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a b s t r a c t

In this paper we prove existence and uniqueness of a mild solution to the Young
equation dy(t) = Ay(t)dt + σ(y(t))dx(t), t ∈ [0, T ], y(0) = ψ. Here, A is an
unbounded operator which generates a semigroup of bounded linear operators
(S(t))t≥0 on a Banach space X, x is a real-valued η-Hölder continuous. Our aim
is to reduce, in comparison to Gubinelli et al. (2006) and Addona et al. (2022)
(see also Deya et al. (2012) and Gubinelli and Tindel, (2010)), the regularity
requirement on the initial datum ψ eventually dropping it.

The main tool is the definition of a sewing map for a new class of increments
which allows the construction of a Young convolution integral in a general interval
[a, b] ⊂ R when the Xα-norm of the function under the integral sign blows up
approaching a and Xα is an intermediate space between X and D(A).
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is devoted to the study of the existence, uniqueness and regularity of the mild solution to the
non-linear evolution problem

dy(t) = Ay(t)dt+ σ(y(t))dx(t), t ∈ [0, T ], y0 = ψ, (1.1)

hen the operator A : D(A) ⊂ X → X generates a semigroup of linear bounded operators (S(t))t≥0 on
, with smoothing effects, and x is a η-Hölder continuous function with values in a suitable space. By mild

olution of (1.1) we mean a function y which satisfies the equation

y(t) = S(t)ψ +
∫ t

0
S(t− r)σ(y(r))dx(r), t ∈ [0, T ]. (1.2)
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We stress that, since x has not finite variation, the integral appearing in the above formula has to be intended
in a non-obvious sense. Integrals such as ∫ t

s

y(r)dx(r), (1.3)

hen neither x or y have bounded variation, have been introduced by L.C. Young in [1] when x and y have
nite p-variation1 and q-variation, respectively, with 1

p + 1
q > 1 (equivalently, when y is β-Hölder continuous

nd x is η-Hölder continuous with β + η > 1), and are therefore called Young integrals. In [2], T. Lyons
extended the definition of the integral in (1.3) when 1

p + 1
q < 1 (i.e., when β + η < 1) by adding some

“structure” to the irregular path x giving birth to the rough-paths theory. A different approach has been
developed by M. Gubinelli in [3], where the rough integral is defined as the unique solution of an algebraic
problem under some analytic conditions. Here, we follow this approach and we limit ourselves to solve (1.2)
in the Young case.

The evolution equation (1.1) in infinite dimensional spaces was first addressed in [4]. It is clear that the
key point consists of the definition of the convolution integral∫ t

s

S(t− r)φ(r)dx(r) (1.4)

or suitable functions φ and Hölder continuous path x defined on [0, T ]. This is done in [4,5] by adapting
the sewing map approach to the case of convolutions and then generalized in [6] to the case of the
stochastic heat equation with a multiplicative, finite dimensional, noise. Given A : [a, b]2< → X, where
[a, b]2< := {(s, t) : a ≤ s ≤ t ≤ b}, the authors of [4,5] defined the ‘convolutional’ increment (δ̂A)(r, s, t) :=
A(r, t) − A(s, t) − S(t − s)A(r, s) for a ≤ r ≤ s ≤ t ≤ b and proved that, if ∥(δ̂A)(r, s, t)∥X ≤ C|t− r|µ for
very a ≤ r ≤ s ≤ t ≤ b and some constants C > 0 and µ > 1, then the limit

R(s, t) := lim
|Π (s,t)|→0

n∑
i=1

S(t− ti)A(ti−1, ti), (s, t) ∈ [a, b2]<, (1.5)

xists (here Π (s, t) is a partition of [s, t] and |Π (s, t)| is its mesh). The convolution integral can then be
efined by:

I (s, t) := A(s, t) −R(s, t), (s, t) ∈ [a, b]2<, (1.6)

nd, with the special choice A(s, t) = S(t − s)φ(s)(x(t) − x(s)) for every a ≤ r ≤ s ≤ t ≤ b, where x is a
eal-valued η-Hölder continuous function and φ : [a, b] → X verifies ∥φ(t) − S(t− s)φ(s)∥X ≤ C|t− s|β for
very a ≤ s ≤ t ≤ b and some β > 0, with η + β > 1, the above construction suggests to set∫ t

s

S(t− r)φ(r)dx(r) := I (s, t), (s, t) ∈ [a, b]2<.

nce the convolution integral in (1.4) is defined, its properties allow proving existence and uniqueness of the
ild solution to (1.1) by means of a fixed-point argument. We underline that a crucial assumption in [4,5] is

hat the initial datum ψ belongs to an intermediate space Xα between X and D(A) with η+α > 1. Moreover,
he solution lives in the same space Xα with no gain of regularity. On the contrary, in the classical case,
ee for instance [7] or [8], i.e., when x is smooth and A generates an analytic semigroup, then no regularity
ssumptions on ψ are needed (in particular, we can choose ψ ∈ X). Moreover, if the intermediate spaces
re interpolation spaces of indexes α and ∞ and the initial datum belongs to any of such spaces, then
(t) ∈ D(A) for every t ∈ (0, T ] and y satisfies (1.1) in the original differential form.

1 A function z : [a, b] → X has finite r-variation if the supremum of
∑n

j=1
∥z(tj) − z(tj−1)∥r over all the partitions

= {a = t < t < · · · < t = b} of [a, b] is finite.
0 1 n
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This consideration was the starting point of [9], where the second of the limitations described above is
tackled. To be more specific, in [9] Eq. (1.2) is studied when x is a real-valued η-Hölder continuous path

ith η > 1
2 . We showed that the mild solution y to (1.1) becomes more regular as soon as it leaves 0, that

is, still under the assumption that ψ ∈ Xα with α+ η > 1, we proved that y(t) ∈ D(A) for every t ∈ (0, T ].
Moreover, an estimate of the blow-up of ∥y(t)∥D(A) when t approaches 0 has been proved. Thanks to this
result, we also provided an integral representation of the solution y, which yields a chain rule for F ◦y when
F is a smooth function.

The aim of the present paper is to overcome the first of the two limitations described above, namely the
regularity request ψ ∈ Xα, with α + η > 1, on the initial datum ψ. We investigate here the properties of
the mild Eq. (1.1) when ψ belongs to a larger space Xθ with 0 ≤ θ < α. Under such weaker assumptions,
the function t ↦→ ∥S(t)ψ∥Xα has a singularity at 0, thus the definition of the convolution integral (1.4) has
to be extended to the case when the function f has a singularity at 0. First, we modify the construction of
the sewing map introducing a different notion of increment: given g : [a, b]2< → X, we set (δSg)(r, s, t) :=
S(s− r)g(r, t) + g(s, t) − S(s− r)g(r, s) for every a ≤ r ≤ s ≤ t ≤ b and prove, see Proposition 2.8, that the
limit

R(s, t) := lim
|Π (s,t)|→0

n∑
i=1

S(t− ti−1)g(ti−1, ti), (s, t) ∈ [a, b]2<, (1.7)

exists whenever ∥(δSg)(r, s, t)∥X ≤ C|t− r|µ for every a ≤ r ≤ s ≤ t ≤ b and some constants C > 0 and
µ > 1. We notice that in (1.7), differently from what happens in (1.5), the semigroup (S(t))t≥0 is never
evaluated at 0, since ti−1 < t = tn for every i = 1, . . . , n. This allows exploiting the regularizing properties
of (S(t))t≥0 in order to deduce regularizing properties for the convolution integral I defined as in (1.6).

Then, see Theorem 2.12, we go further and, taking advantage of the regularity of the convolution integral,
we extend the definition of (1.4) when the continuous function φ : (a, b] → Xα has a singularity of
order γ > 0 at a and there exist constants C > 0, ρ > 1 − η, β ∈ [0, α] and γ ∈ (0, 1) such that
∥φ(t) − S(t − s)φ(s)∥Xβ

≤ C|t− s|ρ|s− a|−γ for every a < s ≤ t ≤ b. Roughly speaking, we use
Proposition 2.8 to define the value of

∫ t

s
S(t− r)φ(r)dx(r) when (s, t) ∈ [a+ θ, b]2<, for every θ ∈ (0, b− a),

and then we exploit its regularity in order to extend it up to s = a. We also prove estimate (2.23) which is
an essential tool when dealing with Eq. (1.2).

Eventually, taking into account estimates (2.23) on the singular convolution integral, we are in a position
prove existence, uniqueness and smoothness of the mild solution to (1.1) with x ∈ Cη([0, T ]), η ∈ (1/2, 1),
and general initial datum ψ ∈ Xθ with, possibly, η + θ < 1. This is firstly done in Section 3.1, when,
besides other technical assumptions (see Hypotheses 3.2), σ is globally Lipschitz continuous on a regular
space Xα with α + η > 1. Then, see Section 3.2, we allow σ to be only locally Lipschitz continuous in Xα.
This framework turns out to be suitable to treat parabolic equations in spaces of continuous functions, see
Example 3.14. Finally, in Section 3.3, we drop the above-mentioned local Lipschitzianity request on σ and
only require that σ′ is locally Lipschitz continuous from Xα to the larger space X. This allows treating, for
instance, one-dimensional parabolic equations in L2-spaces, see Example 3.18.

The paper is organized as follows. In Section 2, we first state the general assumptions and describe the
functional spaces that will be used in the paper. In Section 2.2, we present our version of the sewing map,
construct the convolution integral and study its regularity. Next, in Section 2.3 we extend the above results
to the case of functions with singularities. Finally, Section 3 is devoted to the study of Eq. (1.2).

Notation. For every a, b ∈ R, with a < b, we set [a, b]n< := {(t1, . . . , tn) : a ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ b} and
(a, b]n< := {(t1, . . . , tn) : a < t1 ≤ t2 ≤ . . . ≤ tn ≤ b}. By Π (a, b) we denote a partition of the interval [a, b],
i.e., Π (a, b) := {t0 = a < t1 < · · · < tn = b} for some n ∈ N. |Π (a, b)| is the amplitude of the partition,
i.e., |Π (a, b)| := maxi=1,...,n |ti − ti−1|, and the limit |Π (a, b)| → 0 is meant as limit on direct sets. Finally,
we denote by B : (0,∞) × (0,∞) → R the Euler β-function defined by B(α, β) =

∫ 1
0 t

α−1(1 − t)β−1dt for
every α, β ∈ (0,∞).
3
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2. The sewing map and the convolution integral for singular functions

2.1. Main assumptions, spaces of functions and increments

Hypotheses 2.1.

(i) A : D(A) ⊂ X → X is the generator a semigroup of bounded operators (S(t))t≥0 on the Banach space
X.

(ii) For every λ ∈ [0, 3), there exists a space Xλ (with the convention that X0 = X and X1 = D(A)) such
that if β < λ then Xλ is continuously embedded into Xβ . We denote by Kλ,β a positive constant such
that ∥x∥β ≤ Kλ,β∥x∥λ for every x ∈ Xλ;

(iii) for every ζ, λ ∈ [0, 3), with ζ ≤ λ, and µ, ν ∈ [0, 1], with µ > ν, there exist positive constants Lζ,λ,T ,
and Cµ,ν,T , which depend on T , such that2{

(a) ∥S(t)∥L (Xζ ,Xλ) ≤ Lζ,λ,T t
−λ+ζ ,

(b) ∥S(t) − I∥L (Xµ,Xν ) ≤ Cµ,ν,T t
µ−ν ,

(2.1)

for every t ∈ (0, T ];
(iv) S(t) is injective for every t ≥ 0.

emark 2.2. Conditions (2.1) imply that the function t ↦→ S(t) is continuous in (0,+∞) with values in
(X). Indeed, fix t0 > 0, t ∈ (t0/2, 2t0) and λ > 0. Using (2.1), we can estimate

∥S(t)x− S(t0)x∥X =∥(S(t ∨ t0 − t ∧ t0) − I)S(t0 ∧ t)x∥X

≤Cµ,0,2t0 |t− t0|λ∥S(t0 ∧ t)x∥Xλ

≤2λCλ,0,2t0L0,λ,2t0t
−λ
0 ∥x∥X |t− t0|λ

or every x ∈ X so that the function t ↦→ S(t) is continuous at t0 with values in L (X). On the other hand,
e stress that we do not require continuity of the function t ↦→ S(t)x at t = 0.

Example 2.3. If A is a sectorial operator on X, then Hypotheses 2.1 are satisfied with Xλ = DA(λ,∞)
for every λ ∈ (0, 2), X2 = D(A2) and Xλ = {x ∈ D(A2) : A2x ∈ DA(λ− 2,∞)} if λ ∈ (2, 3).

Let a(s, t) := S(t − s) − IdX for every (s, t) ∈ [a, b]2<. Following [5], for every n ∈ N we introduce the
operator δ̂n : C([a, b]n<;Xλ) → C([a, b]n+1

< ;Xλ) defined by

(δ̂nf)(t1, . . . , tn+1) :=(δnf)(t1, . . . , tn+1) − a(tn, tn+1)f(t1, . . . , tn)

:=
n+1∑
j=1

(−1)n−jf(t1, . . . , tn+1)∧j − a(tn, tn+1)f(t1, . . . , tn)

:=
n∑

j=1
(−1)n−jf(t1, . . . , tn+1)∧j − S(tn+1 − tn)f(t1, . . . , tn)

for every f ∈ C([a, b]n<;Xλ) and (t1, . . . , tn+1) ∈ [a, b]n+1
< , where, for every j = 1, . . . , n+1, (t1, . . . , tn+1)∧j is

the vector, with n components, obtained from (t1, . . . , tn+1) erasing the jth element. In particular, if n = 1,
then we have

(δ̂1f)(s, t) = f(t) − f(s) − a(s, t)f(s) = f(t) − S(t− s)f(s), (s, t) ∈ [a, b]2<,

2 When no confusion may arise, we do not indicate the dependence of the constants on T .
4
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and, if n = 2, then we have

(δ̂2f)(r, s, t) :=f(r, t) − f(r, s) − f(s, t) − a(s, t)f(r, s)
=f(r, t) − f(s, t) − S(t− s)f(r, s)

for every (r, s, t) ∈ [a, b]3<.

Definition 2.4. Let α, β and γ be nonnegative constants. Then, Cβ([a, b];Xα), as usual, denotes the Banach
space of Holder continuous functions from [a, b] to Xα. Moreover:

(i) C β([a, b]2<;Xα) is the set of continuous functions f : [a, b]2< → Xα such that f(s, s) = 0 for every
s ∈ [a, b] and

∥f∥C β([a,b]2<;Xα) := sup
a≤s<t≤b

∥f(s, t)∥Xα

(t− s)β
< ∞.

Similarly, C β([a, b]3<;Xα) is the set of continuous functions f : [a, b]3< → Xα such that f(r, s, t) = 0
when r = s or s = t and

∥f∥C β([a,b]3<;Xα) := sup
a≤r<s<t≤b

∥f(r, s, t)∥Xα

(t− r)β
< ∞.

(ii) C−γ((a, b];Xα) is the set of continuous functions f : (a, b] → Xα such that

∥f∥C−γ((a,b];Xα) := sup
t∈(a,b]

(t− a)γ∥f(t)∥Xα < ∞.

If γ = 0, then we set Cb((a, b];Xα) := C0((a, b];Xα);
(iii) C β

−γ((a, b]2<;Xα) is the set of continuous functions f : (a, b]2< → Xα such that f(s, s) = 0 for every
s ∈ (a, b] and

∥f∥
C β

−γ
((a,b]2<;Xα) := sup

a<s<t≤b
(s− a)γ ∥f(s, t)∥Xα

(t− s)β
< ∞.

Similarly, C β
−γ((a, b]3<;Xα) is the set of the continuous functions f : (a, b]3< → Xα such that f(r, s, t) = 0

when r = s or s = t and

∥f∥
C β

−γ
((a,b]3<;Xα) := sup

a<r<s<t≤b
(r − a)γ ∥f(r, s, t)∥Xα

(t− r)β
< ∞.

We introduce a new increment and an operator acting on functions f : [a, b]n< → X.

Definition 2.5. For every n ∈ N and every function f : [a, b]n< → X, we set:

(δS,1f(t1, t2)) :=S(t1 − a)(f(t2) − f(t1)),

(δS,nf)(t1, . . . , tn+1) :=
n−1∑
i=1

(−1)n−if((t1, . . . , tn+1)∧i)

+ S(tn − tn−1)[f(t1, . . . , tn−1, tn+1) − f(t1, . . . , tn)].

urther, for every n ∈ N, f : [a, b]n< → X and (t1, . . . , tn) ∈ [a, b]n<, we set (S1f)(t) = S(t− a)f(t), if n = 1,
nd (Snf)(t1, . . . , tn) := S(tn − tn−1)f(t1, . . . , tn), if n ≥ 2.

emma 2.6. For every n ∈ N and every function f : [a, b]n< → X, it holds that

ˆ
δnSnf = Sn+1δS,nf. (2.2)
5
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Proof. Fix f : [a, b]n< → X. From the definition of the operators δ̂n and δS,n it follows that

(δ̂nSnf)(t1, . . . , tn+1)

=
n+1∑
i=1

(−1)n−i(Snf)((t1, . . . , tn+1)∧i) − a(tn, tn+1)(Snf)(t1, . . . , tn)

=(−1)n−1S(tn+1 − tn)f(t2, . . . , tn+1) + (−1)n−2S(tn+1 − tn)f(t1, t3 . . . , tn+1)
+ . . .+ S(tn+1 − tn−1)f(t1, . . . , tn−1, tn+1) − S(tn+1 − tn−1)f(t1, . . . , tn)

=S(tn+1 − tn)
(n−1∑

i=1
(−1)n−if((t1, . . . , tn+1)∧i)

+ S(tn − tn−1)[f(t1, . . . , tn−1, tn+1) − f(t1, . . . , tn)]
)

or every (t1, . . . , tn+1) ∈ [a, b]n+1
< and the term in brackets is (δS,nf)(t1, . . . , tn+1). □

The following result is the analogous of [5, Proposition 3.1], which deals with the increment δ̂n.

emma 2.7. Im(δS,n) = Ker(δS,n+1) for every n ∈ N.

roof. Let us begin by proving the inclusion Im(δS,n) ⊆ Ker(δS,n+1). For this purpose, we fix a function
∈ Im(δS,n) and let f : [a, b]n< → X be such that g = δS,nf . From Lemma 2.6 it follows that δ̂nSnf = Sn+1g.
learly, the function δ̂nSnf belongs to the range of the operator δ̂n which, by [5, Proposition 3.1], coincides
ith the kernel of the operator δ̂n+1. Therefore, by applying (2.2) with n replaced by n+ 1 we infer that

0 = δ̂n+1δ̂nSnf = δ̂n+1Sn+1g = Sn+2δS,n+1g.

ince each operator S(t) is one to one, we conclude that δS,n+1g = 0, so that g belongs to the kernel of the
perator δS,n+1.

To prove the inclusion “⊃”, we fix a function f : [a, b]n+1
< → X such that δS,n+1f = 0 and consider the

unction g : [a, b]n< → X, defined by g(t1, . . . , tn) = f(a, t1 . . . , tn) for every (t1, . . . , tn) ∈ [a, b]n<. Note that

(δS,ng)(t1, . . . , tn+1) =
n−1∑
i=1

(−1)n−if(a, (t1, . . . , tn+1)∧i)

+ S(tn − tn−1)[f(a, t1, . . . , tn−1, tn+1) − f(a, t1, . . . , tn)]

=
n−1∑
i=1

(−1)n−if((a, t1, . . . , tn+1)∧i+1)

+ S(tn − tn−1)[f(a, t1, . . . , tn−1, tn+1) − f(a, t1, . . . , tn)]

=
n∑

i=2
(−1)n+1−if((a, t1, . . . , tn+1)∧i)

+ S(tn − tn−1)[f(a, t1, . . . , tn−1, tn+1) − f(a, t1, . . . , tn)]
=(δS,n+1f)(a, t1, . . . , tn+1) − (−1)nf(t1, . . . , tn+1)
=(−1)n+1f(t1, . . . , tn+1)

or every (t1, . . . , tn+1) ∈ [a, b]n+1
< . From this chain of equalities it follows that f is the image under the

perator δ of the function (−1)n+1g. The proof is complete. □
S,n

6
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2.2. The sewing map and the convolution integral for the new increment

The aim of this subsection is to prove the existence of a sewing map M for functions in Ker(δS,3). As a
yproduct, we are able to define the convolution integral for a wide class of functions.

roposition 2.8. Fix µ > 1, α ∈ [0, 2) and f ∈ C µ([a, b]3<;Xα) ∩ Ker(δS,3). Then, there exists a unique
function M ∈

⋂
0≤ε<1 C µ−ε([a, b]2<;Xα+ε) such that δ̂2M = S3f on [a, b]3<. Moreover, for every ε ∈ [0, 1)

there exists a positive constant C = C(ε, α, µ, b− a) such that

∥M∥C µ−ε([a,b]2<;Xα+ε) ≤ C∥f∥C µ([a,b]3<;Xα). (2.3)

Proof (Uniqueness). Fix f ∈ C µ([a, b]3<;Xα) and let M1,M2 be two functions as in the statement. Then,
δ̂2(M1−M2) = 0, and therefore, by [5, Proposition 3.1], it follows that there exists a function g ∈ C([a, b];Xα)
such that δ̂1g = M1−M2 ∈ C µ([a, b]2<;Xα). From [5, Proposition 3.4] we conclude that g ≡ 0, i.e., M1 = M2.

Existence. Since f ∈ Ker(δS,3), from Lemma 2.7 it follows that there exists a function g : [a, b]2< → X such
that f = δS,2g. Lemma 2.6 shows that S3f = S3δS,2g = δ̂2S2g. If we set ψ := S2g, then we get δ̂2ψ = S3f .

Since the rest of the proof is rather long, we split it into several steps. In Step 1, we construct the function
M . Unfortunately, from the way the function M is defined, is not easy to prove that δ̂2M = S3f . Hence, in
Steps 2 to 4, we prove that, for every s, t ∈ [a, b], with s < t, it holds that

M(s, t) = ψ(s, t) − lim
|Π (s,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti), (2.4)

in Xα, where Π (s, t) := {s = t0 < t1 < · · · < tn = t} is a partition of [s, t]. Using this formula, in Step 5 we
complete the proof.

Step 1. Let us fix (s, t) ∈ [a, b]2<, with s < t, and for every n ∈ N ∪ {0} let us consider the partition

Πn(s, t) := {s = rn
0 < · · · < rn

2n = t}, rn
i := s+ i

t− s

2n
, i = 0, . . . , 2n, (2.5)

of [s, t]. For every n ∈ N ∪ {0}, we set

Mn(s, t) := ψ(s, t) −
2n∑
i=1

S(t− rn
i )ψ(rn

i−1, r
n
i ). (2.6)

oreover, Mn is a continuous function on [a, b]2< \{(s, s) : s ∈ [a, b]}. Note that r0
0 = s, r0

1 = t and, therefore,
0(s, t) = 0.
By straightforward computations, we get

Mn(s, t) = ψ(s, t) −
2n∑
i=1

S(t− rn+1
2i )ψ(rn+1

2i−2, r
n+1
2i )

and

Mn+1(s, t) =ψ(s, t) −
2n∑
i=1

S(t− rn+1
2i )ψ(rn+1

2i−1, r
n+1
2i )

−
2n∑
i=1

S(t− rn+1
2i−1)ψ(rn+1

2i−2, r
n+1
2i−1)

=ψ(s, t) −
2n∑
i=1

S(t− rn+1
2i )ψ(rn+1

2i−1, r
n+1
2i )

−
2n∑

S(t− rn+1
2i )S(rn+1

2i − rn+1
2i−1)ψ(rn+1

2i−2, r
n+1
2i−1),
i=1

7
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so that, recalling that (S3f)(r, s, t) = S(t− s)f(r, s, t), we deduce that

Mn+1(s, t) −Mn(s, t) =
2n∑
i=1

S(t− rn+1
2i )(δ̂2ψ)(rn+1

2i−2, r
n+1
2i−1, r

n+1
2i )

=
2n∑
i=1

S(t− rn+1
2i )(S3f)(rn+1

2i−2, r
n+1
2i−1, r

n+1
2i )

=
2n∑
i=1

S(t− rn+1
2i−1)f(rn+1

2i−2, r
n+1
2i−1, r

n+1
2i ).

Let us stress that, differently from the equality obtained in [5, Theorem 3.5], the argument of S(·) is always
reater than or equal to 2−n−1(t − s), so that it never reaches 0. This allows to exploit the smoothing
roperties of the semigroup in order to get better regularity in space. Since M0(s, t) = 0, it follows that

Mn(s, t) =
n−1∑
k=0

[Mk+1(s, t) −Mk(s, t)]. (2.7)

Each term in (2.7) belongs to Xα+ε for every ε > 0, by Hypothesis 2.1(iii)-(a). Moreover, for every ε ∈ [0, 1)
and k ∈ N ∪ {0} we can estimate

∥Mk+1(s, t) −Mk(s, t)∥Xα+ε

≤Lα,α+ε∥f∥C µ([a,b]3<;Xα)|t− s|µ2−kµ
2k∑

i=1
|t− rk+1

2i−1|−ε

=Lα,α+ε∥f∥C µ([a,b]3<;Xα)|t− s|µ2−kµ
2k∑

i=1

1
rk+1

2i − rk+1
2i−1

∫ rk+1
2i

rk+1
2i−1

|t− rk+1
2i−1|−ε

dξ

≤2Lα,α+ε∥f∥C µ([a,b]3<;Xα)|t− s|µ−12k(1−µ)
∫ t

s

(t− ξ)−εdξ

=21+k(1−µ)(1 − ε)−1Lα,α+ε∥f∥C µ([a,b]3<;Xα)|t− s|µ−ε
,

where Lα,α+ε = Lα,α+ε,b−a and we have used the fact that the function ξ ↦→ (t− ξ)−ε is increasing in (s, t).
It follows that the series defined in (2.7) converges in Xα+ε as n tends to ∞.

Denote by M(s, t) the limit in Xα+ε of the sequence {Mn}. Since this sequence uniformly converges in
[a, b]2<, the function M is continuous in [a, b]2< \ {(s, s) : s ∈ [a, b]}. Using the above computations, we can
easily extend M on the diagonal of [a, b]2<, setting M(s, s) = 0 for every s ∈ [a, b]. The so obtained function,
which we still denote by M , belongs to C µ−ε([a, b]2<;Xα+ε) for every ε ∈ [0, 1) and formula (2.3) holds true.

Step 2. This is the crucial step to prove formula (2.4). Let us fix s′, t′ ∈ [a, b] with s′ < t′, and let us
consider a partition Π (n)(s′, t′) = {s′ = rn

0 < rn
1 < · · · < rn

n = t′} of [s′, t′], with more than two points. We
set

M̂n(s′, t′) = ψ(s′, t′) −
n∑

i=1
S(t′ − rn

i )ψ(rn
i−1, r

n
i ). (2.8)

and notice that there exists i ∈ {1, . . . , n − 1} such that rn
i+1 − rn

i−1 ≤ 2(t′−s′)
n−1 . Indeed, suppose by

ontradiction that rn
i+1 − rn

i−1 >
2(t′−s′)

n−1 for every i = 1, . . . , n− 1. Then, from the formula

t′ − s′ =
n−1∑
i=1

(rn
i+1 − rn

i−1) − rn
n−1 + rn

1 ,

e get the contradiction t′ − s′ > 2(t′ − s′) − (rn − rn) > t′ − s′.
n−1 1

8
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Let us denote by in an element of {1, . . . , n−1} such that rn
i+1 −rn

i−1 ≤ 2(t′−s′)
n−1 and consider the partition

(n−1)(s′, t′) = {s′ = rn−1
0 < rn−1

1 < · · · < rn−1
n−1 = t′} ⊂ Π (n)(s′, t′) of [s′, t′], where rn−1

i = rn
i for every

i ∈ {0, . . . , in − 1}, and rn−1
i−1 = rn

i for every i ∈ {in + 1, . . . , n}. Accordingly to (2.8), we define

M̂n−1(s′, t′) = ψ(s′, t′) −
n−1∑
i=1

S(t′ − rn−1
i )ψ(rn−1

i−1 , r
n−1
i ).

rguing as above, we infer that there exists in−1 ∈ {1, . . . , n − 2} such that rn−1
in−1+1 − rn−1

in−1−1 ≤ 2(t′−s′)
n−2 .

e set rn−2
i := rn−1

i for every i ∈ {0, . . . , in−1 − 1} and rn−2
i−1 := rn−1

i for every i ∈ {in−1 + 1, . . . , n − 1}.
terating this procedure, for every k ∈ {1, . . . , n − 1} we define a partition Π (k)(s′, t′) = {s′ = rk

0 < rk
1 <

· · < rk
k = t′} ⊂ Π (k+1)(s′, t′) of [s′, t′] and a function

M̂k(s′, t′) = ψ(s′, t′) −
k∑

i=1
S(t′ − rk

i )ψ(rk
i−1, r

k
i ).

ix k = 1, . . . , n − 1 and denote by ik+1 the index such that Π (k)(s′, t′) = {s′ = rk+1
0 < · · · < rk+1

ik+1−1 <
k+1
ik+1+1 < · · · < rk+1

k+1}. Note that

M̂k+1(s′, t′) =ψ(s′, t′) −
k+1∑
i=1

S(t′ − rk+1
i )ψ(rk+1

i−1 , r
k+1
i )

=ψ(s′, t′) −
ik+1−1∑

i=1
S(t′ − rk+1

i )ψ(rk+1
i−1 , r

k+1
i )

− S(t′ − rk+1
ik+1

)ψ(rk+1
ik+1−1, r

k+1
ik+1

) − S(t′ − rk+1
ik+1+1)ψ(rk+1

ik+1
, rk+1

ik+1+1)

−
k+1∑

ik+1+2

S(t′ − rk+1
i )ψ(rk+1

i−1 , r
k+1
i )

=ψ(s′, t′) −
ik+1−1∑

i=1
S(t′ − rk

i )ψ(rk
i−1, r

k
i ) −

k∑
ik+1+1

S(t′ − rk
i )ψ(rk

i−1, r
k
i )

− S(t′ − rk+1
ik+1

)ψ(rk+1
ik+1−1, r

k+1
ik+1

) − S(t′ − rk+1
ik+1+1)ψ(rk+1

ik+1
, rk+1

ik+1+1)

o that

M̂k+1(s′, t′) − M̂k(s′, t′) =S(t′ − rk+1
ik+1+1)ψ(rk+1

ik+1−1, r
k+1
ik+1+1)

− S(t′ − rk+1
ik+1+1)ψ(rk+1

ik+1
, rk+1

ik+1+1)

− S(t′ − rk+1
ik+1

)ψ(rk+1
ik+1−1, r

k+1
ik+1

)

=S(t′ − rk+1
ik+1+1)(δ̂2ψ)(rk+1

ik+1−1, r
k+1
ik+1

, rk+1
ik+1+1)

=S(t′ − rk+1
ik+1

)f(rk+1
ik+1−1, r

k+1
ik+1

, rk+1
ik+1+1)

or every k = 1, . . . , n− 1. Assumption (2.1)(a) and the hypothesis on f imply that

∥M̂k+1(s′, t′) − M̂k(s′, t′)∥Xα ≤Lα,α∥f∥C µ([a,b]3<;Xα)|r
k+1
ik+1+1 − rk+1

ik+1−1|µ

≤2µLα,α(t′ − s′)µ∥f∥C µ([a,b]3<;Xα)k
−µ (2.9)
9
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for every k = 1, . . . , n− 1. From M̂1(s′, t′) = 0 it follows that

M̂n(s′, t′) =
n−1∑
k=1

[M̂k+1(s′, t′) − M̂k(s′, t′)],

and from (2.9) we infer that

∥M̂n∥Xα ≤ 2µ(t′s′)µLα,α∥f∥C µ([a,b]3<;Xα)

n−1∑
k=1

k−µ ≤ Cµ∥f∥C µ([a,b]3<;Xα)(t
′ − s′)µ, (2.10)

where Cµ := 2µLα,α

∑∞
k=1 k

−µ.
Step 3. Let us fix s, t ∈ [a, b], with s < t, and let Π1(s, t) = {s = u0 < u1 < · · · < um = t} and Π2(s, t) =

{s = w0 < w1 < · · · < wh = t} be two partitions of [s, t] with Π1(s, t) ⊂ Π2(s, t). For every i = 1, . . . ,m, let
us denote by si

j , j = 0, . . . , ji, the elements of Π2(s, t) which satisfy ui−1 = si
0 < si

1 < · · · < si
ji

= ui. If we
set

MΠ1(s, t) :=ψ(s, t) −
m∑

i=1
S(t− ui)ψ(ui−1, ui),

MΠ2(s, t) :=ψ(s, t) −
h∑

j=1
S(t− wj)ψ(wj−1, wj)

=ψ(s, t) −
m∑

i=1

ji∑
j=0

S(t− si
j)ψ(si

j−1, s
i
j),

hen we get

MΠ1(s, t) −MΠ2(s, t) =
m∑

i=1

(
S(t− ui)ψ(ui−1, ui) −

ji∑
j=0

S(t− si
j)ψ(si

j−1, s
i
j)

)

=
m∑

i=1
S(t− ui)

(
ψ(ui−1, ui) −

ji∑
j=0

S(ui − si
j)ψ(si

j−1, s
i
j)

)
.

Thanks to (2.10) we can estimate every term of the above sum by setting s′ = ui−1 and t′ = ui for every
i = 1, . . . ,m. It follows that

∥MΠ1(s, t) −MΠ2(s, t)∥Xα ≤Lα,αCµ∥f∥C µ([a,b]3<;Xα)

m∑
i=1

(ui − ui−1)µ

≤Lα,αCµ∥f∥C µ([a,b]3<;Xα)|t− s| max
i=1,...,m

(ui − ui−1)µ−1. (2.11)

Step 4. Now, we are ready to prove (2.4). We fix s, t ∈ [a, b], with s < t, and ε > 0, and we prove that, if
we choose δ := [(4Lα,αCµ∥f∥C µ([a,b]3<;Xα)(t− s))−1ε] ∧ 1, then for every partition Π (s, t) = {s = t0 < t1 <

· · · < tn = t} of [s, t], with |Π (s, t)| ≤ δ, we getM(s, t) − ψ(s, t) +
n∑

i=1
S(t− ti)ψ(ti−1, ti)


Xα

≤ ε. (2.12)

his will yield (2.4).
We fix a partition Π (s, t) of [s, t] as above and set

MΠ (s, t) = ψ(s, t) −
n∑
S(t− ti)ψ(ti−1, ti).
i=1
10
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We recall that there exists m ∈ N such that, for every m ≥ m, it holds that ∥M(s, t) −Mm(s, t)∥Xα ≤ ε/2,
where Mm(s, t) has been defined in (2.6) for every m ∈ N ∪ {0}. Without loss of generality, we may assume
m ≥ log2(δ−1(t− s)), which implies that t−s

2m ≤ δ. Therefore,

∥M(s, t) −MΠ (s, t)∥Xα ≤∥M(s, t) −Mm(s, t)∥Xα + ∥Mm(s, t) −MΠ (s, t)∥Xα

≤ε

2 + ∥Mm(s, t) −MΠ (s, t)∥Xα . (2.13)

We set Π̂ (s, t) := Πm(s, t) ∪ Π (s, t) =: {s0 = s < s1 < · · · < sh = t} for some h ∈ {max{n, 2m}, . . . , n +
m − 1}, where Πm(s, t) has been introduced in (2.5) for every m ∈ N ∪ {0}. We also set

M
Π̂

(s, t) := ψ(s, t) −
h∑

i=1
S(t− si)ψ(si−1, si).

ince both Π (s, t) and Πm(s, t) are contained in Π̂ (s, t), from estimate (2.11) we infer that

∥Mm(s, t) −MΠ (s, t)∥Xα ≤∥Mm(s, t) −M
Π̂

(s, t)∥Xα + ∥M
Π̂

(s, t) −MΠ (s, t)∥Xα

≤Lα,αCµ∥f∥C µ([a,b]3<;Xα)(|Πm(s, t)| + |Π (s, t)|)(t− s)

≤2Lα,αCµδ∥f∥C µ([a,b]3<;Xα)(t− s) ≤ ε

2 ,

hich gives (2.12) combined with (2.13).
Step 5. Now, we complete the proof, using formula (2.4) to show that

(δ̂2M)(r, s, t) = (δ̂2ψ)(r, s, t) = (S3f)(r, s, t), (r, s, t) ∈ [a, b]3<.

We first observe that

(δ̂2M)(r, r, t) = M(r, t) −M(r, t) − S(t− r)M(r, r) = 0

and (S3f)(r, r, t) = S(t − r)f(r, r, t) = 0 since, by definition of C µ([a, b]3<;Xα), f vanishes at the points of
[a, b]3< with at least two components which coincide. Hence, (δ̂2M)(r, r, t) = (S3f)(r, r, t). In the same way,
we can show that (δ̂2M)(r, s, s) = (S3f)(r, s, s) for every a ≤ r < s ≤ b.

Let us consider the case when a ≤ r < s < t ≤ b. For this purpose, we use (2.4) to show that, for every
≤ r < s < t ≤ b, it holds that

(δ̂2M)(r, s, t) =M(r, t) −M(s, t) − S(t− s)M(r, s)

=ψ(r, t) − lim
|Π (r,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti)

− ψ(s, t) + lim
|Π (s,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti)

− S(t− s)ψ(r, s) + S(t− s) lim
|Π (r,s)|→0

n∑
i=1

S(s− ti)ψ(ti−1, ti)

=(δ̂2ψ)(r, s, t) − lim
|Π (r,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti)

+ lim
|Π (s,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti) + lim
|Π (r,s)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti).
11
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Since

lim
|Π (r,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti)

= lim
|Π (s,t)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti) + lim
|Π (r,s)|→0

n∑
i=1

S(t− ti)ψ(ti−1, ti),

he assertion follows at once. □

Let us provide an example of a function f which satisfies the assumptions of Proposition 2.8. The great
elevance of this example will be made clear in the second part of Section 2.3.

xample 2.9. Fix two positive numbers ρ and η such η+ρ > 1. Further, let x ∈ Cη([a, b]) and φ : [a, b] → X

e such that δ̂1φ ∈ C ρ([a, b]2<;Xα) for some α ∈ [0, 2). Finally, let g : [a, b]2< → Xα be the function defined
y g(s, t) := (x(t) − x(s))φ(s) for every (s, t) ∈ [a, b]2<. Note that

(δS,2g)(r, s, t) = − g(s, t) + S(s− r)g(r, t) − S(s− r)g(r, s)
=(x(t) − x(s))(−φ(s) + S(s− r)φ(r))
= − (x(t) − x(s))(δ̂1φ)(r, s) (2.14)

or every (r, s, t) ∈ [a, b]3<. This means that the function f = δS,2g belongs to C µ([a, b]3<;Xα) with
= η + ρ. Further, from Lemma 2.7 we infer that δS,3f = 0. The assumptions of Proposition 2.8 are

atisfied and, consequently, there exists a unique function M ∈
⋂

ε∈[0,1) C µ−ε([a, b]2<;Xα+ε) such that
2̂M = S3f = S3δS,2g = δ̂2S2g. Moreover,

∥M∥C µ−ε([a,b]2<;Xα+ε) ≤ C∥x∥Cη([a,b])∥δ̂1φ∥C ρ([a,b]2<;Xα)

for every ε ∈ [0, 1) and some positive constant C = C(ε, α, µ).

Let g ∈ C([a, b]2<;Xα) be a function such δS,2g ∈ C µ([a, b]3<;Xα) for some α ∈ [0, 2) and η > 1.
Following [5], we introduce the function kg : [a, b]2< → X defined by

kg(s, t) = S(t− s)g(s, t) −M(s, t), (s, t) ∈ [a, b]2<, (2.15)

where M is the function defined in Proposition 2.8, associated to the function f = δS,2g. Using the arguments
in the last part of the proof of Proposition 2.8, it can be easily checked that the function Ig = kg(a, ·) satisfies
the condition (δ̂1Ig)(s, t) = kg(s, t) for every (s, t) ∈ [a, b]2< and belongs to C([a, b];Xα). Moreover, Ig

vanishes at t = a and this is the unique function with this property which belongs to C([a, b];X). Indeed,
suppose that J is another function in C([a, b];X) which vanishes at t = a and satisfies the condition
δ̂1J = kg. Then, the function h = Ig − J vanishes at a and δ̂1h = 0 in [a, b]. In particular, (δ̂1h)(a, t) = 0
for every t ∈ [a, b], which means that h(t) − S(t− a)h(a) = h(t) vanishes for every t ∈ [a, b].

Inspired by [5], we provide the following definition.

efinition 2.10. Let g ∈ C([a, b]2<;Xα), for some α ∈ [0, 2), be such that δS,2g ∈ C µ([a, b]3<;Xα) for some
> 1. The function Ig = kg(a, ·), where kg has been defined in (2.15), is called convolution integral
f g.
12
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2.3. Convolution integrals with singularities

Since the map t ↦→ ∥S(t)ψ∥Xα has a singularity at t = 0 of order α− ρ if ψ ∈ Xρ, we need to extend the
statement of Proposition 2.8 when f ∈ C µ

−γ((a, b]3<;Xα), i.e., when the function f has a singularity of order
γ > 0 at s = a, and µ > 1. To begin with, we show that, thanks to Proposition 2.8, we can define a unique
function M on (a, b]2< which enjoys nice properties.

Lemma 2.11. Fix µ > 1, α ∈ [0, 2) and let g : (a, b]2< → X be a function such that δS,2g belongs to
C µ

−γ((a, b]3<;Xα). Then, there exists a unique function M which belongs to
⋂

ε∈[0,1) C µ−ε([a + θ, b]2<;Xα+ε)
for every θ ∈ (0, b− a) and satisfies the condition δ̂2M = S3δS,2g in (a, b]3<.

Proof. We begin the proof by observing that the function f = δS,2g satisfies the assumptions of
Proposition 2.8 in [a + θ, b]3< for every θ ∈ (0, b − a). Hence, for every θ ∈ (0, b − a) there exists a unique
unction Mθ ∈

⋂
ε∈[0,1) C µ−ε([a+ θ, b]2<;Xα+ε) such that δ̂2Mα = S3f in [a+ θ, b]3<.

Note that, if 0 < θ1 < θ2 < b − a, then Mθ1 and Mθ2 coincide on [a + θ2, b]2<. Therefore, if for every
(s, t) ∈ (a, b]2< we set M(s, t) = Mθ(s, t) for some θ ∈ (0, s − a), then the function M fulfills the required
roperties. □

heorem 2.12. Fix η ∈ (0, 1), µ > 1, α, β ∈ [0, 2), with 0 ≤ α − β < 1, γ ∈ (0, η ∧ (µ + β − α))
nd suppose that g belongs to C η

−γ((a, b]2<;Xα) and satisfies the condition δS,2g ∈ C µ
−γ((a, b]3<;Xβ). Then,

he function kg : (a, b]2< → X, defined by kg(s, t) := S(t − s)g(s, t) − M(s, t) for every (s, t) ∈
a, b]2< (where M is the function defined in Lemma 2.11) can be extended up to s = a and it belongs to⋂

ε∈[0,ε0) C η∧(µ+β−α)−γ−ε([a, b]2<;Xα+ε), where ε0 = (1 + β − α) ∧ (η ∧ (µ+ β − α) − γ). Further, δ̂2kg = 0
n [a, b]3< and there exists a positive constant C, which depends on ε, µ, b− a, η, γ, α and β, such that

∥kg∥C η∧(µ+β−α)−γ−ε([a,b]2<;Xα+ε) ≤ C(∥g∥C η
−γ

((a,b]2<;Xα) + ∥δS,2g∥C µ
−γ

((a,b]3<;Xβ)). (2.16)

Proof. To begin with, we observe that the function g satisfies the assumptions of Lemma 2.11, with α being
replaced by β. Hence, there exists a unique function M , which belongs to

⋂
ε∈[0,1) C µ−ε([a + θ, b]2<;Xβ+ε)

for every θ ∈ (0, b− a), such that δ̂2M = S3δS,2g = δ̂2S2g in (a, b]3< (see Lemma 2.6).
Let us fix ε ∈ [0, ε0), (s, t) ∈ (a, b]2<, with s < t, and n ∈ N, and introduce the function

M̃n(s, t) = ψ(s, t) −
2n∑
i=2

S(t− rn
i )ψ(rn

i−1, r
n
i ) = Mn(s, t) + S(t− rn

1 )ψ(s, rn
1 ), (2.17)

where ψ = S2g for every (s1, s2) ∈ (a, b]2<, rn
i = s + i

2n (t − s) for every n ∈ N and i = 0, . . . , 2n, and the
function Mn is defined in (2.6). We omit from the definition of M̃ , the term S(t− rn

1 )ψ(s, rn+1
1 ) in order to

tay away from the singularity at s = a. For every n ≥ 1 we get

M̃n+1(s, t) − M̃n(s, t)
=Mn+1(s, t) −Mn(s, t) + S(t− rn+1

1 )ψ(s, rn+1
1 ) − S(t− rn

1 )ψ(s, rn
1 )

=
2n∑
i=2

S(t− rn+1
2i−1)(δS,2g)(rn+1

2i−2, r
n+1
2i−1, r

n+1
2i )

− S(t− rn+1
1 )[(δS,2g)(s, rn+1

1 , rn+1
2 ) − ψ(s, rn+1)] − S(t, rn+1

2 )ψ(s, rn+1
2 )

=
2n∑
i=2

S(t− rn+1
2i−1)(δS,2g)(rn+1

2i−2, r
n+1
2i−1, r

n+1
2i ) − S(t− rn+1

1 )g(rn+1
1 , rn+1

2 ).
13
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Hence,

∥M̃n+1(s, t) − M̃n(s, t)∥Xα+ε

≤Lβ,α+ε∥δS,2g∥C µ
−γ

((a,b]3<;Xβ)

2n∑
i=2

|rn+1
2i − rn+1

2i−2|µ|t− rn+1
2i−1|β−α−ε|rn+1

2i−2 − a|−γ

+ Lα,α+ε∥g∥C η
−γ

((a,b]2<;Xα)|t− rn+1
1 |−ε2−(n+1)η(t− s)η|rn+1

1 − a|−γ

≤Lβ,α+ε∥δS,2g∥C µ
−γ

((a,b]3<;Xβ)|t− s|µ2−nµ
2n∑
i=2

|t− rn+1
2i−1|β−α−ε|rn+1

2i−2 − a|−γ

+ 2−η+γ+ε2n(γ−η)Lα,α+ε∥g∥C η
−γ

((a,b]2<;Xα)|t− s|η−γ−ε
, (2.18)

here the constants Lρ,δ = Lρ,δ,b−a have been defined in Hypothesis 2.1(iii)-(a) and, in the last step of
2.18), we have used the inequality

|t− rn+1
1 |−ε|rn+1

1 − a|−γ =(t− s)−ε(1 − 2−n−1)−ε

(
s− a+ t− s

2n+1

)−γ

≤2ε(t− s)−ε

(
t− s

2n+1

)−γ

= 2ε+γ(1+n)(t− s)−ε−γ .

Let us estimate the first term in the right-hand side of (2.18). We stress that, differently from the
omputations in the proof of Proposition 2.8, we have the additional factor |rn+1

2i−2 − a|−γ , which arises from
he singularity of δS,2g at a. Note that

rn+1
2i−2 − a = rn+1

2i − t− s

2n
− a ≥ 1

2(rn+1
2i − a)

f i ≥ 2. Hence,

2n∑
i=2

|t− rn+1
2i−1|β−α−ε|rn+1

2i−2 − a|−γ

≤
2n∑
i=2

2γ

rn+1
2i − rn+1

2i−1

∫ rn+1
2i

rn+1
2i−1

|t− rn+1
2i−1|β−α−ε|rn+1

2i − a|−γ
dξ

≤2γ+12n|t− s|−1
∫ t

s

(t− ξ)β−α−ε(ξ − a)−γdξ,

here we have used the fact that the function ξ ↦→ (t − ξ)β−α−ε is increasing in (−∞, t) and the function
↦→ (ξ − a)−γ is decreasing in (a,∞). Further,∫ t

s

(t− ξ)β−α−ε(ξ − a)−γdξ ≤
∫ t

s

(t− ξ)β−α−ε(ξ − s)−γdξ

=B(β − α− ε+ 1, 1 − γ)(t− s)1+β−α−γ−ε.

It follows that

∥M̃n+1(s, t) − M̃n(s, t)∥Xα+ε

≤2γ+1+n(1−µ)Lβ,α+εB(β − α− ε+ 1, 1 − γ)∥δS,2g∥C µ
−γ

((a,b]3<;Xβ)|t− s|µ+β−α−γ−ε

+ 2−η+γ+ε2n(γ−η)Lα,α+ε∥g∥C η
−γ

((a,b]2<;Xα)|t− s|η−γ−ε
.

14
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Next, we note that

M̃n(s, t) − ψ(s, t) =
n−1∑
k=1

[M̃k+1(s, t) − M̃k(s, t)] − ψ(2−1(s+ t), t)

and, consequently, recalling that ψ(r1
1, r

1
2) = S(2−1(t − s))g(2−1(s + t), t) and taking into account that

|2−1(s+ t) − a|−γ ≤ 2γ(t− s)−γ , we can estimate

∥M̃n(s, t) − ψ(s, t)∥Xα+ε ≤C1(∥δS,2g∥C µ
−γ

((a,b]3<;Xβ) + ∥g∥C η
−γ

((a,b]2<;Xα))

×
(n−1∑

k=1
(2k(1−µ)+2k(γ−η)) + 1

)
|t− s|[η∧(µ+β−α)]−γ−ε

≤C2(∥δS,2g∥C µ
−γ

((a,b]3<;Xβ) + ∥g∥C η
−γ

((a,b]2<;Xα))|t− s|[η∧(µ+β−α)]−γ−ε (2.19)

for some positive constants C1 and C2 which depend on ε, µ, b − a, γ, η, α and β, since the series∑∞
k=1(2k(1−µ) + 2k(γ−η)) converges. Further, from (2.17) we get

∥M̃n(s, t) −Mn(s, t)∥Xα+ε ≤ 2−nηLα,α+ε∥g∥C η
−γ

((a,b]2<;Xα)(s− a)−γ |t− s|η−ε

and we conclude that M̃n(s, t) converges to M(s, t) in Xα+ε, as n tends to ∞. Hence, letting n tend to +∞
in (2.19), it follows that the function kg = ψ −M satisfies the estimate

∥kg(s, t)∥Xα+ε ≤C2(∥δS,2g∥C µ
−γ

((a,b]3<;Xβ) + ∥g∥C η
−γ

((a,b]2<;Xα))|t− s|[η∧(µ+β−α)]−γ−ε
. (2.20)

Showing that (δ̂2kg)(s, t) = 0 is an easy task. Indeed, by the definition of the function ψ, it follows that
δ̂2ψ = δ̂2S2g in (a, b]3<, which coincides with δ̂2M , as it has been shown at the very beginning of the proof.

Finally, to conclude the proof, we show that function kg can be extended to [a, b]2< with a continuous
function. First of all, we observe that kg is continuous in (a, b]2< \ {(s, s) : s ∈ [a, b]} since ψ and M are
therein continuous. Moreover, using estimate (2.20), we can extend the function kg by continuity to the
points (s, s) with s ∈ (a, b] by setting kg(s, s) = 0. Next, we observe that, for every a < r < s < t, it holds
that

kg(r, t) − kg(s, t) = (δ̂2kg)(r, s, t) + S(t− s)kg(r, s) = S(t− s)kg(r, s).

From (2.20) we infer that

∥kg(r, t) − kg(s, t)∥Xα+ε ≤ Lα+ε,α+ε∥kg(r, s)∥Xα+ε ≤ C|s− r|[η∧(µ+β−α)]−γ−ε
.

This implies that kg(s, t) converges in Xα+ε as s tends to a+. We denote the previous limit by kg(a, t). As
a byproduct, (2.20) holds true for every (s, t) ∈ (a, b]2< \ {(a, a)} and, using this formula, we can extend by
continuity kg at (a, a) setting kg(a, a) = 0. It follows that δ̂2kg ≡ 0 in [a, b]3<.

It remains to prove the continuity of kg in {a} × [a, b]. Fix t0 ∈ [a, b] and (s, t) ∈ [a, b]2<. We show that
kg(s, t) converges to kg(a, t0) in Xα+ε as (s, t) tends to (a, t0) in [a, b]2<. First, we consider the case t0 > a.
If t > t0, then, since (δ̂2kg)(a, s, t) = (δ̂2kg)(a, t0, t) = 0, it follows that kg(a, t) = kg(s, t) + S(t− s)kg(a, s)
and kg(a, t) = kg(t0, t) + S(t− t0)kg(a, t0). Hence,

kg(s, t) − kg(a, t0) =kg(s, t) − kg(a, t) + kg(a, t) − kg(a, t0)
= − S(t− s)kg(a, s) + kg(t0, t) + S(t− t0)kg(a, t0) − kg(a, t0)
= − S(t− s)kg(a, s) + kg(t0, t) + a(t0, t)kg(a, t0).
15
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On the other hand, if t < t0, then we can split

kg(s, t) − kg(a, t0) =kg(s, t) − kg(a, t) + kg(a, t) − kg(a, t0)
= − S(t− s)kg(a, s) − (kg(t, t0) + a(t, t0)kg(a, t)),

here we have used the formulas kg(a, t) = kg(s, t) + S(t − s)kg(a, s) and kg(a, t0) = kg(t, t0) + kg(a, t) +
a(t, t0)kg(a, t). Combining the cases t > t0 and t < t0 it follows that

∥kg(s, t) − kg(a, t0)∥Xα+ε ≤Lα+ε,α+ε∥kg(a, s)∥Xα+ε + ∥kg(t0 ∧ t, t0 ∨ t)∥Xα+ε

+ ∥a(t0 ∧ t, t0 ∨ t)kg(a, t0 ∧ t)∥Xα+ε . (2.21)

rom (2.1)(b) and estimate (2.20), we get

∥a(t0 ∧ t, t0 ∨ t)kg(a, t0 ∧ t)∥Xα+ε

≤Cα+ε,α+ε′∥kg(a, t0 ∧ t)∥Xα+ε′ |t− t0|ε
′−ε

≤C2Cα+ε,α+ε′(∥δS,2g∥C µ
−γ

((a,b]3<;Xβ) + ∥g∥C η
−γ

((a,b]2<;Xα))|b− a|[η∧(µ+β−α)]−γ−ε|t− t0|ε
′−ε (2.22)

or every ε′ ∈ (ε, ε0). From (2.20), (2.21) and (2.22) we easily conclude that kg(s, t) tends to kg(a, t0) as
s, t) tends to (a, t0).

Finally, if t0 = a, then, since ∥kg(s, t) − kg(a, a)∥Xα+ε = ∥kg(s, t)∥Xα+ε , using (2.20) we conclude that
g(s, t) converges to k(a, t0) as (s, t) tends to (a, t0). □

emark 2.13.

(i) From the proof of Theorem 2.12, it follows that kg1+g2 = kg1 + kg2 for every pair of functions
g1, g2 ∈ C η

−γ((a, b]2<;Xα) such that δS,2g1 and δS,2g2 belong to C µ
−γ((a, b]3<;Xβ), where the parameters

α, β, γ, η and µ are as in the statement of the quoted theorem.
(ii) Still from the proof of Theorem 2.12 it follows that condition (2.1)(a) is used just to prove that kg

regularizes in space. Hence, without such a condition and assuming that β = α, the assertion of
Theorem 2.12 still holds true with ε = 0, i.e., the function kg exists, belongs to C η−γ([a, b]2<;Xα)
and enjoys estimate (2.20) with ε = 0 and the constant C, therein appearing, depends on b − a, η, γ
and α.

Based on Theorem 2.12 and Remark 2.18, we can now give the following definition, which generalizes
efinition 2.10.

efinition 2.14. Let g ∈ C η
−γ((a, b]2<;Xα) be such that δS,2g ∈ C µ

−γ((a, b]3<;Xβ), where η ∈ (0, 1), µ > 1,
≤ β ≤ α ≤ 2, α−β < 1 and γ ∈ [0, η∧(µ+β−α)). Then, the function Ig = kg(a, ·) is called convolution

ntegral of g.

xample 2.15. Fix η ∈ (0, 1), α, β ∈ [0, 2) such that 0 ≤ α−β < 1, ρ ∈ (1−η, 1), γ ∈ [0, η∧(ρ+η+β−α)),
∈ Cη([a, b]) and φ ∈ C−γ((a, b];Xα) such that δ̂1φ C ρ

−γ((a, b]2<;Xβ). Let g(s, t) = (x(t) − x(s))φ(s) for
very (s, t) ∈ [a, b]2<, as in Example 2.9. It is easy to check that g belongs to C η

−γ((a, b]2<;Xα). Moreover,
xample 2.9 shows that (δS,2g)(r, s, t) = −(x(t) − x(s))(δ̂1φ)(r, s) for every (r, s, t) ∈ (a, b]3<. Hence, the

unction δS,2g belongs to C µ
−γ((a, b]3<;Xβ), where µ = η + ρ > 1, and

(r − a)γ∥(δS,2g)(r, s, t)∥Xβ
≤ ∥x∥Cη([a,b])∥δ̂1φ∥C ρ

−γ
((a,b]2<;Xβ)|t− r|µ,

3
or every (r, s, t) ∈ (a, b]<.
16
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In view of Theorem 2.12 and Example 2.15, we can give the following definition.

Definition 2.16. Fix α, β ∈ [0, 2), with 0 ≤ α−β < 1, η ∈ (0, 1), ρ ∈ (1 − η, 1), γ ∈ [0, η∧ (ρ+ η+β−α))
and x ∈ Cη([a, b]). Further, let φ ∈ C−γ((a, b];Xα) be such that δ̂1φ ∈ C ρ

−γ((a, b]2<;Xβ). Then, we define
the convolution integral of the semigroup (S(t))t≥0 with the function φ, by setting∫ t

s

S(t− r)φ(r)dx(r) =: kg(s, t),

for every (s, t) ∈ [a, b]2<, where g(s, t) = (x(t) − x(s))φ(s) for every (s, t) ∈ [a, b]2<.

In what follows, for every (s, t) ∈ [a, b]2< we will also use the shorter notation IS,φ(s, t) := kg(s, t) to
denote the convolution integral in Definition 2.16. The notation underlines the dependence on the semigroup
(S(t))t≥0 and on the function φ.

Remark 2.17. Let x and φ be as in Definition 2.16. Then, from Theorem 2.12 it follows that IS,φ belongs
to

⋂
ε∈[0,ε0) C η∧(η+ρ+β−α)−γ−ε([a, b]2<;Xα+ε), where ε0 = (1 + β − α) ∧ (η ∧ (η + ρ+ β − α) − γ), and, for

every ε ∈ [0, ε0), there exists a positive constant C, which depends on ε, b− a, η, γ, α, β and ρ, such that

sup
(t,s)∈[a,b]2<

(t− s)−η∧(η+ρ+β−α)+γ+ε

 ∫ t

s

S(t− r)φ(r)dx(r)


Xα+ε

≤C∥x∥Cη([a,b])(∥φ∥C−γ((a,b];Xα) + ∥δ̂1φ∥C ρ
−γ

((a,b]2<;Xβ)) (2.23)

for every s, t ∈ [a, b]2<.

Remark 2.18. We stress that, if x ∈ C1([a, b]), φ ∈ C−γ((a, b];Xα) and δ̂1φ ∈ C α
−γ((a, b]2<;X) with

α ∈ (0, 1) and γ satisfying the assumptions of the quoted theorem, then the function IS,φ is the classical
convolution of the semigroup with the function φ, i.e.,

IS,φ(s, t) =
∫ t

s

S(t− ξ)φ(ξ)x′(ξ)dξ, (s, t) ∈ [a, b]2<. (2.24)

Note that ∫ t

s

S(t− ξ)φ(ξ)x′(ξ)dξ =
∫ t

s

S(t− ξ)
[
S(ξ − s)φ(s) + (δ̂1φ)(s, ξ)

]
x′(ξ)dξ

=S(t− s)g(s, t) +
∫ t

s

S(t− ξ)(δ̂1φ)(s, ξ)x′(ξ)dξ

=: S(t− s)g(s, t) +N(s, t)

for every (s, t) ∈ [a, b]2<.
Thus, we need to prove that M +N = 0 where M is defined in Example 2.9, see also Proposition 2.8.
Taking the definition of the operators δ̂1, S3 and formula (2.14) into account, we can write

(δ̂2N)(r, s, t) =
∫ t

r

S(t− ξ)(δ̂1φ)(r, ξ)x′(ξ)dξ −
∫ t

s

S(t− ξ)(δ̂1φ)(s, ξ)x′(ξ)dξ

− S(t− s)
∫ s

r

S(s− ξ)(δ̂1φ)(r, ξ)x′(ξ)dξ

=
∫ t

S(t− ξ)(δ̂1φ)(r, ξ)x′(ξ)dξ −
∫ t

S(t− ξ)(δ̂1φ)(s, ξ)x′(ξ)dξ

s s

17
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=
∫ t

s

(S(t− s)φ(s) − S(t− r)φ(r))x′(ξ)dξ

=S(t− s)(φ(s) − S(s− r)φ(r))(x(t) − x(s))
=S(t− s)(δ̂1φ)(r, s)(x(t) − x(s))
= − (S3δS,2g)(r, s, t)

for every (r, s, t) ∈ [a, b]3<. Thus, the function A = M +N satisfies the condition δ̂2A ≡ 0 in [a, b]3<.
To conclude that A identically vanishes in (a, b]2<, it suffices to show that it belongs to C µ([a+ θ, b]2<;X)

for every θ ∈ (0, b− a) and then apply [5, Proposition 3.4]. By Lemma 2.11, M belongs to such a space. On
the other hand,

∥N(s, t)∥X ≤θ−γL0,0,b−a∥x′∥C([a,b])∥δ̂1φ∥C α
−γ

((a,b]2<;X)

∫ t

s

(ξ − s)αdr

=θ−γL0,0,b−a(α+ 1)−1∥x′∥C([a,b])∥δ̂1φ∥C α
−γ

((a,b]2<;X)(t− s)1+α

for every (s, t) ∈ [a + θ, b]2<, with θ ∈ (0, b − a), and every ε ∈ (0, 1), and, consequently, N belongs to
C 1+α([a+ θ, b]2<;X) ↪→ C µ([a+ θ, b]2<;X) for every θ ∈ (0, b− a), since 1 + α > η + α = µ.

Remark 2.19. The results in Theorem 2.12 are optimal as far as both the time and the spatial regularity
are concerned.

Indeed, if we refer again to Remark 2.18, then the classical convolution integral in (2.24) belongs to
C 1−ε−γ([a, b]2<;Xα+ε) for every ε ∈ [0, 1 − γ). On the other hand, the quoted theorem shows that IS,φ

belongs to C η−ε−γ([a, b]2<;Xα+ε) for every η ∈ (0, 1) and ε as above, and the constant C appearing in (2.16)
does not blow up as η tends to 1 from below. Therefore, in this situation where x ∈ C1([a, b]), estimate
(2.16) shows that IS,φ belongs to C 1−γ−ε([a, b]2<;Xα+ε) for every ε ∈ [0, 1 − γ), so that the time regularity
in Theorem 2.12 is optimal.

To prove also the spatial optimality of the result in Theorem 2.12, we consider the case when (S(t))t≥0
is an analytic semigroup in the Banach space X and Xβ = DA(β,∞) for every β ∈ (0, 1). If we choose
[a, b] = [0, 1], x(t) = t for every t ∈ [0, 1] and φ(t) = S(t)y for some y ∈ Xα−γ , where γ is fixed in (0, α) for
some α ∈ (0, 1), and y does not belong to any space Xβ with β > α− γ, then we can easily check that the
classical convolution kg is given by kg(s, t) = (t − s)S(t)y for every 0 ≤ s ≤ t ≤ 1 and it does not belong
to the space C δ([0, 1]2<;Xα+ε) if δ > 1 − ε − γ for every ε ∈ (0, 1 − γ). Indeed, suppose that this function
belongs to C δ([0, 1]2<;Xα+ε) for some δ > 1 − ε− γ. Then, in particular,

∥S(t)y∥Xα+ε = ∥kg(0, t)∥Xα+ε ≤ ∥kg∥C δ([0,1]2<;Xα+ε)t
δ−1, t ∈ (0, 1].

We claim that this estimate implies that y actually belongs to the space Xα+ε+δ−1. Since α+ε+δ−1 > α−γ
we are led to a contradiction.

To prove the claim, we recall that z belongs to Xβ = DA(β,∞) for some β ∈ (0, 1) if and only if
supt∈(0,1] t

1−β∥AS(t)z∥X < ∞. Using the semigroup law, we can estimate

t2−α−ε−δ∥AS(t)y∥X =t2−α−ε−δ∥AS(t/2)S(t/2)y∥X

≤t2−α−ε−δ∥AS(t/2)∥L(Xα+ε,X)∥S(t/2)y∥Xα+ε

≤Ct2−α−ε−δt−1+α+εtδ−1 = C

for every t ∈ (0, 1] and the claim follows.

Remark 2.20. If γ = 0, i.e., in the non singular case, Example 2.15 shows that Theorem 2.12 agrees with

the results in [9, Lemma 2.1].
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Remark 2.21.

(i) From Remark 2.13(i) it follows that, if x1, x2 ∈ Cη([a, b]), for some η ∈ (0, 1), and φ1, φ2 ∈
C−γ((a, b];Xα) are such that δ̂1φ1, δ̂1φ2 ∈ C ρ

−γ((a, b]2<;Xβ) for some α, β ∈ [0, 2) with 0 ≤ α − β < 1,
ρ ∈ (1 − η, 1) and γ ∈ [0, η ∧ (η + ρ+ β − α)), then∫ t

s

S(t− r)φ1(r)d(x1 + x2)(r) =
∫ t

s

S(t− r)φ1(r)dx1(r) +
∫ t

s

S(t− r)φ1(r)dx2(r)

and ∫ t

s

S(t− r)(φ1(r)+φ2(r))dx1(r) =
∫ t

s

S(t− r)φ1(r)dx1(r)+
∫ t

s

S(t− r)φ2(r)dx1(r)

for every (s, t) ∈ [a, b]2<.
(ii) For every x ∈ Cη([a, b]), with η ∈ (0, 1), and every φ ∈ C−γ((a, b];Xα) such that δ̂1φ ∈ C ρ

−γ((a, b]2;Xβ)
for some α, β ∈ [0, 2) with 0 ≤ α− β < 1, ρ ∈ (1 − η, 1) and γ ∈ [0, η ∧ (η + ρ+ β − α)), it holds that∫ t

s

S(t− r)φ(r)dx(r) =S(t− τ)
∫ τ

s

S(τ − r)φ(r)dx(r) +
∫ t

τ

S(t− r)φ(r)dx(r)

for every (s, t) ∈ [a, b]2< and τ ∈ [s, t]. This property is a straightforward rewriting of the property
δ̂2kg ≡ 0 follows easily from observing that δ̂1IS,φ identically vanishes in [a, b]3<.

2.4. The case S(t) = Id

In this section, taking advantage of the results of the previous subsection, we define the integral∫ t

s
φ(r)dx(r), when φ has a singularity at the left-endpoint of the interval where it is defined.
The main result is the following theorem.

Theorem 2.22. Fix α ∈ [0, 2). Assume that x ∈ Cη([a, b]), for some η ∈ (0, 1), φ ∈ C−γ((a, b];Xα) and
δ1φ ∈ C ρ

−γ((a, b]2<;Xα), for some γ ∈ (0, η) and some ρ ∈ (1 − η, 1). Then, the Young integral∫ t

s

φ(r)dx(r)

is well defined for every (s, t) ∈ [a, b]2<. Moreover, there exists a positive constant C, depending on α, γ, η, ρ
and b− a, such that ∫ t

s

φ(r)dx(r)


Xα

≤ C∥x∥Cη([a,b])(∥φ∥C−γ((a,b];Xα) + ∥δ1φ∥C ρ
−γ

((a,b]2<;Xα))|t− s|η−γ
.

Proof. It suffices to apply Theorem 2.12, with S(t) = I for every t > 0, observing that δ̂j = δj for j = 1, 2
and δS,2 = δ2, and taking Remark 2.13(ii) into account. Note that condition (2.1)(b) is trivially satisfied
since a(s, t) = 0 for every (s, t) ∈ [a, b]2<. □

Example 2.23. Let x belong to Cη([0, T ]) for some T > 0 and η ∈ (0, 1). For every α ∈ (0, 1) the function
f : (0, T ] → R, defined by f(t) = t−α for every t ∈ (0, T ], belongs to C α

−2α((0, T ];R). Indeed, it is easy to
check that

|t−α − s−α|
(t− s)α

s2α = tα − sα

(t− s)α
sαt−α ≤ sαt−α ≤ 1, 0 < s < t ≤ T.

herefore, if we take α and η such that α < 1
2η and α + η > 1, then the assumptions of Theorem 2.22 are

fulfilled and the integral ∫ t

s

r−αdx(r)

s well defined for every s, t ∈ [0, T ], with s < t.
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3. Mild solutions to Young equations

In this section we study the existence and uniqueness of the mild solution to the following nonlinear Young
equation {

dy(t) = Ay(t)dt+ σ(y(t))dx(t), t ∈ (0, T ],
y(0) = ψ,

(3.1)

here by mild solution we mean a function y : [0, T ] → X such that IS,σ◦y is well-defined in [0, T ]2< and

y(t) = S(t)ψ + (IS,σ◦y)(0, t), t ∈ [0, T ]. (3.2)

urther, we investigate the spatial smoothness of the mild solution.

emark 3.1. Let us observe that IS,σ◦y(0, t) converges to 0 in X as t tends to 0, due to Remark 2.17.
he continuity at 0 of the term S(·)ψ requires a more detailed discussion. If the semigroup (S(t))t≥0 is

trongly continuous then, for every ψ ∈ X (which is allowed by Theorem 3.5), S(t)ψ converges in X to ψ as
tends to 0 and the initial condition can be classically interpreted. The point is that, under our assumptions,
he semigroup could be not strongly continuous. In this situation, if ψ ∈ Xθ for some θ > 0, then, due to
ondition (2.1)(b), S(t)ψ converges to ψ in X as t tends to 0 and again the initial condition can be classically
nterpreted. On the contrary, if ψ only belongs to X, then, in general, S(t)ψ does not admit limit as t tends
o 0. The initial condition is satisfied by the mild solution in this sense: for every t0 > 0, S(t0)y(t) converges
n X to S(t0)ψ. Indeed, by Remark 2.2, the function t ↦→ S(t)x is continuous in (0,+∞) for every x ∈ X.

We finally observe that, if (S(t))t≥0 is an analytic semigroup and ψ ∈ D(A), then y(t) converges to ψ in
as t tends to 0, If D(A) is a proper subspace of X (i.e., the semigroup is not strongly continuous) and
does not belong to it, then the initial condition can also be interpreted as follows: for every λ ∈ ρ(A),

R(λ,A)y(t) converges in X to R(λ,A)ψ as t tends to 0.

We split this section into three parts. In the former we prove the results when, among other properties,
the nonlinear term σ is globally Lipschitz continuous in Xα, for some α ∈ (0, 1). In the other two subsections
we prove the same results by assuming that σ is only locally Lipschitz continuous in Xα and that σ′ is locally
Lipschitz continuous from Xα into X, respectively, for some α ∈ (0, 1). In these cases we need to strengthen
the hypotheses on η in order to balance the lack of regularity of σ. To simplify the computations we consider

= 1, since the general case can be obtained with analogous arguments. We stress that, for arbitrary T > 0,
he constants which appear in the estimates also depend on T .

.1. The case when σ is globally Lipschitz continuous in Xα

We stress that, even if the following set of assumptions on σ might seem a bit artificial (since we assume σ
o be Lipschitz both in X and Xα while its derivative σ′ is only assumed to be locally Lipschitz continuous),
e have two reasons to also consider this case. The former is that the proofs, although maintaining the main
ifficulties, are, in this setting, easier and should help the reader to better understand the ideas behind the
omputations, the latter is that the proof of the main results under weaker hypotheses on σ can be deduced
rom the computations developed in this subsection, with some slight modifications. Hence, we can see this
art as an intermediate step in order to prove more general statements.

ypotheses 3.2.

(i) Hypotheses 2.1 are satisfied for every λ, ζ such that 0 ≤ ζ ≤ λ < 2.
(ii) The function x belongs to Cη([0, 1]) for some η ∈ (1/2, 1).
20
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(iii) The function σ : X → X is Gâteaux differentiable with bounded and locally Lipschitz continuous
Gâteaux derivative σ′. We denote by Lipσ the Lipschitz constant of σ on X and, for every R > 0, by
LipR

σ′ the Lipschitz constant of σ′ in {z ∈ X : ∥z∥X ≤ R}.
(iv) There exists α ∈ (0, 1) such that η + α > 1, the restriction of σ to Xα maps this space into itself and

σ is Lipschitz continuous as a map from Xα into itself. We denote by Lipα
σ the Lipschitz constant of σ

as a map from Xα into itself.

Let us introduce the following space: for every α, γ > 0, we say that f ∈ Y α
−γ(0, 1) if f ∈ C−γ((0, 1];Xα)∩

Cb((0, 1];X) and δ̂1f ∈ C α([0, 1]2<;Xα), where the subscript ‘b’ stands for bounded. The space Y α
−γ(0, 1) is

Banach space if endowed with the norm

∥f∥Y α
−γ

(0,1) := ∥f∥C−γ((0,1];Xα) + ∥f∥Cb((0,1];X) + ∥δ̂1f∥C α([0,1]2<;Xα)

for every f ∈ Y α
−γ(0, 1).

An analogous definition is given for Y α
−γ(0, T ) with T ∈ (0, 1)

Remark 3.3. One may ask why, if f ∈ Y α
−γ(0, 1), then the function t ↦→ ∥f(t)∥Xα has a singularity of

rder γ at t = 0, while the function (s, t) ↦→ ∥(δ̂1f)(s, t)∥Xα has not a singularity at s = 0. The reason is
he following: if ψ ∈ Xθ and θ < α, then the map t ↦→ ∥S(t)ψ∥Xα has a singularity at t = 0 of order α− θ.

On the contrary, δ̂1(S(·)ψ) = 0 for every ψ ∈ X. Thus, if y is a mild solution to (3.1), then ∥y(t)∥Xα has
a singularity at t = 0, while (δ̂1y)(s, t) = IS,σ◦y(s, t) for every (s, t) ∈ [0, 1]2<, and so it has no singularity
with respect to the Xα-norm.

To begin with, we prove that the convolution integral IS(σ◦y) is well-defined for functions y ∈ Y α
θ−α(0, 1).

Lemma 3.4. Let Hypotheses 3.2 be satisfied and fix y ∈ Y α
−γ(0, 1) with η + α > 1 and η > γ. Then:

(i) IS,σ◦y is well-defined;
(ii) IS,σ◦y belongs to C η−γ−ε([0, 1]2<;Xα+ε) and

∥IS,σ◦y∥C η−γ−ε([0,1]2<;Xα+ε) ≤ C∥x∥Cη([0,1])(1 + ∥y∥Y α
−γ

(0,1))

for every ε ∈ [0, (1 −α) ∧ (η− γ)] and some positive constant C, which depends on ε, η, γ, the constant
Cα,0,1 = Cα,0 in (2.1)(b), Lipσ, Lipα

σ and the norm of σ(0) in Xα.

roof. (i). Let us prove that the function σ ◦ y satisfies the assumptions of Remark 2.17 with a = 0, b = 1,
= α− θ, ρ = α and β = 0, i.e., σ ◦ y ∈ C−γ((0, 1];Xα) and δ̂1(σ ◦ y) ∈ C α

−γ((0, 1]2<;X). The continuity of
σ ◦ y and δ̂1(σ ◦ y) is a consequence of the regularity of σ and y. Further, from Hypothesis 3.2(iii) it follows
that

∥σ(z)∥Xα ≤ Lα
σ(1 + ∥z∥Xα), z ∈ Xα, (3.3)

here Lα
σ = max{Lipα

σ , ∥σ(0)∥Xα}. Therefore, we infer that

sγ∥σ(y(s))∥Xα ≤ Lα
σs

γ(1 + ∥y(s)∥Xα) ≤ Lα
σ(1 + ∥y∥C−γ((0,1];Xα)). (3.4)

Let us prove the condition on δ̂1(σ ◦ y). For this purpose, we observe that

∥(δ̂1(σ ◦ y))(s, t)∥X ≤∥σ(y(t)) − σ(y(s))∥X + ∥a(s, t)σ(y(s))∥X

≤Lipσ∥y(t) − y(s)∥X + Cα,0|t− s|α∥σ(y(s))∥Xα

ˆ α α
≤Lipσ∥(δ1y)(s, t)∥X + Lipσ∥a(s, t)y(s)∥X + Cα,0Lσ |t− s| (1 + ∥y(s)∥Xα)
21
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≤Lipσ∥(δ̂1y)(s, t)∥X + Cα,0|t− s|α(Lα
σ + (Lipσ + Lα

σ)∥y(s)∥Xα)

or every (s, t) ∈ (0, 1]2<. By recalling the definition of Y α
−γ(0, 1), we conclude that

sγ ∥(δ̂1(σ ◦ y))(s, t)∥X

|t− s|α
≤ Cα,0L

α
σ + [(Cα,0 ∨ 1)Lipσ + Cα,0L

α
σ ]∥y∥Y α

−γ
(0,1).

Hence, the assumptions of Remark 2.17 are fulfilled by σ ◦ y and so the convolution integral IS,σ◦y is
well-defined.

(ii). From (i) and Remark 2.17, it follows that IS,σ◦y ∈ C η−γ−ε([0, 1]2<;Xα+ε) for every ε ∈ [0, (1 − α) ∧
(η − γ)) and estimate (2.23) holds true, with σ ◦ y in place of φ. □

Theorem 3.5. Let Hypotheses 3.2 be satisfied. Then, for every ψ ∈ Xθ with α ≥ θ and η > 2α − θ, there
exists a unique mild solution y to (3.1) which belongs to Y α

θ−α(0, 1).

Remark 3.6. If θ = α then Theorem 3.5 coincides with [9, Theorem 3.2]. On the other side, we can also
choose an initial datum ψ barely belonging to X. The conditions η > 2α and α + η > 1 imply η > 2/3. In
other words, we can drop any regularity requirement on the initial datum as long as we choose a slightly
more regular noise x (but still not differentiable).

Proof of Theorem 3.5. To begin with, we notice that, if y is a mild solution to (3.1), then a straightforward
consequence of Remark 2.21(ii) is that

y(t) = S(t− τ)y(τ) + IS,σ◦y(τ, t), (τ, t) ∈ [0, 1]2<.

Since it is rather long, we divide the proof into some steps.
Step 1. We prove a general estimate of the right-hand side of (3.2).
Taking advantage of Lemma 3.4 with γ = α− θ, it is not hard to prove that for every y ∈ Y α

θ−α(0, T ) the
function [0, T ] ∋ t ↦→ S(t)ψ + IS,σ◦y(0, t) belongs to Y α

θ−α(0, T ) for every T ∈ (0, 1].
We introduce the operator Γ : Y α

θ−α(0, T ) → Y α
θ−α(0, T ), defined by

(Γ (y))(t) := S(t)ψ + IS,σ◦y(0, t), t ∈ [0, T ].

e claim that

∥y∥Y α
θ−α

(0,T ) ≤(L0,0Kθ,0 + Lθ,α)∥ψ∥Xθ
+ CT η+θ−2α∥x∥Cη([0,1])(1 + ∥y∥Y α

θ−α
(0,T )), (3.5)

ith
C := C(Kα,0 + 2)(Kα,0 + Cα,0 + 1)(Lipσ + Lα

σ).

Recall that the constants Kα,β , Lζ,α and Cµ,ν have been defined in Hypotheses 2.1.
For every s ∈ (0, T ] it holds that

∥y(s)∥X ≤ L0,0Kθ,0∥ψ∥Xθ
+Kα,0∥IS,σ◦y(0, s)∥Xα , (3.6)

∥y(s)∥Xα ≤ Lθ,αs
θ−α∥ψ∥Xθ

+ ∥IS,σ◦y(0, s)∥Xα . (3.7)

e want to apply Remark 2.17 with a = 0, b = T , φ = σ ◦y, γ = α−θ, ρ = α and β = ε = 0. The continuity
f σ ◦ y and of δ̂1(σ ◦ y) follows from the properties of y and σ. From (3.3) we infer that

∥σ ◦ y∥ ≤ Lα(Tα−θ + ∥y∥ α ).
Cθ−α((0,T ];Xα) σ Y
θ−α

(0,T )
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Let us estimate ∥δ̂1(σ ◦ y)∥C α
θ−α

((0,T ]2<;X). For every (s, t) ∈ (0, T ] we get

∥(δ̂1(σ ◦ y))(s, t)∥X ≤∥σ(y(t)) − σ(y(s))∥X + ∥a(s, t)σ(y(s))∥X

≤Lipσ∥y(t) − y(s)∥X + Cα,0|t− s|α∥σ(y(s))∥Xα

≤Lipσ(∥(δ̂1y)(s, t)∥X + ∥a(s, t)y(s)∥X) + Cα,0L
α
σ(1 + ∥y(s)∥Xα)|t− s|α

≤
(

Lipσ(Kα,0∥δ̂1y∥C α([0,1]2<;Xα) + Cα,0∥y(s)∥Xα) + Cα,0L
α
σ(1 + ∥y(s)∥Xα)

)
|t− s|α,

(3.8)

from which it follows that

∥δ̂1(σ ◦ y)∥C α
θ−α

((0,T ]2<;X) ≤ (Kα,0 + Cα,0)(Lipσ + Lα
σ)(1 + ∥y∥Y α

θ−α
(0,T )).

From Remark 2.17 we deduce that there exists a positive constant C such that

∥IS,σ◦y∥C η+θ−α([0,T ]2<;Xα)

≤C∥x∥Cη([0,1])

[
Lα

σ(1 + ∥y∥Y α
θ−α

(0,T )) + (Kα,0 + Cα,0)(Lipσ + Lα
σ)(1 + ∥y∥Y α

θ−α
(0,T ))

]
≤C∥x∥Cη([0,1])(Kα,0 + Cα,0 + 1)(Lipσ + Lα

σ)(1 + ∥y∥Y α
θ−α

(0,T )). (3.9)

Replacing (3.9) in (3.6) and (3.7) we get

∥y∥Cb((0,T ];X) + ∥y∥Cθ−α((0,T ];Xα)

≤(L0,0Kθ,0 + Lθ,α)∥ψ∥Xθ

+ C(Kα,0 + 1)T η+θ−α∥x∥Cη([0,1])(Kα,0 + Cα,0 + 1)(Lipσ + Lα
σ)(1 + ∥y∥Y α

θ−α
(0,T )), (3.10)

where we used the fact that T ≤ 1 and α ≥ θ to estimate T η ≤ T η+θ−α.
It remains to estimate ∥δ̂1y∥C α([0,T ]2<;Xα). Since (δ̂1y)(s, t) = IS,σ◦y(s, t) for every (s, t) ∈ [0, T ] and

η > 2α− θ, from (3.9) we infer that

∥δ̂1y∥C α([0,T ]2<;Xα) ≤T η+θ−2α∥δ̂1y∥C η+θ−α([0,T ]2<;Xα)

≤T η+θ−2αC∥x∥Cη([0,1])(Kα,0 + Cα,0 + 1)(Lipσ + Lα
σ)(1 + ∥y∥Y α

θ−α
(0,T )). (3.11)

The definition of ∥ · ∥Y α
θ−α

(0,T ), (3.10) and (3.11) give (3.5).
Step 2. We are now in a position to prove a global a priori estimate.
We claim that, if y is a mild solution to (3.1), then there exists a positive constant R, which depends on

∥ψ∥Xθ
, α, θ, x, η and σ, such that

∥y∥Y α
θ−α

(0,1) ≤ R. (3.12)

Notice that y ∈ Y α
θ−α(0, 1) is a mild solution to (3.1) if and only if it is a fixed point of Γ . Thus, if

y ∈ Y α
θ−α(0, 1) is a mild solution and we choose

T :=
(

1
2C∥x∥Cη([0,1])

) 1
η+θ−2α

∧ 1,

hen (3.5) immediately implies that

∥y∥Y α
θ−α

(0,T ) ≤ 2(L0,0Kθ,0 + Lθ,α)∥ψ∥Xθ
+ 1.

o, we can say that there exists T ∈ (0, 1] such that ∥y∥Y α
θ−α

(0,T ) ≤ R1 for some R1 > 0 which depends on
ψ∥ , α, θ, x, η and σ.
Xθ
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If T = 1, then we are done, otherwise we notice that y ∈ C([T , 1];Xα) and δ̂1y ∈ C α([T , 1]2<;Xα). In
articular, y is a solution in [T , 1] with initial datum y(T ) ∈ Xα Arguing as in Step 1 in the proof of [9,
heorem 3.1], we infer that there exists R2 > 0, which depends on ∥y(T )∥Xα , α, θ, x, η and σ, such that

∥y∥C([T ,1];Xα) + ∥δ̂1y∥C α([T ;1]2<;Xα) ≤ R2.

oreover, ∥y(T )∥Xα can be estimated by R1 and T above, so that R2 > 0 finally depends on ∥ψ∥Xθ
, α, θ, x, η

nd σ.
If we join the two estimates above, then we get

∥y(s)∥X ≤ R1 ∨ (Kα,0R2), s ∈ (0, 1],
sα−θ∥y(s)∥Xα ≤ R1 ∨ R2, s ∈ (0, 1],
∥(δ̂1y)(s, t)∥Xα ≤ (R1 ∨ R2)|t− s|α, (s, t) ∈ [0, T ] or (s, t) ∈ [T , 1].

f s ∈ (0, T ] and t ∈ (T , 1], recalling that

(δ̂1y)(s, t) = IS,σ◦y(s, t) = S(T − s)IS,σ◦y(s, T ) + IS,σ◦y(T , t),

hen we get

∥(δ̂1y)(s, t)∥Xα ≤L0,0∥(δ̂1y)(s, T )∥Xα + ∥(δ̂1y)(T , t)∥Xα

≤(L0,0R1|T − s|α + R2|t− T |α)
≤(L0,0R1 + R2)|t− s|α.

utting everything together we infer that there exists a positive constant R ≥ R1, which depends on
ψ∥Xθ

, α, θ, x, η and σ, such that (3.12) holds true.
Step 3. Let us prove that Γ is a contraction in the closed ball B of Y α

θ−α(0, T∗), centered at 0 and with
adius R, for some positive T∗, where R is the constant in (3.12). As a byproduct, we infer that there exists
unique mild solution y1 to (3.1) in [0, T∗]. Indeed, if ỹ is another mild solution to (3.1) in [0, T∗], then from

3.12) it follows that ∥ỹ∥Y α
θ−α

(0,T∗) ≤ R, which means that ỹ ∈ B and it is a fixed point of Γ . Hence, ỹ = y1.
Suppose that we have proved that Γ is a contraction in B. If T∗ = 1 then we are done, otherwise we can

pply the arguments in the proof of [9, Theorem 3.1] in [T∗, 1] with initial datum y1(T∗) ∈ Xα, exploiting the
xtra regularity of the initial datum. It follows that there exists a unique mild solution y2 ∈ C([T∗, 1];Xα)
ith δ̂1y2 ∈ C α([T∗, 1]2<;Xα) to the problem{

dy(t) = Ay(t)dt+ σ(y(t))dx(t), t ∈ (T∗, 1],
y(T∗) = y1(T∗).

ence, if we set

y(t) :=
{
y1(t), t ∈ [0, T∗],
y2(t), t ∈ [T∗, 1],

hen we obtain the unique mild solution to (3.1).
So, let us show that there exists T∗ ∈ (0, 1] such that Γ is a contraction in B. We begin by proving that
maps B into itself. For this purpose, we fix y1 ∈ B. From (3.5), with T being replaced by T ∗, it follows

hat

∥Γ (y)∥Y α
θ−α

(0,T∗) ≤(L0,0Kθ,0 + Lθ,α)∥ψ∥Xθ
+ CT η+θ−2α

∗ ∥x∥Cη([0,1])(1 + ∥y∥Y α
θ−α

(0,T∗))

≤1
2R + CT η+θ−2α

∗ ∥x∥Cη([0,1])(1 + R).
24
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By choosing

T∗ =
(

1
2

R

C∥x∥Cη([0,1])(1 + R)

) 1
η+θ−2α

∧ 1,

t follows that Γ (y) ∈ B.
Let us now prove that Γ is a 1/2-contraction, provided we choose T∗ small enough. Note that, for every

1, y2 ∈ B, it holds that

(Γ (y1))(t) − (Γ (y2))(t) = IS,σ◦y1−σ◦y2(0, t), t ∈ [0, T∗],

nd
(δ̂1(Γ (y1) − Γ (y2)))(s, t) = IS,σ◦y1−σ◦y2(s, t), (s, t) ∈ [0, T∗]2<.

ince for every (s, t) ∈ [0, T∗]2< it holds that

∥IS,σ◦y1−σ◦y2(s, t)∥Xα ≤ |t− s|η+θ−α∥IS,σ◦y1−σ◦y2∥C η+θ−α([0,T∗]2<;Xα),

sing Remark 2.17, with γ = α− θ, a = 0, b = T∗, ρ = α, β = ε = 0, we deduce that

∥IS,σ◦y1−σ◦y2(s, t)∥Xα ≤C|t− s|η+θ−α∥x∥Cη([0,1])(∥σ ◦ y1 − σ ◦ y2∥Cθ−α((0,T∗];Xα)

+ ∥δ̂1(σ ◦ y1 − σ ◦ y2)∥C α
θ−α

((0,T∗]2<;X)), (3.13)

or every (s, t) ∈ [0, T∗]2<. Let us estimate the first term in the right-hand side of (3.13). For every s ∈ (0, T∗],
e get

sα−θ∥σ(y1(s)) − σ(y2(s))∥Xα ≤Lipα
σs

α−θ∥y1(s) − y2(s)∥Xα

≤Lipα
σ∥y1 − y2∥Y α

θ−α
(0,T∗). (3.14)

ext, we estimate ∥δ̂1(σ ◦ y1 − σ ◦ y2)∥C α
θ−α

((0,T∗]2<;X). For every (s, t) ∈ (0, T∗]2<, we can write

(δ̂1(σ ◦ y1 − σ ◦ y2))(s, t) = (δ1(σ ◦ y1 − σ ◦ y2))(s, t) − a(s, t)(σ(y1(s)) − σ(y2(s))),

nd

sα−θ∥a(s, t)(σ(y1(s)) − σ(y2(s)))∥X ≤Cα,0Lipα
σs

α−θ∥y1(s) − y2(s)∥Xα |t− s|α

≤Cα,0Lipα
σ |t− s|α∥y1 − y2∥Y α

θ−α
(0,T∗). (3.15)

urther,

(δ1(σ ◦ y1 − σ ◦ y2))(s, t)
=σ(y1(s) + (δ1y1)(s, t)) − σ(y1(s)) −

(
σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s))

)
+ σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s) + (δ1y2)(s, t))

=
∫ 1

0
[σ′(y1(s) + r(δ1y1)(s, t)) − σ′(y2(s) + r(δ1y1)(s, t))](δ1y1)(s, t)dr

+ σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s) + (δ1y2)(s, t)), (3.16)

from which it follows that

sα−θ∥δ1(σ ◦ y1 − σ ◦ y2)(s, t)∥X

≤Lip3R
σ′ sα−θ∥y1(s) − y2(s)∥X∥(δ1y1)(s, t)∥X + Lipσs

α−θ∥(δ1y1)(s, t) − (δ1y2)(s, t)∥X

3R α−θ
( ˆ )
≤Lipσ′ s ∥y1(s) − y2(s)∥X ∥(δ1y1)(s, t)∥X + ∥a(s, t)y1(s)∥X

25
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+ Lipσs
α−θ

(
∥(δ̂1(y1 − y2))(s, t)∥X + ∥a(s, t)(y1(s) − y2(s))∥X

)
≤Lip3R

σ′ ∥y1 − y2∥Y α
θ−α

(0,T∗)
(
Kα,0∥y1∥Y α

θ−α
(0,T∗) + Cα,0s

α−θ∥y1(s)∥Xα

)
|t− s|α

+ Lipσ

(
Kα,0∥y1 − y2∥Y α

θ−α
(0,T∗) + Cα,0s

α−θ∥y1(s) − y2(s)∥Xα

)
|t− s|α

≤Lip3R
σ′ (Kα,0 + Cα,0)∥y1∥Y α

θ−α
(0,T∗)∥y1 − y2∥Y α

θ−α
(0,T∗)|t− s|α

+ Lipσ(Kα,0 + Cα,0)∥y1 − y2∥Y α
θ−α

(0,T∗)|t− s|α. (3.17)

Putting together (3.13)–(3.17), we infer that

∥IS,σ◦y1−σ◦y2(s, t)∥Xα ≤ C̃|t− s|η+θ−α∥x∥Cη([0,1])∥y1 − y2∥Y α
θ−α

(0,T∗), (3.18)

for every (s, t) ∈ [0, T∗]2< and some positive constant C̃ which depends on α, θ, η, R and σ. Further,

∥IS,σ◦y1−σ◦y2(s, t)∥Xα

|t− s|α
≤

∥IS,σ◦y1−σ◦y2(s, t)∥Xα

|t− s|η−θ−α
|t− s|η+θ−2α

≤C̃T η+θ−2α
∗ ∥x∥Cη([0,1])∥y1 − y2∥Y α

θ−α
(0,T∗) (3.19)

for every (s, t) ∈ [0, T∗]2<. Therefore, we get

tα−θ∥(Γ (y1))(t) − (Γ (y2))(t)∥Xα + ∥(Γ (y1))(t) − (Γ (y2))(t)∥X

+ ∥(δ̂1(Γ (y1) − Γ (y2)))(s, t)∥Xα

|t− s|α

≤∥IS,σ◦y1−σ◦y2∥Xα + ∥IS,σ◦y1−σ◦y2∥X + ∥IS,σ◦y1−σ◦y2(s, t)∥Xα

|t− s|α

≤C̃T η+θ−2α
∗ (Kα,0 + 2)∥x∥Cη([0,1])∥y1 − y2∥Y α

θ−α
(0,T∗)

or every (s, t) ∈ [0, T∗]2<. This implies that a suitable choice of T∗ gives

∥Γ (y1) − Γ (y2)∥Y α
θ−α

(0,T∗) ≤ 1
2∥y1 − y2∥Y α

θ−α
(0,T∗),

.e., Γ is a 1
2 -contraction on B and, therefore, it admits a unique fixed point in B which we denote by y1. □

Now, we prove some regularizing properties of the solution y to (3.1).

roposition 3.7. Let Hypotheses 3.2 be satisfied. Then, for every ψ ∈ Xθ with α ≥ θ and η > 2α − θ,
the unique mild solution y to (3.1) in [0, 1] belongs to C((0, 1];Xρ) and to Cη+α−ρ

loc ((0, 1];Xρ) for every ρ ∈
[η+α−1, η+α). Finally, for every µ ∈ [0, η+α−1) there exists a positive constant C = C(∥ψ∥Xθ

, α, θ, x, η, σ, µ)
uch that

∥y(t)∥X1+µ ≤ Ctθ−1−µ, t ∈ (0, 1]. (3.20)

emark 3.8. We stress that the behavior of the X1+µ-norm of y in estimate (3.20) is sharp. Indeed, in the
articular case when σ ≡ 0, y(t) = S(t)ψ for every t ∈ (0, 1] and estimate (3.20) agrees with (2.1)(a).

roof of Proposition 3.7. Let us notice that, for every τ ∈ (0, 1), y is the unique mild solution to{
dv(t) = Av(t)dt+ σ(v(t))dx(t), t ∈ (τ, 1],
v(τ) = y(τ),

ith y(τ) ∈ Xα. From [9, Theorem 3.1], it follows that y(t) belongs to C((0, 1];Xρ) and to Cη+α−ρ
loc ((0, 1];Xρ)
or every ρ ∈ [η + α− 1, η + α). It remains to prove estimate (3.20).
26
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Let us fix τ ∈ (0, 1] and observe that, using Remark 2.21 and formula (3.2), we can easily show that

y(t) = S(t− τ/2)y(τ/2) + IS,σ◦y(τ/2, t) (3.21)

or every t ∈ [τ, 1], so that, using (2.23), which holds true also when γ = 0 (see Remark 2.20), we obtain

∥y(t)∥Xζ
≤Lα,ζ(t− τ/2)α−ζ∥y(τ/2)∥Xα

+ C(t− τ/2)η+α−ζ∥x∥Cη([0,1])(∥σ ◦ y∥C([τ/2,1];Xα) + ∥δ̂1(σ ◦ y)∥C α([τ/2,1]2<;X))

≤2α−θLα,ζ,1∥y∥Y α
θ−α

(0,1)(t− τ/2)α−ζτθ−α

+ C(t− τ/2)η+α−ζ∥x∥Cη([0,1])(∥σ ◦ y∥C([τ/2,1];Xα) + ∥δ̂1(σ ◦ y)∥C α([τ/2,1]2<;X)) (3.22)

for every ζ ∈ [α, 1) and t ∈ [τ, 1].
Let us estimate the last factor in the right-hand side above: from (3.4), with γ = α− θ, we get

∥σ ◦ y∥C([τ/2,1];Xα) ≤ 2α−θLα
στ

θ−α(1 + ∥y∥Y α
θ−α

(0,1)). (3.23)

y taking advantage of (3.8), we easily infer that

∥δ̂1(σ ◦ y)∥C α([τ/2,1]2<;X) ≤ 2α−θτθ−α(Kα,0 + Cα,0)(Lipσ + Lα
σ)(1 + ∥y∥Y α

θ−α
(0,1)). (3.24)

By replacing (3.23) and (3.24) in (3.22) we conclude that

∥y(t)∥Xζ
≤ c1(t− τ/2)α−ζτθ−α, t ∈ [τ, 1], (3.25)

or some positive constant c1 which depends on ∥ψ∥Xθ
, α, θ, x, η, σ and ζ.

Now, we need to go beyond ζ < 1. To this aim, we fix λ ∈ [0, η+α−1) and we estimate ∥(δ̂1(σ◦y))(s, t)∥Xλ
.

Since η < 1, it follows that λ < α. For every (s, t) ∈ [τ, 1]2< we get

∥(δ̂1(σ ◦ y))(s, t)∥Xλ
≤∥σ(y(t)) − σ(y(s))∥Xλ

+ ∥a(s, t)σ(y(s))∥Xλ

≤Kα,λLipα
σ∥y(t) − y(s)∥Xα + Cα,λL

α
σ(1 + ∥y(s)∥Xα)|t− s|α−λ

≤Kα,λLipα
σ(∥(δ̂1y)(s, t)∥Xα + ∥a(s, t)y(s)∥Xα)

+ Cα,λL
α
στ

θ−α(1 + ∥y∥Y α
θ−α

(0,1))|t− s|α−λ
.

To estimate the first term in the last side of the previous chain of inequalities, we observe that

∥(δ̂1y)(s, t)∥Xα + ∥a(s, t)y(s)∥Xα ≤∥y∥Y α
θ−α

(0,1)|t− s|α + C2α−λ,α∥y(s)∥X2α−λ
|t− s|α−λ

≤|t− s|α−λ(∥y∥Y α
θ−α

(0,1) + c1C2α−λ,α(s− τ/2)λ−ατθ−α)

≤(∥y∥Y α
θ−α

(0,1) + 2α−λc1C2α−λ,α)τλ+θ−2α|t− s|α−λ
,

where we have applied (3.25) with ζ = 2α− λ, so that

∥(δ̂1(σ ◦ y))(s, t)∥Xλ
≤Kα,λLipα

σ(∥y∥Y α
θ−α

(0,1) + 2α−λc1C2α−λ,α)τλ+θ−2α|t− s|α−λ

+ Cα,λ,L
α
στ

θ−α(1 + ∥y∥Y α
θ−α

(0,1))|t− s|α−λ
. (3.26)

It follows that
∥δ̂1(σ ◦ y)∥C α−λ([τ,1]2<;Xλ) ≤ c2τ

λ+θ−2α, (3.27)

where c2 is a positive constant which depends on ∥ψ∥Xθ
, α, θ, x, η, σ and λ.

Finally, we fix µ ∈ [0, η + α− 1) and take

λ = (η + α− 1) − 1 [(η + α− 1 − µ) ∧ (η − α+ µ)],
2
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which belongs to the interval (µ, η + α − 1). Applying again estimate (2.23), with β = λ, ρ = α − λ, γ = 0
and ε = 1 + µ− α, we infer that IS,σ◦y ∈ C η+α−1−µ([ε, 1]2<;X1+µ) and

∥IS,σ◦y∥C η+α−1−µ([τ,1]2<;X1+µ) ≤C(∥σ ◦ y∥C([τ,1];Xα) + ∥δ̂1(σ ◦ y)∥C α−λ([τ,1]2<;Xλ))

≤C(Lα
στ

θ−α(1 + ∥y∥Y α
θ−α

(0,1)) + c2τ
θ+λ−2α)

≤c3τ
θ+λ−2α, (3.28)

where c3 is a positive constant which depends on ∥ψ∥Xθ
, α, θ, x, η, σ, λ and µ.

Taking (3.21) into account and applying (3.28), with τ replaced by τ/2, we deduce that

∥y(t)∥X1+µ ≤L1+µ,α|t− τ/2|α−1−µ∥y(τ/2)∥Xα + 22α−θ−λc3τ
θ+λ−2α

≤L1+µ,α|t− τ/2|α−1−µ
τθ−α∥y∥Y α

θ−α
(0,1) + 22α−θ−λc3τ

θ+λ−2α

≤c4τ
θ−1−µ (3.29)

or every t ∈ [τ, 1], where c4 is a positive constant which depends on ∥ψ∥Xθ
, α, θ, x, η, σ and µ.

n particular, we get ∥y(t)∥X1+µ ≤ c4t
θ−1−µ for every t ∈ (0, 1], where c4 is independent of t, since

> η + α− 1 − (η − α− µ)/2, so that

λ− 2α+ 1 + µ ≥ 1
2(η − α+ µ) > 0,

ue to the condition η > 2α− θ, and this yields the inequality θ + λ− 2α ≥ θ − 1 − µ. □

emark 3.9. Hypotheses 2.1 is assumed with 0 ≤ ζ ≤ λ < 2, since Proposition 3.7 involves only the
paces Xγ , with γ < 2. It is easy to check that, if Hypotheses 2.1 are satisfied for every λ and ζ such that

≤ ζ ≤ λ ≤ 1 + β for some β ∈ (0, 1), then Proposition 3.7 still holds true with ρ and µ replaced by
∧ (1 + β) and 1 + µ ∧ β, respectively.

.2. The case when σ is locally Lipschitz continuous in Xα

In this subsection, we prove that a mild solution to (3.1) also exists if we weaken the assumptions on σ

s long as we strengthen the hypotheses on the Hölder exponent η of x. As in the previous subsection, we
et global existence and uniqueness of the mild solution y and we provide regularity properties of y.

ypotheses 3.10.

(i) Hypotheses 2.1 are satisfied with 0 ≤ ζ ≤ λ < 2;
(ii) Hypotheses 3.2(i) − (ii) are satisfied;
(iii) there exists α ∈ (0, 1) such that η + α > 1 and the restriction of σ to Xα maps the space into itself.

Moreover, there exist positive constants Lα
σ , Lipα

σ and ω such that

∥σ(x) − σ(y)∥Xα ≤ Lipα
σ(1 +R)ω∥x− y∥Xα , x, y ∈ B(0, R) ⊂ Xα, (3.30)

for every R > 0 and ∥σ(x)∥Xα ≤ Lα
σ(1 + ∥x∥Xα) for every x ∈ Xα.

heorem 3.11. Let Hypotheses 3.10 be satisfied. Then, for every ψ ∈ Xθ with α ≥ θ and η >
α
α+ (1 + ω)(α− θ), there exists a unique mild solution y to (3.1) which belongs to Yθ−α(0, 1).
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Proof of Theorem 3.11. Let us notice that, under Hypotheses 3.10, the estimates in the proof of
heorem 3.5 which fail are (3.14) and (3.15). Indeed, if y1, y2 belong to the ball B ⊂ Y α

θ−α(0, T∗) with
radius R, then ∥y1(s)∥Xα , ∥y2(s)∥Xα ≤ sθ−αR for every s ∈ (0, T∗]. From (3.30) we get

sα−θ∥σ(y1(s)) − σ(y2(s))∥Xα ≤ Lipα
σ(1 + R)ωs−ω(α−θ)∥y1 − y2∥Y α

θ−α
(0,T∗) (3.31)

nd, if ω > 0 and we take the supremum of s over (0, T∗), then the right-hand side of (3.31) blows up. To
vercome this problem, we stress that under Hypotheses 3.10 we are able to apply Remark 2.17, with a = 0,
= T∗, φ = σ ◦ y1 − σ ◦ y2, γ = (1 + ω)(α − θ), ρ = α and β = ε = 0. In this case, for every t ∈ [0, T∗],

nstead of (3.13) we get

∥IS,σ◦y1−σ◦y2(s, t)∥Xα ≤C|t− s|η−(1+ω)(α−θ)∥x∥Cη([0,1])

× (∥σ ◦ y1 − σ ◦ y2∥C−(1+ω)(α−θ)((0,T∗];Xα)

+ ∥δ̂1(σ ◦ y1 − σ ◦ y2)∥C α
−(1+ω)(α−θ)((0,T∗]2<;X)) (3.32)

for every (s, t) ∈ [0, T ]2<. Estimate (3.31) shows that σ ◦ y1 − σ ◦ y2 belongs to C−(1+ω)(α−β)((0,T∗];Xα) and

∥σ ◦ y1 − σ ◦ y2∥C−(1+ω)(α−β)((0,T∗];Xα) ≤ Lipα
σ(1 + R)ω∥y1 − y2∥Y α

θ−α
(0,T∗), (3.33)

from which it follows immediately that

s(1+ω)(α−θ)∥a(s, t)(σ(y1(s)) − σ(y2(s)))∥X ≤ Cα,0Lipα
σ(1 + R)ω|t− s|α∥y1 − y2∥Y α

θ−α
(0,T∗). (3.34)

Moreover, we can apply formula (3.17) (which does not rely on the Lipschitzianity of σ in Xα) to estimate
s(1+ω)(α−θ)∥(δ1(σ ◦ y1 − σ ◦ y2))(s, t)∥X , and from (3.34) we infer that δ̂1(σ ◦ y1 − σ ◦ y2) belongs to
C α

−(1+ω)(α−θ)((0, T∗]2<;X) and

∥δ̂1(σ ◦ y1 − σ ◦ y2)∥C α
−(1+ω)(α−θ)((0,T∗]2<;X)

≤[Cα,0Lipα
σ(1 + R)ω + (Kα,0 + Cα,0)(Lip3R

σ′ R + Lipσ)]∥y1 − y2∥Y α
θ−α

(0,T∗). (3.35)

Replacing estimates (3.33) and (3.35) into (3.32), we conclude that

∥IS,σ◦y1−σ◦y2,(0, t)∥Xα ≤ CT
η−(1+ω)(α−θ)
∗ ∥x∥Cη([0,1])∥y1 − y2∥Y α

θ−α
(0,T∗),

∥IS,σ◦y1−σ◦y2(s, t)∥Xα

|t− s|α
≤ CT

η−(1+ω)(α−θ)−α
∗ ∥x∥Cη([0,1])∥y1 − y2∥Y α

θ−α
(0,T∗)

for every t ∈ [0, T∗] and (s, t) ∈ [0, T∗]2<, respectively. Here, C is a positive constant which depends on
, θ, x, η, R, σ and ω. Using these estimates, which replace (3.18) and (3.19), and arguing as in the proof
f Theorem 3.5, we can complete the proof. □

Under the same assumptions of Theorem 3.11 we show that the mild solution y is indeed more regular.

roposition 3.12. Let Hypotheses 3.10 be satisfied. Then, for every ψ ∈ Xθ with α ≥ θ and η >

+(1+ω)(α−θ), the unique mild solution y to (3.1) in [0, 1] belongs to C((0, 1];Xρ) and to Cη+α−ρ
loc ((0, 1];Xρ)

or every ρ ∈ [η + α − 1, η + α). Finally, for every µ ∈ [0, η + α − 1) there exists a positive constant
= C(∥ψ∥Xθ

, α, θ, x, η, σ, µ, ω) such that (3.20) holds true.

roof. The proof can be obtained arguing as in the proof of Proposition 3.7, with the unique difference

hat, due to the fact that σ is only locally Lipschitz continuous on Xα, in estimate (3.26) we need to replace

29



D. Addona, L. Lorenzi and G. Tessitore Nonlinear Analysis 238 (2024) 113401

w

f

c

X

i
0
a
f

e
w
t
η

3

l

Lipα
σ with Lipα

σ∥y∥ω
Y α

θ−α
(0,1)τ

ω(θ−α), so that (3.27) becomes ∥δ̂1(σ ◦ y)∥C α−λ([τ,1];2<;Xλ) ≤ c1τ
λ+θ−2α−ω(α−θ),

ith λ ∈ [0, η + α− 1). Here, c1 is a positive constant which depends on ∥ψ∥Xθ
, α, θ, x, η, σ and λ.

Now, we fix µ ∈ [0, η + α− 1) and argue as in (3.29) to infer that

∥y(t)∥X1+µ ≤2µ+1−αL1+µ,ατ
θ−µ−1∥y∥Y α

θ−α
(0,1) + 22α+ω(α−θ)−θ−λc2τ

θ+λ−2α−ω(α−θ)

or every t ∈ [τ, 1], where c2 is a positive constant which depends on µ and the same parameters as c1.
Finally, we choose a suitable λ such that τθ−µ−1 ≥ τθ+λ−2α−ω(α−θ) for every τ ∈ (0, 1). For instance, we

an take
λ = η + α− 1 −

[
1
2(η + α− 1 − µ)

]
∧ (η − α− ω(α− θ) + µ),

which belongs to the interval (µ, η + α− 1). The proof is complete. □

Remark 3.13. Clearly, Remark 3.9 can be applied also to the results of this subsection.

Example 3.14. Let A be the second-order elliptic operator on Rd defined by

A =
d∑

i,j=1
qijDij +

d∑
j=1

bjDj + c.

We assume that the coefficients of operator A are bounded and β-Hölder continuous in Rd, for some
β ∈ (0, 1), and

∑d
i,j=1 qij(x)ξiξj ≥ µ|ξ|2 for every x, ξ ∈ Rd and some positive constant µ.

Let A be the realization of A in X = Cb(Rd), the space of bounded and continuous functions f : Rd → R,
with maximal domain

D(A) =
{
u ∈ Cb(Rd) ∩

⋂
p<∞

W 2,p
loc (Rd) : Au ∈ Cb(Rd)

}
.

For every λ ∈ (0, 1 + β/2) \ {1/2, 1}, we take Xλ = C2λ
b (Rd) endowed with its classical norm. Moreover,

we take as X1/2 the Zygmund space of all bounded functions g : Rd → R such that [g]X1/2 =
supx̸=y

|g(x)+g(y)−2g(2−1(x+y))|
|x−y| < ∞, endowed with the norm ∥g∥X1/2 = ∥g∥∞ + [g]X1/2 . Finally, we set

1 = D(A).
The operator A generates an analytic semigroup on Cb(Rd). Further, for every λ ∈ (0, 1 +β/2), Xλ is the

nterpolation space of indexes λ and ∞ between X and D(A). Hence, Hypotheses 3.10 is satisfied for every
≤ ζ ≤ λ ≤ 1 + β. We refer the reader to e.g., [7, Chapters 3 and 14]. Finally, we fix a function σ̂ ∈ C2

b (R)
nd note that the function σ : X → X, defined by σ(f) = σ̂ ◦ f for every f ∈ X, satisfies Hypotheses 3.10,
or every α ∈ (0, 1/2), with ω = 1.

Therefore, the assumptions of Theorem 3.5 and Proposition 3.7 are satisfied and we conclude that, for
very ψ ∈ Cθ

b (Rd) with θ ≥ 0 and θ ∈ ((3α− η)/2, α], there exists a unique mild solution y to problem (3.1)
hich takes values in D(A). In particular, if 3α < 1 and η > 3α, then we get existence and uniqueness of

he smooth mild solution y for every ψ ∈ X. We notice that, since we are assuming η+α > 1, the inequality
> 3α implies η > 3/4.
Similarly, if α ∈ (1/2, 1) and σ̂ ∈ C3

b (R) then the function σ satisfies Hypotheses 3.10 with ω = 2.

.3. The case when σ′ is locally Lipschitz continuous from Xα to X

We conclude this section by proving that we can further weaken the assumptions on σ allowing σ′ to be
ocally Lipschitz continuous from the smaller space X to X.
α
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Hypotheses 3.15.

(i) Hypotheses 2.1 are satisfied, with 0 ≤ ζ ≤ λ < 2.
(ii) The function x belongs to Cη([0, 1]) for some η ∈ (1/2, 1).
(iii) The function σ : X → X is Gâteaux differentiable with bounded Gâteaux derivative σ′.
(iv) There exists α ∈ (0, 1) such that η + α > 1, the restriction of σ to Xα maps the space into itself, and

there exist positive constants Lipα
σ , Lipα

σ′ and ω ≥ 1 such that

∥σ(x) − σ(y)∥Xα ≤ Lipα
σ(1 +R)ω∥x− y∥Xα ,

∥(σ′(x))(h) − (σ′(y))(h)∥X ≤ Lipα
σ′(1 +R)ω−1∥x− y∥Xα∥h∥X

for every x, y ∈ Xα, with ∥x∥Xα ≤ R and ∥y∥Xα ≤ R, every R > 0 and h ∈ X. Moreover,
∥σ(x)∥Xα ≤ Lα

σ(1 + ∥x∥Xα) for every x ∈ Xα and some positive constant Lα
σ .

heorem 3.16. Under Hypotheses 3.15 the statements of Theorem 3.11 and Proposition 3.12 hold true with
he same choice of all the parameters.

roof. The only differences between this proof and the one of the quoted Theorem and Proposition is in
he existence and uniqueness part of the statement. More precisely, we need to slightly modify the arguments
sed to prove the crucial estimate (3.35) that is:

∥IS,σ◦y1−σ◦y2(s, t)∥Xα ≤ C̃|t− s|η−(1+ω)(α−θ)∥x∥Cη([0,1])∥y2 − y1∥Y α
θ−α

(0,T∗),

hich holds true for every (s, t) ∈ [0, T∗]2< and some positive constant C̃, depending on α, θ, x, η, R, σ and
. The starting point is still estimate (3.32). The different assumptions on σ′ force us to estimate the term

1̂(σ ◦ y1 − σ ◦ y2) differently from what we did in (3.17), to obtain that

∥δ̂1(σ ◦ y1 − σ ◦ y2)∥C α
−(1+ω)(α−θ)((0,T∗]2<;X) ≤ C̃1∥y1 − y2∥Y α

θ−α
(0,T∗) (3.36)

or some positive constant C̃1 which depends on α, θ, x, η, R, σ and ω.
Let us fix (s, t) ∈ (0, T∗]2<. We recall that

(δ1(σ ◦ y1 − σ ◦ y2))(s, t) =
∫ 1

0
(σ′(y1(s) + r(δ1y1)(s, t)) − σ′(y2(s) + r(δ1y1)(s, t)))(δ1y1)(s, t)dr

+ σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s) + (δ1y2)(s, t))
=:ϕ1(s, t) + ϕ2(s, t),

(see (3.16)). The term ϕ2(s, t) is estimated by (3.17). As far as ϕ1 is concerned, we get

s(1+ω)(α−θ)∥ϕ1(s, t)∥X ≤Lipα
σ′(1 + 3Rsθ−α)ω−1s(1+ω)(α−θ)∥y1(s) − y2(s)∥Xα∥(δ1y1)(s, t)∥X

=Lipα
σ′(1 + 3R)ω−1sα−θ∥y1(s) − y2(s)∥Xαs

α−θ∥(δ1y1)(s, t)∥X

≤Lipα
σ′(1 + 3R)ω−1∥y1 − y2∥Y α

θ−α
(0,T∗)s

α−θ∥(δ1y1)(s, t)∥X

and, arguing as in (3.17), we infer that

sα−θ∥(δ1y1)(s, t)∥X ≤ (Kα,0 + Cα,0)∥y1∥Y α
θ−α

(0,T∗)|t− s|α.

Summing up, we have proved that

∥δ1(σ ◦ y1 − σ ◦ y2)∥C α
−(1+ω)(α−θ)((0,T∗]2<;X) ≤ C̃2∥y1 − y2∥Y α

θ−α
(0,T∗)

for some positive constant C̃2, which depends on ∥ψ∥Xθ
, α, θ, x, η, R, σ and ω. From this estimate and (3.34),

(3.36) follows easily.

Now, we can complete the proof following the arguments in Theorem 3.11. □
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Remark 3.17. Remark 3.9 can be applied also to the results of this subsection.

xample 3.18. Let A be the realization of the second-order derivative in X = L2((0, 1)), with
omogeneous Dirichlet boundary conditions, and let σ(ψ) := σ̂ ◦ ψ for every ψ ∈ L2((0, 1)), where σ̂ is
fixed function in C2

b (R). In this situation, Xλ = W 2λ,2((0, 1)) if λ ≤ 1/2, Xλ = W 2λ,2((0, 1))∩W 1,2
0 ((0, 1))

f λ ∈ (1/2, 1), X1 = D(A) = W 2,2((0, 1)) ∩ W 1,2
0 ((0, 1)) and Xλ = {u ∈ W 2,2((0, 1)) ∩ W 1,2

0 ((0, 1)) : u′′ ∈
λ−1} if λ ∈ (1, 2).
Let α ∈ ( 1

4 ,
1
2 ), θ ∈ [0, α] and η ∈ ( 1

2 , 1) be such that η > 3α−2θ. Under these conditions, Hypotheses 3.15
re satisfied with ω = 1. Indeed, it is easy to check that σ is Lipschitz continuous from X in itself. Moreover,

∥(σ′(y2))(h) − (σ′(y1))(h)∥2
X =

∫ 1

0
|σ̂′(y2(ξ)) − σ̂′(y1(ξ))|2|h(ξ)|2dξ

≤∥σ̂∥2
C2

b
(R)

∫ 1

0
|y2(ξ) − y1(ξ)|2|h(ξ)|2dξ

≤∥σ̂∥2
C2

b
(R)∥y2 − y1∥2

C([0,1])∥h∥2
X

≤∥σ̂∥2
C2

b
(R)∥y2 − y1∥2

Xα
∥h∥2

X ,

or every y1, y2 ∈ Xα and every h ∈ X, since Xα ⊂ C([0, 1]) with a continuous embedding. Therefore, the
econd estimate in Hypothesis 3.15 is satisfied with ω = 1. To prove that σ is locally Lipschitz continuous
n Xα we observe that

(σ(y1))(x) − (σ(y2))(x) = (y1(x) − y2(x))
∫ 1

0
σ̂′(ry1(x) + (1 − r)y2(x))dr

or every y1, y2 ∈ Xα and almost every x ∈ (0, 1). From this formula it follows that

∥σ(y1) − σ(y2)∥L2((0,1)) ≤ ∥σ̂′∥∞∥y2 − y1∥L2((0,1)).

Moreover,

(σ(y1))(ξ) − (σ(y2))(ξ) − (σ(y1))(η) + (σ(y2))(η)

=[y1(ξ) − y2(ξ) − y1(η) + y2(η)]
∫ 1

0
σ̂′(ry1(ξ) + (1 − r)y2(ξ))dr

+ (y1(η) − y2(η))
∫ 1

0
[σ̂′(ry1(ξ) + (1 − r)y2(ξ)) − σ̂′(ry1(η) + (1 − r)y2(η))]dr

so that

|(σ(y1))(ξ) − (σ(y2))(ξ) − (σ(y1))(η) + (σ(y2))(η)|2

≤2∥σ̂′∥2
∞|y1(ξ) − y2(ξ) − y1(η) + y2(η)|2

+ 2∥σ̂′′∥2
∞|y1(η) − y2(η)|2(|y1(ξ) − y1(η)|2 + |y2(ξ) − y2(η)|2)

for almost every ξ, η ∈ (0, 1). Consequently, we can estimate

[σ(y1) − σ(y2)]2W 2α,2(0,1)

≤2∥σ̂′∥2
∞[y1 − y2]2W 2α,2((0,1)) + 2∥σ̂′′∥2

∞∥y1 − y2∥2
∞([y1]2W 2α,2((0,1)) + [y2]2W 2α,2((0,1)))

≤C∗(1 + ∥y1∥2
Xα

+ ∥y2∥2
Xα

)∥y1 − y2∥2
Xα

for some positive constant C∗, independent of y1 and y2. We have so proved that σ is locally Lipschitz
continuous on Xα and the first condition in Hypotheses 3.15 is satisfied with ω = 1.

Note that, if 3α < 1 and η > 3α then we can take θ = 0, i.e., problem (3.1) admits a unique mild solution
with initial datum ψ ∈ X = L2((0, 1)).

Finally, we observe that, if σ̂ ∈ C3
b (R) and α ∈ (1/2, 1), then the function σ satisfies Hypotheses 3.15
with ω = 2.
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