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Abstract: Building Performance Simulation extensively uses statistical learning techniques for quicker
insights and improved accessibility. These techniques help understand the relationship between
input variables and the desired outputs, and they can predict unknown observations. Prediction
becomes more informative with uncertainty quantification, which involves computing prediction
intervals. Conformal prediction has emerged over the past 25 years as a flexible and rigorous
method for estimating uncertainty. This approach can be applied to any pre-trained model, creating
statistically rigorous uncertainty sets or intervals for model predictions. This study uses data from
simulated buildings to demonstrate the powerful applications of conformal prediction in Building
Performance Simulation (BPS) and, consequently, to the broader energy sector. Results show that
conformal prediction can be applied when any assumptions about input and output variables are
made, enhancing understanding and facilitating informed decision-making in energy system design
and operation.

Keywords: building performance simulation; statistical learning; random forest; uncertainty
estimation; conformal prediction

1. Introduction

Integrated energy systems consist of different components that interact through vari-
ous energy pathways. Understanding how these systems perform under changing condi-
tions, where user demand and energy prices fluctuate, requires a simulation tool [1].

Building Performance Simulation (BPS) [2] shows the potential to provide valuable
design insights by suggesting design solutions. These tools are extensively utilized across
various fields because they allow experimentation with parameters otherwise impractical
or challenging to control in real-world settings. Employing sophisticated, specialized
building energy simulation software can offer valuable solutions for estimating the effects
of various building design options. Nonetheless, this approach can be highly time-intensive
and demands expertise from users in a specific program. Furthermore, simulation tools
face challenges due to the complexity of parameters and factors like nonlinearity, strong
interactions, and uncertainty.

Hence, in practical applications, numerous researchers employ statistical learning
methods to evaluate the influence of different building parameters (such as compactness)
on specific variables of interest (such as energy consumption). A possible example can be
found in Tsanas et al. (2012) [3]. This approach is frequently preferred due to its reduced
computational burden and increased accessibility, mainly when a database is accessible.
By harnessing statistical learning principles, advanced methods can be utilized to analyze
and explore the energy efficiency of buildings, enabling swift comprehension of the impacts
of diverse building design parameters once the model is appropriately trained. To this end,
statistical analysis can enrich comprehension by gauging the relationship between input
variables (i.e., covariates, predictors, or input) and the desired output (i.e., target, response
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variable, or outcome), identifying the most influencing variables [4]. The incorporation of
statistical learning in energy performance analysis has generated substantial interest.

In supervised statistical learning applications, the goal is to make point predictions
that closely approximate the actual values of continuous processes. Point predictions
are singular values that best estimate a future output based on historical data. They are
commonly used in scenarios where the objective is to predict a continuous variable, such as
the heating and cooling loads. While point predictions are valuable, prediction can be more
informative if represented by probability distributions. In this approach, the quantification
of uncertainty [5–7] allows for more informed energy analysis.

Uncertainty assessment has gained increasing significance in the context of building
energy analysis. Uncertainty analysis in BPS is more related to estimating the impact of
input variables on the output considered. For example, Tiana et al. (2018) [8] presented
different approaches and applications for controlling and understanding the uncertainty
coming from input variables. This is primarily due to the unpredictability of key factors that
impact building performance, such as occupant behavior and the thermal characteristics of
building envelopes. Uncertainty analysis has been widely utilized in various domains of
building energy analysis, encompassing model calibration, life cycle assessment, analysis
of building stock, evaluation of climate change impact and adaptation, sensitivity analysis,
spatial analysis, and optimization.

As mentioned, uncertainty is connected with the estimation of statistical prediction
intervals. Different techniques are available in the literature for building prediction intervals
as reviewed by Tian et al. (2022) [9]. As confidence intervals are used to quantify uncertainty
about parameters and functions of parameters, prediction intervals offer a natural method
for quantifying prediction uncertainty. Traditional prediction intervals have limitations
regarding distributional or model assumptions that limit their use in real applications.

Over the past 25 years, a new method for prediction interval quantification, the so-
called conformal prediction (CP), has been introduced and developed. In their study, Vovk
and colleagues (2009) [10] introduced a sequential method for constructing prediction
intervals, forming the foundation for developing the conformal prediction framework.
Conformal prediction (CP), also referred to as conformal inference, represents a user-friendly
paradigm for establishing statistically robust uncertainty sets or intervals for model pre-
dictions. Essentially, CP utilizes prior knowledge to develop accurate confidence levels in
new predictions. This approach is versatile, as it can be implemented with any pre-trained
model, including neural networks or random forests, to produce prediction sets that are
guaranteed to contain the actual value with a specific probability, such as 90%.

The main contribution of this work is to leverage data from simulated buildings
to demonstrate the robust potential of conformal prediction in Building Performance
Simulation (BPS) and its broader implications for the energy sector. To achieve this, data
from 768 simulated buildings will be utilized [3]. Initially, we will develop a heating and
cooling load prediction model using the available input variables. Following that, we will
build prediction intervals for the target variables based on the split conformal prediction
method as described in the work by Lei et al. (2018) [11]. The results indicate that conformal
prediction can be effectively applied across various input and output variable assumptions,
thereby improving understanding and facilitating well-informed decision-making in the
design and operation of energy systems.

This paper is organized as follows. Section Related Literature presents the related
literature. Section 2 introduces the methodological framework and theory underlying
conformal prediction. In Section 3, we present the simulation study. First, we compare
different statistical learning models, and then we focus our analysis on hyper-parameter
tuning for random forests. Section 4 discusses the primary advancements in conformal
prediction, and Section 5 concludes the work.
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Related Literature

In practical applications, high accuracy in predicting continuous variables, such as
cooling or heating demands, is often the main objective. Point prediction is surely really
important; however, the estimation of predictive uncertainty permits more informed
decision-making under conditions of uncertainty.

In statistics, predictive uncertainty can be computed mainly with two approaches:
(i) identifying the frequentist prediction intervals [12] and (ii) estimating the posterior
predictive distribution for Y (i.e., target or output variable) in the Bayesian framework [13].

For Building Performance Simulation (BPS), many efforts have been made to quantify
predictive uncertainty in the output variable. In the work of Zhang et al. (2020) [14],
the authors proposed a generic prediction interval estimation method for the uncertainty
estimation of predicted cooling loads based on quantile estimation. A dataset of real build-
ing consumption based on China, more precisely, Shenzhen, is used to test the proposed
approach. Similarly, Dong et al. (2022) [15] proposed an interval prediction method based
on kernel density estimation for cooling loads. In this study, the data were collected by
the University of Texas, Austin. In the context of structural design simulation models,
Shabbir et al. (2024) [16] proposed the use of Artificial Neural Networks (ANNs) to esti-
mate prediction intervals for evaluating the seismic performance of buildings exposed to
long-term ground motion.

An example of using the Bayesian framework can be found in the work of Braulio-
Gonzalo et al. (2016) [17]. In this work, the authors use Bayesian inference for the prediction
of building energy performance by exploiting EnergyPlus (US Department of Energy.
EnergyPlus https://energyplus.net/ (accessed on 26 August 2024)) software (version
8.10). EnergyPlus is used in combination with the Design Builder interface. The software
computes the response variables—namely, energy demand for heating and cooling, as well
as discomfort hours for both heating and cooling. These calculations are performed for a
set of simulated buildings characterized by a combination of input variables, including
year of construction, building shape factor, solar orientation, street height–width ratio,
and urban block type. The results from these simulations are then used as input data to
develop the prediction models. An interesting area of research based on Bayesian inference,
and consequently on Bayesian predictive distribution, can be found on building energy
performance calibration [18].

Inspired by the work of LeRoy et al. (2021) [19], in this work, we propose for the
first time the use of conformal inference for uncertainty estimation of the predicted target
variables under consideration in BPS.

2. Conformal Prediction

In this section, following the work of Lei et al. (2018) [11], we briefly introduce the
methodological aspect of conformal prediction for regression.

Given independent and identically distributed (i.i.d.) regression data Zi = (Xi, Yi)
n
i=1

drawn from a distribution P, where each Zi consists of an outcome Yi and a d-dimensional
input vector Xi = (Xi(1), . . . , Xi(d)), we aim to predict the outcome Yn+1 for a new input
vector Xn+1. For an example of regression processing from an application point of view,
please see [20].

The final aim is to build a prediction interval C ⊂ Rd ×R, that is:

P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α, (1)

where α is a specified miscoverage level. The probability P(Yn+1 ∈ C(Xn+1)) is computed
on n + 1 i.i.d. draws Z1, . . . , Zn, Zn+1 ∼ P. For an observation x ∈ Rd, C(x) represents the
set of possible responses y ∈ R such that (x, y) ∈ C. The prediction band should have
finite-sample (nonasymptotic) validity without assumptions on P.

A possible simple approach for building a prediction interval for Yn+1 could be the
following one. Now, we consider Yn+1 at the new outcome Xn+1, with (Xn+1, Yn+1) being

https://energyplus.net/
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an independent sample taken from P. Given the previous description, a possible way to
build a prediction interval is:

Cnaive(Xn+1) =
[
µ̂(Xn+1)− F̂−1

n (1 − α), µ̂(Xn+1) + F̂−1
n (1 − α)

]
, (2)

where µ̂ is the regression function estimator, and F̂n is the empirical distribution of the
difference between observed outcome values and predicted one (i.e., fitted residuals)
|Yi − µ̂(Xi)| for i = 1, . . . , n. The term F̂−1

n (1 − α) represents the (1 − α)-quantile of F̂n.
In the case of a great sample, the interval is approximately valid if µ̂ is reliable. Specifically,
this means that the estimated (1 − α)-quantile F̂−1

n (1 − α) of the fitted residual distribu-
tion should be close to the (1 − α)-quantile of the population residuals |Yi − µ(Xi)| for
i = 1, . . . , n. Guaranteeing this level of precision for µ̂ typically necessitates proper regu-
larity conditions on the underlying data distribution P and on µ̂ itself. These conditions
include having a correctly specified model and selecting appropriate tuning parameters.

Generally, the naive approach (Equation (2)) may significantly underestimate uncer-
tainty due to potential biases in the fitted residual distribution. Conformal prediction
intervals address these limitations of naive intervals. Remarkably, they ensure proper finite-
sample coverage without making any assumptions about P or µ̂, except that µ̂ behaves as a
symmetric function of the data points.

We now use an alternative approach. For each y ∈ R, we develop an estimator of the re-
gression function µ̂y, based on an enlarged (i.e., augmented) set of data Z1, . . . , Zn, (Xn+1, y).
Next, specify

Ry,i = |Yi − µ̂y(Xi)| for i = 1, . . . , n, and Ry,n+1 = |y − µ̂y(Xn+1)|, (3)

and order Ry,n+1 among the remaining fitted residuals Ry,1, . . . , Ry,n. Then, compute

π(y) =
1

n + 1

n+1

∑
i=1

1{Ry,i ≤ Ry,n+1} =
1

n + 1
+

1
n + 1

n

∑
i=1

1{Ry,i ≤ Ry,n+1}, (4)

the fraction of points in the augmented sample with a fitted residual less than the last,
Ry,n+1. 1{·} denotes the indicator function.

Given the data exchangeability and the symmetry of µ̂ on y = Yn+1, the constructed
statistic π(Yn+1) is uniformly distributed over the set {1/(n + 1), 2/(n + 1), . . . , 1}.
This indicates

P((n + 1)π(Yn+1) ≤ ⌈(1 − α)(n + 1)⌉) ≥ 1 − α, (5)

implying that 1 − π(Yn+1) is a suitable (conservative) p-value for the hypothesis test
condition H0 : Yn+1 = y.

By reversing the test for all y ∈ R, we obtain the conformal prediction interval at Xn+1:

Cconf(Xn+1) = {y ∈ R : (n + 1)π(y) ≤ ⌈(1 − α)(n + 1)⌉}. (6)

The process must be repeated for every prediction interval at a new input value.
In practice, we limit the consideration in Equation (2) to a discrete set of trial values y.

When constructed in this way, the conformal prediction band in Equation (2) guaran-
tees valid finite-sample coverage and accuracy, preventing significant over-coverage.

As previously discussed, the original conformal prediction method demands signif-
icant computational resources. For any Xn+1 and y, determining whether y belongs to
Cconf(Xn+1) requires training the model again on the new enlarged dataset that contains
the new observation (Xn+1, y), and to calculate and order once again the absolute residuals.

An alternative approach, the so-called split conformal prediction, is also available in
the literature. This method is entirely general, with only a fraction of the computational
cost of the full conformal method. This method segments the two phases of the previous
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procedure, more precisely, fitting and ranking, by considering sample splitting by creating
an inference set and a learning or calibration set. This split leads to a computational cost equal
to the fitting time of the chosen model.

Its principal coverage properties are as follows: if (Xi, Yi), i = 1, . . . , n are independent
and identically distributed, then for a new i.i.d. observation (Xn+1, Yn+1),

P
(

Yn+1 ∈ Csplit(Xn+1)
)
≥ 1 − α, (7)

where Csplit is the split conformal prediction interval build based on Algorithm 1 [11].
Furthermore, if we also assume that the residuals Ri, i ∈ I2, where I2 is the calibration set,
have a continuous joint distribution, then

P
(

Yn+1 ∈ Csplit(Xn+1)
)
≤ 1 − α +

2
n + 2

. (8)

Aside from its substantial computational efficiency relative to the initially described
method, the presented modification can also offer advantages regarding memory require-
ments. See Lei et al. (2018) [11] for more details.

Algorithm 1 Split conformal prediction.

Input:
Dataset (Xi, Yi), i = 1, . . . , n
Supervised learning model µ̂
Miscoverage level α ∈ (0, 1)
Output: Prediction band, over x ∈ Rd

Step 1: Randomly split {1, . . . , n} into equal-sized subsets I1, I2
Step 2: Train µ̂I1 = µ({(Xi, Yi) : i ∈ I1})
Step 3: Compute the score function (e.g., residuals) Ri = |Yi − µ̂I1(Xi)| : i ∈ I2
Step 4: Sort {Ri : i ∈ I2} in increasing order R(1) ≤ · · · ≤ R(n/2)
Step 5: Compute d = R(k) that is the k-th smallest value in {Ri : i ∈ I2},
where k = ⌈(1 − α)(n/2 + 1)⌉
Return: Csplit(x) = [µ̂I1(x)− d, µ̂I1(x) + d], for all x ∈ Rd

3. Prediction Intervals for Building Performance Simulation

In this work, we exploit the data presented by Tsanas et al. (2012) [3] (Data are avail-
able at https://archive.ics.uci.edu/dataset/242/energy+efficiency (accessed on 26 August
2024)). To summarize, they generated 12 different buildings using simple combinations
of elements (i.e., cubes), resulting in 720 building samples with varying surface areas and
dimensions. All buildings have the same volume (771.75 m3) but differ in other character-
istics. The building materials chosen for their common use and low U-values consist of
walls, floors, roofs, and windows. The simulations assume residential conditions in Athens,
Greece, with seven occupants engaging in sedentary activities (70W). Internal design con-
ditions include specific clothing (0.6 clo), humidity (60%), airspeed (0.30 m/s), and lighting
level (300 Lux). Internal gains are set at sensible (5) and latent (2 W/m2), with an infiltration
rate of 0.5 air changes per hour and a wind sensitivity of 0.25. Thermal properties are
configured with 95% efficiency, a thermostat range of 19 °C to 24 °C, and operational hours
of 15–20 on weekdays and 10–20 on weekends. The buildings feature three types of glazing
areas (10%, 25%, and 40% of floor area) distributed across five scenarios (uniform, north,
east, south, and west) for each glazing type. Additionally, samples without glazing are
included. All building forms are simulated in four orientations (facing the four cardinal
points), resulting in 768 unique building configurations (720 with glazing variations and
48 without).

For each building, the following data about relative compactness (X1), surface area
(X2), wall area (X3), roof area (X4), overall height (X5), orientation (X6), glazing area (X7),
and glazing area distribution (X8) are gathered. Furthermore, the heating load (HL) and

https://archive.ics.uci.edu/dataset/242/energy+efficiency
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cooling load (CL) are stored and considered target variables. Respectively, Y1 and Y2.
Figure 1 shows the distribution of HL and CL.

In this work, we first compare statistical learning models for predicting HL and CL
target variables and compute split conformal prediction intervals for uncertainty estimation.
The comparison is made using Mean Squared Error (MSE), empirical coverage, and the
length of the prediction interval. Empirical coverage is the average number of times the
actual value of the target variable falls within the conformal prediction interval. The length
of the prediction interval is the difference between the upper and lower conformal bounds.

Next, we demonstrate tuning a specific statistical learning model based on prediction
accuracy and split conformal prediction intervals. This latter experimental simulation is
also used to empirically verify that conformal inference guarantees reliable coverage under
the assumption of independent and identically distributed (i.i.d.) data.

The experiments are executed on an Intel Core i5-1035G4 CPU with a base clock speed
of 1.10 GHz, 4 cores, and 8 threads. The code is written in R language programming [21] (R
version 4.3.2), and the conformalInference [22] (version 1.1), randomForest [23] (version
4.7-1.1), neuralnet [24] (version 1.44.2), and e1071 [25] (version 1.7-14) packages are used
(All codes are available at https://github.com/matteoborrotti/conforma-prediction-for-
Building-Performance-Simulation.git (accessed on 26 August 2024)).

(a) Heating load distribution. (b) Cooling load distribution.

Figure 1. Density function of heating and cooling load variables.

3.1. Comparison of Statistical Learning Models

Predicting energy consumption is a crucial task in performance monitoring, and ac-
curate predictions are essential for Building Performance Simulation (BPS). The literature
provides various comparative analyses of statistical and machine learning techniques for
BPS. For example, Chakraborty et al. (2018) [26] present a comprehensive overview of the
workflow for applying statistical learning techniques in BPS, detailing the intermediate
procedures for feature engineering, feature selection, and hyper-parameter optimization.

Similarly, in this work, we compare different approaches for predicting heating load
(HL) and cooling load (CL) target variables. We also analyze these approaches using
split conformal prediction intervals. Specifically, we apply forward stepwise regression
(stepwise), support vector machine (SVM) [27], random forest (RF) [28], and neural net-
work (NN) [29]. Forward stepwise regression and random forest are included in the
conformalInference package. For SVM, and NN, we create ad hoc functions to integrate
these statistical learning techniques into the conformalInference package.

All techniques are used with the default settings of the respective R packages. For clar-
ity, forward stepwise regression is used with a maximum of 20 steps for variable selection.
The SVM kernel is set to linear. The number of trees grown in the random forest (RF) is set
to 500, with 2 variables randomly sampled at each split in constructing the decision trees

https://github.com/matteoborrotti/conforma-prediction-for-Building-Performance-Simulation.git
https://github.com/matteoborrotti/conforma-prediction-for-Building-Performance-Simulation.git
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(m). The NN architecture is a feed-forward NN with one hidden layer and 8 nodes. For all
other parameters, please refer to the original R packages.

The results are summarized in Tables 1 and 2. Average values for test Mean Squared
Error (MSE), empirical average coverage, and average length of conformal intervals are
reported. All results are averaged over 50 repetitions, with standard deviations provided
in parentheses.

Table 1 presents the values for the target variable Y1. Forward stepwise regression and
SVM perform similarly, likely due to using a linear kernel for SVM, which fails to capture
the nonlinear nature of the phenomenon. The two best models are RF and NN, with NN
outperforming all other models. In this case, coverage is ensured by all the methods used.
The average interval length indicates that forward stepwise regression and SVM are more
uncertain in predicting the target variable Y1. In contrast, the predictions of RF and NN are
more accurate.

Table 1. Average values for test MSE, empirical average coverage, and average length for heat-
ing (Y1) target variable results are averages over 50 repetitions. Standard deviations are reported
in parentheses.

Models Test MSE Empirical Coverage Length of Intervals

Neural Net 0.48 (0.23) 0.90 (0.02) 2.09 (0.53)
Random Forest 1.75 (0.19) 0.91 (0.01) 4.07 (0.87)

Stepwise 8.58 (0.19) 0.91 (0.02) 11.83 (0.45)
SVM 8.54 (0.15) 0.92 (0.02) 12.33 (0.87)

All models are less reliable regarding the predictions of the target variable Y2 (see
Table 2). Forward stepwise regression and SVM are confirmed as the two methods with the
worst results across all considered metrics. The behavior of RF and NN differs from the
previous case. While NN is the best method for predicting Y1, for Y2, the two methods are
equivalent. RF proves to be slightly more stable, presenting a lower standard deviation
than NN.

Table 2. Average values for test MSE, empirical average coverage, and average length for heating (Y2)
target variable results over 50 repetitions. Standard deviations are reported in parentheses.

Models Test MSE Empirical Coverage Length of Intervals

Neural Net 3.04 (0.63) 0.92 (0.02) 6.84 (0.69)
Random Forest 3.41 (0.20) 0.91 (0.01) 6.85 (0.42)

Stepwise 10.80 (0.24) 0.88 (0.02) 10.88 (1.15)
SVM 10.71 (0.16) 0.89 (0.01) 10.52 (1.08)

Figure 2 shows the distributions of the MSE test values and empirical coverage over
50 repetitions using boxplots. Figure 2a,b show the performance of the methods on the
target variable Y1, while Figure 2c,d show the performance on the target variable Y2.
The previous observations made from the results in Tables 1 and 2 are confirmed here.
Forward stepwise regression and SVM fail to capture the nonlinear relationship between
target and input variables, resulting in the worst performance. NN and RF are the two best
methods, with NN proving to be the best for predicting Y1. For Y2, the two methods
are equivalent, though NN is slightly better. However, RF is more stable due to the low
variability of the boxplots in terms of MSE test values.

Given these considerations—the equivalence of the two methods in the more challeng-
ing task of predicting Y2 and the greater stability of RF—we are confident that optimizing
the RF hyper-parameters will yield better results.
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(a) Average test MSE. (b) Average empirical coverage.

(c) Average test MSE. (d) Average empirical coverage.
Figure 2. Comparison of prediction performance and conformal prediction intervals both for target
variables Y1 and Y2. Figures (a,b) show the results for Y1. Figures (c,d) show the results for Y2. Results
represent an average of over 50 repetitions.

3.2. Hyper-Parameter Optimization

Conformal prediction offers reliable coverage under no assumptions other than i.i.d
data. We now empirically study this property and the behavior of the conformal pre-
diction interval by optimizing the hyper-parameter m of the random forest model [28].
The hyper-parameter m controls the number of variables randomly sampled at each split
in constructing the decision trees. m ranges between 2 and 8, where m = 8 corresponds
to a Bagging model [30]. Conformal prediction intervals are computed and analyzed for
heating (Y1) and cooling load (Y2) variables. All results are averages over 50 repetitions.
Additionally, all intervals are computed at the 90% nominal coverage level using a split
conformal prediction that is valid under no assumptions.

In both cases (Figures 3 and 4), it is observed that across all settings, regardless of
test error performance, the coverage of the conformal intervals consistently approximates
the nominal level of 90%. Additionally, the interval lengths vary concerning the target
variables, demonstrating a strong correlation with test errors [11].

For the target variable Y1 (Figure 3), the test error is minimal across all settings,
corresponding to tiny prediction interval lengths. This suggests that the model effectively
captures the relationship between the response and input variables. On the contrary, for the
target variable Y2 (Figure 4), the test errors are significantly higher for each value of m. This
increased error is reflected in broader prediction intervals, indicating a lower accuracy of
the random forest method in predicting the cooling load target variable (Y2). Furthermore,
in Figure 3c, the average MSE test exhibits a particular behavior. As the number of variables
randomly sampled at each split increases, the MSE test initially decreases, reaching a
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minimum point, then increasing again, leading to worse results. When the lowest MSE
test value is reached, using more variables for the split definition can cause overfitting of
the training set, thereby reducing the model’s generalization ability. Generalizing ability
refers to the model’s capability to accurately predict new observations not used during the
training phase. More precisely, increasing the number of variables randomly sampled at
each split (m) in the RF can reduce bias but increase the risk of overfitting the training set
due to higher variance.

(a) Average empirical coverage. (b) Average interval length.

(c) Average test error rate.

Figure 3. Comparison of conformal prediction intervals considering heating load target variable (Y1)
across different values of variables randomly samples at each split while creating the tree models (m
hyper-parameter) in random forest. All results represent an average of over 50 repetitions, and error
bars indicate 95% confidence intervals.
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(a) Average empirical coverage. (b) Average interval length.

(c) Average test error rate.

Figure 4. Comparison of conformal prediction intervals considering cooling load target variable (Y2)
across different values of variables randomly samples at each split while creating the tree models (m
hyper-parameter) in random forest. All results represent an average of over 50 repetitions, and error
bars indicate 95% confidence intervals.

4. Discussion

Conformal prediction intervals provide distribution-free coverage guarantees. How-
ever, as illustrated in Section 3, conformal inference can be utilized to evaluate the reliability
of regression methods. The prediction intervals meet the required coverage conditions
if the model is correctly specified for the data under study. Conversely, if the model is
misspecified, the intervals remain valid but may only ensure marginal coverage. Given
these considerations, conformal prediction intervals effectively compare statistical learn-
ing models.

Conformal prediction ensures predictive coverage when the data points (Xi, Yi) are
drawn independently and identically distributed (i.i.d.) from any distribution. However,
the validity of this method depends on the assumption that the data points are drawn inde-
pendently from the same distribution or, more broadly, that (X1, Y1), . . . , (Xn+1, Yn+1) are
exchangeable. This assumption is often violated in practical applications due to distribution
drift, correlations between data points, or other phenomena. Barber et al. (2023) [31] intro-
duced weighted quantiles to enhance robustness against distribution drift and developed
a new randomization technique to accommodate algorithms that do not treat data points
symmetrically. This advancement extends the applicability of conformal prediction to a
wide range of energy applications. For instance, Barber et al. (2023) [31] demonstrated the
applicability of the proposed methods using a dataset comprising electricity consumption
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and pricing information from the regions of New South Wales and Victoria, Australia.
The dataset spans 2.5 years, from 1996 to 1999, with data recorded at 30 min intervals.
The potential applications of the solutions proposed by Barber et al. (2023) [31] extend to
the domain of renewable energy, which presents significant challenges for power integra-
tion systems. Accurate predictions of renewable energy output and calibrated uncertainty
estimates provide financial benefits to electricity suppliers and are crucial for grid operators
to optimize operations and prevent grid imbalances.

In this study, we focus on a regression problem. Conformal inference also applies to
binary and multi-class classification problems [32]. In these cases, a prediction interval can
be interpreted as the set of possible classes most likely to include the true class of the new
observation. A possible application is the classification of different energy usage patterns,
including in residential, commercial, and industrial settings, allowing for customizing en-
ergy supply strategies and improving the accuracy of predicting energy demand. Utilizing
conformal inference helps quantify the confidence in these classifications, ultimately en-
hancing the reliability of demand forecasts and optimizing resource allocation in the energy
grid. Another field of application is related to power system reliability, where accurately
diagnosing the type of fault—such as short circuit, grounding fault, or line-to-line fault—is
essential for enabling prompt and precise maintenance actions. By leveraging conformal
inference for multi-class classification, the uncertainty in fault diagnosis can be quantified,
leading to more reliable decision-making and minimizing downtime in the electrical grid.

Conformal prediction represents an exciting new area of research. Various reviews [32–34]
available in the literature enable researchers and practitioners to explore and engage with
this field. Shafer et al. (2008) [33] provided a complete technical review of conformal
prediction ranging from the basic theoretical aspects (Fisher’s prediction interval) to more
advanced topics, such as exchangeability. A set of examples are provided for demonstrating
the theoretical aspects previously introduced. The work of Angelopoulos et al. (2021) [32]
is a practical introduction that comprehensively explains conformal prediction. This work
provides both practical theory and real-world examples. It also covers new improvements
related to a set of challenging statistical learning tasks, such as distribution shift, time-series
analysis, and outliers detection. Fontana et al. (2023) [34] presented the conformal inference
framework from a different perspective, investigating the concept of statistical validity and
analyzing the computational problems arising from conformal prediction. All together,
these reviewers can give a complete understanding of conformal inference and, additionally,
provide an important source of literature as a place to start for further investigation.

5. Conclusions

Conformal prediction is a user-friendly approach that generates statistically rigorous
uncertainty sets or intervals for model predictions. Additionally, it guarantees predictive
coverage when the data points (Xi, Yi) are independently and identically distributed (i.i.d.)
from any distribution.

This work uses data from 768 unique simulated buildings to demonstrate the effective-
ness of conformal prediction. Eight input variables and two responses are considered. Two
random forests are trained to predict both the response variables. Conformal prediction
is used to compute prediction intervals with any assumptions on the distributions of the
variables. All intervals are calculated at the 90% nominal coverage level using a split
conformal prediction technique. Initially, we evaluate various statistical learning mod-
els—specifically, forward stepwise regression, support vector machines, random forests,
and neural networks—by assessing their predictive performance through conformal predic-
tion intervals. Subsequently, we concentrate on random forests, with a detailed examination
of the hyper-parameter m to enhance predictive accuracy. Across all considered hyper-
parameter settings of random forests, it is observed that the coverage of the conformal
intervals consistently approximates the nominal level of 90%, regardless of test error per-
formance. Furthermore, the interval lengths vary according to the two target variables,
showing a strong correlation with test errors.
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Considering uncertainties could improve and enable design decision support, par-
ticularly if it were to be augmented by techniques for variable interpretation. Lei et al.
(2018) [11] proposed the leave-one-covariate-out (LOCO) inference, a model-free notion of
variable importance. LOCO can be used to estimate the importance of each variable in a
prediction model, enabling better interpretation of the results and impact of each variable
on the simulation.

In future work, LOCO techniques could assess variable importance when treating
the working model as incorrect. Moreover, Section 4 discusses the limitations of the
conformal prediction technique used in this work. The main assumption of conformal
prediction is that the data are exchangeable. This assumption is often violated. To overcome
this limitation, Barber et al. (2023) [31] proposed nonexchangeable conformal prediction
suitable, for example, for consumption data. The next step is to deploy such a technique
for energy consumption and demand applications.

Quantifying uncertainty is a key task in Building Performance Simulation, and a
conformal prediction framework can be an important element in improving its overall
quality, leading to better and more easily interpreted results.
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