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A subexponential bound on the cardinality of abelian
quotients in finite transitive groups
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Abstract

We show that, for every transitive permutation group G of degree n � 2, the largest abelian

quotient of G has cardinality at most 4n/
√

log2 n. This gives a positive answer to a 1989
outstanding question of László Kovács and Cheryl Praeger.

1. Introduction

László Kovács and Cheryl Praeger [5] have investigated large abelian quotients in arbitrary
permutation groups of finite degree. Their work was motivated by recent (at that time)
investigations on minimal permutation representations of a finite group [2]. One of the main
results in [5] (which is independently proved in [1]) shows that, for every permutation group of
degree n, the largest abelian quotient has order at most 3n/3. Clearly, this bound is attained,
whenever n is a multiple of 3, by an elementary abelian 3-group of order 3n/3 having all of
its orbits of cardinality 3. Furthermore, the authors conjecture that, for transitive groups of
degree n, a subexponential bound in n(log2 n)−1/2 holds. More history on this conjecture and
more details can be found in the survey paper [8].

The first substantial evidence towards the conjecture goes back to the work of Aschbacher
and Guralnick [1]; they proved the striking result that the largest abelian quotient of a
primitive group of degree n has order at most n. In the concluding remarks, the authors
also independently ask whether one can obtain a subexponential bound on the order of abelian
quotients of transitive groups in terms of their degrees. We refer to [1, 8] for an infinite family of
transitive groups G of degree n with |G/G′| asymptotic to exp(bn/

√
log2 n), for some constant

b.
The second substantial evidence towards the conjecture is in [4], where many of the results

in Section 7 get very close to the desired upper bound. In particular, [4, Theorem 7.6] says that
if G is a transitive permutation group of degree n � 2 and N �G is a still transitive normal
subgroup of G, then the product of the orders of the abelian composition factors of G/N is at
most 4n/

√
log2 n.

In this paper, we settle in the affirmative the conjecture of Kovács and Praeger.

Theorem 1. For every positive integer n � 2 and for every transitive permutation group
G of degree n, we have

|G/G′| � 4n/
√

log2 n.
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The constant 4 in Theorem 1 should not be taken too seriously, but it seems remarkably
hard to pin down the exact constant. The choice of the constant 4 in our work is a compromise:
it makes the statement of Theorem 1 explicit and valid for every n � 2.

2. Preliminaries

Unless otherwise explicitly stated, all the logarithms are to base 2. Given a field F, a group
G, a subgroup H of G and an FH-module W (or simply H-module), we denote by W ↑GH
the induced G-module of W from H to G, that is, W ↑GH := W ⊗FH FG. Moreover, given a
G-module M , we denote by dG(M) the minimal number of generators of M as a G-module.
We are ready to report a fundamental result from [7].

Lemma 2.1 (See [7, Lemma 4]). There is a universal constant b′ such that whenever H is
a subgroup of index n � 2 in a finite group G, F is a field, V is an H-module of dimension a
over F and M is a G-submodule of the induced module V ↑GH , then

dG(M) � ab′n√
log n

.

Remark 2.2. Gareth Tracey, in his monumental work [10] on minimal sets of generators of
transitive groups, has refined Lemma 2.1 in various directions. For instance, [10, Section 4.3]
gives a more quantitative form of Lemma 2.1. Indeed, using the notation in Lemma 2.1,
from [10, Corollary 4.27 (iii)], we deduce

dG(M) � aE(n, p) �
{
an 2

c′ logn when 2 � n � 1260,
an 2√

π log n
when n > 1261,

where c′ := 0.552282, p is the characteristic of M and E(n, p) is explicitly defined in [10,
Section 4]. In particular, we immediately see that in Lemma 2.1 we may take b′ := 2/

√
π

whenever n > 1261. With the help of a computer, we have implemented the function E(n, p)
and we have checked that E(n, p) � 2n/

√
π log n also when n � 1260. Therefore, in Lemma 2.1

we may take b′ := 2/
√
π.

Let R be a finite group. For each prime number p, let ap(R) be the number of abelian
composition factors of R of order p, and let

a(R) :=
∑

p prime

ap(R) log p.

We now report a useful result of Pyber.

Lemma 2.3 (See [9, Theorem 2.10]). Let c0 := log9(48 · 241/3). The product of the orders
of the abelian composition factors of a primitive permutation group of degree r is at most
24−1/3r1+c0 .

From Lemma 2.3, we deduce the following.

Lemma 2.4. Let R be a primitive group of degree r and let c0 be the constant in Lemma 2.3.
Then

a(R) � (1 + c0) log r − log(24)/3.
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Proof. By definition, the product of the orders of the abelian composition factors of R is∏
p prime

pap(R) =
∏

p prime

2ap(R) log p = 2a(R).

From Lemma 2.3, this number is at most 24−1/3r1+c0 . The proof follows by taking
logarithms. �

Notice that Lemma 2.3 is often used in order to bound the composition length of a primitive
permutation groups. A more precise bound on this composition length has been recently
proved by Glasby, Praeger, Rosa and Verret [3, Theorem 1.3]. However, this stronger bound
is not sufficient for our application, which requires information not only on the number of the
composition factors but also on their order.

Finally, given a finite group G, we denote by Gab the quotient group G/G′.

3. Proof of Theorem 1

Let R be a finite group, let Δ be a finite set and let W := RwrΔ Sym(Δ) be the wreath product
of R via Sym(Δ). We denote by

π : W → Sym(Δ)

the projection of W over the top group Sym(Δ). Let
∏

δ∈Δ Rδ be the base subgroup of W and,
for each δ ∈ Δ, consider Wδ := NW (Rδ). As

Wδ = Rδ ×Rwr Sym(Δ \ {δ}),
we may consider the projection ρδ : Wδ → Rδ. Using this notation, we adapt the proof of [6,
Lemma 2.5] to prove the following.

Lemma 3.1. Let R be a finite group, let Δ be a set of cardinality at least 2 and let G be a
subgroup of the wreath product RwrΔ Sym(Δ) with the properties

(1) π(G) is transitive on Δ,
(2) ρδ(NG(Rδ)) = Rδ, for every δ ∈ Δ.

Then

log |Gab| � a(R)b′|Δ|√
log |Δ| + log |(π(G))ab|,

where b′ is the absolute constant appearing in Lemma 2.1, and a(R) is defined in Section 2.

Proof. We argue by induction on the order of R. When |R| = 1, there is nothing to prove
because π(G) ∼= G and hence log |Gab| = log |(π(G))ab|. Suppose then R �= 1. We write

|Gab| = |G : G′M ||G′M : G′| = |(G/M)ab||M : M ∩G′|. (3.1)

Let L be a minimal normal subgroup of R. Fix δ0 ∈ Δ. We identify L with a normal subgroup
Lδ0 of the direct factor Rδ0 of the base group

∏
δ∈Δ Rδ of W . Let BL be the direct product of

the distinct G-conjugates of Lδ0 and consider M := BL ∩G. We have M �G and

G

M
=

G

BL ∩G
∼= GBL

BL
.

Now, from (1), we deduce that GBL/BL is isomorphic to a subgroup of the wreath product

(R/L)wrΔ Sym(Δ).
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Therefore, by induction,

log |(G/M)ab| � a(R/L)b′|Δ|√
log |Δ| + log |(π(G))ab|. (3.2)

We now distinguish two cases.
L is non-abelian:

Since M �Wδ0 ∩G, we deduce ρδ0(M) � ρδ0(Wδ0 ∩G). From (2), we have ρδ0(Wδ0 ∩G) =
ρδ0(NG(Rδ0)) = Rδ0 and hence ρδ0(M) �Rδ0 . Observe that ρδ0(M) is contained in Lδ0 . As Lδ0

is a minimal normal subgroup of Rδ0 , we get either ρδ0(M) = 1 or ρδ0(M) = Lδ0 . From (1),
π(G) is transitive on Δ and hence either ρδ(M) = 1 for each δ ∈ Δ, or ρδ(M) = Lδ for each
δ ∈ Δ.

Suppose ρδ0(M) = 1. As ρδ(M) = 1 for each δ ∈ Δ, we get M = 1. Now the proof
immediately follows from (3.2) because G/M ∼= G.

Suppose ρδ0(M) = Lδ0 . Then M is a subdirect product of LΔ =
∏

δ∈Δ Lδ. As L is a
non-abelian minimal normal subgroup of R, we deduce that M is a direct product of non-
abelian simple groups. Thus M has no abelian composition factor and hence (3.1) gives
|Gab| = |(G/M)ab|. Moreover, a(R/L) = a(R), and hence, once again, the proof immediately
follows from (3.2).

L is abelian:

As L is a minimal normal subgroup of R, it is an elementary abelian p0-group, for some prime
number p0. Let ap0 be the composition length of L. In particular,

a(R) = a(R/L) + ap0 log p0.

The group BL is abelian and the action of G by conjugation on BL endows BL with a
natural structure of G-module. From its definition, as G-module, BL is isomorphic to the
induced module

Lδ0 ↑GK ,

where K := NG(Lδ0). From (1), G acts transitively on Δ and hence |Δ| = |G : NG(Lδ0)| =
|G : K|. From Lemma 2.1, we deduce

dG(M/(M ∩G′)) � dG(M) � ap0b
′|Δ|√

log |Δ| .

However, as G acts trivially by conjugation on M/(M ∩G′), we get that dG(M/(M ∩G′)) is
just the dimension of M/(M ∩G′) as a vector space over the prime field Z/p0Z. Therefore,

|M : M ∩G′| � p
(ap0b

′|Δ|/
√

log |Δ|)
0 . (3.3)

From (3.1), (3.2) and (3.3), we get

log |Gab| � log |(G/M)ab| + log |M : M ∩G′|

�a(R/L)b′|Δ|√
log |Δ| + log |(π(G))ab| + log(p0)

ap0b
′|Δ|√

log |Δ|

=(a(R/L) + ap0 log p0)
b′|Δ|√
log |Δ| + log |(π(G))ab|

=a(R)
b′|Δ|√
log |Δ| + log |(π(G))ab|. �

With Lemma 3.1 in hand, we prove Theorem 1 by induction on n.
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Let G be a transitive permutation group of degree n � 2. From the main result of [5], we have
|Gab| � 3n/3. Now the inequality 3n/3 � 4n/

√
log n is satisfied for each n � 20 603. In particular,

for the rest of the proof, we may suppose that n � 20 604.
Suppose first that G is primitive. In this case, from [1], we have |Gab| � n and the inequality

n � 4n/
√

log n follows with an easy computation.
Suppose now that G is imprimitive and let Ω be the domain of G. Among all non-trivial

blocks of imprimitivity of G, choose one (say Λ) minimal with respect to the inclusion. Let
G{Λ} := {g ∈ G | Λg = Λ} be the setwise stabilizer of Λ in G and let R � Sym(Λ) be the
permutation group induced by G{Λ} in its action on Λ. The minimality of Λ yields that R acts
primitively on Λ.

Let Δ := {Λg | g ∈ G} be the system of imprimitivity determined by the block Λ. Then G
is a subgroup of the wreath product

RwrΔ Sym(Δ).

We now use the notation of Lemma 3.1 for wreath products. In particular, let π :
RwrΔ Sym(Δ) → Sym(Δ) be the projection onto the top group Sym(Δ) and for each δ ∈ Δ,
let Rδ be the direct factor of the base group

∏
δ∈Δ Rδ corresponding to δ. From the fact that G

acts transitively on Ω and from the definition of R, we get that the two hypotheses (1) and (2)
are satisfied. Therefore, from Lemma 3.1 itself, we deduce

log |Gab| � a(R)b′|Δ|√
log |Δ| + log |(π(G))ab|.

Set r := |Λ|. Thus |Δ| = n/r. From Lemma 2.4 and from induction (as n/r < n), we get

log |Gab| � b′(n/r)√
log(n/r)

(
(1 + c0) log r − log(24)

3

)
+ 2

(n/r)√
log(n/r)

. (3.4)

From Remark 2.2, we see that we may take b′ = 2/
√
π. Now, for n � 20 604, a careful calculation

shows that the right-hand side of (3.4) is at most 2n/
√

log n for every divisor r of n with
4 < r < n.

We now discuss the cases r ∈ {2, 3, 4} separately. When r = 2, we have a(R) = 1 and hence

log |Gab| � b′(n/2)√
log(n/2)

+ 2
(n/2)√
log(n/2)

. (3.5)

Now, the right-hand side of (3.5) is less than 2n/
√

log n for each n � 20 604. The computation
when r ∈ {3, 4} is analogous using a(R) � 1 + log(3) when r = 3, and a(R) � 3 + log(3) when
r = 4.
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