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Abstract
In this paper, we exploit some geometric-differential techniques to prove the strong Lefschetz
property in degree 1 for a complete intersection standard Artinian Gorenstein algebra of
codimension 6 presented by quadrics. We prove also some strong Lefschetz properties for
the same kind of Artinian algebras in higher codimensions. Moreover, we analyze some loci
that come naturally into the picture of “special” Artinian algebras: for them we give some
geometric descriptions and show a connection between the non emptiness of the so-called
non-Lefschetz locus in degree 1 and the “lifting” of a weak Lefschetz property to an algebra
from one of its quotients.
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Introduction

In this article we exploit and generalize some techniques that the authors have developed
in previous works on these topics, in collaboration with Gian Pietro Pirola (see [9] and [4])
in order to prove the validity of some Lefschetz properties for particular Artinian algebras.
More precisely, we deal with standard Artinian Gorenstein graded algebras over a field K of
characteristic 0. For brevity, we refer to such an algebra using the acronym SAGA. SAGAs are
generated in degree 1 and satisfy a sort of "inner duality" property induced by the products of
elements in complementary degrees (see Sect. 1.1 for details).We recall that the codimension
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of a standard Artinian graded algebra R is the dimension of R1, i.e. its degree-1 part, as vector
space over K.

Classical examples of these algebras are jacobian rings of smooth hypersurfaces in projec-
tive spaces. These are constructed by considering the smooth hypersurface X = V (F) ⊆ P

n

with F homogeneous in S = K[x0, · · · , xn] and by taking the quotient R = S/I where I
is the ideal generated by the partial derivatives of F (the so-called jacobian ideal of F). The
importance of these objects lies, for example, in the strong geometric relations between X and
its jacobian ring. Just to mention some, in the seminal works [5, 6, 12, 13], Carlson, Griffiths,
Green and Harris proved that a portion of the primitive part of the Dolbeault cohomology
is codified in R and that R plays a crucial role in the study of the infinitesimal variation of
Hodge structure of X .

This construction is a special case of a more general one. Indeed, one can also consider
the quotient S/I , where I is generated by a regular sequence of length n+1 of homogeneous
polynomials, i.e. I = ( f0, · · · , fn) ⊂ K[x0, · · · , xn], where V ( f0, · · · , fn) ⊂ P

n is the
empty set. This kind of algebras are SAGAs and are also complete intersection rings so it
makes sense to refer to them as complete intersection SAGAs. For brevity one often says (see,
for example, [19]) that R is a complete intersection SAGA presented by forms of degree e, if
the generators of the ideal I have all the same degree, equal to e. Our main result (Theorem
3.1) will deal with the case e = 2, i.e. with complete intersection SAGAs presented by forms
of degree 2.

Lefschetz properties for an Artinian algebra were defined in the 80’s by taking inspiration
from the Hard Lefschetz Theorem for a Kähler variety X of complex dimension n. We
recall that this theorem states that for all k ≤ n the cup product map ωk · : Hn−k(X , C) →
Hn+k(X , C) is an isomorphism for ω ∈ H2(X , C) generic (more precisely, for any Kähler
form in H1,1

∂̄
(X)). Then, the even cohomology ring R = ⊕n

i=0 R
i = ⊕n

i=0 H
2i (X , C) of

X is a Gorenstein Artinian algebra. In particular, R is such that for x ∈ R1 general, the
multiplication map xn−2i · : Ri → Rn−i is an isomorphism for i ≤ n/2. This is, roughly,
the definition of the strong Lefschetz property (SLP) for an Artinian algebra (for details see
Definition 1.2). Starting from this idea a weaker version has been introduced by following
similar ideas: an algebra R has theweak Lefschetz property (WLP) if the multiplication map
x · : Rk → Rk+1 is of maximal rank for all k ≥ 0 and x ∈ R1 general. For a comprehensive
treatment of Lefschetz properties the interested reader can refer to [14].

In the recent years, there has been a growing interest in Artinian algebras and their Lef-
schetz properties. We summarize here some results and conjectures relevant with respect to
the topics of our article. In [15] it is shown that any Artinian standard algebra R of codimen-
sion 2 satisfies SLP . In the same article, it is also proved that if R has codimension 3 and
is a complete intersection then it satisfies WLP . Again in codimension 3, if one restricts its
attention to jacobian rings of curves of degree d in P

2, the validity of SLP is known only
up to degree 4 with the case for d = 4 treated in the very recent work [7]. In codimension 4,
again in [7], the authors prove that jacobian rings of cubic surfaces have the SLP . In partic-
ular, nothing is known for Lefschetz properties for jacobian rings when the degree increases:
quintic curves in P

2 (regarding SLP) and quartic surfaces in P
3 (regarding both WLP and

SLP) are the first open cases. For what concerns the case of complete intersection SAGAs
presented by quadrics, in [19] it is shown that WLP holds in degree 1 (i.e. x · : R1 → R2

is injective for x ∈ R1 general) in any codimension. If one wonders if all SAGAs have to
satisfyWLP , this is known to be false as there are counterexamples (which are not complete
intersection) in higher codimension [10] but it is conjectured to hold for complete intersection
SAGAs. For codimension bigger than or equal to 5 very little is known. For codimension
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5, WLP has been proved in [2] for complete intersection SAGAs presented by quadrics
whereas, in [4] the authors proved SLP for the same SAGAs (in particular, for jacobian
rings of smooth cubic threefolds). The cases of higher codimensions or higher degrees are,
at the moment, completely open.

Just to mention some other papers, which treat problems related to Lefschetz properties
for Artinian Algebras, we cite, for example, [1, 16–18] and [8]. These articles are really
interesting on their own since the approaches used to study, roughly, the “same” problems
are really different and involve a lot of different techniques.

In this work, we follow the “geometric-differential” approach used in [2] and [4] by
exploiting and generalising the techniques of the latter, in order to prove, partially, the SLP
for the first open case with low degree in higher codimension. More precisely, we deal with
a complete intersection SAGA R presented by quadrics of codimension 6 and we prove our
first main result:

Theorem (Theorem 3.1) Let R be a SAGA as above. Then R satisfies the SLP in degree 1,
i.e. for x general in R1 the multiplication map x4· : R1 → R5 is a bijection.

This result is a step towards the evidence of a well known conjecture, according to which, in
characteristic 0 all complete intersection SAGAs should satisfy the Lefschetz properties (see
[14, Conjecture 3.46], for example). Beyond being the first open case, the interest for these
SAGAs lies in the fact that they involve Lefschetz properties for the jacobian rings of cubic
fourfolds, which are very interesting on their own for what concerns several other unrelated
topics (such as, for example, the well known Kuznetsov’s conjecture about the rationality of
the cubic fourfolds).

We stress that Lefschetz properties, at least for a general complete intersection SAGA S/I
with fixed degrees of the generators of I , are known to hold. For this reason, it is interesting
to analyze “special” SAGAs. With this idea, we proceed by obtaining two interesting results
concerning special SAGAs. The first one is a collection of geometric properties satisfied by
the subschemes

Ni := {[x] ∈ P(R1) | xi = 0}
that we call Nihilpotent loci. Roughly, when R is “general”, Ni is empty for low values
of i , then, in case of non-emptiness, we do expect that these loci reflect some properties of
“special” SAGAs. The most relevant results are Proposition 2.1, which has as a consequence,
a characterization of Fermat hypersurfaces (see 2.2) and Theorem 2.6 which analyzes the
geometric behaviour of these loci when they contain a linear space.

For the second result, we consider what are called the non-Lefschetz loci, i.e. the sub-
schemes parametrising linear forms for which the injectivity of the multiplication map fails
(see Definition 1.4). These are really interesting for the geometry and the algebraic structure
of a SAGA. Just to mention some articles which study these loci, one can consider [3] and
[2]. Our contribution for this topic is the following lifting criterion:

Theorem (Theorem 4.2) Let R = S/I be a complete intersection SAGA of codimension
n + 1 ≥ 6 presented by quadrics and assume that z is a non-Lefschetz element for R. If
R̄ = R/(z) satisfies the W LP in degree 2, then the same holds for R.

This is a result for “special” SAGAs since, as for the Nilpotent loci, when R is general,
all [x] ∈ P(R1) are Lefschetz elements. This unexpected theorem gives a sort of converse
for results which prove that Lefschetz properties are inherited by suitable quotients. This
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happens, for example, for SLP when one takes the quotient by the conductor of a Lefschetz
element ( [14, Proposition 3.11]) or, for the WLP as shown in the recent article [11].

The plan of the article is the following. In Section 1, we set our notation and we introduce
the main characters of the paper. Moreover, we establish a general framework that will be
used in several specific situations through the paper, and we prove the first general technical
results. In Section 2, we analyze the nihilpotent loci Ni for a SAGA R regardless of the
validity of some Lefschetz properties. We study them from a geometric point of view and we
recollect some examples which show how the nature of these loci can be very different from
one case to another. In Section 3 we prove the first main result, i.e. Theorem 3.1. In Section
4, we analyze the weak Lefschetz property for complete intersection SAGAs presented by
quadrics and prove the “lifting” of the WLP to R from suitable quotients, i.e. Theorem 4.2.
Finally, one might wonder how much the different techniques developed in this paper could
be exploited to study the next open cases. In Section 5 we try to answer to this question,
by generalizing the validity of some strong Lefschetz properties to complete intersection
SAGAs presented by quadrics of higher codimension.

1 Notations, preliminaries and technical results

Through all the article we will assume that K is an algebraically closed field of characteristic
0. First of all, let us recall two basic definitions that will play an important role in what
follows (the reader can refer to [14] for a deeper treatment).

Definition 1.1 Consider an Artinian graded K-algebra R = ⊕N
i=0 R

i . Then

• the dimension of R1 as K-vector space is called codimension of R;
• R is standard if it is generated by R1 as K-algebra;
• R is said to have the Gorenstein duality if RN � K and the multiplication map R j ×

RN− j → RN is a perfect pairing whenever 0 ≤ j ≤ N .

If R is a graded Artinian algebra, having the Gorenstein duality is equivalent to ask that
R is Gorenstein. In this case, RN is called socle of R and R0 � RN . A standard Artinian
Gorenstein algebra will be called, for brevity, SAGA.

Examples of SAGAs are algebras that can be written as K[x0, . . . , xn]/I with I an homo-
geneous ideal generated by a regular sequence of polynomials of length n + 1. We will be
interested in the case where the generators of I have all the same degree e: for brevity, in this
situation we say that R is a complete intersection SAGA presented by forms of degree e.
Relevant examples of this kind of SAGAs are jacobian rings of smooth hypersurfaces of P

n .
We now introduce Lefschetz properties for a SAGA R. These involve the multiplication

maps by suitable elements of R. In the following we will often deal with kernels of such
maps so it is convenient to set

Ka
q := ker

(
q· : Ra → Ra+s) for q ∈ Rs .

Definition 1.2 Consider a SAGA R = ⊕N
i=0 R

i . It is said to satisfy the

• weak Lefschetz property in degree k, (WLPk in short) if there exists x ∈ R1 such that
x · : Rk → Rk+1 has maximal rank;

• strong Lefschetz property in degree k at range s, (SLPk(s) in short) if there exists x ∈ R1

such that xs · : Rk → Rk+s has maximal rank.
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The algebra R has the strong Lefschetz property in degree k (SLPk) if SLPk(s) holds for
all s. We also say that R satisfies weak (strong) Lefschetz property - WLP (respectively
SLP) in short - if it satisfies WLPk (respectively SLPk) for all k.

Remark 1.3 For SAGAs, the above definition of SLP is equivalent to ask SLPk(N −2k) for
all k ≤ N/2 (see Definition 3.18 and subsequent discussion in [14]). Moreover, notice that if
k ≤ N/2 and 1 ≤ s ≤ N−2k, SLPk(s) implies SLPk(s−1). Note that, by definition,WLPk
is equivalent to SLPk(1) and, by Gorenstein duality,WLPk holds if and only ifWLPN−k−1

holds. Finally, for k ≤ N/2, WLPk implies WLPk−1 by [18, Proposition 2.1].

Elements of P(R1) for which the multiplication map is not of maximal rank will be
important in Section 4 so it is convenient to introduce the following subschemes of P(R1).

Definition 1.4 Let R be any SAGA with socle in degree N . For 1 ≤ a ≤ N − 1 we define
the Lefschetz locus in degree a to be

La := {[x] ∈ P(R1) | x · : Ra → Ra+1 has maximal rank} ⊂ P(R1).

An element [x] ∈ P(R1) (or, equivalently, x ∈ R1 \ {0}) is called Lefschetz element in
degree a if [x] ∈ La . On the contrary, elements not inLa are called non-Lefschetz elements
(in degree a).

Geometric results on these loci can be found, for example, in [2] and [3].
In the next sections, we will make a large use of the framework that we present here in a

general setting. This kind of construction has been used in some articles (see, for example
[4] and [2]) in order to study from a geometric perspective SAGAs which do not satisfy some
Lefschetz properties.

Let R be a SAGA of codimension n + 1 and socle in degree N . For 1 ≤ a, b ≤ N we set

�
(a,b)
i, j = {([x], [y]) ∈ P(Ra) × P(Rb) | xi y j = 0} and N (a)

k = {[x] ∈ P(Ra) | xk = 0}.
We will refer to N (a)

k as nihilpotent loci of P(Ra). For brevity, we will set N (1)
k = Nk .

We will denote by p1 and p2 the standard projections from �
(a,b)
i, j to P(Ra) and P(Rb),

respectively. Notice that when we consider �
(a,b)
s,1 , we have

p−1
1 ([x]) = {([x], [y]) | xs y = 0} = [x] × P(Kb

xs )

so all the fibers of p1 are projective spaces (not necessarily of the same dimension).
We will often assume the failure of some Lefschetz property and this assumption will

reflect on a condition on the projection p1. More precisely, we make the following observa-
tions.

• Assume that b ≤ N/2 and that SLPb(s) does not hold. Then, for all [x] ∈ P(R1) we
have that the multiplication map xs · : Rb → Rb+s is not injective. In particular, there
exists [y] ∈ P(Rb) such that xs y = 0 in Rb+s . This shows that the failure of SLPb(s) is
equivalent to ask that p1 : �

(1,b)
s,1 → P(R1) is surjective.

• Assume that p1 : �
(a,b)
s,1 → P(Ra) is surjective. Then, as observed above, we have that all

the fibers of p1 are projective spaces and this implies that there exists a unique irreducible
component � of �

(a,b)
s,1 which dominates P(Ra) via p1. In this case, we set

πi = pi |�, Y = p2(�) = π2(�) and Fy = π1(π
−1
2 ([y])) for all [y] ∈ Y .
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Construction 1.5 To summarize, if R is a SAGA of codimension n + 1 and socle in degree
N and we assume that SL Pb(s) does not hold for R, we can construct the loci �(1,b)

s,1 ,�, Y
and Fy as above and we have the following diagram

Fy × [y]

�

π2 [y]

�

π1

π2
Y

�
(1,b)
s,1

p2

p1

P(Rb)

Fy P(R1).

(1)

We stress that, in this case, as� is the unique irreducible component which dominatesP(R1),
we have

π−1
1 ([x]) = p−1

1 ([x]) = [x] × P(Kb
xs ) for general [x] ∈ P(R1).

On the contrary, for specific [x] ∈ P(R1), it can happen that π−1
1 ([x]) � p−1

1 ([x]) and that
π−1
1 ([x]) is not a projective subspace of [x] × P(Rb).

In [4] and in [9] the authors have developped a technical lemma which gives strong
informations on the locus � introduced above. We present now a generalised version of it.

Proposition 1.6 Let T be an irreducible variety in P(Ra) × P(Rb) such that p1|T : T →
P(Ra) is surjective. Assume that T ⊆ {xi y j = 0} = �

(a,b)
i, j with i, j ≥ 1. Then

(1) For all v ∈ Ra one has vxi−1y j+1 = 0;
(2) If a(i) + b( j + 1) ≤ N, then all points of T satisfy also xi−1y j+1 = 0.

In particular, if a = b = 1 and k ≤ N − 2, if T ⊆ �
(1,1)
k,1 then T ⊆ �

(1,1)
i, j for all i, j such

that i + j = k + 1 and j ≥ 1.

Proof It is enough to prove the claim for a general smooth point p = ([x], [y]) ∈ T . For
any v ∈ Ra, t ∈ K consider x ′ = x + tv ∈ Ra . Since p1 : T → P(Ra) is surjective by
hypothesis, we have that there exists y′ in Rb \ {0} such that (x ′)i (y′) j = 0. Then we can
define β(t) such that β(0) = y and (x + tv)i (β(t)) j = 0 for all t ∈ K. We can consider the
expansion of β and write this relation as

0 ≡ (x + tv)i (y + tw + t2(· · · )) j = xi y j + t(ivxi−1y j + jwxi y j−1) + t2(· · · ).
In particular we have ivxi−1y j + jwxi y j−1 = 0 for all v ∈ Ra . If we multiply by y we

have ivxi−1y j+1 = 0 for all v ∈ Ra which yields the first claim since i ≥ 1 by hyphotesis.
For the second claim, consider the multiplication map Ra × R(i−1)a+( j+1)b → Ria+ jb+b

and notice that it is non degenerate by the assumption ia+bj+b ≤ N . Hence, if vxi−1y j+1 =
0 for all v ∈ Ra , then one has also xi−1y j+1 = 0 as claimed. ��

Proposition 1.6 gives some easy but relevant relations involving the dimension of Y ,�

and Fy for [y] ∈ Y general. We summarize these results in the following

Lemma 1.7 Assume that R is any SAGA of codimension n + 1 with socle in degree N and
assume that SL Pb(k) does not hold for some integer k such that 1 ≤ k ≤ N − 2b. Then,
defining �

(1,b)
k,1 ,�, Y and Fy as in 1.5, we have the following properties:
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(a) dim(Y ) + dim(Fy) = dim(�) ≥ n = dim(P(R1));
(b) if b(k + 1) ≤ N − 1 and b ≥ 2 then 0 ≤ dim(Fy) ≤ n − 1 and 1 ≤ dim(Y ) ≤

dim(P(Rb)) − 1;
(c) if b = 1 and k = N − 2 then 1 ≤ dim(Y ) ≤ n − 2 and 2 ≤ dim(Fy) ≤ n − 1.

Proof One can prove (a) and (b) by following the proof of [4, Proposition 2.6] and using
Proposition 1.6. The last point has been proved in [4, Corollary 2.11]. ��

Through the whole article, if p ∈ X is a smooth point we will denote by TX ,p the
differential tangent space. The notation Tp(X) will be used when X is inside a projective
space P

n to mean its embedded Zariski tangent space. In particular, if [x] ∈ X ⊆ P
n is

a smooth point, and X̃ is the affine cone of X , we have P(TX̃ ,x ) = T[x](X). Let us now
introduce a simple description of the tangent space for the nihilpotent loci which generalize
[4, Corollary 4.2]. The proof is analogous with minimal changes.

Lemma 1.8 Let R be any SAGA. Then for [η] ∈ N (a)
k general we have T[η](N (a)

k ) ⊆
P(Ka

ηk−1). If, moreover, η
k−1 = 0, we have an equality.

Let us now show a technical result that holds for any SAGA when we deny the SLP1(k)
for some 1 ≤ k ≤ N/2. Then, as in 1.5 we can construct � ⊆ �

(1,1)
k,1 , Y and Fy .

Lemma 1.9 With notations as above, if p = ([x], [y]) ∈ � is a general point, we have:

(a) y ∈ TFy ,[x] and x /∈ TY ,[y];
(b) TF̃y ,x ⊆ K 1

xα yβ whenever α + β = k and β ≥ 1, where F̃y denotes the affine cone over
Fy.

Proof For (a), let p = ([x], [y]) ∈ � be a general point. By [4, Proposition 2.6] we have
that Fy is a cone and [y] is a vertex for it, so that the line 〈[x], [y]〉 is contained in Fy . This
means that [y] is a tangent vector in [x], i.e. [y] ∈ TFy ,[x].

For the second claim of (a), let us suppose by contradiction that [x] ∈ TY ,[y]. Let �̃ be the
lifting to R1 × R1 of � ⊂ P(R1) × P(R1) and let π̃2 be the projection on the second factor
from �̃. By construction, we have that �̃ ⊆ {(x, y) | xk y = 0}. Let Ỹ be the affine cone of Y .
Since π2 : � → Y is surjective, we have π̃2(�̃) = Ỹ and that, for p = (x, y) ∈ �̃ general,

dpπ̃2 : T�̃,p → TỸ ,y

is surjective.
By assumption we have also that x ∈ TỸ ,y so there exists a tangent vector to �̃ at p of

the form (v, x). Since points of �̃ satisfy xk y = 0 we have

0 ≡ (x + tv + t2(· · · ))k(y + t x + t2(· · · )) (mod t2)

which yields xk+1 = 0. This is impossible by the generality of x : [x] /∈ TY ,[y].
For (b), first of all, notice that by Proposition 1.6 we have F̃y ⊆ {x ∈ R1 | xi y j = 0} for

all i + j = k + 1 and i, j ≥ 1. Hence, for p general, if an element v ∈ R1 belongs to TF̃y ,x
then the following relation must be satisfied

0 ≡ (x + tv + t2(· · · ))i y j = i tvxi−1y j + t2(· · · ) (mod t2).

Hence, we have that v ∈ K 1
xα yβ , with α + β = k and β ≥ 1. ��

123



D. Bricalli, F. F. Favale

Let us now consider a complete intersection SAGA R: we recall another technical result,
dealing with the kernels of the multiplication maps presented above, that will be used exten-
sively in the whole paper.

Proposition 1.10 (Proposition 4.1 of [4]) Let R be any complete intersection SAGA of codi-
mension n + 1 presented in degree d − 1. Assume that 1 ≤ s ≤ N − 1. The following
properties hold:

(a) If [η] ∈ P(Rs), then s ≥ (d − 2) dim(K 1
η );

(b) Let [η], [ζ ] ∈ P(Rs) and assume s = (d − 2) dim(K 1
η ) = (d − 2) dim(K 1

ζ ). Then

K 1
η = K 1

ζ if and only if [η] = [ζ ].

Finally, let us now focus on the specific case that will be treated in the next sections, that
is the case where R is a complete intersection SAGA of codimension n + 1 presented in
degree d − 1 = 2.

Remark 1.11 If d = 3, by Proposition 1.10we get that for [η] ∈ P(Rs)wehave dim(K 1
η ) ≤ s.

From this, together with Lemma 1.8, we also get that dim(Nk) ≤ k − 2.

2 Nihilpotent loci and geometric properties

In this section we will study geometric properties of the nihilpotent loci Nk ⊆ P(R1) where
R is a complete intersection SAGA of codimension n + 1 presented by quadrics. Any R as
above has socle in degree N = n + 1. We stress that we don’t make any assumptions about
the validity of any weak or strong Lefschetz property for R in this section.

We recall that the nihilpotent loci (in P(R1)) are defined as

Nk = {[x] ∈ P(R1) | xk = 0}.
If X ⊂ P

r is non-empty, we denote by Seck(X) ⊆ P
r the k-secant variety associated to X ,

i.e.

Seck(X) :=
⋃

p1,...,pk∈X
〈p1, . . . , pk〉

where 〈p1, . . . , pk〉 is the linear span of the points p1, . . . , pk . For brevity, we set Sec2(X) :=
Sec(X). The interested reader can refer to [20, Chapter 1] for various properties of these
classical loci (although the definition considered is slightly different from the one adopted
by us).

We stress that, like the non-Lesfschetz lociP(R1)\Lk , the nihilpotent lociNk are expected
to be empty when k is small for R “general”. Hence it is interesting to study these loci when
R is “special”. For example, these loci give a lot of information for SAGAs for which some
Lefschetz properties do not hold.

Let us start by analyzing the locus N2 ⊆ P(R1) � P
n . We recall that by Lemma 1.8 we

have that dim(N2) ≤ 0 so it is either empty or it is the union of a finite number of points.
These points have to satisfy the following:

Proposition 2.1 Assume that [t1], . . . , [tk] ∈ N2 are distinct points. Then �k
i=1ti = 0 in R

and [t1], . . . , [tk] are in general position in P(R1). In particular, #N2 ≤ n + 1 = N.
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Proof The statement is trivially true for k = 1. If k = 2 the only statement one has to check
is that t1t2 = 0. This is true since K 1

t1 = 〈t1〉 by Proposition 1.10 and [t1] = [t2]. We will
then proceed by induction assuming that the claim is true till k − 1.

Let T = {[t1], . . . , [tk]} be a set of k distinct points ofN2. By contradiction, let us assume
that either (A1) or (A2) holds, where

(A1) {t1, . . . , tk} are linearly dependent
(A2) �k

i=1ti = 0.

First of all, we claim that (A2) is equivalent to (A1). By induction hypothesis, for
{z1, . . . , zk−1} ⊂ {t1, . . . , tk} with [zi ] = [z j ] for all i = j , we have �k−1

i=1 zi = 0, so
K 1
z1···zk−1

has dimension at most k − 1 by Proposition 1.10. Since z2i = 0 by assumption, we

have K 1
z1···zk−1

= 〈z1, . . . , zk−1〉. Then, (A1) holds if and only if we have, up to a permutation

of the elements, tk ∈ 〈t1, . . . , tk−1〉 = K 1
t1···tk−1

and this is equivalent to �k
i=1ti = 0, i.e.

(A2).
Hence, let us suppose that tk ∈ 〈t1, . . . , tk−1〉, so we can write tk = ∑k−1

i=1 ai ti . Then we
have

0 = t2k = 2
∑

1≤i< j≤k−1

aia j ti t j .

If k = 3 we have 0 = t23 = 2a1a2t1t2 so, since t1t2 = 0 by induction hypothesis, we have
either a1 = 0 or a2 = 0. This implies either {t1, t3} or {t2, t3} linearly dependent, and we
get a contradiction since this is against the induction hypothesis. If k ≥ 4, by multiplying by
�k−3

i=1 ti , we get

0 = 2ak−2ak−1�
k−1
i=1 ti .

Since �k−1
i=1 ti = 0 by induction hypothesis, we have either ak−2 = 0 or ak−1 = 0 and we

have a contradiction as in the case k = 3. ��
By considering the Fermat hypersurface X = V (F) in P

n , one can easily see that, for
the Jacobian ring R = S/J (F), the set N2 consists of exactly n + 1 independent points.
However, also the converse is true, as shown by the following:

Corollary 2.2 Assume that #N2 = n+1. Then R is the Jacobian ring of a cubic hypersurface
X projectively equivalent to the Fermat cubic hypersurface in P

n.

Proof By assumption we have thatN2 = {[t0], . . . , [tn]}. By Proposition 2.1, {t0, . . . , tn} are
n + 1 linearly independent forms so R = S/I with S = K[t0, . . . , tn]. On the other hand,
in S we have t2i ∈ I and {t20 , . . . , t2n } is a regular sequence which generates I as ideal of
S. Then, if we set F = ∑n

i=0 t
3
i , we have that I is the Jacobian ideal of the Fermat cubic

hypersurface X = V (F) as claimed. ��
Remark 2.3 We have Seck(N2) ⊆ Nk+1. Indeed, if [t1], . . . , [tk] ∈ N2 we have t2i = 0.
In particular, every monomial of degree k + 1 in the variables ti is identically 0. Then
(
∑k

i=1 ai ti )
k+1 ≡ 0 for all a1, . . . , ak ∈ K so Seck(N2) ⊆ Nk+1. More generally,

whenever r > k(a − 1) one has Seck(Na) ⊆ Nr .

Indeed, consider [t1], . . . , [tk] ∈ Na and letm = ∏k
i=1 t

αi
i with

∑k
i=1 αi = r .Wehavem = 0

if there exists i such that αi ≥ a. On the other hand, this always happens if r > k(a − 1): if
αi ≤ (a − 1) for all i , we would have
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r =
k∑

i=1

αi ≤
k∑

i=1

(a − 1) = k(a − 1) < r

which gives a contradiction.

Lemma 2.4 If L is a line contained in N3, then L ⊆ Sec(N2), i.e. a line in N3 is a line
joining two different points of N2.

Proof Assume that L is a line inN3. Since the dimension ofN3 is at most 1 by Remark 1.11,
we have that L is a component ofN3. As dim(N2) ≤ 0 and dim(K 1

x ) ≤ 1 for any x ∈ R1 by
Proposition 1.10(a), we can find [v], [w] ∈ L such that [v] = [w], [v], [w] /∈ N2 and vw = 0.
By hypothesis, we have that (v + tw)3 = 0 for all t ∈ K so v3 = v2w = vw2 = w3 = 0.
Then, K 1

v2
, K 1

w2 and K 1
vw contain 〈v,w〉. On the other hand, these subspaces have dimension

at most 2 by Proposition 1.10(a) so they coincide with 〈v,w〉. By Proposition 1.10(b), there
exist λ,μ ∈ K such that

v2 = λw2 and vw = μw2 (2)

so we have (v + tw)2 = v2 + 2tvw + t2w2 = w2(t2 + 2μt + λ).
We claim that t2 + 2μt + λ has two distinct roots so L is indeed a line contained in

Sec(N2). Assume, on the contrary, that t2 + 2μt + λ is a square. This implies that μ2 = λ.
Then, from the Equations (2), we obtain

v(v − μw) = 0 w(v − μw) = 0

so v −μw ∈ K 1
v ∩K 1

w . By Proposition 1.10 we can conclude that [v] = [w]which is against
our assumptions. ��

We will generalize this result in Theorem 2.6 by considering suitable linear subspaces
contained in Nk . We need first the following technical lemma.

Lemma 2.5 Let k ≥ 2 and let T be an hypersurface in P
k ⊂ P(R1). Assume either that

(1) 0 ≤ s ≤ k − 1 or
(2) s = k and the support of T is not contained in the union of 2 different hyperplanes.

Then there exist [x0], . . . , [xs] ∈ T which are linearly independent and such that�s
i=0xi = 0.

Proof The statement of the lemma is clearly true for s = 0. We will proceed by induction on
s ≤ k. Then assume that there are [x0], . . . , [xs−1] ∈ T which are linearly independent and
with y = x0 · · · xs−1 = 0. Consider the linear spaces τ1 = 〈x0, . . . , xs−1〉 and τ2 = P(K 1

y ).
We are done if we prove that U = T \ (τ1 ∪ τ2) is not empty. By construction we have
dim(τ1) = s − 1 and dim(τ2) ≤ s − 1 by Proposition 1.10. Hence, if s < k, U is an open
dense subset of T . If s = k and the support of T is not contained in the union of 2 different
hyperplanes, there exists an irreducible component C of T which is different from τ1 and τ2.
Then C \ (τ1 ∪ τ2) is not empty so U is again not empty as claimed. ��
Theorem 2.6 Assume that π is a (k − 1)-plane contained in Nk+1. Then

(A) Tk = π ∩ Nk is an hypersurface of degree k (with possible multiple components) in π;
(B) there exist [x0], . . . , [xk−1] in Tk which are linearly independent, �k−1

i=0 xk = 0.

In particular, Tk is non degenerate in π and π ⊆ Seck(Nk).
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Proof Notice, first of all, that dim(Nk) ≤ k − 2 by Remark 1.11, so π \ Nk = ∅. Then, we
can find {x0, . . . , xk−1} linearly independent which span π and such that xk−1 /∈ Nk . Since
π ⊆ Nk+1, we have that

(α0x0 + · · · + αk−1xk−1)
k+1 ≡ 0 ∀α0, . . . , αk−1 ∈ K

and this is equivalent to say that all monomials of degree k + 1 in the variables x0, . . . , xk−1

are 0. Then, if m is a monomial of degree k in these variables, either m = 0 or K 1
m =

〈x0, . . . , xk−1〉, by Proposition 1.10. In particular, we have that for each monomial of degree
k there exists λm ∈ K with m = λmxkk−1 (recall that we assumed xk−1 /∈ Nk). Then

(α0x0 + · · · + αk−1xk−1)
k = pk(α)xkk−1 (3)

where pk(α) is a homogeneous polynomial of degree k in the variables α0, . . . , αk−1. It is
not 0 since the coefficient of αk

k−1 is 1 by construction. By Equation (3), Tk = π ∩ Nk is
described by the vanishing of pk(α). In particular,Nk is not empty and we have also proved
(A).

For (B), if Tk has support which is not contained in 2 different hyperplanes, the thesis
follows directly from Lemma 2.5 so we have to discuss only the cases

(B1) : Supp(Tk) = H1 ∪ H2 and (B2) : Supp(Tk) = H1

where H1 and H2 are distinct hyperplanes.
In both cases (B1) and (B2), there is an hyperplane H1 of π contained in Tk . We recall

that Tk is contained in Nk by construction. By Lemma 2.5 applied to H1 ⊂ π we can find
[x0], . . . , [xk−2] ∈ H1 which are linearly independent and such that y = ∏k−2

i=0 xi = 0. Since
H1 = 〈[x0], . . . , [xk−2]〉 and H1 ⊂ Nk wehave that allmonomials of degree k in the variables
x0, . . . , xk−2 are 0. Then, by Proposition 1.10, K 1

y = 〈x0, . . . , xk−2〉 so H1 = P(K 1
y ).

If we are in case (B1) we can then choose xk−1 in H2 \ H1 and {x0, . . . , xk−2, xk−1}
is a set of points with the desired properties. We claim now that case (B2) can not occur.
Assume, by contradiction, that Supp(Tk) is the hyperplane H1 = P(K 1

y ). Then for any xk−1

in π \H1 we have that π = 〈x0, . . . , xk−2, xk−1〉, xkk−1 = 0 and yxk−1 = 0. With this choice
of the xi ’s, the polynomial pk(α) of Equation (3) is proportional to αk

k−1 since Tk = π ∩Nk

has support on H1. On the other hand the coefficient of
∏k−1

i=0 αi can not be zero since
∏k−1

i=0 xi = yxk−1 = 0. ��
We conclude this section by presenting some examples in order to make the phe-

nomenology of the nihilpotent loci clearer (some computations have been made by using the
computer algebra software Magma). We set S = K[x0, . . . , xn] = ⊕

k≥0 S
k and we define

{w0, . . . , wn} to be the projective coordinates on P(R1) induced by the basis {x0, . . . , xn} of
R1 = S1.

Example 2.7 Let X be the Fermat cubic in P
n and consider the Jacobian ring R of X . For

any 2 ≤ k ≤ n we have
(∑

i wi xi
)k ∈ J k if and only if all monomials in the {wi } of degree

k without multiple factors vanish. This is true whenever any set of n − k + 1 variables is
zero. With these arguments one can prove that Nk is the union of the coordinated planes of
dimension k − 2. In particular, Nk = Seck(N2) and Sing(Nk) = Nk−1 for k ≥ 2.

Example 2.8 Consider the smooth cubic surface X = V ( f ) with f = x30 + x31 + x32 + x33 +
6x0x1x2 and consider the Jacobian ring R of X . One has that there are 4 points in N2 so, by
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Corollary 2.2, X is the Fermat cubic up to a projective transformation. Indeed, if λ is a non
trivial third root of 1, we have

(x0 + x1 + x2)
3 + (x0 − (λ + 1)x1 + λx2)

3 + (x0 + λx1 − (λ + 1)x2)
3 + 3x33 = 3 f .

Example 2.9 Consider the smooth cubic surface X = V ( f ) with f = x30 + x31 + x32 + x33 +
3x0x1x2 and consider the Jacobian ring R of X . If P = [0 : 0 : 0 : 1] and C = V (w3, g)
is the smooth plane cubic with g := w3

0 + w3
1 + w3

2 − 6w0w1w2, we have (considering the
reduced structure)

N2 = {P} N3 = {P} ∪ C N4 = V (w3) ∪ V (g).

In particular, N4 is the union of the plane containing the cubic curve C and the cone with
vertex P generated by C . Notice that N3 does not have pure dimension.

Example 2.10 Consider the smooth cubic surface X = V ( f ) with f = x30 + x31 + x32 + x33 +
x0(x21 + x22 + x23 ) and let R be its Jacobian ring. One can show that, in this case,N2 andN3

are both empty whereas N4 is a smooth quartic hypersurface.

Example 2.11 Consider the regular sequence {x20 , x21 , x22 , x23 +2x0x1} in S = K[x0, . . . , x3],
the ideal J spanned by it and set R = S/J . Notice that J is not the Jacobian ideal of a
cubic surface. Let Pi be the coordinated points and consider the conic C = V (w2, g) with
g := w2

3 − 3w0w1. Then we have

N2 = {P0, P1, P2} N3 = 〈< P0, P1 >〉 ∪ 〈< P0, P2 >〉 ∪ 〈< P1, P2 >〉 ∪ C

N4 = V (w3) ∪ V (w2) ∪ V (g).

In particular, N4 is the union of two planes (the first one - V (w3) - contains P0, P1 and P2
and the lines joining these points whereas the second - V (w2) - is the plane containing the
conic C and the line 〈P0, P1〉) and V (g) (which is a quadric cone with vertex P2). Notice
that, as varieties, we have Sing(Nk) = Nk−1 for k = 2, 3, 4.

3 Strong Lefschetz property in degree 1 for codimension 6

In this section we prove our main result, i.e. the following:

Theorem 3.1 Let R be a complete intersection SAGA presented by quadrics of codimension
6. Then R satisfies the strong Lefschetz property in degree 1 (SLP1), i.e. the general element
x ∈ R1 is such that the map x4· : R1 → R5 is an isomorphism.

In order to prove the above theorem we will need some technical results (Propositions
3.4, 3.5 and 3.6) which will be treated separately in Subsection 3.1 as they are interesting on
their own because they are valid in a much larger framework than the one of the theorem.
Now we will assume them and we will deal with the proof of the main theorem.

Proof (of Theorem 3.1) Let us assume by contradiction that the statement does not hold: the
map x4· : R1 → R5 is never injective for x ∈ R1. We are then in the situation described in
Construction 1.5 with � = �

(1,1)
4,1 = {([x], [y]) ∈ P

(
R1

) × P
(
R1

) | x4y = 0}: we define
�, Y and Fy as usual. Let us now focus on the dimensions of Y and of Fy for general [y] ∈ Y .

First of all, let us recall that, by Lemma 1.7, we have

1 ≤ dim(Y ) ≤ 3 2 ≤ dim(Fy) ≤ 4 dim(Y ) + dim(Fy) = dim(�) ≥ 5. (4)
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Let us now list in the following table the possible values of the pairs (dim(Y ), dim(Fy)). By
using the constraints (4) and the various results proved in Subsection 3.1, we can exclude all
the cases: in the table below we specify which result rules out each pair. ��

dim(Y ) VS dim(Fy) 2 3 4

1 (4) (4) Prop. 3.4
2 (4) Prop. 3.6 + Rem. 1.11 Prop. 3.4
3 Prop. 3.5 Prop. 3.5 Prop. 3.4

Since no pair as above is possible for our framework, we get a contradiction and this
concludes the proof. ��

We have the following easy but important consequence.

Corollary 3.2 The jacobian ring of a smooth cubic fourfold satisfies the strong Lefschetz
property in degree 1.

3.1 General preparatory results

In this subsection we consider a complete intersection SAGA presented in degree d − 1, i.e.
R = S/I where S = K[x0, . . . , xn] and I is generated by a regular sequence of forms of
degree d − 1. In this case, we recall that R is a SAGA of codimension n + 1 with socle in
degree N = (d − 2)(n + 1). Moreover, we will assume that R is a SAGA which does not
satisfy the strong Lefschetz property in degree 1 at range k, i.e. SLP1(k), with 2 ≤ k ≤ N−2.
Equivalently, the multiplication map xk · : R1 → Rk+1 is never injective. Hence, we are in
the situation described more generally in Section 1. Under the above assumptions we have

Fy × [y]

�

π2 [y]

�

π1

π2
Y

�k
p2

p1

P(R1)

Fy P(R1)

(5)

where we have set �k := �
(1,1)
k,1 = {([x], [y]) ∈ P(R1) × P(R1) | xk y = 0}. We recall that

� is the unique irreducible component of �k that dominates P(R1) via its first projection π1,
Y = π2(�) and Fy = π1(π

−1
2 ([y])) for [y] ∈ Y .

Remark 3.3 We recall that all complete intersection SAGAs presented in degree d−1 satisfy
SLP1(1) = WLP1 (see [19, Proposition 4.3] and [4, Corollary 4.3]). For this reason in this
subsection we do not consider k = 1 since in this case it is possible to construct �1, but p1
is never dominant (so �, Y and Fy cannot be constructed).

Now we prove some results giving restrictions on the dimensions of Y and of the general
Fy with [y] ∈ Y . We are ultimately interested into the case where d = 3. Nevertheless, we
stress that the following proposition (3.4) holds for every d ≥ 3.
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Proposition 3.4 If we assume n > k
d−2 , then

dim(Fy) ≤ n − 2.

In particular, if d = 3, then Fy cannot be an hypersurface.

Proof Recall that dim(Fy) ≤ n − 1 by Lemma 1.7 so we have to rule out only the case
dim(Fy) = n − 1.

Let us assume, by contradiction, that Fy is an hypersurface. Hence, by denoting with F̃y

the affine cone over Fy , we have dim(F̃y) = n.

Recall that � := �k ⊆ �k = {([x], [y]) | xk y = 0} by assumption. We will show that the
multiplication map xk−1· : R1 → Rk is never injective so we can define, as we have done
for�k , an incidence correspondence �k−1 with a unique irreducible component�k−1 which
dominates P(R1) via its first projection. Moreover, we will have �k = �k−1 so Fy is also
the fiber of the second projection from �k−1 and we can iterate this process.

We claim now that � ⊆ �k−1. If p = ([x], [y]) ∈ � is general, by using Lemma 1.9 and
Proposition 1.10 we can conclude

n = dim
(
TF̃y ,x

)
≤ dim

(
K 1
xk−1y

)
≤ k

d − 2

unless xk−1y = 0. Since, by hypothesis, we have that n > k/(d − 2), the only possibility is
that xk−1y = 0. In particular we have shown that � ⊆ {([x], [y]) | xk−1y = 0} = �k−1 as
claimed.

Then, � is contained in �k−1 since it dominates P(R1). On the other hand, since �k−1 ⊆
�k , we have also the other inclusion:� = �k−1. In particular, the varieties Y and Fy defined
for � are the same as the ones defined for �k−1. Then, by reasoning as before, we obtain
n = dim(TF̃y ,x ) ≤ dim(K 1

xk−2 y
). If we assume that xk−2y = 0 for p general in �, by

Proposition 1.10 we would obtain n ≤ (k − 1)/(d − 2) ≤ k/(d − 2) which is, as before,
incompatible with the hypothesis on n. Then � ⊆ �k−2 and we can iterate this process.

By recursion, we reduce ourselves to the case with k = 1. We can then see � as a
subvariety of �1 which dominates P(R1) via its first projection. This implies the failure of
the weak Lefschetz Property in degree 1. Then, by Remark 3.3, we get a contradiction: Fy

has dimension at most n − 2, as claimed. ��
Proposition 3.5 Assume that d = 3. Then, the dimension of Y is at most n − 3.

Proof First of all, let us notice that if k ≤ N − 3 = n − 2, then by Proposition 1.6, Y is
contained inNk+1 ⊆ Nn−1, whose dimension is at most n − 3 (see Lemma 1.8). Hence, we
easily get that in this case dim(Y ) ≤ n − 3 as claimed.

Let us now consider the remaining case: k = N − 2 = n− 1. Recall that dim(Y ) ≤ n− 2
by Lemma 1.7 so, to prove the proposition, we only have to rule out the case dim(Y ) = n−2.
Assume by contradiction that dim(Y ) = n − 2. Since k = n − 1, proceeding as above, we
have that Y is contained in Nn , which has dimension at most n − 2. Hence, we get that Y
is a component of Nn . Then, if [y] ∈ Y is a general point (yn−1 = 0, since Y � Nn−1, for
dimension reasons), we can write Ty(Y ) = Ty(Nn) = P(K 1

yn−1) by Lemma 1.8. However,

the general [x] ∈ Fy belongs to P(K 1
yn−1) and then to Ty(Y ), contradicting Lemma 1.9. ��

Proposition 3.6 Assume that d = 3. Then, the following conditions are not compatible:

(a) for y ∈ Y general, dim(Fy) = k − 1;
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(b) Y � Nk−1.

Proof Notice that for k = 1, condition (a) cannot hold since otherwise we would have
dim(Y ) = n, which is impossible. Hence we can assume that k ≥ 2.

Let us observe that by Proposition 1.6 we have that xα yβ = 0 for every α, β such that
α + β = k + 1 and β ≥ 1; in particular we have yk+1 = 0 and Y ⊆ Nk+1.

Let us assume by contradiction that both conditions (a) and (b) hold. By (b) we have
yk−1 = 0 for y ∈ Y general so for ([x], [y]) general in � we have xyk−1 = 0. Indeed,
otherwise, Fy would be contained in P(K 1

yk−1), whose dimension is at most k − 2, which is
impossible by assumption. As a consequence, we have that

for ([x], [y]) ∈ � general, xα yβ = 0 for α + β = k with α, β ≥ 1 (6)

since, otherwise, by using Proposition 1.6, we would obtain also xyk−1 = 0.
By property (6) and since dim(Fy) = k − 1 by assumption, we also have

Tx (Fy) = P

(
K 1
xk−1y

)
= P

(
K 1
xk−2 y2

)
(7)

by Lemma 1.9.
Let us now claim that

for ([x], [y]) ∈ � general, Ty(Y ) ⊆ Tx (Fy). (8)

To show this, first of all, recall that Y � Nk−1 and Y ⊆ Nk+1. Let us now consider two
cases:

1) Y � Nk and 2) Y ⊆ Nk .

Assume that p = ([x], [y]) ∈ � is general (so that [y] is general in Y and [x] is general in
Fy). In the first case, since Y is contained inNk+1, we have Ty(Y ) ⊆ P(K 1

yk
) by Lemma 1.8.

Moreover, we have that P(K 1
yk

) = Tx (Fy) since yk = 0 and dim(Fy) = k − 1. Analogously,

for the second case we have Ty(Y ) ⊆ P(K 1
yk−1) ⊆ P(K 1

xyk−1) = Tx (Fy). Here, we have used

that xyk−1 = 0 since p is general (by property (6)).
Consider, as in Lemma 1.9, the affine cone Ỹ of Y , the lifting �̃ of � ⊂ P(R1) × P(R1)

to R1 × R1 and its projection π̃2 on the second factor. By construction, we have that �̃ ⊆
{(x, y) | xα yβ = 0} = �̃α,β whenever α + β = k + 1 and β ≥ 1. As in Lemma 1.9, for
p = (x, y) ∈ �̃ general, the differential map

dpπ̃2 : T�̃,p → TỸ ,y

is surjective.
Let us take any w in TỸ ,y . By Property (8), we have that its class [w] belongs to Tx (Fy).

Moreover, by the surjectivity of dpπ̃2, we can take in T�̃,p an element of the form (v,w).

The tangent space to �̃ in p is a subspace of the tangent space Tα,β = T�̃α,β ,p to the locus

�̃α,β in p, so we have (v,w) ∈ Tα,β . Then, we have

0 ≡ (x + tv + t2(· · · ))α(y + tw + t2(· · · ))β (mod t2)

for α, β as above. In particular, by taking (α, β) equal to (k − 1, 2) and (k, 1) we obtain the
following relations satisfied by (v,w):

(k − 1)vxk−2y2 + 2xk−1yw = 0 kvxk−1y + xkw = 0.
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Since [w] ∈ Tx (Fy), by property (7), we have xk−1yw = 0. Then, from the first equation
we get v ∈ K 1

xk−2 y2
= K 1

xk−1y
(again by property (7)). Hence the second equation yields

xkw = 0. In conclusion, we have proven that Ty(Y ) ⊂ P(K 1
xk

) = π−1
1 ([x]). We stress that

the last equality holds since [x] is general and then, the whole fiber over [x] with respect to
p1 is contained in � so P(K 1

xk
) = p−1

1 ([x]) = π−1
1 ([x]).

This easily brings to a contradiction. Indeed, the above property implies that dim(Y ) ≤
dim(π−1

1 ([x])) for [x] ∈ P(R1) general, and since

dim(�) = dim(Y ) + dim(Fy) = dim(π−1
1 ([x])) + n

we also get dim(Y ) ≤ dim(Y ) + dim(Fy) − n, which is impossible by Lemma 1.7(c). ��

4 A lifting criterion for weak Lefschetz property

It is known that, the SLP for a graded algebra is inherited to its quotients by suitable conductor
ideals (see, for example, [14, Proposition 3.11]). In this section we prove a sort of converse
for WLP2 for complete intersection SAGAs presented by quadrics. More precisely, we will
give a criterion to reduce the proof ofWLP2 for a SAGA R as above to a suitable quotient of
R, modulo the existence of a non-Lefschetz element. We stress, moreover, that this criterion
works for any codimension.

Let us start by setting S = K[x0, . . . , xn] and by proving the following result.

Lemma 4.1 Assume that R = S/J is a complete intersection SAGA of codimension n + 1
presentedbyquadrics so the socle is in degree N = n+1. Assume that there arew, z ∈ R1\{0}
such that zw = 0. Then (z) = (0 : w) and R̄ = R/(z) is a complete intersection SAGA of
codimension n presented by quadrics. In particular, dim(Ks

w) = dim(Rs−1) − dim(Ks−1
z ).

Proof By definition, we have (z) ⊆ (0 : w), so we can define an epimorphism of graded
K-algebras

ϕ : R̄ := R/(z) → R̃ := R/(0 : w).

By [9, Lemma 2.3], the latter is a SAGA of codimension n and socle in degree Ñ = n.
Considering R̄, it is clearly an Artinian standard algebra of codimension n. We want to show
that R̄ is also a complete intersection SAGA presented by quadrics. By hypothesis, we know
that zw ∈ J , so we can complete {zw} to a regular sequence of the form {g0, · · · , gn−1, zw}
spanning J . Notice that, by construction, g0, · · · , gn−1 do not belong to the ideal (z) and
the reductions ḡi of gi modulo (z) are a regular sequence of quadrics in the polynomial ring
S̄ = S/(z).

Hence we have

R̄ = R/(z) = S/J

(z)
� S̄

(ḡ0, · · · , ḡn−1)

so R̄ is a complete intersection SAGA presented by quadrics. In particular, it has socle in
degree N̄ = n = Ñ .

Since ϕ is an epimorphism and preserve the degrees, the image of a generator σ̄ of R̄n is
a non-zero multiple of the generator σ̃ of R̃n . This also implies the injectivity of ϕ. Indeed,
let us take a non-zero element x ∈ R̄i . There exists y ∈ R̄n−i such that xy = σ̄ . Hence, we
have

λσ̃ = ϕ(σ̄ ) = ϕ(xy) = ϕ(x)ϕ(y),
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and so we get that ϕ(x) can not be zero and ϕ is an isomorphism. In particular, for all s,

Rs−1 · z = (z)s = (0 : w)s = Ks
w

then we clearly have

dim(Ks
w) = dim(Rs−1z) = dim(Rs−1) − dim(Ks−1

z )

as claimed. ��
We assume again that R = S/I is a complete intersection SAGA presented by quadrics

with codimension n + 1 so that it has socle in degree N = n + 1. We recall that [z] ∈ P(R1)

is a non-Lefschetz element (in degree 1), i.e. z /∈ L1, if and only if there exists [w] ∈ P(R1)

such that zw = 0 in R or, equivalently K 1
z = 〈w〉.

Theorem 4.2 Let R = S/I be a complete intersection SAGA of codimension n + 1 ≥ 6
presented by quadrics and assume that z is a non-Lefschetz element for R. If R̄ = R/(z)
satisfies the W LP2, then the same holds for R.

Proof First of all, by Lemma 4.1, we have that R̄ = R/(z) = R/(0 : w) is a complete
intersection SAGA presented by quadrics and K 1

z = 〈w〉 . Let prz be the projection R → R̄.
Assume, by contradiction, that WLP2 holds for R̄ but not for R. In particular, for all

x ∈ R1, the multiplication map x · : R2 → R3 has non trivial kernel, i.e. K 2
x = {0}. Consider

the incidence correspondence

� = {([x], [v]) ∈ P(R1) × P(R1) | xvz = 0}
with its projections p1 and p2 on the factors.

We claim that p1 is surjective. Since � is a closed subset, it is enough to show that for
[x] ∈ P(R1) general there exists [v] ∈ P(R1) such that xvz = 0. Let x be a general element
of R1. As K 2

x = 0 we have that there exists [q] ∈ P(R2) such that xq = 0 in R. Then
we have also prz(xq) = xq = 0 in R̄. Since [x] is general in P(R1), then the same holds
for [x̄] ∈ P(R̄1), so we get q̄ = 0 in R̄2, as WLP2 holds for R̄ by assumption. Then, by
Lemma 4.1, we have q ∈ (0 : w)2 = (z)2 = z · R1 so there exists [v] ∈ P(R1) such that
0 = xq = xvz as claimed.

In analogy with what happens for the construction 1.5, we have that there exists a unique
irreducible component � of � which dominates P(R1) via π1, where we set πi to be the
restriction of pi to � for i = 1, 2. We have that for [x] ∈ P(R1) general

π−1
1 ([x]) = p−1

1 ([x]) = [x] × P(K 1
xz)

so the general fiber of π1 has dimension at most 1 by Proposition 1.10.
Let us now show that the general fiber of π1 has dimension 1. Consider [x] ∈ P(R1)

general. Firstly, let us observe that ([x], [w]) belongs to p−1
1 ([x]) = π−1

1 ([x]) since zw = 0.
As shown above, there exists [q] ∈ P(R2) such that xq = 0 and q = zv for suitable [v] ∈
P(R1).Moreover [v] = [w] since, otherwise, [q]would be zero, henceπ−1

1 ([x]) = 〈[w], [v]〉
as claimed.

By considering the second projection π2, we have that for [v] general in Y = π2(�), the
fiber π−1

2 ([v]) is such that

π−1
2 ([v]) ⊆ p−1

2 ([v]) = P(K 1
vz) × [v],

which has dimension at most 1 by Proposition 1.10. Since π1 is dominant, for ([x], [v]) ∈ �

general we have

n + 1 = dim(P(R1)) + dim(π−1
1 ([x])) = dim(�) = dim(Y ) + dim(π−1

2 ([v])).
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Since dim(Y ) ≤ n and dim(π−1
2 ([v])) ≤ 1, for v general, the only possibility is to have

dim(π−1
2 ([v])) = 1 and Y = P(R1).

We will show now that having Y = P(R1) gives a contradiction. First of all, by reasoning
as in Proposition 1.6, one can prove that

Y ⊆ {[v] ∈ P(R1) | v2z = 0}.
Since Y = P(R1) and squares of elements of R1 generates R2 (as R is standard), we have
that z · R2 = 0. This is impossible by Gorenstein duality. ��

In the statement of Theorem 4.2 we require n + 1 ≤ 6 since for codimension 5 the
WLP2 has already been proved (in [2] or in [4] as consequence of SLP) and in even smaller
codimension, it easily follows from WLP1 that is known to hold. From this, we get the
following consequence.

Corollary 4.3 Let R be a complete intersection SAGA of codimension 6 presented by quadrics
(e.g. R is the jacobian ring of a cubic fourfold). If L1 is not the whole P(R1), R satisfies
W LP.

5 Some results for higher codimensions

In this section, our aim is to obtain some results concerning Lefschetz properties for complete
intersection SAGAs presented by quadrics with codimension equal to n + 1 ≥ 4 by using
techniques and results developed in the previous sections.

In particular, our framework will be as follows. Let us consider the polynomial ring
S = K[x0 · · · , xn], an ideal I of S, generated by a regular sequence of quadrics (g0, · · · , gn)
and the corresponding complete intersection SAGA R = S/I , which has codimension n+ 1
and socle in degree N = n + 1. We recall that we have denoted by SLP1(k) the strong
Lefschetz property in degree 1 at range k: a SAGA R will satisfy the property SLP1(k) if
the multiplication map xk · : R1 → Rk+1 is injective for [x] general in P(R1). We recall that
we have defined the loci �(a,b)

i, j in Section 1. For brevity, we will write �k to mean �
(1,1)
k,1 .

We will prove the following:

Theorem 5.1 Let k ∈ {2, 3, 4} and assume that R is a complete intersection SAGA of codi-
mension n + 1 presented by quadrics. If n ≥ k + 1 we have that R satisfies SLP1(k).

Wewill show the above theorem by splitting up the proof in 3 cases, which will be treated
in the Propositions 5.2, 5.3 and 5.5 respectively.

Proposition 5.2 Property SLP1(2) holds for every n ≥ 3.

Proof Let us assume by contradiction that the multiplication map x2· : R1 → R3 is not
injective for [x] ∈ P(R1). Then we can consider the locus �2 = {([x], [y]) ∈ P(R1) ×
P(R1) | x2y = 0}, with the corresponding varieties �, Y and Fy defined as we have usually
done. By Proposition 1.6, we obtain that Y ⊆ N3. Then, by Lemmas 1.8 and 1.7 we have
that dim(Y ) = 1: hence Fy must be a hypersurface, which is absurd by Proposition 3.4. ��

The following result has been already proved when n = 4 in [4].

Proposition 5.3 Property SLP1(3) holds for every n ≥ 4.
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Proof Let us assume by contradiction that the multiplication map x3· : R1 → R4 is not
injective for [x] ∈ P(R1). As in the proof of Proposition 5.2, let us construct �3, �, Y and
Fy . In this case, we have that Y ⊆ N4 so dim(Y ) ≤ 2. If [y] ∈ Y is general, the only
possible value for (dim(Y ), dim(Fy)) is (2, n − 2) since Fy can not be a hypersurface by
Proposition 3.4. By dimension reasons, Y � N3, thus we have that the general element [y]
of Y is such that y3 = 0. Then, by Proposition 1.6, we get Fy must be contained in P(K 1

y3
),

whose dimension is at most 2. Then we have proved that n − 2 = dim(Fy) ≤ 2 which is
impossible for n ≥ 5. ��

Before showing the analogous result for the SLP1(4), let us prove a technical result.

Lemma 5.4 Let R be a SAGA as at the beginning of Section 5 and consider 4 ≤ k ≤ n − 1.
Assume that R does not satisfy SL P1(k) so one can consider the varieties �k,�, Y and Fy

constructed as in Section 1. For [y] ∈ Y general we have the following properties.

(a) If R satisfies SLP1(k − 1), then dim(Fy) ≤ k − 1;
(b) (dim(Y ), dim(Fy)) = (k − 1, k − 1).

Proof For (a), let us assume by contradiction that for [y] ∈ Y general, dim(Fy) = h ≥ k.
Then, by Lemma 1.9, we have that for [x] ∈ Fy general

T[x](Fy) = P(TF̃y ,x ) ⊆ P(K 1
xα yβ ),

where α + β = k, with β ≥ 1 and F̃y is the affine cone over Fy . But since SLP1(k − 1)
holds for R by hypothesis, for ([x], [y]) ∈ � general, we have that xk−1y = 0, and so

h = dim(Fy) ≤ dim(P(K 1
xk−1 y)) ≤ k − 1,

which is impossible by the assumptions over h.
For (b), let us consider [y] ∈ Y general and assume by contradiction that dim(Y ) =

dim(Fy) = k − 1. By Proposition 1.6 we get that Y ⊆ Nk+1, and by Lemma 1.8 we deduce
that Y is an irreducible component ofNk+1 and we have that yk = 0. By reasoning as in the
proof of Proposition 5.3 and by Proposition 1.10, we get Fy = P(K 1

yk
). Moreover, since [y]

is general in Y , we have T[y](Y ) = P(K 1
yk

) = Fy . With these conditions, we can proceed as
in the proof of Proposition 3.6 and consider for example the equations

0 ≡ (x + tv)k−1(y + tw)2 (mod t2) 0 ≡ (x + tv)k(y + tw) (mod t2),

where w ∈ TỸ ,y and (v,w) ∈ T�̃,(x,y). In this way, we get that Y ⊆ π−1
1 ([x]), where, as

usual, π1 : � ⊆ P(R1)×P(R1) → P(R1) is the first projection. This leads to a contradiction
as shown in Proposition 3.6. ��

We can now show the last case we need to prove Theorem 5.1.

Proposition 5.5 Property SLP1(4) holds for every n ≥ 5.

Proof First of all, let us notice that the statement has been already proved for n = 5 in Section
3: we have to prove SLP1(4) for n ≥ 6.

Let us assume that for x ∈ R1, the multiplication map x4· : R1 → R5 is not injective.
As usual, we can then consider the incidence correspondence �4 = {([x], [y]) ∈ P(R1) ×
P(R1) | x4y = 0} and the corresponding varieties �, Y and Fy , for [y] ∈ Y general.
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By Proposition 1.6, we get that Y ⊆ N5, so dim(Y ) ≤ 3. By using the bounds of Lemma
1.7(a) and Proposition 3.4, the only possible cases for the values of (dim(Y ), dim(Fy)) are

(2, n − 2) (3, n − 2) (3, n − 3).

By Proposition 5.3, we know that SLP1(3) holds for n ≥ 6. Then, by Lemma 5.4(a),
we get that dim(Fy) is at most 3: the cases (dim(Y ), dim(Fy)) = (2, n − 2) and
(dim(Y ), dim(Fy)) = (3, n − 2) can not occur for every n ≥ 6. We also have that
(dim(Y ), dim(Fy)) = (3, n − 3) for every n ≥ 7.

The only case we have still to analyze is the one with n = 6 and dim(Y ) = dim(Fy) = 3.
By considering Lemma 5.4(b), we can rule out this last possibility too: SLP1(4) holds for
R, for every n ≥ 5. ��

We conclude this section by observing how much can be easily said, by using these
methods, for the SLP1 for complete intersection SAGA of codimension 7 (i.e. n = 6)
presented by quadrics (e.g. for the Jacobian ring of a smooth cubic fivefold).

Corollary 5.6 Let R be a complete intersection SAGAof codimension 7 presented by quadrics.
We have that SL P1(4) holds. Moreover, if SL P1(5) does not hold (i.e. if SL P1 does not hold),
then one can construct the varieties �5,�, Y and Fy as usual and we have, for [y] ∈ Y
general, (dim(Y ), dim(Fy)) ∈ {(2, 4), (3, 3)}.
Proof Property SLP1(4) holds by Theorem 5.1. Assume that SLP1(5) does not hold for R.
Then. by Lemma 1.7, we have

1 ≤ dim(Y ) ≤ 4 2 ≤ dim(Fy) ≤ 5 dim(Y ) + dim(Fy) = dim(�) ≥ 6. (9)

As in Theorem 3.1, we put in a table the possible values of the pairs (dim(Y ), dim(Fy)) and
we specify which result rules out the corresponding case.This concludes the proof.

dim(Y ) VS dim(Fy) 2 3 4 5

1 (9) (9) (9) Prop. 3.4
2 (9) (9) Prop. 3.4
3 (9) Prop. 3.6 + Rem. 1.11 Prop. 3.4
4 Prop. 3.5 Prop. 3.5 Prop. 3.5 Prop. 3.4

This concludes the proof. ��
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