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In this paper we prove existence and uniqueness of a mild solution to the Young
equation dy(t) = Ay(t)dt + o(y(t))dz(t), t € [0,T], y(0) = . Here, A is an
unbounded operator which generates a semigroup of bounded linear operators
(S(t))t>0 on a Banach space X, z is a real-valued n-Hélder continuous. Our aim
is to reduce, in comparison to Gubinelli et al. (2006) and Addona et al. (2022)
(see also Deya et al. (2012) and Gubinelli and Tindel, (2010)), the regularity
requirement on the initial datum v eventually dropping it.

The main tool is the definition of a sewing map for a new class of increments
which allows the construction of a Young convolution integral in a general interval
la,b] C R when the Xy-norm of the function under the integral sign blows up
approaching a and X, is an intermediate space between X and D(A).

©2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CCBY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is devoted to the study of the existence, uniqueness and regularity of the mild solution to the

non-linear evolution problem

dy(t) = Ay(t)dt + o (y(t))dx(t),

te [OaT]a Yo = 1/1; (11)

when the operator A : D(A) C X — X generates a semigroup of linear bounded operators (S(t));>0 on
X, with smoothing effects, and x is a n-Hoélder continuous function with values in a suitable space. By mild

solution of (1.1) we mean a function y which satisfies the equation

y(t) = Sty + / S(t — r)o(y(r))da(r),

t t € 0,77. (1.2)
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We stress that, since x has not finite variation, the integral appearing in the above formula has to be intended
in a non-obvious sense. Integrals such as

/ y(r)da(r), (1.3)

when neither = or y have bounded variation, have been introduced by L.C. Young in [1] when 2 and y have
finite p-variation' and g¢-variation, respectively, with ]% + % > 1 (equivalently, when y is 8-Holder continuous
and z is n-Holder continuous with 8 + 1 > 1), and are therefore called Young integrals. In [2], T. Lyons
extended the definition of the integral in (1.3) when % + % < 1 (i.e., when f +n < 1) by adding some
“structure” to the irregular path x giving birth to the rough-paths theory. A different approach has been
developed by M. Gubinelli in [3], where the rough integral is defined as the unique solution of an algebraic
problem under some analytic conditions. Here, we follow this approach and we limit ourselves to solve (1.2)
in the Young case.

The evolution equation (1.1) in infinite dimensional spaces was first addressed in [4]. It is clear that the

key point consists of the definition of the convolution integral

/ St —r)e(r)dz(r) (1.4)

for suitable functions ¢ and Hoélder continuous path x defined on [0, 7). This is done in [4,5] by adapting
the sewing map approach to the case of convolutions and then generalized in [6] to the case of the
stochastic heat equation with a multiplicative, finite dimensional, noise. Given A : [a,b]2 — X, where
[a,b)2 = {(s,t) : a < s <t < b}, the authors of [4,5] defined the ‘convolutional’ increment (3A)(r, s,t) =
A(r,t) — A(s,t) — S(t — s)A(r, s) for a < r < s < t < b and proved that, if ||[(3A)(r, s, t)|x < C|t —r|* for
every a < r < s <t <band some constants C' > 0 and p > 1, then the limit

R(s,t):= lim ZSt—t (tiz1,t), (s,1) € [a,b%]<, (1.5)

|IT(s,t) \—>0

exists (here IT(s,t) is a partition of [s,¢] and |II(s,t)| is its mesh). The convolution integral can then be
defined by:
j(sat) = A(Sat) - R(Sat)7 (Sat) € [aa b]2<7 (16)

and, with the special choice A(s,t) = S(t — s)p(s)(z(t) — z(s)) for every a < r < s < t < b, where z is a
real-valued 7-Hélder continuous function and ¢ : [a,b] — X verifies ||o(t) — S(t — s)p(s)||x < C|t — s|” for
every a < s <t < b and some § > 0, with n + 3 > 1, the above construction suggests to set

/ St —r)e(r)dx(r) = S (s,t), (s,t) € [a7b}2<

Once the convolution integral in (1.4) is defined, its properties allow proving existence and uniqueness of the
mild solution to (1.1) by means of a fixed-point argument. We underline that a crucial assumption in [4,5] is
that the initial datum v belongs to an intermediate space X, between X and D(A) with n+« > 1. Moreover,
the solution lives in the same space X, with no gain of regularity. On the contrary, in the classical case,
see for instance [7] or [8], i.e., when z is smooth and A generates an analytic semigroup, then no regularity
assumptions on ¢ are needed (in particular, we can choose ¢ € X). Moreover, if the intermediate spaces
are interpolation spaces of indexes a and oo and the initial datum belongs to any of such spaces, then
y(t) € D(A) for every t € (0,7T] and y satisfies (1.1) in the original differential form.

1 A function z : [a,b] — X has finite r-variation if the supremum of E;L_l [[z(t;) — z(t;j—1)||" over all the partitions
II={a=to <ty <---<ty,=>} of [a,b] is finite.
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This consideration was the starting point of [9], where the second of the limitations described above is
tackled. To be more specific, in [9] Eq. (1.2) is studied when z is a real-valued n-Hélder continuous path
with n > % We showed that the mild solution y to (1.1) becomes more regular as soon as it leaves 0, that
is, still under the assumption that ¢ € X, with o+ n > 1, we proved that y(t) € D(A) for every ¢t € (0,T].
Moreover, an estimate of the blow-up of |[y(t)||p(a)y when ¢ approaches 0 has been proved. Thanks to this
result, we also provided an integral representation of the solution y, which yields a chain rule for F' oy when
F is a smooth function.

The aim of the present paper is to overcome the first of the two limitations described above, namely the
regularity request ¢ € X, with @ +n > 1, on the initial datum . We investigate here the properties of
the mild Eq. (1.1) when ¢ belongs to a larger space Xy with 0 < # < «. Under such weaker assumptions,
the function t — ||S(t)¢| x,, has a singularity at 0, thus the definition of the convolution integral (1.4) has
to be extended to the case when the function f has a singularity at 0. First, we modify the construction of
the sewing map introducing a different notion of increment: given g : [a,b2 — X, we set (dsg)(r, s, t) =
S(s—r)g(r,t)+g(s,t) — S(s—r)g(r,s) for every a < r < s <t < b and prove, see Proposition 2.8, that the
limit "

R(s,t) == ln(}si’%%; S(t—ti—1)g(ti—1,ti), (s,t) € [a,b]%, (1.7)
exists whenever ||(6sg)(r, s, t)||x < C|t —r|" for every a < r < s <t < b and some constants C' > 0 and
p > 1. We notice that in (1.7), differently from what happens in (1.5), the semigroup (S(t));>0 is never
evaluated at 0, since t;_1 <t =t, for every i = 1,...,n. This allows exploiting the regularizing properties
of (S(t))s>0 in order to deduce regularizing properties for the convolution integral .# defined as in (1.6).

Then, see Theorem 2.12; we go further and, taking advantage of the regularity of the convolution integral,
we extend the definition of (1.4) when the continuous function ¢ : (a,b] — X, has a singularity of
order v > 0 at a and there exist constants C > 0, p > 1 —n, f € [0,a] and v € (0,1) such that
lp(t) — St = s)p(s)lx, < Clt—sl’|s—al”” for every a < s < t < b. Roughly speaking, we use
Proposition 2.8 to define the value of f: S(t — r)e(r)dz(r) when (s,t) € [a+ 6,b]%, for every 6 € (0,b— a),
and then we exploit its regularity in order to extend it up to s = a. We also prove estimate (2.23) which is
an essential tool when dealing with Eq. (1.2).

Eventually, taking into account estimates (2.23) on the singular convolution integral, we are in a position
prove existence, uniqueness and smoothness of the mild solution to (1.1) with € C"([0,T]), n € (1/2,1),
and general initial datum ¢ € Xy with, possibly, n + 8§ < 1. This is firstly done in Section 3.1, when,
besides other technical assumptions (see Hypotheses 3.2), o is globally Lipschitz continuous on a regular
space X, with o+ n > 1. Then, see Section 3.2, we allow ¢ to be only locally Lipschitz continuous in X,.
This framework turns out to be suitable to treat parabolic equations in spaces of continuous functions, see
Example 3.14. Finally, in Section 3.3, we drop the above-mentioned local Lipschitzianity request on o and
only require that ¢’ is locally Lipschitz continuous from X, to the larger space X. This allows treating, for
instance, one-dimensional parabolic equations in L2-spaces, see Example 3.18.

The paper is organized as follows. In Section 2, we first state the general assumptions and describe the
functional spaces that will be used in the paper. In Section 2.2, we present our version of the sewing map,
construct the convolution integral and study its regularity. Next, in Section 2.3 we extend the above results
to the case of functions with singularities. Finally, Section 3 is devoted to the study of Eq. (1.2).

Notation. For every a,b € R, with a < b, we set [a,b]? = {(t1,...,tn) 1 a <t <ty < ... <t, <b}and
(a,b]z ={(t1,...,tn) ra <ty <tz <...<t, <b}. By II(a,b) we denote a partition of the interval [a, ],
ie, (a,b) ={tp =a <ty < -+ <t, = b} for some n € N. |II(a,b)| is the amplitude of the partition,
ie., [II(a,b)| := max;=1,.. n |ti —ti—1|, and the limit |II(a,b)| — 0 is meant as limit on direct sets. Finally,
we denote by B : (0,00) x (0,00) — R the Euler S-function defined by B(a, ) = fol to=H(1 — t)#~1dt for
every «, 3 € (0,00).
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2. The sewing map and the convolution integral for singular functions
2.1. Main assumptions, spaces of functions and increments

Hypotheses 2.1.

(i) A: D(A) C X — X is the generator a semigroup of bounded operators (S(t));>o on the Banach space
X.

(ii) For every A € [0, 3), there exists a space X (with the convention that Xy = X and X; = D(A)) such
that if 8 < A then X, is continuously embedded into Xg. We denote by K g a positive constant such
that ||z]|g < K gllz||a for every z € Xy;

(iil) for every ¢, A € [0,3), with ¢ < A, and p,v € [0,1], with 4 > v, there exist positive constants L¢ x 7,
and C,, , 7, which depend on T, such that®

(@) [SO)lzxe,xy) < Leart™7¢,
) 15¢) — Il 2(x,.x,) < Cpp,rth™",

(2.1)

for every ¢ € (0,T;
(iv) S(¢) is injective for every ¢ > 0.

Remark 2.2. Conditions (2.1) imply that the function ¢ — S(t) is continuous in (0, +o00) with values in
Z(X). Indeed, fix to > 0, t € (to/2,2t9) and A > 0. Using (2.1), we can estimate

[S(#)x — S(to)z||x =[[(S(tVto —tAto) — I)S(to At)x x
<Cpuo2tolt — to| [ S (o A )| x,

<2 0,260 Lox 2o to M x [t =t

for every z € X so that the function ¢ — S() is continuous at ¢y with values in .Z(X). On the other hand,
we stress that we do not require continuity of the function ¢ — S(t)x at ¢ = 0.

Example 2.3. If A is a sectorial operator on X, then Hypotheses 2.1 are satisfied with X = Da(), 00)
for every A € (0,2), Xo = D(A?) and X) = {x € D(A?%): A%z € Da(\ — 2,00)} if X € (2,3).

Let a(s,t) :== S(t — s) — Idy for every (s,t) € [a,b]%. Following [5], for every n € N we introduce the
operator 4, : C([a,b]™; X») — C([a,b]~™"; X)) defined by

(Snf) (th s 7tn+1) ::(571f)(t17 e 7tn+1) - a(tnv tn-i-l)f(th s 7tn)
n+1

= Z(_l)n_jf(tl’ ce 7tn+1)/\j - a(tna tn+1)f(t1, s 7tn)
j=1
n
=Y (D" f (b)Y = St — tn) F(tr 1)
j=1
for every f € C([a,b]; X,) and (t1, ..., tni1) € [a, b))%, where, for every j = 1,...,n+1, (t1, ..., tny1) is
the vector, with n components, obtained from (t1,...,t,+1) erasing the jth element. In particular, if n = 1,
then we have

P

(01f)(s,t) = f(t) = f(s) —a(s, 1) f(s) = f(t) = S(t = 5)f(s), (s,t) € [a,0]2,

2 When no confusion may arise, we do not indicate the dependence of the constants on T.

4
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and, if n = 2, then we have

(32f)(T7 5, t) ::f(T7 t) —f

(T’ S) - f(S’ t) - Cl(s,t)f(?“, 8)
fr,t)

f(svt) - S(t_ s)f(r,s)

for every (r,s,t) € [a,b]2.

Definition 2.4. Let , 3 and v be nonnegative constants. Then, C?([a, b]; X,,), as usual, denotes the Banach
space of Holder continuous functions from [a, b] to X,. Moreover:

(i) €°([a,b]2; X,) is the set of continuous functions f : [a,b]2 — X, such that f(s,s) = 0 for every
s € [a,b] and

1/

P (la,b]25Xa) * p

< 00
a<s<t<h (t—5)P

Similarly, ¢ ([a,b]2; X,) is the set of continuous functions f : [a,b]2 — X, such that f(r,s,t) =0
when r = s or s =t and

[ (r,s,t)]x
fllezs 3. = sup ——
H ||<g ([a,b]<,Xa) a<r<s<t<b (t - T)B

(if) €-~((a,b]; X4 ) is the set of continuous functions f : (a,b] — X, such that

I/

% ((a,b);Xa) = S}lpb](t —a)"|[f()llx, < oo.
te(a,

If v = 0, then we set Cy((a,b]; Xo) == Go((a,b]; Xo);

(iii) %fy((a,b}i;Xa) is the set of continuous functions f : (a,b]2< — X, such that f(s,s) = 0 for every
s € (a,b] and

s, 1) x,,
||f||<gfw((a,b]2<;xa) = <S‘ift’<b(3 - a)7||f(7(f — ?9')'? < 0.
Similarly, €

7, ((a,b]Z; X4 ) is the set of the continuous functions f : (a, b]i — X, such that f(r,s,t) =0
when r = s or s =t and

LF (s 5, 8) ]l xa
8 ‘ = sup (r—a)l———7><
||f“<g7’y((a,b]i,xa) a<7‘<s<t§b( ) (t _ 7")5
We introduce a new increment and an operator acting on functions f : [a, b2 — X

Definition 2.5. For every n € N and every function f : [a,b]? — X, we set:

(05,1 f(t1,t2)) :=S(t1 — a)(f(t2) — f(t1)),

n—1
Bsnf)(trs - tng1) =D (D)™ f(t1, - tng1)™)
i=1
+ S(tn - tnfl)[f(tla .
Further, for every n € N, f : [a,b]2 — X and (1,
and (Spf)(t1,. .. tn) = Sty — tn_1)f(t1,.

costn—1ytng1) — f(t1, .- tn)]-

s tn) € la, b2, we set (Sif)(t) =S(t—a)f(t),ifn=1,
coytn), ifn > 2.

Lemma 2.6. For every n € N and every function f : [a,b]> — X, it holds that

6nSnf =Sni10s.nf- (2.2)
5
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Proof. Fix f:[a,b]” — X. From the definition of the operators 3n and dg,, it follows that

(SnSnf)(tla cee atn+1)
n+1

—Z (Sn)((tr,- - tns1)" Z) —a(tn, tnt1)(Suf)(t1, .- tn)
:(— ) S (tr — ) ftay ooy tngr) + (=) 28ty — tn) f(t1,t3 o tngr)
o S — b)) f (s tnm1, tngn) = S(agr — ta—1) ft1s - )

n—1

=S(ts1 = 0) (0 (01 tai))

i=1

+ St —tn—)[f 1y b1, tnr1) — f(E1,- .. ,tn)]>
for every (t1,...,tn41) € [a,b]%"" and the term in brackets is (3gnf)(t1s-- -, tns1). O
The following result is the analogous of [5, Proposition 3.1], which deals with the increment Sn
Lemma 2.7. Im(ds,) = Ker(ds+1) for every n € N.

Proof. Let us begin by proving the inclusion Im(dg ) C Ker(dg n41). For this purpose, we fix a function
g € Im(ds,,,) and let f : [a,b]> — X be such that g = g, f. From Lemma 2.6 it follows that 6nSnf = Spi1g.
Clearly, the function 5nSh, f belongs to the range of the operator on which, by [5, Proposition 3.1], coincides
with the kernel of the operator 3n+1. Therefore, by applying (2.2) with n replaced by n 4+ 1 we infer that

0= gnJrlSnSnf - 3n+1Sn+1g - Sn+26s,n+lg~

Since each operator S(t) is one to one, we conclude that ds 419 = 0, so that g belongs to the kernel of the
operator 0g ,41.

To prove the inclusion “D”, we fix a function f : [a, b}zﬂ — X such that dg 41 f = 0 and consider the
function g : [a,b]2 — X, defined by g¢(t1,...,t,) = f(a,t1...,t,) for every (t1,...,t,) € [a,b]. Note that

1
(65.n9) 1y stntr) = _ (=)™ f(a, (t1, .. tag1)™)

+ Sty —tn_1)[f(art1, .. tn_1,tns1) — flarte, ... t0)]
(=1)" " f((atr, o b))
Sty — tn ) (@tts s tnttnrs) — Fastsy ... tn)]
(D)™ f((a by, tng)™)

S(tn - tnfl)[f(aath cee 7tn71utn+1) - f(avtlv cee 7tn>]
:(5S,n+1f)(aatl7 cee atn+1) - (71)nf(t1’ cee 7tn+1)
(_1)n+1f(t17 ) tn+1)

Il
3 “ 3
[ I |
—_ =

s 0
N

1

_|_

for every (t1,...,tn11) € [a,b]%. From this chain of equalities it follows that f is the image under the
operator g, of the function (—1)"T!g. The proof is complete. [

6
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2.2. The sewing map and the convolution integral for the new increment

The aim of this subsection is to prove the existence of a sewing map M for functions in Ker(dgs3). As a
byproduct, we are able to define the convolution integral for a wide class of functions.

Proposition 2.8. Fiz u > 1, a € [0,2) and f € €"([a,b]2; X,) NKer(ds3). Then, there exists a unique
function M € Nycooy € %([a,0]%; Xaye) such that doM = S3f on [a,b]2. Moreover, for every ¢ € [0,1)
there exists a positive constant C' = C(e, «, 1, b — a) such that

M

e (b2 Xose) < Ol llgn qap3 x0)- (2.3)
Proof (Uniqueness). Fix f € €"([a,b]2; X,) and let My, My be two functions as in the statement. Then,
55 (M;—Ms5) = 0, and therefore, by [5, Proposition 3.1], it follows that there exists a function g € C([a, b]; X4)
such that 0,9 = M;— My € €*([a,b]%; X,,). From [5, Proposition 3.4] we conclude that g = 0, i.c., M; = M.

Eristence. Since f € Ker(dg 3), from Lemma 2.7 it follows that there exists a function g : [a,b]2 — X such
that f = dg29. Lemma 2.6 shows that S3f = S3dg29 = (52829 If we set ¥ := S,g, then we get 521/} Ssf.

Since the rest of the proof is rather long, we split it into several steps. In Step 1, we construct the function
M. Unfortunately, from the way the function M is defined, is not easy to prove that 6o M = S; f- Hence, in
Steps 2 to 4, we prove that, for every s,t € [a, b], with s < ¢, it holds that

M(s,t) = t) S(t—t)(tio1,ts), 2.4
(57 ) ¢(57 \H(st)|—>OZ 1 ) ( )

in X, where II(s,t) :={s =ty <t <--- <t, =t} is a partition of [s,t]. Using this formula, in Step 5 we
complete the proof.
Step 1. Let us fix (s,t) € [a,b]%, with s < ¢, and for every n € NU {0} let us consider the partition

IL(s,t) ={s=ry < - <r. =t}, r?::s—&—iQTs, i=0,...,2", (2.5)

of [s,t]. For every n € NU {0}, we set

M, (s,t) = ZStfr L. (2.6)

Moreover, M, is a continuous function on [a,b]2 \{(s, s) : s € [a,b]}. Note that r) = s, r? = t and, therefore,
]\40(57 t) =0.
By straightforward computations, we get

M, (s,1) Zs (t — oD (rpth pntly
and
Miy1(s,t) ZS (t = (g, roth)
27L
- Z S ;lz+11 (T;Lz+127 ng—ll)

n+l n+1 n+1
ZS =y JU(ryly, e )

+1 +1 +1 +1 +1
- ZS ng (rgz —7"7211 1)1/)(7'31 2’7';1 1)
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so that, recalling that (S3f)(r, s,t) = S(¢t — s) f(r, s,t), we deduce that
My1(s,1) — ZS (8 =75 ) (G (rith, i it
= Z St —rg ) (Ssf)(rth a0 13 )

n+l n+1 n+1 n+1
*E St —ry ) f(ry e e 1,5 ).

Let us stress that, differently from the equality obtained in [5, Theorem 3.5], the argument of S(-) is always
greater than or equal to 27"71(t — s), so that it never reaches 0. This allows to exploit the smoothing
properties of the semigroup in order to get better regularity in space. Since My(s,t) = 0, it follows that

n—1

My (s,t) =Y [Myya(s,t) — My(s,t)]. (2.7)
k=0

Each term in (2.7) belongs to X,4e for every e > 0, by Hypothesis 2.1(iii)-(a). Moreover, for every ¢ € [0,1)
and k € NU {0} we can estimate

||Mk+1(5, t) — Mk(S, t)HXa-&-s

by — k —€
SLa,a+s||f||<gu([a,b]§;xa)|t — sfft2mhn Z |t =5

2k 1 A
k 2 k+1 7€
~Lasel langons xolt = 522 e [, =i
=1 T r21 1 22 1

t
<2Luatell Fllgn(papp sxolt — sI* 7 280 / (t—¢&)°d¢
S

=gl+k-n) (1 — e

€)™ Laatell Fllgu(ans ;xalt =5
where Lo ot+c = La,a+te,b—a and we have used the fact that the function { — (¢t —&)~° is increasing in (s, ).
It follows that the series defined in (2.7) converges in X,1. as n tends to co.

Denote by M (s,t) the limit in X,1. of the sequence {M,}. Since this sequence uniformly converges in
[a,b]2, the function M is continuous in [a,b]2 \ {(s,s) : s € [a,b]}. Using the above computations, we can
easily extend M on the diagonal of [a, b]%, setting M (s, s) = 0 for every s € [a,b]. The so obtained function,
which we still denote by M, belongs to €#~<([a, b]%; X o) for every e € [0,1) and formula (2.3) holds true.

Step 2. This is the crucial step to prove formula (2.4). Let us fix §',t' € [a,b] with s’ < ¢/, and let us
consider a partition IT(")(s',t') = {s' =7 <P <--- <" =t} of [¢, ], with more than two points. We

set
M(s' ') = (s, t) — Zs — M ). (2.8)
/ /7

and notice that there exists i € {1,...,n — 1} such that r}; —r ;| < Q(Z:f ). Indeed, suppose by
contradiction that ri* ; —r? ; > M for every i = 1,...,n — 1. Then, from the formula

n—1

t—s' = Z(T?—H =) =y T,
i=1

we get the contradiction ¢/ —s" > 2(t' —§') — (rl_; —17) >t — &
8
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Let us denote by 7,, an element of {1,...,n—1} such that 7 | —rj" | < 2(; ) and consider the partition

T ) ={s' =rf ™t <P <o <] =t} € M (s', 1) of [s ,t] where r"~! = r for every
i€{0,...,4, — 1}, and v ' =77 for every i € {i,, + 1,...,n}. Accordingly to (2.8), we define

n—1
My (',8) = (s #) = D S = rp)p(ri T rp ),
i=1
Arguing as above, we infer that there exists i,,_1 € {1,...,n — 2} such that r?fl T 7"?71 L < 2(2 — 0.
n—1 _ n—1—"
We set 7772 == ¢! for every i € {0,...,7, 1 — 1} and "% := 77"~ for every i € {in_1 +1,...,n — 1}

Iterating this procedure, for every k € {1, coo,n—1} we deﬁne a partition IT®)(s',t') = {s' = rk < 7k <
c< b=t} ¢ H*HD (s ') of [s/,#'] and a function

k

Mi(s' ') = (s’ ) = 3 St = ri)u(riy, rf).

i=1

Fix k = 1,...,n — 1 and denote by i}, the index such that I1F) (s ') = {s' = rft < ... <okt <

k+1 k+1 b1l
Treant1 <7< 7ui1)- Note that
k+1
My (s, 1') ZS A L (st )
1k+1_1
k+1 k+1 k+1
Z St =y el )
S — LR kLY g ke R !
( 7ﬂik+1)w( g1 —1’ ik+1) ( Tik+1+1)w( g1’ Tik+1+1)
k+1
k+1 k+1 ,k+1
Z S(t/_Ti+)1/’( +1a z+)
Upy1+2
€k+1 1
=(s',t) ZSt—T i k) ZSt—r Yo(rk ek
ipg1tl
gt — gkt B+l kLY gy gkl pRHL ke
5( 7ﬁik+1) (Zk+1 v ik+1) 5( rik+1+1 (2k+1 7ﬁik+1+1)
so that

M\k+1(s’,t/) — A/Zk(s’,t’) =S(t' - r?,c—ilﬁl) r?ktll 17r§k—:11+1)
SRR L CARREARIN
= S =g L)
=S¢ =k )Gau)rE ke k)
:S(t’—rii) (f:l . f:l fktlfl)

for every k =1,...,n — 1. Assumption (2.1)(a) and the hypothesis on f imply that

— — m
IFher(s#) = T )l <Ll s L = 40|
<2Lo,a(t’ = 8N fllgn(ans xa k" (2.9)

9
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for every k=1,...,n — 1. From J\/Zl(s’7t’) = 0 it follows that

M (s, ) = nzl[mms', t) = My (s, ),
k=1
and from (2.9) we infer that
n—1
1Mo, < 2“(t/5/)”La,a||f||<gu([a,b]?;;xa) Z k= < CM”fH%#([a,b]i;Xa)(t/ - s, (2.10)
k=1

where C), == 2"Lo o Y poy kH.

Step 3. Let us fix s,t € [a,b], with s < ¢, and let I (s,t) = {s=wup < u1 < -+ < up, =t} and Ir(s,t) =
{s =wo < un <o <wp = t} be two partitions of [s,¢] with IT;(s,t) C IIx(s,t). For every i = 1,...,m, let
us denote by s ,j =0,...,ji the elements of II5(s,t) which satisfy u;_1 = s} < s} < -+ < S;l = u;. If we
set

Ms

My, (s,t) =1(s,t) — > St —us)Y(ui—1,u;),

s
I
—

M:

M, (s, t) ==¢(s,t) — St —wj)Y(wj—1,w;)

<.
I
—

=(s,t) —

HMS

Ji

7
E t*S j—l?sj))
j=0

then we get

<
S

L

M, (s,t) — My, (s, t) = Z(S(t — u)(wi—1,u;) — i: St — 5§)¢(3§_1, 3;))

=1 =0
m Ji

=38 ) (i) = 3 S = slsh 1,59
i=1 =0

Thanks to (2.10) we can estimate every term of the above sum by setting s’ = u;_1 and ¢’ = u; for every
i=1,...,m. It follows that

[ M1, (s,t) = Mz, (s, )] x4 SLQ,&CH||fH<zg”#([a,b]3<;Xa) Z(uz —ui—q)"
i=1

gLa,aCﬂ||fH<gu([a,b]i;Xa)|t —s| max (uj —u—1)* (2.11)

i=1,....m

2.4). We fix s,t € [a,b], with s < ¢, and € > 0, and we prove that, if

Step 4. Now, we are ready to prove (2.
Xy (b= 5))71e] A1, then for every partition II(s,t) = {s =ty < t; <
5

we choose ¢ = [(4Lq,aC) Hf”%u( [a,b]3 ;
< < tp, =t} of [s,t], with |II(s,t)] <

, we get
HM(s, t) — (s, t) + Zn: S(t—t)wtiont)||  <e. (2.12)
i=1 Xa
This will yield (2.4).
We fix a partition II(s,t) of [s,t] as above and set
Mp(s,t) = Zn:Stft i1 t).
i=1

10
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We recall that there exists T € N such that, for every m >, it holds that || M (s,t) — M, (s, )| x, < &/2,
where M,,(s,t) has been defined in (2.6) for every m € NU {0}. Without loss of generality, we may assume
m > log,(6~1(t — s)), which implies that t;—ms < §. Therefore,

M (s,t) = Mz (s, )| xo <IM(s,t) = Ma(s, )| xo + [[Ma(s, t) — M (s, t)] x,

g
<5 T [1Mz(s,t) = M (s, )| x- (2.13)

We set II(s,t) = Ilm(s,t) U I (s,t) = {sg = s < s1 < --- < s, = t} for some h € {max{n,2™},...,n+
2™ — 1}, where II,,(s,t) has been introduced in (2.5) for every m € NU {0}. We also set

M~ (s t) X:St—sZ (8i—1,8i)-

Since both II(s, t) and IEx(s, t) are contained in II (s, t), from estimate (2.11) we infer that
1M (s, ) = M (s, )| xo <[[Mm(s,t) = My (s, D) xo + [Mp(s,t) = M (s, )] x,,
<La,aCpull fllgn (an2 x0) (T (s, O] + [ (s, D)[)(t = 5)
€
SQLQ,QCM(SHf“%ﬂ([a,b]i;Xa)(t - S) < 5’

which gives (2.12) combined with (2.13).
Step 5. Now, we complete the proof, using formula (2.4) to show that

(0o M) (r,5,t) = (6220)(r, 5, 1) = (Ssf)(r, 5,1), (r,s,t) € [a, b
We first observe that
(SgM)(r,r,t) = M(r,t) — M(r,t) — St —r)M(r,r)=0

and (S3f)(r,r,t) = S(t —r)f(r,r,t) = 0 since, by definition of €*([a,b]2; X,), f vanishes at the points of
[a,b]2 with at least two components which coincide. Hence, (0o M)(r,7,t) = (S3f)(r,,t). In the same way,
we can show that (82M)(r, s, s) = (Ssf)(r, s, s) for every a < r < s < b.

Let us consider the case when a < r < s < t < b. For this purpose, we use (2.4) to show that, for every
a<r<s<t<hb, it holds that

(02 M) (r,5,8) =M (r,t) — M(s,t) — S(t — s)M(r, s)

=) - &i?ﬁ%Z S(t—t)e(ti-1,t)

—Q/J(st+ hm ZSt—t O(ti1,ts)

(s t)|—>0

- S(tfs)w(r,s)+5(tfs hm ZS (s = ti)(tiz1,ts)

(rys \—)0

—=(b621)(r, 5, 1) lim ZS (t —t)y(tio1,t:)

\H(rt)|ﬁ0

lim ZSt—t (tiz1,t;) lim ZSt—t (tio1,ti).

\H(st |~>O |H(r s)|~>0

11
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Since

lim ZSt—t (ti_1,ti)

|1 (r.)] =04

S(t—t)(tio1,t;) li S(t—t)(tiz1,ts),
MHOZ 1 i Z 1)

rs)\—>0

the assertion follows at once. O

Let us provide an example of a function f which satisfies the assumptions of Proposition 2.8. The great
relevance of this example will be made clear in the second part of Section 2.3.

Example 2.9. Fix two positive numbers p and 1 such n+p > 1. Further, let z € C"([a,b]) and ¢ : [a,b] = X
be such that d,¢ € ¢*([a,b]2; X,) for some a € [0,2). Finally, let g : [a,b]2 — X, be the function defined
by g(s,t) = (z(t) — z(s))¢(s) for every (s,t) € [a,b]%. Note that

(05,29)(r; 5,1) = = g(s,t) + S(s = 7)g(r;t) = S(s = 7)g(r; s)
=(2(t) — 2(s))(—¢(s) + S(s = r)e(r))
= — (z(t) —2(s)(b10)(r ) (2.14)

for every (r,s,t) € [a,b]2. This means that the function f = dg29 belongs to €*([a,b]2; X,) with
i = n + p. Further, from Lemma 2.7 we infer that dg3f = 0. The assumptions of Proposition 2.8 are
sAatisﬁed and, consequengly, there exists a unique function M € ﬂae[o,l) ¢+~<([a,b]%; Xate) such that
0oM = S3f = S305,.29 = 62S29. Moreover,

([ M| - £([a,0]2 ;X aqe) = < Cllzllen((a, b)||51<P||<gp( [a,b]2; X o)

for every € € [0,1) and some positive constant C = C'(g, a, ).

Let g € C([a,b]2;X,) be a function such ds29 € ¢*([a,b]2;X,) for some a € [0,2) and n > 1.
Following [5], we introduce the function kg : [a,b]2 — X defined by

kg(s,t) = S(t—s)g(s,t) — M(s,1), (s,t) € [a,b]2, (2.15)

where M is the function defined in Proposition 2.8, associated to the function f = dg2¢g. Using the arguments
in the last part of the proof of Proposition 2.8, it can be easily checked that the function .#; = k,(a, -) satisfies
the condition (3;.7,)(s,t) = k,(s,t) for every (s,t) € [a,b]% and belongs to C([a,b]; X,). Moreover, .7,
vanishes at ¢ = a and this is the unique function with this property which belongs to C([a, b]; X). Indeed,
suppose that # is another function in C([a,b]; X) which vanishes at ¢ = a and satisfies the condition
51/ = ky. Then, the function h = .#; — ¢ vanishes at a and 51h =0in [a, b]. In particular, (Slh)(a, t)=0
for every t € [a, b], which means that h(t) — S(t — a)h(a) = h(t) vanishes for every t € [a, b].
Inspired by [5], we provide the following definition.

Definition 2.10. Let g € C([a,b]2; X,), for some « € [0,2), be such that ds29 € ¢*([a,b)2; X,) for some
p > 1. The function £, = ky(a,-), where k4 has been defined in (2.15), is called convolution integral
of g.

12
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2.8. Convolution integrals with singularities

Since the map t — ||S(t)¢| x,, has a singularity at ¢t = 0 of order o — p if ¢ € X, we need to extend the
statement of Proposition 2.8 when f € %ﬁv((a, b]i; X4), i.e., when the function f has a singularity of order
v>0at s =a, and u > 1. To begin with, we show that, thanks to Proposition 2.8, we can define a unique
function M on (a, b]2< which enjoys nice properties.

Lemma 2.11. Fizp > 1, a € [0,2) and let g : (a,b]2< — X be a function such that ds 29 belongs to
‘Kfv((a,b]i; Xo). Then, there exists a unique funcfion M which belongs to (.cp,1) € = ([a + 0,0%; Xote)
for every 6 € (0,b — a) and satisfies the condition oM = S3dg2g in (a, b]3<

Proof. We begin the proof by observing that the function f = dg2g satisfies the assumptions of
Proposition 2.8 in [a + 6,b]2 for every 8 € (0,b — a). Hence, for every 6 € (0,b — a) there exists a unique
function My € (\.¢jo1) €* “(la+ 0,b]2; Xoye) such that §,M, = Ssf in [a + 6,b]2.

Note that, if 0 < 61 < 6 < b — a, then My, and Mp, coincide on [a + 602, ]<. Therefore, if for every
(s,t) € (a, b]2< we set M(s,t) = Mpy(s,t) for some 6 € (0,8 — a), then the function M fulfills the required
properties. [

Theorem 2.12. Fizn € (0,1), p > 1, o, € [0,2), with0 < a—F < 1,v € (0,nA(p+ 08— a))
and suppose that g belongs to ¢ ((a, ]2 ; Xa) and satisfies the condition ds2g € %ﬁv((a,b}i;Xg). Then,
the function ky : (a, b] — X defined by ky(s,t) = S(t — s)g(s,t) — M(s,t) for every (s,t) €
(a,b]2 (where M is the function defined in Lemma 2.11) can be extended up to s = a and it belongs to
ﬂae[O,eo) EMNRE=) =12 ([a, b]2; Xoye), where eg = (1 4+ B —a) A (A (u+ B — @) — 7). Further, d2k, = 0
on [a, b]< and there exists a positive constant C', which depends on €, u, b —a, n, v, a and S, such that

||kg||<gnA(u+Bfa)fvfs([a7b]2<;Xa+5) < C( O—’y((a’b]i;XO‘) + ||5S,29H<gfw((a’b]3 ;xﬁ))- (2.16)

Proof. To begin with, we observe that the function g satisfies the assumptions of Lemma 2.11, with a being
replaced by (. Hence, there exists a unique function M, which belongs to Mg,y € “(la+ 6, b]2; Xpie)
for every 6 € (0,b — a), such that 5o M = S3dg,29 = 62829 in (a, b] (see Lemma 2. 6)

Let us fix € € [0,&9), (s,1) € (a, b]<, with s < t, and n € N, and introduce the function

M, (s,t) = ZSt—r P = My (s,t) + S(E— r)(s, ), (2.17)

where 1) = Sqag for every (s1,s2) € (a7b]2<, ' = s+ 5= (t — s) for every n € Nand ¢ = 0,...,2", and the
function M, is defined in (2.6). We omit from the definition of M, the term S(t — r}) (s, r?“) in order to
stay away from the singularity at s = a. For every n > 1 we get

My11(s,t) — M, (s,t)
:Mn+1( ) = My(s,t) + St —ri (s, ™) = S(E—17)(s,rT)

_ n+1 n+1 n+1 n+1
E:St—rzz 1)(0529) (150, 51,75, )

- S(t = )[Bs29) (5,1 g ) = (s, 7] = S8,y (s, 1)
271

=D S(t =5t (Es,20) (rait o, vt r5th) = S(E— g (i eyt
=2

13
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Hence,

IMo1(s, ) = Ma(s,1) |
on

B—a—e —
SLﬁ’o‘*"e”55’29||(g’,ﬁ,((fl»l>]‘°’ iXp) Z gt — bl e — et ot —a
P

n+1|_52—(n+1)n(t _ S)n|r?+l -

+ La,aJrE”g”({j’y((a,b]i;Xa)|t - —al

— B—a—e —
SLﬁ,a-&-e||5S,29||<g/j7((a,b]i;xﬂ)|t — st Z It — 7’3{‘:11 7‘3;12 —a

+ 2_W+v+82n(7—ﬁ)La,a+eHg‘lgj’y((a’b]i;xaﬂt — 777, (2.18)
where the constants L,; = L, 5o have been defined in Hypothesis 2.1(ii)-(a) and, in the last step of
(2.18), we have used the inequality

-
—€ —v _ Cm—1 — S
t= e e = (- s T - 27 5(s—a+2n+1)

e —efl—s - e+v(1+n) —E—y

Let us estimate the first term in the right-hand side of (2.18). We stress that, differently from the
computations in the proof of Proposition 2.8, we have the additional factor |r§‘f_12 — a|_7, which arises from
the singularity of ds2g at a. Note that

t—s 1
n+1 _ nt+l n+1
Toi—g — A =Ty on a = 5(7”21 —a)
if 4 > 2. Hence,
|t* n+1 B—a—e n+l |*’Y
T2i—1 Toi—2 — @
Tn+1
nt1 |B—a—e ni1 -
<§: n+l_  ntl /n+1 [t —re 3 ry; - —al d§
i—a T2 2i—1 i

<ot ! / (t— €)= (¢ —a)de,

S

where we have used the fact that the function & + (t — £)#~®~¢ is increasing in (—oo,t) and the function
& (£ —a)77 is decreasing in (a, 00). Further,

t t
/ (t— €)F5(€ — a)de < / (t— €)Fo=e(c — s)de
=B(f—a—c+1,1—7)(t—s)TFa-7=¢

It follows that

1M1 (5,8) = M (s,1) | x0.
14+n(1- +B—a—y—¢
<oytit ( “)Lﬁ’a+53(ﬁ—a—8+171—’V)H(SS,Qg”%ﬁ’Y“a’b]z;Xﬁ)|t—3|# v

+ 2_77+'Y+52"("/—77)L ‘TI*”/*E.

a,a+e||9||<gj7((a,b]2<;xa)|t -8

14
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Next, we note that

n—1

My (s,t) = (s,) = > [Mys1(s,t) — My(s,6)] — (27 (s + 1), 1)

k=1
and, consequently, recalling that ¢ (r{,rd) = S(271(t — s))g(27 (s + t),t) and taking into account that
127 (s +t) —al " <27(t—s)”7, we can estimate

[ My (s,) — (s, )| x0ye §Cl(||5S,29H<gfw((a,b]§;xﬁ) + ||9||<gjy((a,b]2<;xa))

n—1
y (Z(gk(l—u)+2k(v—n)) L 1) A

k=1

§02(||55129H%f,y((a,b]3 ;X,B) + ||g||<gj’y((a,b]2<7Xa))|t — s|[77/\(#+5*06)]77*€ (219)

for some positive constants C7 and Cs which depend on ¢, u, b — a, v, n, a and 3, since the series
S ne, (28— 4 2k(=m) converges. Further, from (2.17) we get

[ M, (5,8) — My (5,8) || <2 " Lavasellg
JF

(527((‘1:b]2<§xa)(8 — a)_'ylt — s|77—5
and we conclude that ]\,7[”(5, t) converges to M (s,t) in X,1¢, as n tends to co. Hence, letting n tend to +oo
in (2.19), it follows that the function k; = 1 — M satisfies the estimate
Np+pB—a)|—y—
Ko (5, ) Xare <Callds2gller (o sy + 19llen (qapz xa)lt = s 0778 (2.20)
s i Xp — ;
Showing that (521@)(5, t) = 0 is an easy task. Indeed, by the definition of the function v, it follows that
ba1) = 85,9 in (a, b]i, which coincides with 6 M, as it has been shown at the very beginning of the proof.
Finally, to conclude the proof, we show that function k, can be extended to [a, b]2< with a continuous
function. First of all, we observe that k, is continuous in (a,b]2< \ {(s,s) : s € [a,b]} since ¢ and M are
therein continuous. Moreover, using estimate (2.20), we can extend the function k, by continuity to the
points (s, s) with s € (a,b] by setting ky(s,s) = 0. Next, we observe that, for every a < r < s < t, it holds
that
kg(r,t) — kq(s,t) = (32169)(7", 5,t) + S(t — s)kg(r,s) = S(t — s)kg(r, s).

From (2.20) we infer that
kg (r,t) = kg(3, )| xur. < Lateasellko(r,s)xoy. < Cls— r|eHomelme

This implies that ky(s,t) converges in X, 4. as s tends to a®. We denote the previous limit by k4(a,t). As
a byproduct, (2.20) holds true for every (s,t) € (a, b]2< \ {(a,a)} and, using this formula, we can extend by
continuity k, at (a,a) setting k,(a, a) = 0. It follows that dok, = 0 in [a, b3

It remains to prove the continuity of k, in {a} x [a,b]. Fix ty € [a,b] and (s,t) € [a,b]%. We show that
kgy(s,t) converges to ky(a,to) in Xote as (s,t) tends to (a,t) in [a,b]%. First, we consider the case ¢y > a.
If t > to, then, since (d2k,)(a,s,t) = (d2ky)(a,to,t) = 0, it follows that ky(a,t) = ky(s,t) + S(t — s)ky(a, s)
and kg(a,t) = ky(to, t) + S(t — to)ky(a, to). Hence,

kg(s,t) — kgla,to) =kg(s,t) — kqg(a,t) + kq(a,t) — ky(a, to)
=—S(t —s)kg(a,s) + kg(to,t) + S(t —to)kg(a,to) — kg(a, to)
=—S(t — s)kg(a,s) + ky(to, t) + a(to, t)kg(a, to).

15
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On the other hand, if ¢ < tg, then we can split

kg(s,t) — kg(a,to) =kg(s,t) — kg(a,t) + kq(a,t) — kq(a, to)
=—S(t—s)kg(a,s) — (ky(t, to) + a(t,to)ky(a,t)),

where we have used the formulas kq(a,t) = kq(s,t) + S(t — s)kq(a, s) and kq(a,to) = kq(t, to) + kg(a,t) +
a(t, to)kg(a,t). Combining the cases t >ty and ¢ < t¢ it follows that

1kq(5:8) = kg(a; to)lxar. SLateatellko(@:s)llxar. + kg(to Atsto VE)lx,..

+ llalto At,to V O)kg(ato AL)||x.. (2.21)
From (2.1)(b) and estimate (2.20), we get
lla(to At to V t)kg(a,to At)|x, .
<Coserarerllbg(ato A)x, It —tol”
<OaCareire (520t (ot xp) + 19lign oz a0 = al "0 HP =I5 g2 (2.2)

for every ¢’ € (e,¢¢). From (2.20), (2.21) and (2.22) we easily conclude that k,(s,t) tends to k4(a,to) as
(s,t) tends to (a,tp).

Finally, if to = a, then, since ||ky(s,t) — kg(a,a)llx,,. = [kg(s,1)[x ., using (2.20) we conclude that
kq(s,t) converges to k(a,to) as (s,t) tends to (a,tp). O

Remark 2.13.

(i) From the proof of Theorem 2.12, it follows that kg, 14, = kg, + kg, for every pair of functions
g1,92 € ‘Kfv((m b]2<; Xa) such that dg 291 and dg 292 belong to (ff,y((a, b]3<; Xp), where the parameters
«, B, 7, n and p are as in the statement of the quoted theorem.

(ii) Still from the proof of Theorem 2.12 it follows that condition (2.1)(a) is used just to prove that k,
regularizes in space. Hence, without such a condition and assuming that 8 = «, the assertion of
Theorem 2.12 still holds true with ¢ = 0, i.e., the function k, exists, belongs to €7~ ([a,b]%; X4)
and enjoys estimate (2.20) with ¢ = 0 and the constant C, therein appearing, depends on b — a, 7, v
and a.

Based on Theorem 2.12 and Remark 2.18, we can now give the following definition, which generalizes
Definition 2.10

Definition 2.14. Let g € %ﬁ’v((a,b]i;Xa) be such that dg29 € ‘Kfv((a,b]i;Xg), where € (0,1), u > 1,
0<f<a<2 a—pF<landy€[0,nA(p+F—a)). Then, the function Z, = ky(a, -) is called convolution
integral of g.

Example 2.15. Fixn € (0,1), o, 8 € [0,2) such that 0 < a—pB < 1,p€ (1-n,1),v € [0,nA(p+n+8—a)),
z € C"([a,b]) and ¢ € €_((a,b]; X,) such that §;p € ((a, ]2 i X3). Let g(s,t) = (z ( ) — x(s))p(s) for
every (s,t) € [a,b]%, as in Example 2.9. It is easy to check that g belongs to € ((a, ]<7 X4)- Moreover,
Example 2.9 shows that (dg29)(r,s,t) = —(z(t) — z(s ) (61)(r, s) for every (r,s t) € (a,b]i. Hence, the
function 0529 belongs to € ((a, b]i;Xg), where p=n+p > 1, and

(= )| 320)(r 5, ), < I7llonqam 1612l ot = 71"

for every (r,s,t) € (a,b]i
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In view of Theorem 2.12 and Example 2.15, we can give the following definition.

Definition 2.16. Fix a, € [0,2), with0<a—-<1,n€(0,1),pe (1—n,1),y€[0,nA(p+n+F—0a))
and = € C"([a,b]). Further, let ¢ € €_,((a,b]; X,) be such that d;¢ € %fv((cub]i;Xﬁ). Then, we define
the convolution integral of the semigroup (S(¢)):>o with the function ¢, by setting

[ 8= r)etrdatr) = ky(s.0),
for every (s,t) € [a,b]2, where g(s,t) = (z(t) — z(s))p(s) for every (s,t) € [a,b]%.

In what follows, for every (s,t) € [a,b]2 we will also use the shorter notation Zs ,(s,t) = ky(s,t) to
denote the convolution integral in Definition 2.16. The notation underlines the dependence on the semigroup
(S(t))i>0 and on the function ¢.

Remark 2.17. Let x and ¢ be as in Definition 2.16. Then, from Theorem 2.12 it follows that ., belongs
t0 MNec(o,c0) @NtetB=e)=1=¢([q, b2 ; Xope), where g = (1+B8—a) A(n A (n+p+ B —a) —7), and, for
every ¢ € [0,&p), there exists a positive constant C, which depends on ¢, b — a, 1, 7, a, 8 and p, such that

sup (t _ S)—nA(n+p+B—a)+'y+s
(t,s)€la,b]2

/ St — )e(r)dz(r)

Xa+s

<Cllzllen(apny Nlelle_ ((ablixa) + ||Sl¢||<gfv((a,b]2<;xﬁ)) (2.23)

for every s,t € [a,b]2.

Remark 2.18. We stress that, if z € C'([a,b]), ¢ € €_-((a,0]; Xa) and d1¢ € Cgf‘w((a,b]i;X) with
a € (0,1) and v satisfying the assumptions of the quoted theorem, then the function .#g, is the classical
convolution of the semigroup with the function ¢, i.e.,

Isp(s,t) = / t S(t = p(&)2'(§)de,  (s,t) € [a,b]2. (2:24)
Note that
/ ' 5(t - €)ol€)a (€)= / (- €)[S(E — s)pls) + (Grip)(s,€)] ' (E)de
=S(t —s)g(s,t) + / (- (i), ' ()
—: S(t = 5)g(s,t) + N(s,?)

for every (s,t) € [a,b]2.
Thus, we need to prove that M + N = 0 where M is defined in Example 2.9, see also Proposition 2.8.
Taking the definition of the operators 51, S3 and formula (2.14) into account, we can write

~

(62N)(r,5,t) = / S(t — €)(d1)(r, )2’ (€)dE — / S(t — €)(01)(s,&)a’ (€)de
- s-) [ "5 — ©)(B1p)(r )’ ()de

- / S(t — €)(brp)(r, )2 (€)dE — / S(t — €)(Bro) (s, )2 (€)de

17
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- / (S(t — s)pls) — S(t — r)p(r)a’ (€)de
=5t — )(p(s) — (5 — r)p(r) (@ (t) — 2(s)

~

=5(t — s)(019) (1, s)(z(t) — z(s))
= — (S305,29)(r, s,t)

for every (r,s,t) € [a,b]2. Thus, the function A = M + N satisfies the condition d5A = 0 in [a, b]..

To conclude that A identically vanishes in (a, b]2<, it suffices to show that it belongs to *([a+6,b]%; X)
for every 6 € (0,b — a) and then apply [5, Proposition 3.4]. By Lemma 2.11, M belongs to such a space. On
the other hand,

t

[N (s, 8]l x SQ_VLO,O,IJ—GHleC([a,b])H‘Sl(p‘l%gw((a,b]i;X)/ (€ —s)%dr
:eivLO,O,b—a(a + 1)71 ”x,”C([a,b]) ”&‘P”cggv((a,b]i;x)(t - 5)1+a

for every (s,t) € [a + 6,b]%, with § € (0,b — a), and every ¢ € (0,1), and, consequently, N belongs to

¢ (la+ 6,02, X) = € (Ja+6,b%; X) for every 0 € (0,b—a), since 1 + a > n+ o = p.

Remark 2.19. The results in Theorem 2.12 are optimal as far as both the time and the spatial regularity
are concerned.

Indeed, if we refer again to Remark 2.18, then the classical convolution integral in (2.24) belongs to
€' 7([a,b]%; Xo4e) for every € € [0,1 — 7). On the other hand, the quoted theorem shows that %,
belongs to €77 ([a, b]%; Xa+c) for every ) € (0,1) and € as above, and the constant C appearing in (2.16)
does not blow up as 7 tends to 1 from below. Therefore, in this situation where z € C*([a,b]), estimate
(2.16) shows that #g , belongs to €' ~77¢([a, b]%; X4+c) for every e € [0,1 — ), so that the time regularity
in Theorem 2.12 is optimal.

To prove also the spatial optimality of the result in Theorem 2.12, we consider the case when (S(¢))¢>0
is an analytic semigroup in the Banach space X and Xg = D4(8,00) for every 5 € (0,1). If we choose
[a,b] = [0,1], z(t) =t for every t € [0,1] and ¢(t) = S(t)y for some y € X,_.,, where 7 is fixed in (0, «) for
some «a € (0,1), and y does not belong to any space Xz with 5 > a — -y, then we can easily check that the
classical convolution k, is given by ky(s,t) = (t — s5)S(t)y for every 0 < s <t < 1 and it does not belong
to the space €°([0, 1)2;Xo4e) if 6 > 1 — e — v for every € € (0,1 — 7). Indeed, suppose that this function
belongs to €°([0,1]2; Xa4.) for some § > 1 — & — . Then, in particular,

ISyl xare = kg (0, 8)l|xare < Ikgllags o112 syt t < (0,1].

We claim that this estimate implies that y actually belongs to the space Xq4eqs—1. Since a+e+6—1 > a—vy
we are led to a contradiction.

To prove the claim, we recall that z belongs to X3z = Dy4(8,00) for some f € (0,1) if and only if
SUPye(0,1] t1=B||AS(t)z|| x < oc. Using the semigroup law, we can estimate

2 AS (Dl = AS(/2)S(/2)yl x

<t O AS (/2| (X0 1S E/ 209l
<OpPreTeTdTitatedol _ o

for every ¢ € (0,1] and the claim follows.

Remark 2.20. If v =0, i.e., in the non singular case, Example 2.15 shows that Theorem 2.12 agrees with
the results in [9, Lemma 2.1].

18
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Remark 2.21.
(i) From Remark 2.13(i) it follows that, if z1,22 € C"([a,b]), for some n € (0,1), and 1,2 €
%€_((a,b]; Xo) are such that 01,0102 € Cﬁfv((a,b}i;X@) for some «, 8 € [0,2) with 0 < a—f < 1,
p€(l—mn1)andy€[0,nA(n+p+ B —a)), then

[ st nesee e = [ reine)+ [ S0 a0

and
/ S(t — ) (1 () + 92(r))das (r) = / S(t — r)r (r)dey (1) + / S(t — r)pa(r)dey (r)

for every (s,t) € [a,b]%.
(ii) For every x € C"([a,b]), with n € (0,1), and every ¢ € € ((a,b]; Xo) such that 010 € €”_((a, b)*: X5)
for some a, 8 € [0,2) with0<a—-8<1,pe(l—n1)and vy € [0,nA(n+p+ 5 — a)), 1t holds that

/St—r T):S(t—T)/s S(t—r) /S’t—r dx(r)

for every (s,t) € [a,b2 and 7 € [s,t]. This property is a straightforward rewriting of the property
d2ky = 0 follows easily from observing that d;.7s , identically vanishes in [a, b

2.4. The case S(t) = Id

In this section, taking advantage of the results of the previous subsection, we define the integral
fst o(r)dx(r), when ¢ has a singularity at the left-endpoint of the interval where it is defined.
The main result is the following theorem.

Theorem 2.22. Fiz a € [0,2). Assume that x € C"([a,b]), for some n € (0,1), ¢ € €_,((a,b]; Xa) and
drp € €7 ((a, b]2<;Xa), for some v € (0,n) and some p € (1 —n,1). Then, the Young integral

/ ' o(r)de(r)

is well defined for every (s,t) € [a, b]2< Moreover, there exists a positive constant C, depending on «, v, n, p
and b — a, such that

/ ' o(r)de(r)

Proof. It suffices to apply Theorem 2.12, with S(t) = I for every t > 0, observing that Sj =0 for j=1,2
and 0s2 = 02, and taking Remark 2.13(ii) into account. Note that condition (2.1)(b) is trivially satisfied
since a(s,t) = 0 for every (s,t) € [a,b2. O

< Cllzlengam (Iele bixa) + 1010llge (a2 ixa)lt = s|"77.
Xa

Example 2.23. Let z belong to C"([0,T]) for some T > 0 and n € (0,1). For every « € (0, 1) the function
f:(0,T] = R, defined by f(t) =t~ for every ¢t € (0,T], belongs to €%, ((0,T];R). Indeed, it is easy to

check that e a 0w
[t7 =57 5, t*—s

(t=s) " (-9
Therefore, if we take o and n such that a < %n and o +n > 1, then the assumptions of Theorem 2.22 are
fulfilled and the integral .
/ r~%dxz(r)

is well defined for every s,t € [0,T], with s < t.

ST < s <1, O0<s<t<T.
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3. Mild solutions to Young equations

In this section we study the existence and uniqueness of the mild solution to the following nonlinear Young
equation

y(0) = 1, (3.1)

where by mild solution we mean a function y : [0,7] — X such that .#g o, is well-defined in [0,7]2 and

{ dy(t) = Ay(t)dt + o (y(t))dx(t), te (0,77,

y(t) = S()Y + (FIs,00y)(0,1), te[0,T]. (3.2)

Further, we investigate the spatial smoothness of the mild solution.

Remark 3.1. Let us observe that #g ;0,(0,t) converges to 0 in X as ¢ tends to 0, due to Remark 2.17.
The continuity at 0 of the term S(-)i requires a more detailed discussion. If the semigroup (S(t))i>0 is
strongly continuous then, for every ¢» € X (which is allowed by Theorem 3.5), S(¢)¥ converges in X to 1 as
t tends to 0 and the initial condition can be classically interpreted. The point is that, under our assumptions,
the semigroup could be not strongly continuous. In this situation, if ¢ € Xy for some 6 > 0, then, due to
condition (2.1)(b), S(t)1 converges to 1 in X as ¢ tends to 0 and again the initial condition can be classically
interpreted. On the contrary, if ¢ only belongs to X, then, in general, S(t)y does not admit limit as ¢ tends
to 0. The initial condition is satisfied by the mild solution in this sense: for every to > 0, S(to)y(t) converges
in X to S(t9)ty. Indeed, by Remark 2.2, the function ¢ — S(t)x is continuous in (0, +00) for every z € X.
We finally observe that, if (S(¢)):>0 is an analytic semigroup and ¢ € D(A), then y(t) converges to % in
X as t tends to 0, If D(A) is a proper subspace of X (i.e., the semigroup is not strongly continuous) and

1 does not belong to it, then the initial condition can also be interpreted as follows: for every A € p(A),
R(\, A)y(t) converges in X to R(A, A)y as t tends to 0.

We split this section into three parts. In the former we prove the results when, among other properties,
the nonlinear term o is globally Lipschitz continuous in X, for some a € (0, 1). In the other two subsections
we prove the same results by assuming that o is only locally Lipschitz continuous in X, and that ¢’ is locally
Lipschitz continuous from X, into X, respectively, for some o € (0,1). In these cases we need to strengthen
the hypotheses on 7 in order to balance the lack of regularity of o. To simplify the computations we consider
T =1, since the general case can be obtained with analogous arguments. We stress that, for arbitrary T > 0,
the constants which appear in the estimates also depend on T'.

3.1. The case when o is globally Lipschitz continuous in X,

We stress that, even if the following set of assumptions on ¢ might seem a bit artificial (since we assume o
to be Lipschitz both in X and X, while its derivative ¢’ is only assumed to be locally Lipschitz continuous),
we have two reasons to also consider this case. The former is that the proofs, although maintaining the main
difficulties, are, in this setting, easier and should help the reader to better understand the ideas behind the
computations, the latter is that the proof of the main results under weaker hypotheses on ¢ can be deduced
from the computations developed in this subsection, with some slight modifications. Hence, we can see this
part as an intermediate step in order to prove more general statements.

Hypotheses 3.2.

(i) Hypotheses 2.1 are satisfied for every A, ¢ such that 0 < { < A < 2.
(ii) The function x belongs to C"([0,1]) for some n € (1/2,1).

20



D. Addona, L. Lorenzi and G. Tessitore Nonlinear Analysis 238 (2024) 113401

(iii) The function o : X — X is Gateaux differentiable with bounded and locally Lipschitz continuous
Géateaux derivative o’. We denote by Lip, the Lipschitz constant of o on X and, for every R > 0, by
LipZ the Lipschitz constant of o’ in {z € X : ||z||x < R}.

(iv) There exists a € (0,1) such that n + « > 1, the restriction of o to X, maps this space into itself and
o is Lipschitz continuous as a map from X, into itself. We denote by Lip$ the Lipschitz constant of o
as a map from X, into itself.

Let us introduce the following space: for every a,~ > 0, we say that f € Y% (0,1) if f € € ((0, 1]; Xo) N
Cy((0,1]; X) and oif € ¢*([0,1]%; X,,), where the subscript ‘b’ stands for bounded. The space Y2 (0,1) is
a Banach space if endowed with the norm

Hf||YfW(0,1) =|f € ((0,1];Xa) T Iflleyc011:x) + H81f

for every f € Y (0,1).
An analogous definition is given for Y (0,7) with T" € (0, 1)

(10,1125 Xa)

Remark 3.3. One may ask why, if f € Yfﬁ/(q, 1), then the function ¢ — ||f(t)||x, has a singularity of
order v at t = 0, while the function (s,t) — ||(d1f)(s,t)]lx, has not a singularity at s = 0. The reason is
the following: if ) € Xy and 6 < «, then the map t — [|S(¢)1|| x,, has a singularity at ¢ = 0 of order « — .
On the contrary, 61(S(-)1) = 0 for every ¢ € X. Thus, if y is a mild solution to (3.1), then ||y(t)|/x, has
a singularity at ¢t = 0, while (019)(s,t) = Zs.50y(s,t) for every (s,t) € [0, 1]2, and so it has no singularity
with respect to the X,-norm.

To begin with, we prove that the convolution integral #g(y0y) is well-defined for functions y € Y (0, 1).

Lemma 3.4. Let Hypotheses 3.2 be satisfied and fix y € Y_O‘,Y(O, 1) withn+a > 1 andn > . Then:
(1) Fs,00y s well-defined;
(ii) Fs.00y belongs to €1~ 775([0,1]%; Xoye) and

||ﬂs,aoy|\<gn—w—s([o,1]2 i Xate) < CH93||CW([0,1])(1 + ||1/HY37(0,1))

for every e € [0, (1 — ) A (n—7)] and some positive constant C, which depends on e, n, 7y, the constant
Cu0,1 = Cup in (2.1)(b), Lip,, Lips and the norm of o(0) in X,.

Proof. (i). Let us prove that the function o oy satisfies the assumptions of Remark 2.17 with a =0, b =1,
y=a— H,Ap =aand f=0,ie,00y €€ ((0,1]; X,) and 31(0 oy) € €2,((0, 1]2<;X). The continuity of
ooy and 41 (0 oy) is a consequence of the regularity of o and y. Further, from Hypothesis 3.2(iii) it follows
that

lo@)lxa < 80+ 2lx0)s 2 € Xa, (3.3)

where L2 = max{LipJ, ||o(0)|x, }. Therefore, we infer that

sTllo(y(s)llxa < Lgs"(L+ lly(s)llxa) < Lg(1+ly

€y ((0.11:Xa))- (3.4)

Let us prove the condition on 51(0 o y). For this purpose, we observe that

161 (o 0 9)) (s, D)1 x <llo(y(t) — o (y(s)lx + llals, ho(y(s)]x
<Lip, [ly(t) — y(s)llx + Caolt = s[*llo(y(s))l xa
<Lip, | (319) (s, t)l|x + Lip, [la(s, t)y(s)llx + CaoLilt = s|” (1 + ly(s)llx.)
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<Lip, | (31y)(s, )l x + Ca,olt = s|* (LG + (Lip, + LE)ly(s) xa)

for every (s,t) € (0, 1]2< By recalling the definition of Y% (0,1), we conclude that

10170 9)) (s, 1)llx

it 5| < Ca,oLg + [(Cao V DLip, + CaoLglllyllye 0.0)-

Hence, the assumptions of Remark 2.17 are fulfilled by ¢ o y and so the convolution integral Zs ,0, is
well-defined.

(ii). From (i) and Remark 2.17, it follows that Z5 yo € €7 77°([0,1]2; Xot.) for every £ € [0, (1 — a) A
(n — 7)) and estimate (2.23) holds true, with o o y in place of p. O

Theorem 3.5. Let Hypotheses 3.2 be satisfied. Then, for every v € Xy with a > 6 and n > 2a — 0, there
exists a unique mild solution y to (3.1) which belongs to Yy* (0,1).

Remark 3.6. If § = a then Theorem 3.5 coincides with [9, Theorem 3.2]. On the other side, we can also
choose an initial datum ¢ barely belonging to X. The conditions n > 2a and a +n > 1 imply n > 2/3. In
other words, we can drop any regularity requirement on the initial datum as long as we choose a slightly
more regular noise = (but still not differentiable).

Proof of Theorem 3.5. To begin with, we notice that, if y is a mild solution to (3.1), then a straightforward
consequence of Remark 2.21(ii) is that

y(t) =St —71)y(r) + fS,aoy(Tv t), (1,t) € [07 1]2<

Since it is rather long, we divide the proof into some steps.

Step 1. We prove a general estimate of the right-hand side of (3.2).

Taking advantage of Lemma 3.4 with v = o — 6, it is not hard to prove that for every y € Y;* (0,T) the
function [0,T] 3 ¢t — S(£)¥ + F5,00y(0,t) belongs to Yy* (0,T) for every T € (0,1].

We introduce the operator I" : Y;*  (0,T) — Y;* (0,T), defined by

(F(y))(t) = S(t)lﬁ + fS,UOy(O’ t), te [0, T]'
We claim that
Iyllve ©0m) <(LooKoo + Loa)[¥llx, + €T 72 [l eno )y (1 + yllyge  0m); (3.5)

with
¢ = C(K(%o + 2)(Ka,0 + C'04,0 + 1)(Lipa + L?).

Recall that the constants K, g, L¢,o and C, , have been defined in Hypotheses 2.1.
For every s € (0,7 it holds that

ly(s)llx < Lo,oKooll¢llxy + KaollIs.004(0,5) ] xa (3.6)
()]l xa < Lo.as”~ |19l x5y + 75,004 (0, 8) | xa-

We want to apply Remark 2.17 witha =0,b=T, p =coy,y=a—0, p=a and = € = 0. The continuity
of o oy and of 1(c o y) follows from the properties of y and ¢. From (3.3) we infer that

lo o ylle, oomixa) < Lo (T + lyllve o0m)-
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Let us estimate ||d1(c o y)HCgé{a((O’T]i;X). For every (s,t) € (0,T] we get

1(1( 0 9)) (s, )1 x <llo(y(®) — o (y(s))1x + llals, t)o(y(s))llx
<Lip,[ly(t) = y(s)llx + Caolt — s|*[lo(y(s)) ]| xa
<Lip, ([|(619)(s, )| x + lla(s, )y ()] x) + CaoLg(1+ y(s)llxa)lt — 5|
< ( Lipa(Ka,0||31y||<ga([o,1] Xa) T Caolly(s)lxa) + CaoLg (L4 lly(s)lxa) ) |t — |7,

2
<
(3.8)
from which it follows that
810 0Wllas oz < Koo + Cao)(Ling + L)1+ [yl 0:m).
From Remark 2.17 we deduce that there exists a positive constant C' such that
||f5,00y||<€n+9*a([0,T]2<;XQ)
<Cllzllen(o,1)) [ L1+ llyllve om) + (Kao + Ca0)(Lip, + L) (1 + llyllve 01)) }
<Clzllen (o)) (Kao + Cao + 1) (Lip, + L3)(1 + llyllve o1)- (3.9)
Replacing (3.9) in (3.6) and (3.7) we get
[Yllcso.11:x) + [Yll6y_ o (0.77:x0)
<(Lo,0Ko,0 + Lo.o) 1Y x,
+ O + DT allon 0.1y (Eavo + Cavo + 1) (Lipy + L1+ [yllve _o1): (3.10)

where we used the fact that 7 < 1 and a > 6 to estimate 77 < 7m0,
It remains to estimate ||$1?/H<ga([o,T]2<;Xa)- Since (019)(5,t) = Fs.q0y(s,t) for every (s,t) € [0,T] and
n > 2a — 0, from (3.9) we infer that

1019llegex 0.72 1300y ST 721819 lgn+0-ao,112 ix)
<T"072%C | e j0,1]) (Koo + Cayo + 1)(Lip, + Lg)(1 + lyllyg 0,m)- (3.11)

The definition of || - ||Y9a7a(0’T), (3.10) and (3.11) give (3.5).
Step 2. We are now in a position to prove a global a priori estimate.
We claim that, if y is a mild solution to (3.1), then there exists a positive constant R, which depends on
1¥|lx,, @, 0, 2,1 and o, such that
lollvg o) < 9. (3.12)

Notice that y € Yy* (0,1) is a mild solution to (3.1) if and only if it is a fixed point of I". Thus, if
y €Yy (0,1) is a mild solution and we choose

T ( 1 ) 7]+01—2a 1
P (. A,
2€||z | en(jo,1))

then (3.5) immediately implies that
19llye o7 < 2(LooKs0 + Loa)l[¥llx, + 1.

So, we can say that there exists T' € (0, 1] such that [|y[|yo (07 < % for some Ry > 0 which depends on
O—ar?
||,(/)HX97 «, 9, x,n and o.
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If T = 1, then we are done, otherwise we notice that y € C([T,1]; X,) and d1y € €*([T,1]%; X,,). In
particular, y is a solution in [T, 1] with initial datum y(T) € X, Arguing as in Step 1 in the proof of [9,
Theorem 3.1], we infer that there exists Ry > 0, which depends on ||y(T)||x,,,, 8, z,n and o, such that

Wlleaxa) + 1019l g (maz xa) < R

Moreover, ||y(T)|| x,, can be estimated by R; and T above, so that Ry > 0 finally depends on ||| x,, a, 6,2, 7
and o.
If we join the two estimates above, then we get

y(s)llx <RV (Ka,oR2), s € (0,1],
Sa_GHy(S)HXa < ml \ 9[{27 s € (07 1]7
[1(019) (5. 8) | x0 < (R1 V Ra)[t — 5|, (s,t) €[0,T] or (s,t) € [T,1].

If s € (0,T) and t € (T, 1], recalling that
(019)(5,t) = Is.00y(5,1) = S(T — 8) Is.00y (5, T) + Is,50y (T, 1),
then we get

Gu) (5,50 <LoolGr) (5. Tl + 1Gu9) (T, )l x
<(Lo o |T — s|™ + 9|t — T|)
S(Logg{l + 9%2)|t - S|a.

Putting everything together we infer that there exists a positive constant 98 > R;, which depends on
1] x,,c 0, 2,m and o, such that (3.12) holds true.

Step 3. Let us prove that I' is a contraction in the closed ball B of Yj* a(O, T,), centered at 0 and with
radius R, for some positive T, where R is the constant in (3.12). As a byproduct, we infer that there exists
a unique mild solution y; to (3.1) in [0, 7%]. Indeed, if ¥ is another mild solution to (3.1) in [0, T}], then from
(3.12) it follows that ”gHYea—a(O’T*) < %R, which means that y € B and it is a fixed point of I". Hence, y = ;.

Suppose that we have proved that I' is a contraction in B. If T, = 1 then we are done, otherwise we can
apply the arguments in the proof of [9, Theorem 3.1] in [T}, 1] with initial datum y; (T%) € X,, exploiting the
extra regularity of the initial datum. It follows that there exists a unique mild solution yo € C([T, 1]; X4)
with 61y, € ([T, 1]2; X,,) to the problem

dy(t) = Ay(t)dt + o(y(t))dz(t), te (T, 1],
y(T.) = 1 (T2).
Hence, if we set

_Jwn@), tel0,Ty],
u(t) = {yg(t), te [T, 1],

then we obtain the unique mild solution to (3.1).

So, let us show that there exists Ty € (0,1] such that I' is a contraction in B. We begin by proving that
I maps B into itself. For this purpose, we fix y; € B. From (3.5), with T being replaced by T*, it follows
that

ITW)llve 01 <(LooKeo + Loa)[¥llx, + T2 |zllongo,y (1 + lyllve (o.7.))
1
§§% + QT5+672Q\|5‘9||CW([0,1})(1 +R).
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By choosing

1

1 R T

I A,
(2 €|zl en o, (1 + SR))

it follows that I'(y) € B.
Let us now prove that I is a 1/2-contraction, provided we choose T small enough. Note that, for every
Y1,Y2 € B, it holds that

(L(y1))(#) = (I'(42))(t) = 5,004 00y (0, 1), t €[0T,

and

A

(01(I'(y1) = I'(y2)))(s,t) = Fs,00y,—coy, (5, 1), (s.t) € [0, 7.2
Since for every (s,t) € [0,T,]% it holds that
0—«
1750091 ~aous (5, )| xa < [t = 81" Is,001 ~oopallento-ao.m12 ixa),
using Remark 2.17, withy=a—0,a=0,b=T,, p=a, § = =0, we deduce that
00—«
75,5051 —00ys (8, D)l x0 <CJt = 8|~ [|zllom (0.1 (lo 0 91 — 7 © Yallgy_ . ((0.72]:x0)
+ l01(coyr—oo y2)||<g;‘7a((0,T*]2<;X))v (3.13)

for every (s,t) € [0,T%]%. Let us estimate the first term in the right-hand side of (3.13). For every s € (0, T%],
we get

s* o (ya(s)) — o (y2(9)llxa <Livgs®°llyi(s) — ya(s)llxa

<Lipg [ly1 — yZ||Y9°‘_a(O,T*)~ (3.14)

. 2 2 .
Next, we estimate ||01(coy; — oo y2)||<5§’,a((0’T*]2<;X)' For every (s,t) € (0,T%]., we can write

PN

(01(g oy —ooy2))(s,t) = (d1(0 oyr — g 0y2))(s,t) — a(s, t)(a(y1(s)) — a(y2(s))),
and
s lla(s, )(o(y1(s)) — o(ya(9)llx <CaoLivgs®’lly1(s) — ya(s)| xa [t — 5|
<CqoLipg [t — s|*[lyr — y2||Y90‘7Q(0,T*)~ (3.15)
Further,
(61(coy1 — o oy2))(s,1)

=0(y1(s) + (1) (s 1) — o (y1(s)) — (o (ya(s) + (G1y1)(5,1)) — o (ya(5)))
+ a(y2(s) + (6191) (s, 1)) — o (2(s) + (6192)(s, 1))

1
:/0 [0 (y1(s) + r(01y1)(5,1)) = 0" (y2(s) + 7(01y1) (s, £))](d1y1) (s, t)dr
+ o(y2(s) + (6191) (s, 1)) — o (y2(s) + (6192) (s, 1), (3.16)

from which it follows that

s or(g o yn — o 0 ya)(s, 1)1 x
<Lipy7's*lly1(s) = y2(9) | x [161y1) (s, )| x + Lipgs® =" (G11) (s, 8) — (G192) (s, 6) ] x
<Lipy7s* Iy (s) = y2() | x (101y1) (s, ) [ x + [la(s, )y (s)llx)
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+ Lipgs® (1101 (y1 — y2))(s. )l x + la(s. ) (y1(s) = y2(5))l|x)
<Lip37 [y = wellve 0.1 (K lyg 01 + Cans® *lly(s)llxa) It — 5|
+ Lip, (Kaollyr — v2llve om) + Ca05” P lly1(s) — y2(s) || xa ) It — s
<Lip" (Ka,o + Ca0)lnnllve omllyr —v2llve omrlt —s°
+ Lip, (Ka0 + Cao)llyr — v2llve ot — 5| (3.17)

Putting together (3.13)—(3.17), we infer that
~ +0—«
1-75,00p1—a0ys (5 )l xa < Clt =" “llzllenqomllvr — v2llve 01, (3.18)

for every (s,t) € [0,7%]% and some positive constant C which depends on a, 6, 1, R and o. Further,

”']37001/1—002;2 (Svt)HXa ||j5 00Y1—00Y3 (3 t)HXa |t N s|n+072a
|t —s|” N K

<CTI=2|lzllengoap lor — wallve 0.0 (3.19)

for every (s,t) € [0,T}]%. Therefore, we get

(L'(y)(1) = (F(y2)) Dl xa + 17 (y2)) () = (F(y2)) ()]l x
n 12 (I (1) = L)) (s, )l xa

|t —s|®

ta70||

”jS,UOyl—UOyz (Sat)HXa
It —s|®
<CTI72(Ka0 + 2)l|zllonqop lvn — v2llve om)

<IIF5,005 ~oous [ Xa + 175,00y ~ooys I x +

for every (s,t) € [0,7%]%. This implies that a suitable choice of T} gives

IT(1) = I'(y2)llyp 0,1 < *||y1 = yllve o1

ie., I'isa %—contraction on B and, therefore, it admits a unique fixed point in B which we denote by y;. U

Now, we prove some regularizing properties of the solution y to (3.1).

Proposition 3.7. Let Hypotheses 3.2 be satisfied. Then, for every ¥ € Xy with a > 0 and n > 2a — 0,
the unique mild solution y to (3.1) in [0,1] belongs to C((0,1]; X,) and to C't*77((0,1]; X,) for every p €
[n+a—1,n+a). Finally, for every p € [0, n4+a—1) there exists a positive constant € = €(||1[ x,, o, 0, 2,1, 0, jt)
such that

ly(®)llx,,, < €71, t € (0,1]. (3.20)

Remark 3.8. We stress that the behavior of the X7 ,-norm of y in estimate (3.20) is sharp. Indeed, in the
particular case when o = 0, y(t) = S(t)y for every ¢ € (0, 1] and estimate (3.20) agrees with (2.1)(a).

Proof of Proposition 3.7. Let us notice that, for every 7 € (0,1), y is the unique mild solution to

do(t) = Av(t)dt + o(v(t))dx(t), te (1,1],
() = y(7),

with y(7) € X,. From [9, Theorem 3.1], it follows that y(t) belongs to C'((0, 1]; X,) and to C"t*~*((0,1]; X,)

loc

for every p € [+ a — 1,17+ «). It remains to prove estimate (3.20).
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Let us fix 7 € (0,1] and observe that, using Remark 2.21 and formula (3.2), we can easily show that
y(t) =St —71/2)y(1/2) + F5,00y(T/2,1) (3.21)
for every ¢ € [1, 1], so that, using (2.23), which holds true also when v = 0 (see Remark 2.20), we obtain
ly®)llx; <Lagc(t—7/2)*lly(7/2)]xa

+0(t — /2™ |zl enqoan (1o 0 Ylle(r/zaxe + 1810 0 )
<2 Lacallylye ot —7/2)* 570

‘50‘([7/2,1]2<;X))

+C(t—7/2)" |zl emgoap (o © Ylle(ir/2.11:x0) + [101(0 0 Yz (/212 :x)) (3.22)
for every ¢ € [o,1) and ¢ € [7,1].
Let us estimate the last factor in the right-hand side above: from (3.4), with v = o — 0, we get

7 o ylloqr/21:xa) < 277 LeT " (1 + lyllve©01)): (3.23)
By taking advantage of (3.8), we easily infer that

191(0 0 ) lga(frj2.112 . x) < 2% 7077 (Ka 0 + Cao) (Lip, + L3) (1 + lyllve 0,1)- (3.24)

2.
<

By replacing (3.23) and (3.24) in (3.22) we conclude that
ly(®)lx, < ex(t —7/2)% 70, telr1], (3.25)

for some positive constant ¢; which depends on |[¢[ x,,a,0,x,1,0 and .
Now, we need to go beyond ¢ < 1. To this aim, we fix A € [0, 7+a—1) and we estimate ||(d1(coy))(s, )| x, -
Since < 1, it follows that A < a. For every (s,t) € [,1]%2 we get

11 (o 0 m)) (s, t)llx, <llo((®) — o(y(s))llx, + llals, )o(y(s))llx,
<Ko \Lipg|ly(t) — y(s)llxa + Can L&+ lly(s)llx)lt — s|*7
<Ko ALipG (| (519) (s, )| xo + (s, D)(5)|x)
+ CapnL3™ (L4 llyllve o)l —s*

To estimate the first term in the last side of the previous chain of inequalities, we observe that

< « a—A
1019) (s, D)l xa + [lals, Dy (s)llxa <llYllyve nlt =" + Caanally(s)llxyq_xIt — 5]
<t = s yllve 0.1+ e1Coamrals = 7/2 =)

S(H:’JHY@“LQ(0,1) + 20_>\C102a,)\’a)7"\+9_20‘|t — 5|a7>‘

where we have applied (3.25) with { = 2a — A, so that
151 (0 9)) (s, 8)llx, <KanLivg([yllve 1) + 2% e1Coa o) 720t — 5|77
a, O0—a a—A
+ Can Lo (L + llyllve o)t =" (3.26)

It follows that
[01(c o y)||<gaﬂ([f,1]2<;xx) < et (3.27)

where c; is a positive constant which depends on ||¢| x,,®, 8, z,7,0 and .
Finally, we fix p € [0,7 4+ « — 1) and take

A:(n+a—1)—%[(n+a—1—/~b)A(n—0‘+/‘”v
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which belongs to the interval (u,n 4+ a — 1). Applying again estimate (2.23), with S =X, p=a—- X\, vy=0
and € = 1+ p — «, we infer that Fg 5o, € €771 7H([e,1)2; X14,) and

HJS,UOy||%’n+a71*u([r,1]2<;xl+“) <C(lloo y||C([T,1];Xa) + ||51(0 © y)||<gaf%([f,1]2<;xn)
C(LgTO—a(l + ‘y”Yga,a(O,l)) + CQTG—O—)\—ZQ)

s TA (3.28)

IN

IN

where c3 is a positive constant which depends on ||¢||x,,a,0,2,7,0, X and p.
Taking (3.21) into account and applying (3.28), with 7 replaced by 7/2, we deduce that

—1— —0— —
IOl x14 SErsalt = /24" Ty (/2 + 22070 Aegr 220
SLippalt = /207 Tyl oy + 2200 et

Seyr?TtoH (3.29)

for every t € [r,1], where c4 is a positive constant which depends on |[¢|x,, «, 0, z, n, 0 and pu.
x4, < cat?=17H for every t € (0,1], where ¢4 is independent of ¢, since

A>n+a—1—(n—a—u)/2, so that

In particular, we get |ly(t)

1
A—2a+1+u2§(n—a+u)>0,

due to the condition 1 > 2 — 6, and this yields the inequality 8 + A —2a >0 —1—p. O

Remark 3.9. Hypotheses 2.1 is assumed with 0 < ¢ < A < 2, since Proposition 3.7 involves only the
spaces X, with v < 2. It is easy to check that, if Hypotheses 2.1 are satisfied for every A and ¢ such that
0 < (< A<1+48forsome € (0,1), then Proposition 3.7 still holds true with p and p replaced by
pA (14 8)and 1+ u A B, respectively.

3.2. The case when o is locally Lipschitz continuous in X,

In this subsection, we prove that a mild solution to (3.1) also exists if we weaken the assumptions on o
as long as we strengthen the hypotheses on the Holder exponent 7 of x. As in the previous subsection, we
get global existence and uniqueness of the mild solution y and we provide regularity properties of y.

Hypotheses 3.10.

(i) Hypotheses 2.1 are satisfied with 0 < ¢ < A < 2;
(ii) Hypotheses 3.2(7) — (i) are satisfied;
(iii) there exists a € (0,1) such that n + a > 1 and the restriction of o to X, maps the space into itself.
Moreover, there exist positive constants L%, Lipy and w such that

lo(x) = o(y)llxa < Lipg (14 R)*[lz — yllxq z,y € B(0, R) C Xa, (3.30)
for every R > 0 and |lo(x)||x, < L%(1+ ||z|/x,) for every z € X,.

Theorem 3.11.  Let Hypotheses 3.10 be satisfied. Then, for every v € Xy with o > 6 and n >
a+ (1+w)(a—0), there exists a unique mild solution y to (3.1) which belongs to Y4 (0,1).
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Proof of Theorem 3.11. Let us notice that, under Hypotheses 3.10, the estimates in the proof of
Theorem 3.5 which fail are (3.14) and (3.15). Indeed, if y;,y2 belong to the ball B C Yy (0,T,) with
radius R, then ||y1(s)|x., [|y2(s)||x, < 7R for every s € (0,T.]. From (3.30) we get

o (w1 ()) — o(ya(s))llxa < LipS(L+ RO lys —gallye (om,) (3.31)

and, if w > 0 and we take the supremum of s over (0,7}), then the right-hand side of (3.31) blows up. To
overcome this problem, we stress that under Hypotheses 3.10 we are able to apply Remark 2.17, with a = 0,
b=T,, p =00y —ocoys,v=(1+w)(a—0), p=aand f = =0.In this case, for every ¢t € [0,T,],
instead of (3.13) we get
— w)(a—0
175 gon —oopa (5. Dl xa <Clt = """z oo
X (llooyr —ooyalls (14w (a—0) ((0,Tx];Xa)

+181(0 0 91 — 00 12)llge ) (3.32)

% (1) a0y (0TI

for every (s,t) € [0, T)%. Estimate (3.31) shows that o o y; — o o y2 belongs to G (1+w)(a—B)((0,T4]:Xa) and

looyr —ooyalle 1,00 pmOnlixe) < LiPG(L+R) Y1 = yallve (01); (3.33)

from which it follows immediately that

sUHO=Da(s,1) (0 (y1(5)) = o (y2(5)))l|x < CaoLivy (L +R)“|t = s[*ly1 = v2llve om)- (3.34)

Moreover, we can apply formula (3.17) (which does not rely on the Lipschitzianity of o in X, ) to estimate
sU+)(@=0)||(5, (0 0 yy — 0 0 y2))(s,t)|x, and from (3.34) we infer that §;(c o y; — o o o) belongs to
« 2 .
G o) (a—0)((0, Ti]2; X) and
11(0 0 y1 — 0 ) e

2 1)t (OTIEO)

<[Ca,oLipg (1 + R)” + (Ka,0 + Ca0) (Lipg? R + Liv,)]l|ly1 — vellve om)- (3.35)
Replacing estimates (3.33) and (3.35) into (3.32), we conclude that

“rm—(14w)(a—06
175,00y, —roye, (0, )l xa < CTI™ =Dl 0,17 ly1 — v2llye 010

HJSUO oo (5 t)“Xa 1+w)(a—0)—a
yit - ZT <l g on o v = ellve o)

for every ¢t € [0,7}] and (s,t) € [0,7}]%, respectively. Here, C' is a positive constant which depends on
a,0,z,m, R, 0 and w. Using these estimates, which replace (3.18) and (3.19), and arguing as in the proof
of Theorem 3.5, we can complete the proof. [

Under the same assumptions of Theorem 3.11 we show that the mild solution y is indeed more regular.

Proposition 3.12.  Let Hypotheses 3.10 be satisfied. Then, for every ¥ € Xy with o > 0 and n >
a+(14w)(a—0), the unique mild solution y to (3.1) in [0, 1] belongs to C((0,1]; X,) and to C'+*~*((0,1]; X,)

for every p € [n+ a — 1,9+ «). Finally, for every u € [0,n + o — 1) there exists a positive constant
¢ = (Yl x,,a,0,2,m,0,1,w) such that (3.20) holds true.

Proof. The proof can be obtained arguing as in the proof of Proposition 3.7, with the unique difference
that, due to the fact that o is only locally Lipschitz continuous on X, in estimate (3.26) we need to replace
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Lip$ with LingyH@él (0’1)7'“(9_"), so that (3.27) becomes [|d1 (o o Wllga—r(ri2:x,) < cyrAtI—2a-w(a=0),

with A € [0, + o — 1). Here, c; is a positive constant which depends on [|7| x,, o, 0, x, n, o and .
Now, we fix 4 € [0,7 4+ o — 1) and argue as in (3.29) to infer that

Hy(t)HXHH <2u+1 aL1+H aT Hy||Ya o) + 2204+W(0479)797)\C2T0+A72a7w(a79)

for every t € [1, 1], where ¢y is a positive constant which depends on p and the same parameters as ¢;.
Finally, we choose a suitable A such that 70—#~1 > 70+A=2a-w(e=0) for every 7 € (0,1). For instance, we
can take

Yva—1-w|A@m-a-wa-6)+p)

A= —1-
N+« 5

which belongs to the interval (i, 7+ o —1). The proof is complete. O
Remark 3.13. Clearly, Remark 3.9 can be applied also to the results of this subsection.

Example 3.14. Let A be the second-order elliptic operator on R? defined by

A= unDu"'ZbD +ec.

i,j=1

We assume that the coefficients of operator A are bounded and S-Hélder continuous in R, for some
B€(0,1), and Z?,j:l gij(x)&:&; > u|§|2 for every x, £ € R? and some positive constant .

Let A be the realization of A in X = Cj,(R?), the space of bounded and continuous functions f : R — R,
with maximal domain

D(A) = {u € GRYN (| WEP(R?Y) : Au € Cb(Rd)}.
p<oo

For every A € (0,1 + 3/2) \ {1/2,1}, we take X) = C?*(R?) endowed with its classical norm. Moreover,
we take as Xj/, the Zygmund space of all bounded functions g : R? — R such that [9]){1/2 =

SUP,Ly \g(x)+g(y)|m2975|2 Yaty))| oo, endowed with the norm ||g||X1/2 = ||glloo + [g]Xl/Q. Finally, we set
X1 =D(A).

The operator A generates an analytic semigroup on Cy(R?). Further, for every A € (0,1+3/2), X is the
interpolation space of indexes A and oo between X and D(A). Hence, Hypotheses 3.10 is satisfied for every
0 < ¢ <A <1+ 8. We refer the reader to e.g., [7, Chapters 3 and 14]. Finally, we fix a function & € CZ(R)
and note that the function o : X — X, defined by o(f) = 6 o f for every f € X, satisfies Hypotheses 3.10,
for every a € (0,1/2), with w = 1.

Therefore, the assumptions of Theorem 3.5 and Proposition 3.7 are satisfied and we conclude that, for
every ¢ € CJ(R?) with § > 0 and 0 € ((3ac — 1) /2, a], there exists a unique mild solution y to problem (3.1)
which takes values in D(A). In particular, if 3 < 1 and 1 > 3c, then we get existence and uniqueness of
the smooth mild solution y for every 1 € X. We notice that, since we are assuming n+ « > 1, the inequality
n > 3« implies > 3/4.

Similarly, if a € (1/2,1) and 6 € C7(R) then the function o satisfies Hypotheses 3.10 with w = 2.

3.8. The case when o' is locally Lipschitz continuous from X, to X

We conclude this section by proving that we can further weaken the assumptions on o allowing ¢’ to be
locally Lipschitz continuous from the smaller space X, to X.
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Hypotheses 3.15.

(i) Hypotheses 2.1 are satisfied, with 0 < { < X < 2.
(ii) The function = belongs to C"([0, 1]) for some n € (1/2,1).
(iii) The function o : X — X is Gateaux differentiable with bounded Gateaux derivative o’.
(iv) There exists o € (0,1) such that 7 + « > 1, the restriction of o to X, maps the space into itself, and
there exist positive constants Lipg, Lipss and w > 1 such that
lo(x) — o(y)llxa < Lipg(1+ R)“[lz — yllx,,
(o’ (@))(h) = (" () (M) || x < Lipg/(1+ R)*™Hlx — yllx, [I7]l x

for every z,y € X,, with ||z]|lx, < R and |y||lx, < R, every R > 0 and h € X. Moreover,

lo(@)|lx, < LY+ |z|x,) for every x € X, and some positive constant L%.

Theorem 3.16. Under Hypotheses 3.15 the statements of Theorem 3.11 and Proposition 3.12 hold true with
the same choice of all the parameters.

Proof. The only differences between this proof and the one of the quoted Theorem and Proposition is in
the existence and uniqueness part of the statement. More precisely, we need to slightly modify the arguments
used to prove the crucial estimate (3.35) that is:

~ - )
15,0001 —oous (5, D)1 xa < Clt = "~ cngo np llyz = willve 0.,

which holds true for every (s,t) € [0,7]% and some positive constant C, depending on «, 0, z, n, R, o and
w. The starting point is still estimate (3.32). The different assumptions on ¢’ force us to estimate the term

A

01(0 0 y1 — o o ys) differently from what we did in (3.17), to obtain that

6 — o < Chllyr — vallye :
[01(c oy — 0o OyQ)”%_(Hu)(a_g)((O»T*]2<%X) < Cilln yZHYG_a(O,T*) (3.36)

for some positive constant 6’1 which depends on «,0,z,7n, R, 0 and w.
Let us fix (s,t) € (O,T*]2<. We recall that

1
(d1(coyr —ooya))(s,t) =/ (0" (y1(s) +r(011)(5, 1)) = 0" (y2(s) + r(d151)(5, 1)) (6191) (s, t)dr
0
+ o(y2(s) + (01y1)(s, 1)) — o (y2(s) + (01y2)(s, 1))

::¢1(S7t) + ¢2(87t)>

(see (3.16)). The term ¢o(s,t) is estimated by (3.17). As far as ¢4 is concerned, we get

sUHOD )6, (s,0) | x <Lipg (1 + 3Rs" =)< 0Dy () — yo(s) | xa [ (G191) (5, 0) | x

=Lipg: (1 + 3R)° s ||y1(s) — ya(s) ] xas* " (O1y1) (s, 1)l x
<Livg (1439 s — allvs_(o.m)5™ 1 (Gien) 5 D)lx

and, arguing as in (3.17), we infer that

s G (s. )lx < (Koo + Cao)llyillvg omalt — |

Summing up, we have proved that

P — N o < Collyy — o
|| 1(00y1 Joy2)||<g_(1+w)(a_9)((O’T*]2<_,X)7 2||y1 yQHYB_a(O,T*)

for some positive constant Co, which depends on 1¥|lxy, @, 0, 2,1, R, 0 and w. From this estimate and (3.34),
(3.36) follows easily.
Now, we can complete the proof following the arguments in Theorem 3.11. [
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Remark 3.17. Remark 3.9 can be applied also to the results of this subsection.

Example 3.18. Let A be the realization of the second-order derivative in X = L2?((0,1)), with
homogeneous Dirichlet boundary conditions, and let o (1)) = & o % for every v € L?((0,1)), where & is
a fixed function in CZ(R). In this situation, Xy = W2M2((0,1)) if A < 1/2, Xx = W2((0,1)) W, %((0,1))
if A e (1/2,1), X1 = D(A) = W22((0,1)) N W, *((0,1)) and X\ = {u € W22((0,1)) N Wy *((0,1)) : u” €
Xa1}if A e (1,2).

Let o € (1,4),0 € [0,a] and n € (3, 1) be such that 5 > 3a—26. Under these conditions, Hypotheses 3.15
are satisfied with w = 1. Indeed, it is easy to check that o is Lipschitz continuous from X in itself. Moreover,

1
nwwmmwwﬂmmmﬁ:/Wamgnfwm@Wmmﬁ%
<1613 /Iw L&) PIh(e)2de

§||0||C§(R)||y2 yl”C([O,l])HhH%(
S||5'||2~3(R)||y2 — il IRl%,

for every y1,y2 € X, and every h € X, since X, C C([0,1]) with a continuous embedding. Therefore, the
second estimate in Hypothesis 3.15 is satisfied with w = 1. To prove that o is locally Lipschitz continuous
in X, we observe that

1
(e(y))(x) = (o(y2))(z) = (11 (z) - yz(ﬂ?))/ &' (ry1(z) + (1 = r)ya(z))dr
0
for every y1,y2 € X, and almost every « € (0,1). From this formula it follows that

lo(y1) = o(y2)llL2(0,1)) < N8 [l llvz — v1ll2((0,1))-

Moreover,
(a(y1))(&) = (o(¥2))(&) — (o (y1))(n) + (o (y2))(n)
~[01(6) — 92(6) — 2(n) + 92 / (r1(€) + (1 = )ya(€))dr
0
+ (yl(n)*yz(n))/o[ & (ryi(§) + (1 = r)y2(§)) — &' (rya(n) + (1 = r)ya(n))]dr
so that

(@) (€) = (@(y))(€) — (o)) () + (o (y2)) ()|
<2[16" |12 [y1(€) — y2(€) — y1(n) + y2(n)|*
+ 2016”12y (1) = y2 () > (1y1(&) — y1 ()] + |y2(€) — ya(n)[*)

for almost every &, 7 € (0,1). Consequently, we can estimate

[J(yl) - U(yQ)]WQQ 2(0,1)
<2(|6" 13 lyr — 92]W2a,2((0,1)) +2[16" 3 llyr — Z/2Hgo([yl]%/v2a,2((o,1)) + [3/2]%1/%,2((0,1)))
<G+ [lnllx, + lelX ) v — ik,
for some positive constant C,, independent of y; and y,. We have so proved that ¢ is locally Lipschitz
continuous on X, and the first condition in Hypotheses 3.15 is satisfied with w = 1.
Note that, if 3o < 1 and 1 > 3« then we can take § = 0, i.e., problem (3.1) admits a unique mild solution
with initial datum ¢ € X = L2((0,1)).
Finally, we observe that, if &6 € C3(R) and a € (1/2,1), then the function o satisfies Hypotheses 3.15
with w = 2.

32



D. Addona, L. Lorenzi and G. Tessitore Nonlinear Analysis 238 (2024) 113401

References

(1
(2]
(3]
[4]
[5]
[6]
[7]

(8]

(9]

L.C. Young, An inequality of the Holder type, connected with Stieltjes integration, Acta Math. 67 (1) (1936) 251-282.

T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215-310.

M. Gubinelli, Controlling rough paths, J. Funct. Anal. 216 (2004) 86-140.

M. Gubinelli, A. Lejay, S. Tindel, Young integrals and SPDEs, Pot. Anal. 25 (2006) 307-326.

M. Gubinelli, S. Tindel, Rough evolution equations, Ann. Probab. 38 (2010) 1-75.

A. Deya, M. Gubinelli, S. Tindel, Non-linear rough heat equations, Probab. Theory Related Fields 153 (2012) 97-147.

L. Lorenzi, A. Rhandi, Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential
Equations, CRC Press, 2021.

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, in: Modern Birkhéauser Classics,
Birkhduser/Springer Basel, AG, Basel, 1995.

D. Addona, L. Lorenzi, G. Tessitore, Regularity results for nonlinear Young equations and applications, J. Evol. Equ. 22
(2022) 34.

33


http://refhub.elsevier.com/S0362-546X(23)00193-1/sb1
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb2
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb3
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb4
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb5
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb6
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb7
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb7
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb7
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb8
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb8
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb8
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb9
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb9
http://refhub.elsevier.com/S0362-546X(23)00193-1/sb9

	Young equations with singularities
	Introduction
	The sewing map and the convolution integral for singular functions
	Main assumptions, spaces of functions and increments
	The sewing map and the convolution integral for the new increment
	Convolution integrals with singularities
	The case S(t)=Id

	Mild solutions to Young equations
	The case when σ is globally Lipschitz continuous in Xα
	The case when σ is locally Lipschitz continuous in Xα
	The case when σ' is locally Lipschitz continuous from Xα to X

	References


