗) − 2Ω× v′. (4.2)

Here, Ω is the angular velocity of the satellite centre of mass (CoM), a repre-
sents the acceleration of the test star in the S frame:

a = −GMs(r
′
∗)

r′3∗
r′∗ −∇ϕh(r∗), (4.3)

and A is the acceleration of the S ′ frame in S, which can be expressed as:

A = −∇ϕh(rS), (4.4)

where rS indicates the distance of the satellite CoM from the host’s center.
The term Ω× (Ω× r′∗) can be rewritten as Ω2r′∗(cosα− 1), with α being the
angle between Ω and r′∗. Choosing a random direction êr′∗ from the center
of the satellite, we can approximate the tidal radius as the distance along the
fixed direction êr′∗ from the satellite centre at which a test star with v′ = 0
experiences a vanishing a′.

a′êr′∗
= 0 = −GMs(r

′
∗)

r′2∗
−∇ϕh(r∗) · êr′∗+∇ϕh(rS) · êr′∗−Ω2r′∗(cosα−1), (4.5)

where we omitted the term dΩ/dt × r′∗ which is directed perpendicularly to
êr′∗, thus not contributing to the acceleration along the reference direction we
fixed. It is important to note that, unlike the derivation in King (1962), we
relax the assumption Rt ≪ R, therefore allowing the satellite to undergo close
encounters with the host center. Eq. (4.5) thus provides an implicit definition
for Rt along a specific direction from the center of the satellite. As mentioned

1See sec. 1.3.2 for the derivation.
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above, if the host system is spherically symmetric, the reference direction along
which the Rt is evaluated is the one connecting the center of the two galaxies,
since it is the direction that maximizes the tidal force. However, in a generic
galactic field it is not possible a priori to define the direction that maximizes
the tidal force exerted on the satellite by the host, which instead will depend
on the morphological parameters of the two systems and on the instantaneous
location of the satellite within the host potential. For this reason, during the
satellite evolution we numerically solve Eq. (4.5) along 1000 random directions
and we select Rt as the minimum of all the tidal radii evaluated, that we denote
as RT1. However, the mass of the satellite is not instantaneously stripped and it
is not possible a priori to define at which rate the material is removed through
Eq. (4.5). For this reason, at any time we introduce a modified definition of
the tidal radius, i.e.

RT2(t) = RT (told) e
−α

t−told
rp/vp . (4.6)

In Eq. (4.6), RT (told) is the tidal radius evaluated at a prior time told, rp and
vp are the distance and velocity of the satellite with respect to the host centre
both evaluated at the pericenter, while α is a tunable dimensionless parameter
that regulates the rate at which the mass is removed from the satellite: the
higher the value of α, the faster the mass is stripped. Thus, comparing RT1

and RT2 we define RT to be:

RT (t) = max(RT1(t), RT2(t)). (4.7)

Finally, we require the tidal radius to be a decreasing function of time. This
condition implies that the removed material is irrevocably detached from the
satellite, precluding any subsequent reattachment in later times, effectively
assuming that tidal stripping is irreversible.

4.1.2 Satellite galaxy

In this study, we characterize the satellite galaxy employing the spherical and
isotropic Hernquist model (Hernquist, 1990), whose potential and the associ-
ated mass density profile are given by:

Φs(r) = − GMs

r + as
, (4.8)

ρs(r) =
Ms

2π

as
r(r + as)3

, (4.9)

where Ms and as are the total mass and scale radius of the satellite. The
corresponding mass profile is ms(r) = Ms[r/(r+as)]

2 We integrate the satellite
orbit with the semi-analytical code GALCODE described in Bonetti et al.
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(2020b), in which we incorporated the evolution of the tidal radius as detailed
in Section 4.1.1. We truncate the satellite mass profile integrating ms(r) up to
Rt. The semi-analytical framework features a comprehensive treatment of the
dynamical friction specifically tailored to account for flattened and rotating
systems (Bonetti et al., 2021b, 2020b). It is also equipped with a prescription
for the interactions of massive perturbers with galactic substructures such as
bars (Bortolas et al., 2022).

4.1.3 Host galaxy

In the present work, we explore two different models for the host galaxy: a
single-component and a double-component host galaxy. In the first scenario,
the primary galaxy is characterized by an isolated exponential disc, defined by
the density profile:

ρd(R, z) =
Md

4πR2
dzd

e
− R

Rd sech2

(
z

zd

)
. (4.10)

Here Md is the total mass of the disc, Rd and zd are the scale radius and
height of the disc, respectively. An analytical approximate expression for
the potential of such a model exists only within the galactic plane. Conse-
quently, accelerations caused by the disc potential outside the galactic plane
are determined through numerical interpolation of tabulated values, which are
computed over an adaptive grid, see Bonetti et al. (2021b, 2020b) for details.
Single-component host galaxy models were employed to test simple systems,
in which we neglect dynamical friction to focus on the tidal effects regulating
the evolution of the satellite mass.

In the case of a composite host galaxy, the disc is embedded within a
spherical dark matter halo. The potential of this halo follows the Hernquist
profile, characterized by a total mass Mh and a scale radius ah:

Φh(r) = − GMh

r + ah
. (4.11)

4.1.4 N-body simulations

Our investigation was complemented by a comparative analysis, where we
accompanied the proposed semi-analytical prescription regulating the tidal-
stripping-driven mass evolution of satellite galaxies with N-body simulations.
This approach enables us to evaluate the ability of our model to accurately
encompass all the relevant physical processes involved and identify potential
missing effects. N-body simulations were performed employing the publicly
available code GADGET4 (Springel et al., 2021)

In all the tested systems, the satellite galaxy is modelled with 105 stellar
particles. The particle positions are initialized to follow the mass distribution
in Eq. (4.9), while the velocities are generated at equilibrium in the potential
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generated by the stellar distribution. The initial satellite mass is fixed to be
equal across all models, with Ms = 108M⊙. We considered three different
values for the satellite scale radius , i.e. as = 0.1, 0.5, 1 kpc, thus testing
different mass concentrations.

Table 4.1: Parameters of the host galaxy for both single and the double component scenar-
ios.

Component Profile M scale radius scale height Npart ϵ

Single-component
Disc - analytical exponential 4.4 × 1010 M⊙ 4.25 kpc 0.85 kpc - -

Double-component
Disc exponential 4.4 × 1010 M⊙ 4.25 kpc 0.85 kpc 4.4 × 107 5 pc
Halo - analytical Hernquist 1.1 × 1012 M⊙ 37 kpc - - -

The satellite is then embedded within the primary galaxy at a distance of
Ri = 10 kpc from its center and with a specific initial velocity, which is added
to the stars as a bulk velocity. We explore the orbital parameter space by
changing both the initial velocity of the satellite CoM (vi/vc = 0.75, 0.50, 0.25,
where vc is the circular velocity at Ri), and different initial inclinations of the
satellite orbit with respect to the galactic plane (θ = 0◦, 30◦, 60◦, 90◦). We
set the softening parameter ϵ = 1 pc for the satellite particles, while we fix
ϵ = 5 pc for the stellar particle of the disc component in multi-component
galaxy models. To isolate the impact of tidal forces on the evolution of the
satellite mass from other possible influencing processes, we first performed a set
of simulations excluding the effect of dynamical friction. To achieve this, the
host galaxy is included in N-body simulations as a stationary semi-analytical
potential, instead of being modelled using collisionless particles. To do so, we
add to the acceleration of satellite particles the acceleration induced by the
presence of the host potential. As mentioned in the previous section, all the
models in which we omit dynamical friction host a primary galaxy modelled
with a single exponential disc.

The method we implemented in GADGET4 to compute the accelerations
generated by the exponential-disc potential is analogous to the one we use in
the semi-analytical code and described in sec. 4.1.3. This set up prevents
gravitational interactions between satellite and field stars, thereby avoiding
dynamical friction to take place.

We then consider more complex systems composed by a satellite orbiting in
a double-component host galaxy, also including effects from dynamical friction.
In these systems, the primary galaxy consists of an analytical dark matter halo,
whose potential is given by Eq. 4.11, and an exponential-disc, modelled with
4.4 × 107 stellar particles, whose mass density is given by Eq. (4.10). The
initial conditions for the disc were performed using the public code GALIC
(Yurin & Springel, 2014) which is based on an iterative approach to build N-
body galaxy models at equilibrium. Similarly to the case of the analytic disc,
the dark matter halo contributes solely through the acceleration its potential
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imprints on the stellar particles - that we compute and add to the satellite
particles in the simulation -, thus giving null contribution to the dynamical
friction.

The host galaxy parameters are summarized in Table 4.1.

4.1.5 Satellite CoM and bound particles

The upper panels in Fig. 4.1 show satellite particles in one of the tested models
(specifically the system composed by a satellite with as = 0.5 kpc, orbiting
in the galactic plane of an exponential disc host, with initial velocity vi =
0.5 vc) at the first, middle and final snapshot of the simulation. The plots’
origin coincides with the center of the host galaxy potential. Orange particles
are bound to the satellite, while gray particles indicate those that have been
stripped. The shaded thin red line shows the trajectory predicted by the semi-
analytical model, while the thick solid red and blue lines track the satellite
CoM, in the semi-analytical model and in the N-boy simulation, respectively.
In each snapshot of the simulation the bound particles are identified through
an iterative approach. The first step consists of identifying the position and
velocity of the satellite CoM. We initialize the satellite CoM location as the
point corresponding to the highest density. For each of the satellite particles
we compute the binding energy as:

E∗ =
1

2
|v∗ − vCoM|2 − ΦTruncHern(r∗). (4.12)

Here v∗ is the velocity of the star, vCoM is the velocity of the satellite CoM, and
ΦTruncHern(r∗) is the potential generated by an Hernquist model, truncated at
a certain radius rmax, which is given by:

ΦTruncHern(r∗) =

{
GMs

(
1

rmax+as
− 1

rmax
− 1

r∗+as

)
if r∗ < rmax

−GMs

r∗
if r∗ ≥ rmax

, (4.13)

where r∗ is the distance of the selected star from the satellite center. To set
the truncation radius rmax, at each snapshot we start from an initial guess
of rmax = 10as, then, we consider enlarging spherical shells centered in the
satellite CoM, with a fixed width δr = 0.25as. The value of rmax is then chosen
to correspond to the median radius of the smallest shell containing a number
of unbound stars exceeding twice the number of the bound ones (i.e. such that
Nunbound ≥ 2Nbound). Finally, we update the CoM location and velocity with
the values computed using the stars with E∗ < 0. The procedure is iteratively
repeated until the CoM position converges to a constant point, with a relative
error on the position of the CoM lower than 10−3.

The lower panels in Fig. 4.1 show the satellite cumulative mass profile at
the same snapshots and for the same system as in the upper panels. The black
solid curve displays the theoretical cumulative mass profile from the Hernquist
model. The other two profiles are constructed using the bound particles only,
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in orange, and all the particles that were part of the satellite at the initial time,
in gray. The vertical blue line shows the value of the tidal radius computed
with our semi-analytical prescription at the same time of the simulation. Thus,
the satellite mass resulting from the simulation, given by the value at which the
orange curve saturates, can be compared to the value predicted by our semi-
analytical model, i.e. the value at which the theoretical profile is truncated by
the tidal radius.

4.1.6 Mass evolution and choice of the optimal α pa-
rameter

We compare outcomes of N-body simulations with the results of our semi-
analytical prescription, testing different values of the α parameter, which con-
trols the mass-stripping rate. A higher α corresponds to a faster mass removal.
The panels in Fig. 4.2 illustrate the temporal evolution of the satellite mass of
a satellite with as = 0.5 kpc orbiting within the host galactic plane, for three
different initial velocities: vi/vc = 0.75 , 0.5 , 0.25. The black line shows the evo-
lution of the mass resulting from N-body simulations. The colored solid lines
display the mass evolution predicted by the semi-analytical model for different
values of α, spanning from 0.05 up to 5. The minimum tidal radius computed
at each time is indicated with a gray dashed line, which indicates the value of
the satellite mass one would predict if the stripping were considered instanta-
neous and reversible. It is important to notice that the initial configuration of
the simulated systems is not at the equilibrium. This is because the satellite
is generated in isolation and then artificially placed within the primary galaxy
potential, instead of following the merger from its initial phases. Therefore, we
use the position and velocity of the satellite CoM in the N-body simulation at
the first apocenter as the initial condition for the semi-analytical model cal-
culations. In Fig. 4.2, the orbit from the beginning of the N-body simulation
to the first apocenter is indicated by the grey shaded region. Finally, using a
least square method on the mass evolution, we determine the optimal value of
α corresponding to the semi-analytical model that most accurately reproduces
the N-body simulations.

In the next section, we will discuss the results of our model, focusing in
particular on the model ability to reproduce the evolution of the satellite mass.

4.2 Results

4.2.1 Models without dynamical friction

We started our study examining simple systems composed of a satellite orbiting
within the analytical potential of its host. This configuration enables us to
exclude dynamical friction, thereby isolating the effects solely determined by
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Figure 4.1: Upper panels: satellite particles of an example run featuring a satellite with
as = 0.5 kpc, orbiting in the galactic plane of an exponential disc host, with
initial velocity vi = 0.5 vc. From left to right, the three panels correspond to
the first, middle and final snapshot of the simulation. The origin coincides with
the center of the host galaxy potential. The colors indicate which particles are
bound to the satellite (orange) or unbound (gray). The shaded red line shows
the trajectory predicted by the semi-analytical model, while the solid red and
blue lines track the satellite CoM, in the semi-analytical model and in the N-boy
simulation, respectively. Finally, the red cross indicates the initial point for the
semi-analytical orbital integration, corresponding to the first apocenter. Lower
panels: satellite cumulative mass profiles at the same snapshots and for the same
system as in the upper panels. The black solid curve displays the theoretical
cumulative mass profile from the Hernquist model. The other two profiles are
constructed using the bound particles only, in orange, and all the particles that
were part of the satellite at the initial time, in gray. The vertical blue line shows
the value of the tidal radius computed with our semi-analytical prescription.
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Figure 4.2: Evolution of the satellite mass as a function of time for three cases with as =
0.5 kpc, orbiting within the host galactic plane and featuring different initial
velocities (vi/vc = 0.75 , 0.5 , 0.25, from left to right). The black line shows the
evolution of the mass according to the N-body simulations. The colored solid
lines correspond to the mass evolution predicted by the semi-analytical model
with different values for α, spanning the range [0.05− 5]. The gray dashed line
represents the minimum tidal radius computed at each time, whereas the gray
region represents the time from the beginning of the N-body simulation to the
first apocenter, which is the starting point for the semi-analytical models.

tidal forces. In this scenario, the primary galaxy is characterized by an isolated
exponential disc, defined by the density profile in Eq. (4.10).

Fig. 4.3 displays the optimal values of the α parameter for each model,
evaluated as detailed in sec. 4.1.6. More in detail, the three panels show how the
αbest parameter changes with the initial orbital velocity (or initial eccentricity)
in models sharing the same satellite scale radius as, each panel referring to a
different value of as, and the same orbital inclination, reported with different
line styles and colors. In general, most systems exhibit a slight increase in the
α parameter as the initial velocity approaches the circular velocity, while no
evident trends in the values of α can be outlined when varying the scale radius
and the orbital inclination. As expected, a lower α is associated to systems
with initial higher eccentricity (or lower initial velocity). This is attributed to
the abrupt decrease in the tidal radius at pericenter passages, as predicted by
Eq. (4.5), leading to a significant and instantaneous mass loss. However, the
actual timescale to strip material from the satellite, as predicted by N-body
simulations, is longer than the fast pericenter passages. For this reason, in the
vicinity of the pericenter, the tidal radius decrease is delayed using Eq. 4.6,
with α regulating the rapidity of the mass removal. Since this effect is much
more relevant along eccentric orbits, the α parameter needs to be small enough
to slow down the satellite mass loss, which otherwise would be extreme, and is
expected to be smaller compared to systems with low eccentric orbits. If not
explicitly specified, all the results presented in this section refer to the specific
semi-analytical model characterized by the optimal value of α for each system
considered.
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Figure 4.4: Results obtained for systems hosing satellites orbiting within the galactic plane
without dynamical friction. The three panels refers to different initial velocities
for the satellite CoM, vi = 0.75vc, vi = 0.5vc and vi = 0.25vc form left to right.
Upper panels: separation of the satellite CoM from the primary galaxy center as
a function of time. The orange dashed line refers to the semi-analytical model,
while the black solid line shows the result of the N-body simulations. Bottom
panels: time-evolution of the difference between the satellite mass predicted
by the semi-analytical model and the mass resulting from N-body simulations,
normalized to the initial satellite mass. The line colors indicate different satellite
scale radii. The solid lines refer to our new semi-analytical prescription for the
evolution of the satellite mass, whereas the dashed lines represent the results we
obtain using King’s formula for the tidal radius. In both panels, the gray area
indicates the time interval leading to the first apocenter.
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In Fig. 4.4, we present the results of the comparison between our semi-
analytical prescription and N-body simulations for models with the satellite
moving within the galactic plane. The upper panels depict the evolution of
the separation of the satellite CoM from the primary galaxy center. The semi-
analytical model’s predictions are shown in orange, while the N-body simu-
lation results are represented by a black solid line. The bottom panels show
the time evolution of the difference between the satellite mass (normalized to
the initial satellite mass) predicted by the semi-analytical model and the mass
resulting from N-body simulations. The three panels correspond to different
initial velocities of the satellite, with line colors indicating the satellite scale
radius. Our semi-analytical prescription well reproduces both the orbital and
the mass evolution of the satellite.

As an additional test, we compare our semi-analytical prescription for the
tidal radius and mass evolution (solid lines) with results obtained using King’s
formula (dashed lines), see Eq. (4.1). We observe an overall better agreement
with N-body simulations using our new semi-analytical prescription compared
to the King prescription. This result is due to multiple factors. First, King’s
formula, when applied without any delay for mass removal, implies instanta-
neous mass stripping. This leads to a general underestimation of the satellite
mass, especially in the initial phases of the evolution. Moreover, one of the main
assumptions in King’s prescription is that the tidal radius should be much lower
than the separation between the centers of the two galaxies, thereby excluding
close encounters. This assumption is generally valid along quasi-circular orbits,
but it breaks when considering highly eccentric orbits where the pericenter can
be at a close distance from the host center. The combined effect of the in-
stantaneous mass stripping, which can be severe in eccentric orbits during the
close pericenter passages, and the assumption of distant interactions, implies
an increasing inability of King’s prescription at reproducing the results of N-
body simulations (see bottom right panel in Fig. 4.4) as the orbital eccentricity
increases.

It is important to note that a comparison with King’s prescription is mean-
ingful only for systems in which the satellite is orbiting within the galactic
plane, as far from the galactic plane King’s definition of the tidal radius be-
comes ill-defined. In the coplanar case, indeed, the gradient of the host poten-
tial at the position of each satellite’s star points approximately toward the host
centre, making the comparison between our and King’s prescriptions meaning-
ful. Nonetheless, we stress that, even in this case, the acceleration of stars that
during their orbits around the satellite centre lie above or below the plane of
the host disc are not radial, and are, therefore, implicitly approximated in the
treatment by King (1962).

Finally, we investigated systems where the satellite orbits outside the galac-
tic plane, exploring various inclination angles. We show the evolution of the
error in estimating the satellite mass for these systems in Fig. 4.5. The columns
represent different initial velocities of the satellite CoM, decreasing from left to
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Figure 4.5: Error in estimating the satellite mass for systems on inclined orbits with respect
to the galactic plane and without dynamical friction. The line colors indicate
different satellite scale radii. The columns represent different initial velocities of
the satellite CoM, decreasing from left to right, while the rows illustrate varying
orbital inclinations, increasing in angle from top to bottom.

right, while the rows illustrate varying orbital inclinations, increasing in angle
from top to bottom.

Our semi-analytical prescription effectively reproduces the evolution of the
satellite mass along the orbit, particularly in systems with eccentric orbits,
across all orbital inclinations. However, in systems hosting satellites with low-
eccentricity orbits, our semi-analytical model tends to overestimate the satellite
mass, as observed in the left panels of Fig.s 4.2, 4.4 and 4.5. We will delve into
this behavior extensively in Section 4.2.3.
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Validation of the model in the scenario of a spherically simmetric
host

To further test the validity of the proposed model and explicitly compare its
effectiveness to the King model, we conducted an additional set of simulations
where the main galaxy exhibits spherical symmetry. To perform this simula-
tions, we considered a system composed of a spherical satellite, analogous to
those used in the prevously presented case of a disk-like host, with a Hernquist
mass density profile having a total mass of Ms = 108M⊙ and a variable scale
radius as = 0.1, 0.5, 1 kpc, sampled with 105 particles and softening parameter
ϵ = 1 pc. The host galaxy in this scenario is modeled using a Hernquist profile
with Mh = 4.4 × 1010M⊙ and a scale radius of 7.5 kpc. Analogously as in the
other systems presented so far, the primary galaxy is introduced in the simu-
lations as an analytical external potential. The results of these simulations are
presented in fig. 4.6.
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Figure 4.6: Results obtained for systems hosing satellites orbiting within a spherically sym-
metric host. The three panels refers to different initial velocities for the satel-
lite CoM, vi = 0.75vc, vi = 0.5vc and vi = 0.25vc form left to right. Upper
panels: separation of the satellite CoM from the primary galaxy center as a
function of time. The orange dashed line refers to the semi-analytical model,
while the black solid line shows the result of the N-body simulations. Bottom
panels: time-evolution of the difference between the satellite mass predicted by
the semi-analytical model and the mass resulting from N-body simulations, nor-
malized to the initial satellite mass. The line colors indicate different satellite
scale radii. The solid lines refer to our new semi-analytical prescription for the
evolution of the satellite mass, whereas the dashed lines represent the results we
obtain using King’s formula for the tidal radius. The gray area in the panels
indicates the time interval leading to the first apocenter.

The different columns correspond to the three different initial satellite or-
bital velocities, decreasing from left to right. The upper panels show the com-
parison between the time-evolution of the radial separation of the centers of
the two galaxies predicted by our semi-analytical model (orange dashed line)
and the results from N-body simulations (solid black line).

84



An effective model for the tidal disruption of satellite galaxies in minor
mergers 4.2 Results

Table 4.2: Values of the α parameter for the models with spherical host galaxy.

vi/vc
as

0.1 kpc 0.5 kpc 1 kpc

0.75 0.05 0.2 0.3
0.50 0.02 0.04 0.04
0.25 0.01 0.02 0.02

The bottom panels display the error in predicting the satellite mass by the
semi-analytical model compared to the mass resulting from the simulations.
The line colors correspond to varying satellite scale radii. Analogous to Fig.
4.4, solid lines depict the outcomes of our semi-analytical model characterized
by its optimized α parameter, while dashed lines (with the same color scheme)
represent the satellite mass predictions obtained using the instantaneous mass
truncation defined by King’s formula (Eq. 4.1). Our model appears to better
reproduce the satellite mass evolution, even within spherically symmetric host
systems. Notably, our model increasingly converges with the results of King’s
prescription as the initial satellite velocity approaches circularity. This align-
ment is expected and provides further validation of our model’s robustness.
Indeed, the scenario of a satellite galaxy orbiting within a spherical host with
a velocity akin to vc best matches the assumptions underlying King’s formula,
namely the distant tide approximation and the assumption of the satellite’s
motion along circular orbits.

the values of the best α parameter for the systems with a spherically sym-
metric host are listed in tab 4.2.

4.2.2 Models with dynamical friction

After assessing the capability of our model to replicate the effects of tidal strip-
ping in a fixed analytical potential, we extend our analysis to include models
where dynamical friction is considered. In this context, our study involves
satellite galaxies orbiting within a multi-component host galaxy. As detailed
in Table 4.1, the host galaxy in these models comprises a spherically symmetric
dark matter halo, incorporated as an analytical potential in N-body simula-
tions, and an exponential disk containing 4.4 × 107 stellar particles. Con-
sequently, the dynamical friction experienced by the satellite stars is solely
attributed to the disk component of the host galaxy. In contrast to the models
examined thus far, the introduction of dynamical friction, as described in de-
tail in the introduction, significantly influences the satellite’s orbital evolution,
which, in turn, plays a crucial role in shaping the tidal radius and consequently
determining the extent of mass removal.

The combined effect of dynamical friction and mass loss is illustrated in
Figure 4.7, where we report the result for one of the systems we tested (i.e. a
satellite orbiting within the galactic plane with initial velocity of vi = 0.25vc
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Figure 4.7: Left panels: time-evolution of the satellite’s distance from the center of the host
in the N-body simulation (black lines) compared to our semi-analytical model’s
predictions (colored solid lines). From top to bottom, each panel refers to differ-
ent values of α: 0.1, 0.2, and 1, respectively. Right panel : mass evolution of the
satellite in both N-body simulations and semi-analytical models, maintaining
the same color code as in the left panels. The gray dashed lines indicate the
minimum tidal radius among those evaluated along the 1000 different directions.

and as = 0.5 kpc). The left panels compare the satellite’s distance evolution
from the center of the host in the N-body simulation (depicted by the black
line) with our semi-analytical model’s predictions for three distinct α values
(each represented by a colored solid line in a separate panel). Correspondingly,
the right panel shows the satellite’s mass evolution in both N-body simulations
and semi-analytical models, maintaining the same color code as in the left
panels.

Among the models investigated, the one corresponding to α = 0.1 exhibits
the best agreement with both the satellite’s mass and orbital evolution. Con-
versely, models associated with higher values of α, corresponding to faster mass
loss, demonstrate an increasing deviation from simulations results. This dis-
crepancy arises from the rapid reduction in the satellite mass, which leads to
a weakening of the dynamical friction drag, consequently slowing down the
satellite’s decay towards the host center.

The best values of the α parameter for all the investigated systems fea-
turing a disc component in the host galaxy are summarized in Table 4.3. As
highlighted in the previous section, models devoid of dynamical friction ex-
hibit a consistent agreement between our semi-analytical model and N-body
simulations, independently of the scale radius and orbital inclination, with a
mild dependence on the initial orbital eccentricity only. Given this result, and
the fact that simulations involving a host disk composed of ≳ 107 particles
represent a quite high computational burden compared to simulations with en-
tirely analytical hosts, we opt to focus our investigation on systems featuring
a satellite with a fixed scale radius, as = 0.5 kpc, orbiting within the galactic
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Figure 4.8: Left panels: comparison between the evolution of the satellite’s CoM in both
N-body simulations and semi-analytical models, each using the best value for α.
The different panels correspond to the three different initial satellite’s velocities,
vi = 0.75vc, vi = 0.50vc and vi = 0.25vc from top to bottom. Right panel :
relative error in the evaluation of the satellite mass for the same values of the
initial velocities as a function of time. Different line colors indicate different
initial satellite velocities. The dashed vertical lines represent the initial time of
the semi-analytical models, which corresponds to the first apocenter, and are
colored using the same color code employed for the solid lines.

plane. The primary parameter under consideration is therefore the variation
in the satellite’s initial velocity.

The results are shown in Fig. 4.8. The left panels compare the evolution
of the satellite’s CoM in both simulations and in semi-analytical models, each
using the best value for α. From top to bottom, the different panels correspond
to the three different initial satellite’s velocities, vi = 0.75vc, vi = 0.50vc and
vi = 0.25vc. The right panel depicts the error in the evaluation of the satellite
mass for the same values of the initial velocity. The dashed vertical lines
represent the initial time of the semi-analytical models, which correspond to
the first apocenter, and are colored using the same color code as the solid lines.

As noted in the previous cases, a very good agreement is observed be-
tween the results obtained from N-body simulations and the predictions from
our semi-analytical models regarding the orbital evolution of the satellite and
the associated mass decrease. Notably, this accord is particularly evident for
systems featuring satellites on higher eccentric orbits, as consistently demon-
strated across all the investigated systems.

4.2.3 Test on models with satellites on low-eccentricity
orbits

In this section, we investigate in detail the processes contributing to the system-
atic overestimation of satellite mass in our semi-analytical model when com-
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Table 4.3: Values of the α parameter for each model featuring a disc component in the host
galaxy.

vi/vc θ
as

0.1 kpc 0.5 kpc 1 kpc

No Dynamical friction

0.75

0 0.2 0.2 0.1

π/6 0.3 0.2 0.5

π/3 0.3 0.2 0.4

π/2 0.5 0.5 0.4

0.50

0 0.1 0.1 0.1

π/6 0.3 0.4 0.3

π/3 0.3 0.3 0.3

π/2 0.3 0.4 0.3

0.25

0 0.05 0.1 0.1

π/6 0.1 0.3 0.2

π/3 0.1 0.3 0.2

π/2 0.1 0.3 0.1

Dynamical friction

0.75 0 - 0.1 -

0.50 0 - 0.1 -

0.25 0 - 0.1 -

pared to N-body simulations in systems harboring satellites on low-eccentricity
orbits. Two primary processes may account for this discrepancy. The first
involves tidal heating resulting from rapid changes in the host potential ex-
perienced by the satellite, as described in sec. 1.3.2. Another possible factor
is the satellite’s evaporation induced by mass truncation. During pericenter
passages, where the majority of stripping occurs, a substantial portion of the
satellite mass is expelled from the system, leading to truncation in the satellite
mass distribution. As a result, the satellite is no longer in equilibrium. As
it evolves towards a new equilibrium, its mass distribution expands, causing
stars with higher velocities to migrate to larger radii. As a consequence, the
satellite’s profile changes becoming less concentrated, thereby facilitating the
particles in the outer layers to become unbound. This results in a continuous
mass loss, even if the tidal radius undergoes minimal change, particularly along
quasi-circular orbits.

In order to discern the predominant process influencing the excess mass loss
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in the satellite, we conducted additional N-body simulations without dynam-
ical friction. This was done to exclude potential additional effects that could
contribute to the removal of mass from the satellite. The simulations were
executed considering only systems characterized by the lowest initial orbital
eccentricity, specifically with vi = 0.75vc , as these are the most affected by
the process under investigation. The satellite under consideration featured a
Hernquist mass distribution with as = 0.5. Instead of randomly oriented ve-
locities, we initialised stars in the satellite on perfectly circular orbits, ensuring
that no net rotation was imparted to the satellite as a whole.

To deal with the tendency of the velocities of the satellite stars to re-
isotropize, a reorientation of the particles’ velocities along the tangential di-
rection was performed at every apocenter. Importantly, this reorientation did
not alter the magnitude of the velocity vector, thus keeping the energies of the
stars unchanged. This approach prevents stars on radial orbits from rapidly
migrating towards larger radii, thereby restraining the overall evaporation of
the satellite. This approach enables the discrimination between the processes
driving the excess in satellite mass loss. If the dominant factor is satellite
evaporation, this methodology allows to reproduce the satellite mass evolu-
tion. Alternatively, if tidal heating is the primary driver, injecting energy into
the satellite and causing the stars to acquire sufficient energy to escape the
system, our simulation will still show an excess in the mass loss.

The results are shown in Fig. 4.9. Each panel illustrates the satellite mass
as a function of time for distinct orbital inclinations. The black dashed line
represents the satellite mass obtained through the new N-body simulations,
compared with the outcomes of the original N-body simulation presented in sec.
4.2.1, displayed as a black solid line. The colored lines depict the predictions
of our semi-analytical model for various values of α.

In all systems, a substantial reduction in the mass loss rate is observed.
Notably, the system harboring a satellite orbiting within the galactic plane
exhibits a satellite mass evolution now compatible with our semi-analytical
model, particularly for α = 0.05. Conversely, in systems with orbits outside
the galactic plane, although the reduction in satellite mass is more gradual
compared to the original N-body runs, the stripped mass still exceeds that
predicted by the semi-analytical models. This suggests that, at least within the
galactic plane, the reorientation of star velocities is sufficient to reconcile the
evolution with the semi-analytical model, indicating the dominance of satellite
evaporation in shaping the mass evolution. Outside the galactic plane, however,
tidal heating effects become significant and cannot be neglected.

Finally, it is important to emphasise that the fact that, in this work, tidal
heating is subdominant compared to the evaporation of the satellite, occurring
as a consequence of the tidal truncation, in determining the discrepancy be-
tween semi-analytical and simulation results in the satellite mass evolution, is
not necessarily a universally applicable result. Indeed, repeated tidal shocks,
occurring especially along elliptical orbits, could be substantially enhanced if
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there were a significant central mass concentration, such as in the presence of
dense bulges (see e.g., Gnedin et al., 1999) or in the case of dark matter halos
with a pronounced central concentration (see e.g., van den Bosch et al., 2018).
Therefore, it would be interesting to conduct future studies by extending the
current model to include a dense bulge structure at the center. This would
allow for the investigation of the effect of repeated tidal shocks on the satellite
mass evolution and determine when this effect becomes dominant compared to
tidal stripping in removing mass from the satellite.

4.3 Conclusions

We propose a novel semi-analytical framework for determining the tidal radius
and relative mass evolution of satellite galaxies during minor mergers. This
approach innovatively extends the definition of the tidal radius to account for
various host galaxy geometries and compositions, in contrast to conventional
definitions that apply only to circular orbits and assume a spherical host. Ad-
ditionally, the proposed prescription incorporates a delay in mass stripping and
accommodates eccentric orbits

We validated our prescription against N-body simulations, exploring the
parameter space by considering different initial orbital velocities, orbital in-
clination, and satellite scale radii. We also perform simulations in which we
account for dynamical friction.

Our model exhibited very good agreement with N-body simulations, ac-
curately reproducing satellite mass evolution across all tested satellite scale
lengths and orbital inclinations, particularly for systems with mild and high
eccentric orbits. Furthermore, our model generates more realistic predictions
of satellite mass evolution compared to those obtained using the King prescrip-
tion for the tidal radius. However, for systems with initial velocities close to
vc, a slight systematic overestimation of satellite mass loss was observed.

Excess mass loss in systems with satellites on low-eccentricity orbits is likely
influenced by two primary processes: tidal heating and satellite evaporation
due to mass truncation. Additional N-body simulations were conducted to in-
vestigate this effect, in which star velocities are reoriented along the tangential
direction at each apocenter.

In galactic plane orbits, reorienting star velocities reduces the excess mass
loss, aligning simulations with the semi-analytical model, indicating that the
satellite evaporation, coupled with the tidal stripping, dominates mass evo-
lution. Conversely, outside the galactic plane, a gradual reduction in excess
mass loss occurs, revealing significant contributions from both tidal heating
and satellite evaporation to the observed discrepancies in N-body simulations
and the semi-analytical model.
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Figure 4.9: Satellite mass as a function of time for systems with the reorientation of the
satellite star velocities at the apocenters. The four panels refer to different
orbital inclinations, from θ = 0 (leftmost panel) to θ = π/2 (rightmost panel).
The black dashed line represents the satellite mass obtained through the new N-
body simulations, compared with the outcome of the original N-body simulations
showed as a black solid line. The colored lines indicate the predictions of our
semi-analytical model for various values of α.
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5
Conclusions and outlook

In this thesis, I used advanced numerical techniques to study dynamical pro-
cesses related to the evolution of merging systems. On small scales, I investi-
gated the impact of the net rotation of a galaxy hosting a SMBHB as a possible
mechanism contributing to the solution of the Final Parsec Problem, according
to which, in spherical system, the binary hardening driven by encounters with
the stars is not efficient enough to allow the binary to reach the coalescence
within an Hubble time.

On larger scales, I investigated the tidal stripping-driven mass loss experi-
enced by a satellite galaxy when affected by tidal forces induced by a flattend
host galaxy.

5.1 Impact of the host galaxy rotation on SMBHB

hardening

In the first part of my work, I tested the effect of spherical rotating stellar
systems onto the dynamics of forming SMBHBs. While I am perfectly aware
that realistic rotating systems typically display some degree of flattening, I
investigated rotating spherical systems as this allowed to isolate the effect of
rotation, avoiding additional effects possibly caused by the the global torques
induced by deviations from spherical symmetry1.

I found that prograde binaries (i.e. binaries with an angular momentum
aligned with the net angular momentum of the stellar core) are forced out of
the centre of their host galaxies due to the interaction with their background.
The CoM of prograde binaries starts moving on quasi-circular orbits around
the centre of the stellar core. Such motion is considerably larger than the typ-
ical Brownian wandering experienced by SMBHBs evolving in isotropic back-
grounds, and introduces a time-dependence in loss-cone of the binaries, that

1Note that Holley-Bockelmann & Khan (2015) and Khan et al. (2020) do indeed have
flattened systems, but the rotation in their models is artificially introduced using our same
procedure.
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remains full during their whole shrinking. I demonstrated through dedicated
numerical experiments that such results (the enhanced binary CoM wandering
and the fast hardening rate) are not valid for retrograde binaries nor for single
SMBHs: indeed the artificial merger of a wandering prograde SMBHB leads to
the return of the SMBH remnant to the centre of the system, demonstrating
that the physical process driving the CoM motion is the energy and angular
momentum exchange between (prograde) binaries and single stars.

This investigation improves upon the previous papers presenting the circling
of the binary CoM and the binary enhanced hardening evolving in rotating
axi-symmetric systems (Holley-Bockelmann & Khan, 2015; Khan et al., 2020;
Mirza et al., 2017) in two respects: (1) The deviations from spherical symmetry
in the initial condition of such seminal investigations prevented a clear identi-
fication of the physical driver of the observed binary evolution. Indeed, in such
geometries the global torques exerted by the whole stellar distribution onto
single stars could play a role in the refilling of the loss-cones of the SMBHBs
(but see Vasiliev et al., 2015, for a different point of view). With my simplified
(spherical) stellar distribution I proved that rotation alone can cause both the
SMBHB circling and the boosted hardening observed; (2) I complemented my
numerical study with a phenomenological analytical model that reproduces the
evolution of the binary CoM observed in the prograde runs, strengthening the
proposed physical interpretation of the behaviours observed in the simulations.

A remarkable difference between my results and those obtained by Holley-
Bockelmann & Khan (2015) regards the hardening rates of retrograde binaries.
In the rotating-spherical scenario I find that retrograde binaries shrink at a sig-
nificantly slower pace than their prograde counterparts, while such difference is
not observed in the rotating-flattened scenario discussed by Holley-Bockelmann
and collaborators. In my analytical model the different behaviours are due to
the absence of any binary CoM motion larger than the Brownian motion typ-
ically observed in isotropic systems, that prevent any significant collisionless
loss-cone refilling associated to the motion of the binary CoM. The disagree-
ment with the findings of Holley-Bockelmann & Khan (2015) could, in princi-
ple, be due to the different geometries of the stellar distributions, motivating
further modeling of axi-symmetric systems.

My analytical model and numerical experiments agree on the fact that
SMBHBs experience the most external angular momentum growth right after
their formation, at large semi-major axes. This implies that binaries form-
ing with their internal angular momentum significantly offset from that of the
surrounding environment would neither experience the CoM circling nor the
enhanced hardening2, as they would have shrunk their semi-major axis sig-
nificantly before getting aligned with the environmental angular momentum.
It is however possible that, in systems with a significant amount of rotation
at large scales, the internal angular momentum of the forming binaries is al-

2But see the discussion above about the comparison with Holley-Bockelmann & Khan
(2015).
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ready aligned with the angular momentum of the surrounding environment.
Such configurations are expected even for initially strongly misaligned galaxy
mergers, as (1) at large scale dynamical friction onto rotating systems would
act on the massive bodies dragging them towards a prograde, circular orbit
(e.g. Bonetti et al., 2021a, 2020a; Dotti et al., 2006), and (2) the same process
can take place even at smaller scales immediately before the binary formation
(Gualandris et al., 2012b; Khan et al., 2020; Mirza et al., 2017; Sesana et al.,
2011).

Outlook

The relevance of the background rotation for the evolution of SMBHBs depends
ultimately on the typical dynamical properties of their hosts. For light host
galaxies hosting light SMBHs 105−107M⊙, in the mass range detectable by the
forthcoming LISA mission, clear rotation is commonly observed at low redshift
both at galactic and sub-kpc scales (e.g. Kormendy, 2013). It is yet unclear for
which mass ratios and up to which redshift the same rotationally dominated
structures are expected in galaxy mergers. Dedicated observational studies
and detailed analyses of cosmologically motivated galaxy merger simulations
are needed to properly gauge the impact of the presented results on the whole
population of SMBHBs.

Ideed, in lighter, often disc-dominated, galaxies the central regions are typ-
ically dominated by secular bulges, as boxy-peanut bulges (usually interpreted
as the evolution of the central region of a bar) or discy pseudobulges (flat
structures supposedly formed as a consequence of secular gas inflows). Both
structures present clear deviations from spherical symmetry and substantial net
rotation (see e.g. Kormendy, 2013; Sellwood & Wilkinson, 1993) and, therefore,
are not properly modelled by our simplistic assumptions. It should be stressed,
however, that typical observations of galactic nuclei are limited by the angular
resolution of the instrument used, and that the redshift of galaxy merger most
relevant for LISA is expected to be large (> 1), so that the ∼ pc surroundings
of the binary is typically not resolved. The analysis of nearby galaxies (includ-
ing our own Milky way, that present a clear rotation in its innermost pc (Ghez
et al., 2008) or of very high resolution (zoom-in) cosmological simulations could
shed further light on the innermost dynamics of small mass systems.

5.2 Tidal stripping in minor mergers

In the second part of the present work, I focused on minor galaxy mergers,
specifically investigating the mass loss experienced by the satellite galaxy due
to tidal stripping while merging with a disc-like primary galaxy.

In this context, we propose a new semi-analytical prescription for the tidal
radius and the relative mass evolution of satellite galaxies in minor mergers.
The novelty of the proposed approach primarily lies in the generalization of the
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definition of the tidal radius to be adaptable for any geometry and composition
of the host galaxy. This is in contrast to traditional definition of the tidal radius
(King, 1962) provided for circular orbits and spherical hosts. The prescription
also accounts for a delay in mass stripping and allows for eccentric orbits.

I validated my prescription against N-body simulations. In order to isolate
the effects of tidal forces, I firstly consider systems unaffected by dynamical
friction, by considering systems composed of a spherically symmetric satellite
orbiting within the analytical potential of an exponential-disk host. I explored
the parameter space by considering different initial orbital velocities, orbital
inclination, and satellite scale radii.

For each tested system, I select the semi-analytical model characterized
by the α parameter - which regulates the rapidity of mass loss in my semi-
analytical model, with higher values related to faster mass loss- that better
reproduces the mass evolution of the satellite in N-body simulations. I found
a mild dependence of the best α with the initial orbital velocity, while no
significant dependencies are notable with the satellite scale radius and orbital
inclination. Lower values of α were associated with more eccentric orbits,
reflecting the need for a larger delay in mass loss due to faster pericenter
passages.

The proposed model model demonstrated excellent agreement with N-body
simulations, accurately reproducing satellite mass evolution, especially for sys-
tems with mild and high eccentric orbits. However, for systems with initial ve-
locities close to vc, a slight systematic overestimation of satellite mass loss was
observed. This excess is likely due to two primary processes: tidal heating and
satellite evaporation induced by mass truncation. To delve into this discrep-
ancy, additional N-body simulations were conducted, where at each apocenter
I reorient star velocities along the tangential direction.

In systems where the satellite orbits within the galactic plane, the reorien-
tation of star velocities mitigates the excess mass loss, aligning the simulation
results with the predictions of the semi-analytical model. This suggests that,
within the galactic plane, together with tidal stripping, satellite evaporation
plays a dominant role in shaping the mass evolution.

However, outside the galactic plane, the reduction in excess mass loss is
more gradual, as tidal heating effects become significant. This indicates that, in
these configurations, both tidal heating and satellite evaporation contribute to
the observed discrepancies between N-body simulations and the semi-analytical
model.

Moreover, for orbits within the galactic plane, I compared the semi-analytical
prescription for the satellite mass evolution with the instantaneous mass loss
predicted using the King’s formula in reproducing the results of N-body simu-
lations. I found that the proposed model better reproduces the mass evolution
in the simulations. I stress that outside the galactic plane - and in general in
every non central potential- the King’s tidal radius is not well defined.

To further test the validity of the proposed model and conduct a direct
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comparison of its ability to reproduce the results of N-body simulations with
those obtained using the standard King’s formula, I performed a set of simu-
lations where the satellite galaxy orbits within a spherically symmetric host. I
tested the same initial orbital velocities and scale radii lengths as in the case
of a disc host. I found that, also in the case of a spherical host, my model
better reproduces the results of simulations. Interestingly, the predictions of
my model converge to those of the King’s formula for lower initial velocities.
This further confirms the robustness of my model since the scenario of a satel-
lite orbiting within a spherical host on quasi-circular orbits best matches the
assumption underlying the King’s formula, thus representing the situation in
which the King’s formula is expected to be more reliable.

I then consider systems with both tidal stripping and dynamical friction
effects. The semi-analytical model accurately reproduces both the orbital evo-
lution and mass loss of the satellite.

These findings provide valuable insights into the complex interplay of tidal
forces, dynamical friction, and the orbital parameters of satellite galaxies. Un-
derstanding these processes is crucial for accurately modelling the evolution of
satellite galaxies within their host galactic environments.

Outlook

The model developed thus far for the mass evolution of a satellite galaxy in
a minor merger incorporates the influences of a slowly varying external tidal
field. However, as demonstrated by my simulations, tidal heating can play a
substantial role in eroding the satellite’s mass, particularly when the external
potential experienced by the satellite changes rapidly over time. To address the
evolution of the mass of satellite galaxies in minor mergers more comprehen-
sively, I am planning to incorporate a detailed prescription for mass loss due to
tidal heating effects into my existing model. While, efficient prescriptions for
tidal shockings in sperically symmetric host are available in literature, as the
one proposed by Gnedin et al. (1999), the situation differs for disk-shaped host
galaxies. Indeed, when the primary galaxy is a disk and the smaller compan-
ion galaxy orbits out of the galactic plane, tidal shocks manifest as repeated
pinchings of the satellite along the normal direction with respect to the disk
plane, each pinching occurring during orbital crossing with the galactic plane.
This specific kind of tidal shocking are often referred to as disk shocking. In
this case, the prescription proposed in literature for estimating the energy
gain of the satellite stars determining the amount of material which will be
consequently unbound, is made under the simplistic distant tide approxima-
tion (see e.g. Binney & Tremaine, 2008). For this reason, while for spherical
hosts I am planning to implement in my model the standard treatment for
the tidal-heating-driven energy gain and mass loss, I would develope a more
general prescription in the case of disk shocking, which also account for close
encounters.

In a broader context, galaxies experience morphological evolution through-
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out cosmic time due to secular evolution. This evolutionary process may result
from interactions between the galaxy and its environment, such as gas accre-
tion or galaxy harassment, or it can be initiated by internal factors such as the
presence of spiral arms or bars. In this context, I am currently working on a
prescription for the cosmological evolution of the primary galaxy during the
pairing phase. For this purpose, I integrated into the MORDOR code (Zana
et al., 2022) the computation of half-mass radii for each galactic component,
including the bulge, pseudo-bulge, thin and thick discs, and a dark matter
halo. I am employing this modified version of MORDOR on Illustris TNG50
snapshots (Nelson et al., 2019) to reconstruct and characterize the evolution
of each galaxy component over cosmic time. Through this analysis, it will be
possible to construct a semi-analytical model for the cosmological evolution
of the entire galaxy to study how the cosmological evolution of the primary
galaxy affects the dynamics of minor mergers.

Possible applications

Once the comprehensive model for the evolution of satellite mass under the
influence of tidal forces exerted by the host galaxy is completed, including
the tidal heating effects, and properly validated, the next step would be to
implement it in a semi-analytical code. Among the various options available,
L-Galaxies stands out as a particularly suitable choice. Originally developed
in the 1990s by White (1989), White & Frenk (1991), and Kauffmann et al.
(1999, 1993), L-Galaxies is a C++ based semi-analytic simulation operating
at cosmological scales. It simulates the evolution of galaxies using “merger
trees” derived from N-body simulations of hierarchical structure formation in
dark matter halos. The semi-analytic approach of L-Galaxies facilitates effi-
cient modelling of millions of galaxies from the early Universe to the present
day, surpassing the computational efficiency of hydrodynamical simulations
of similar scale. This capability makes L-Galaxies well-suited for validating
astrophysical models and conducting statistical analyses on significant galaxy
samples. These analyses include investigations into various properties of galax-
ies and the supermassive black holes they host. Implementing my new model
for the tidal disruption of satellite galaxies within L-Galaxies, could signifi-
cantly enhance the predictive power of semi-analytic simulations, particularly
in the context of minor mergers.

Another promising application of my semi-analytical model consists in aug-
menting large scale cosmological simulations, such as the Illustris TNG (Nelson
et al., 2018). In these simulations, numerous minor mergers are observed to
occur, however their resolution may become inadequate to track the late stages
of these events as the satellite galaxies become unresolved. By utilizing data
on the properties of the satellite and host galaxy mass distributions, along with
the satellite’s position and velocity as initial conditions for my semi-analytical
model, it would be possible to predict the later phases of the merger and de-
termine the ultimate fate of the satellite and if present, of the MBH embedded
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within it.
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