
Design and Development of Network Monitoring
Strategies in P4-enabled Programmable Switches

Damu Ding1, Marco Savi2, Federico Pederzolli3, and Domenico Siracusa3

1University of Oxford, Oxford, United Kingdom
2Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy

3Fondazione Bruno Kessler, Trento, Italy
damu.ding@eng.ox.ac.uk, marco.savi@unimib.it,{fpederzolli, dsiracusa}@fbk.eu

Abstract—Network monitoring is of paramount importance for
effective network management: it allows to constantly observe
a network’s behavior to ensure it is working as intended, and
can trigger both automated and manual remediation procedures
in case of failures and anomalies. Software-Defined Networking
(SDN) decouples the control plane of network infrastructure from
its data plane to perform centralized control on the multiple
switches in a network. In this context, the responsibility of
switches is only to forward packets according to the instructions
provided by a controller. The lack of programmability in the data
plane of SDNs prompted the advent of data-plane programmable
switches, which allow developers to customize the data-plane
pipeline (e.g. match-action tables) by using a domain specific lan-
guage named P4, and implement novel programs and protocols
operating at wire speed directly in the switches. This unlocks the
possibility to offload some monitoring tasks to the programmable
data plane, and to perform fine-grained monitoring at very high
packet processing speeds. Given the central importance of this
topic, the principal goal of this thesis is to enable a wide range
of monitoring tasks in data-plane programmable switches, with
a focus on the ones equipped with programmable Application-
Specific Integrated Circuits (ASICs). To achieve this goal, this
thesis makes three main contributions: (i.) We enhance P4-
supported data plane programmability for network monitoring;
(ii.) We design and develop several network monitoring tasks in
programmable data planes; (iii.) We combine multiple tasks in a
single commodity switch to collect various metrics for different
monitoring purposes. Our evaluations show that our solutions can
be exploited by network administrators, operators and security
engineers to better track and understand the current network
status, and thus prevent infrastructure and service failures.

I. INTRODUCTION

Network monitoring is of primary importance: it is the main
enabler of various network management and security tasks,
ranging from accounting [1][2] to traffic engineering [3][4],
anomaly detection [5], distributed denial-of-service (DDoS)
detection [6], superspreader detection [7], and scans detec-
tion [8][9], among others. With the advent of Software-Defined
Networking (SDN), the significance of network monitoring
has certainly increased. This is because SDN, with its idea of
a (logically) centralized control plane, allows an easier cou-
pling of network management with real-time network status
observation. As a result, SDN has been seen as the answer
to many of the limitations of legacy networks’ control and
management [10][11][12]. However, such a noble intent has
been limited by SDN’s current predominant incarnation, the
OpenFlow (OF) protocol. Indeed, current OpenFlow APIs are
ill-suited for monitoring large network data streams and cannot

Internet

Host

Host

Host
Host

Host

HostP4-enabled
programmable

switch

Network
monitoring

Fig. 1. Deployment scenario example

provide accurate data-plane measurements: the main mecha-
nism exposes simple per-port and per-flow1 counters naturally
available in the switches [13]. An application running on top
of the controller can periodically poll each counter using the
standard OF APIs and then react accordingly, instantiating
appropriate rule changes. As a consequence, OF suffers from
two important limitations: (i) the controller has to monitor all
flows in the network and (ii) as the data plane exposes just
simple counters, the controller needs to do all the processing to
determine the current network state. This also implies that OF-
enabled devices are only able to collect raw and fine-grained
flow statistics, which have to be sent to a monitoring collector
causing significant communication overhead for monitoring
purposes. This drawback is well-know for legacy devices
as well (e.g. SNMP- and sFlow-supporting equipment) [14].
Another limitation of this approach is the large anomaly
detection latency; monitoring intervals are mostly greater than
one minute [15]), and this imposes strict time limits on the
analysis done by the collector.

Lately, the advent of the so-called data-plane programmable
switches (e.g. P4-enabled switches [16]) has introduced the
possibility to program the data-plane pipeline with advanced
functionalities, enabling the possibility to implement more

1Flow is a sequence of packets with the same key, such as source IP,
destination IP, or any other combination of fields in the packet’s headers.



refined monitoring solutions directly in the switch fabric
while still guaranteeing line-speed packet processing. Such
an innovative technology has attracted a growing number of
researchers and practitioners that in turn have proposed many
different solutions to enhance SDN capabilities in the context
of network monitoring [17][18][19][20][21]. As a result, the
prospect of realizing fine-grained network monitoring (see
Fig. 1) by analyzing the elaborated and exposed information
from the programmable switches in a network, has attracted
a lot of interests [19][22][23]. For instance, memory-efficient
data structures, such as sketches [24][25], have been proven
to be implementable in programmable switches to reduce
redundant monitoring information.

A. Challenges in the adoption of programmable data planes
for network monitoring enhancement

There are many challenges when network monitoring comes
to programmable data planes, among which the most important
are: (1) dealing with limited on-board computational and
memory resources in programmable switches; (2) designing
and implementing monitoring tasks (e.g. for elephant flow de-
tection) executable by programmable switches; (3) exploiting
the limited hardware resources for a wide range of concurrent
monitoring tasks to maximize monitoring visibility. In detail:

Challenge 1: overcoming limited programmability and
resources of programmable switches. To assure line-rate
packet processing, domain-specific languages such as P4 [16]
and POF [26] do not implement many common operations/in-
structions that, in well-known programming languages (e.g.
C/C++), are usually embodied or made available by standard
libraries. For instance, (unbounded) loops are not allowed.
This is because the switch has a strict and finite time limit
for processing a single packet without impacting the queuing
time of others. For a similar reason, in a hardware switch, such
as an ASIC, the same metadata (i.e., the fields in the packet
header) cannot be used more than once. Moreover, the memory
of programmable switches is only a few tens of MB large,
which means that memory efficiency must be ensured as well.
In summary, to enable new functionalities in programmable
switches, a good design considering both computational and
memory limitations is necessary.

Challenge 2: design and development of monitoring solu-
tions in programmable data planes. A wide range of network
monitoring tasks can be executed in the monitoring servers,
but not all of them can be offloaded to the programmable
switches. To enjoy the benefits of programmable switches, the
first step is to understand which tasks are possible and useful
to move to the programmable data plane. Afterwards, it is
important to investigate which compact data structures (e.g.
sketches) or actions (e.g. sample the packets) are suitable for
specific monitoring tasks. Finally, the resource limitations of
programmable switch described above should not be ignored
to make the tasks executable in the data plane.

Challenge 3: combination of multiple monitoring tasks.
Due to non-negligible cost of programmable switches (e.g.,
a Tofino switch [27] may cost thousands of dollars) and
increasing throughput requirements of modern networks, if it
is made possible to bundle several tasks in a single switch

and deploy it in a strategic position in the network, this will
significantly reduce the required hardware-upgrade budget.
Thus, another challenge is how to combine multiple tasks
in a programmable switch to perform high-speed monitoring.
In this case, not only the resource limitation in the switch
but also the resource allocation for different tasks need to be
considered.

B. Goals, research questions, and approaches

The main goal of the thesis is to design and integrate a wide
variety of novel and practical monitoring tasks, implement
them in P4-enabled programmable switches, and assess their
performance. To achieve it, the following research questions
(RQs) have been formulated:
• RQ1: Why is network monitoring so important in modern

telecommunication networks and what are the benefits to
implement it in programmable data planes?

• RQ2: How to improve P4-enabled data plane programma-
bility with novel functionalities?

• RQ3: What are the most important network monitoring
tasks that can be offloaded to programmable switches and
to what extent?

• RQ4: How to coordinate multiple monitoring tasks in a
single commodity programmable hardware switch while
overcoming existing resource limitations?
To answer these research questions, we started by simulating

multiple existing monitoring strategies to understand their
behaviour and performance. We then designed some novel
strategies, which massively benefit by an offloading of part of
their logic to the programmable data plane, and implemented
them in P4. Afterwards, the P4 program was compiled and
installed in P4-enabled simulated switches. We conducted
experiments with simulated switches in an emulated environ-
ment (Mininet [28]) to better understand how those strategies
impact on the workflow of programmable switches. Finally,
by taking into consideration stricter hardware computational
and resource constraints, we implemented a subset of our
monitoring solutions in a programmable switch equipped with
Tofino ASIC, proving that our proposed approaches can be
deployed in real P4-programmable networks.

C. Contributions to challenges

The main contribution of this thesis is a detailed study on
how to enhance network monitoring by exploiting data plane
programmability in the context of Software-Defined Networks.
With respect to the three challenges described in Section I-A,
we made the following contributions:

Contribution to Challenge 1. We proposed new algorithms
to approximate some arithmetic operations (i.e., logarithm
and exponential function computation) in the programmable
switches that are not supported by default in P4, thus en-
hancing data plane programmability capabilities for network
monitoring (or possibly other) purposes.

Contribution to Challenge 2. We studied and developed
five different monitoring tasks (partially) executable by pro-
grammable data planes: (i.) heavy-hitter detection to detect
heavy flows with large packet counts; (ii.) flow cardinality



estimation to estimate the number of distinct flows in the
network; (iii.) network traffic entropy estimation to track the
flow distribution; (iv.) total traffic volume estimation to know
how many packets are flowing in the network; and (v.) vol-
umetric DDoS attack detection to detect potential volumetric
DDoS attacks by tracking entropy or flow cardinality sudden
variations. The aim of this contribution is to offload, as much
as possible, these monitoring tasks to the switch’s data plane.
The best case-scenario happens when the task can be executed
entirely in the programmable data plane, thus enabling in-
network monitoring.

Contribution to Challenge 3. We revisited our designed
tasks and proposed a new way to combine them into a
single commodity hardware switch. The switch is used only
to store flow and packet statistics, while the controller is
responsible to compute/estimate various monitoring metrics.
In this way, all five monitoring tasks mentioned above can
be executed by the same programmable switch to perform
high speed monitoring, while the controller can guarantee high
accuracy on the estimation of monitoring metrics to diagnose
performance and security issues.

II. THESIS OVERVIEW

The PhD thesis subject of this dissertation paper is available
at [35]. Fig. 2 shows a schematic overview of the work. Each
block represents a chapter in the thesis, and the scheme report
the relationship between chapters as well. For each block,
the scheme also records the conference or journal publication
reporting the work done. Moreover, the scheme also specifies
how the proposed approaches have been tested, including
simulations in Python, emulations in Mininet, and experiments
in a commodity programmable switch. In the following, we
provide a brief summary of each technical chapter of the thesis.

A. Estimation of logarithmic and exponential functions in
P4 [29]

In this chapter we take a first step to investigate P4 and
report its limitations. We then show how we overcame some
of those limitations to estimate logarithms and exponential
functions with a given precision by only using the few arith-
metic operations available in P4 and without consuming any
ternary content-addressable memory (TCAM) resources [36].
This enhancement is leveraged by several monitoring tasks so
that they can be implemented in the data plane.

B. Network-wide heavy-hitter detection robust to partial de-
ployment [30][31]

Heavy hitters are often identified as those flows that carry
more than a fraction of the overall number of packets in the
network. An alternative definition identifies as heavy hitters the
top-k flows by size (i.e., top-k heavy hitters). Many network
management applications can benefit from finding the set of
flows that significantly contribute to the traffic carried on
a link, e.g. to relieve link congestion [4], to plan network
capacity [3], or to detect network anomalies and attacks [37].

In this chapter, we adopt the former definition of heavy
hitter. We first use Count-min Sketch [25] to filter the flows
with relatively large packet counts in a given time interval.

At the end of the time interval, the controller retrieves the
local heavy flows from all programmable switches in the
network. Finally, by combining the information from multiple
switches, it is able to identify global (also called network-
wide) heavy hitters. Our network-wide heavy-hitter detection
is robust to partial deployments of programmable switches.
We thus also propose an incremental deployment strategy
that has been designed to ensure that deployed switches have
visibility over the largest number of distinct flows. The results
show that when only a limited number of programmable
switches is deployed, our network-wide heavy-hitter detection
strategy outperforms an existing approach in terms of detection
accuracy, memory occupation and communication overhead.

C. Flow cardinality estimation [32]

Flow cardinality estimation is the task of determining the
number of distinct flows in a stream of packets [38]. In the
domain of online traffic monitoring of high-speed networks,
cardinality estimation can be used to detect traffic anomalies,
such as network IP/port scan and DDoS attacks. Moreover,
such an estimation can also be used to monitor the number
of active connections on a network link. However, as pointed
out in [39], cardinality estimation over large data sets presents
a challenge in terms of computational resources and memory:
due to this, a non-negligible fraction of packets may not be
processed and the information they carry may be lost.

In this chapter, we describe and adopt the compact LogLog
data structure [40] to estimate the flow cardinality of large
packet streams in P4. With respect to the state-of-the-art
approaches, our flow cardinality estimator can guarantee good
accuracy while ensuring small memory usage in the switch.

D. Network traffic entropy estimation [29][32]

Network traffic entropy is a metric that gives an indication
of the traffic flow distribution in the network [29]. According
to the definition of Shannon entropy [41], the traffic entropy
reaches 0 when all packets belong to the same flow, while it
reaches its maximum value when each flow carries the same
number of packets. Tracking the entropy helps spot perfor-
mance and security issues, and can be adopted for congestion
control [42], load balancing [43], port-scan detection [44][45],
DDoS attacks detection [46][47] and worm detection [48].

We designed a time interval-based entropy estimation strat-
egy relying on the estimations proposed in Section II-A. A
prototype has been implemented in the P4 behavioral model
(BMv2) and has been proven to be fully executable in a P4
emulated environment. The accuracy is comparable to that of
an existing state-of-the-art solution [46], but our approach does
not require the usage of TCAM, which is a scarce resource.

E. Network-wide total traffic volume estimation [33]

The ability to precisely estimate the total traffic volume [22]
(i.e., number of distinct packets flowing in the network), and
the related number of distinct flows and average flow size (i.e.,
average number of packets per flow) is necessary to support
a broad range of tasks, especially concerning network-wide
monitoring. For instance, as already mentioned, network-wide



Enhancement of
data plane programmability

Flow and packet statistics

Network monitoring in programmable data planes

Volumetric DDoS detection

Combination of tasks

Enhancement
Estimation of
logarithmic /

exponential functions
in P4 [29]

Task 1
Heavy hitter detection [30][31]

Task 2
Flow cardinality estimation [32]

Task 3
Network traffic

entropy estimation [29][32]

Task 4
Network-wide total traffic

volume estimation [33]

Task 5
Per-flow cardinality-based

DDoS detection [34]

Task 6
Network traffic
entropy-based

DDoS detection [32]

Tasks
Combination

Simulation in Python Emulation in mininet Experiments in programmable hardware switch with Tofino ASIC

Fig. 2. Scheme of the thesis

heavy-hitters (see Section II-B) are identified as a function of
the total traffic volume.

This chapter presents a novel method that exploits data-
plane programmable switches to estimate number of flows,
average flow size and traffic volume in a given time interval,
and that removes some unrealistic assumptions from the state
of the art [22]. In fact, most network-wide monitoring systems
assume that each packet is monitored and counted by only a
single programmable switch on its path through the network,
which either limits routing decision or requires coordination
among switches. In networks where packets traverse (and are
counted by) multiple switches, the proposed strategies are
not accurate anymore: this problem is named packet double
counting. We solved it by exploiting the peculiarities of a
compact data structure called HyperLogLog (HLL) [49], which
makes it possible to compute network-wide statistics over the
union of multiple HLL registers. We implemented our strategy
in a P4-based commodity switch equipped with Tofino ASIC.

F. Per-destination flow cardinality-based DDoS detection [34]
A volumetric DDoS attack can be identified by looking at

many different metrics, such as at a significant decrease of
the normalized entropy of distinct destination IP addresses ob-
served in the network [50][51][52], or at an increased number
of packets coming from different source IP addresses towards
specific destination hosts (i.e., per-destination flow cardinality)
[53][17][20]. Note that entropy-based DDoS detection can
only detect DDoS attacks, while flow cardinality-based DDoS
detection is also able to identify the DDoS victim(s), which
allows operators to mitigate the impact on the targeted nodes
as soon as an attack is detected.

In this chapter, we first introduce BACON Sketch, a memory-
efficient data structure to estimate per-destination flow car-
dinality, which combines a Count-min Sketch with a set of
bitmap data structures, and theoretically analyze its error
bounds. We then propose a simple in-network DDoS victim
identification strategy that relies on BACON Sketch to detect
the destination hosts for which the number of incoming
connections exceeds a pre-defined threshold. We successfully

implemented our strategy in a programmable switch equipped
with a Tofino ASIC while overcoming the limitations imposed
by the hardware.

G. Network traffic entropy-based DDoS detection [32]
The goal of this chapter is similar to that of Section II-F, i.e.,

efficiently detect volumetric DDoS attacks. We tried to solve
this problem from a different perspective, that is, by evaluating
variations on the observed normalized network traffic entropy.

We leveraged the achievements and findings on per-
destination flow cardinality estimation (Section II-C) and on
network traffic entropy estimation (Section II-D) to define
an entropy-based volumetric DDoS detection strategy that is
able to track the normalized entropy of distinct destination
IP addresses. In fact, during a volumetric DDoS attack, the
observed normalized entropy of distinct destination IP ad-
dresses significantly decreases in comparison to previous time
windows. This phenomenon drove the design of our novel
approach, which is implementable in P4 and fully executable
by emulated programmable data planes. Our work outperforms
an existing entropy-based DDoS detection solution [46] in
terms of detection accuracy, especially in the case of internal
botnet DDoS attacks, while implementing a simpler logic.

H. Combination of multiple tasks in a single commodity switch
This chapter is entirely new and has not been presented

and published anywhere else yet. Unlike most of the previous
chapters, where experiments have been firstly conducted in the
Mininet-based emulated environment, here we combine and
implement several monitoring tasks directly in Tofino ASIC.
The motivation is demonstrating that our proposals can be
practically deployed and exploited together in carrier-grade
network devices.

We first revisited the designed tasks described in the pre-
vious chapters, and sought the possibility to migrate them all
together into a single hardware switch. With this in mind,
we discovered that implementing all of them entirely in the
switch’s data plane is not possible due to both resource and
P4 language limitations. We therefore propose an alternative



solution, where only summarized flow statistics are tracked in
the data plane (thanks to a Count Sketch and a HyperLogLog
data structure), while complex tasks leveraging those statis-
tics are executed by the SDN controller. The collected flow
statistics can help the SDN controller understand the overall
network status by estimating metrics such as flow variance,
flow cardinality, entropy estimation, etc. These metrics can
then further be used by the controller to detect anomalies,
such as heavy hitters or volumetric DDoS attacks.

III. REVISITING THE RESEARCH QUESTIONS

The outcomes of this PhD thesis have helped us answer the
research questions formulated in Section I-B, even though we
are fully aware that there is still a lot of work to do.

Giving an answer to RQ1 is what has driven our work and
its motivation in nearly every chapter of this thesis. Network
monitoring is the main enabler of many network management
related tasks, ranging from accounting, traffic engineering,
anomaly detection, DDoS detection, superspreader detection,
scans detection and so on. With the advent of data plane
programmability as a way to make Software-Defined Networks
more programmable and flexible, some monitoring functional-
ities can be offloaded to the switch’s data plane. This can help
diagnose performance and security issues without the need of
control plane intervention, thus reducing detection latencies
and data/control plane communication overhead, and while
processing packets at line rate.

With respect to RQ2, we discovered that some mathematical
operations, useful for network monitoring purposes, are miss-
ing in P4. Among them, logarithm and exponential function
estimations, as well as division, are the most important as
they can be used to enable a wide set of monitoring tasks to
be executed in the data plane. With respect to state-of-the-
art solutions, our estimations incur a slightly higher packet
processing time but require only P4-supported operations and
no TCAM consumption.

When it comes to RQ3, we focused on five different
monitoring tasks: heavy-hitter detection, flow cardinality es-
timation, network traffic entropy estimation, total traffic vol-
ume estimation, and volumetric DDoS detection. The main
objective, also given the answer to RQ1, has been offloading
as much as possible these functionalities into the switch’s
data plane. For some of the tasks we were able to fully
offload them, thus enabling in-network monitoring. We first
designed a network-wide heavy hitter detection robust to
partial deployment of programmable switches in ISP networks.
The switches only report flows with large packet counts to the
controller for further network-wide investigations. Cardinal-
ity estimation, entropy estimation, and entropy-based DDoS
detection strategies have been implemented in P4 and can
be fully executed in the data plane of an emulated switch.
However, we failed to migrate them to the programmable
data plane of a commodity hardware switch due to the strict
hardware resource constraints. Hence, thanks to the gained
experience, we started working on solutions taking hardware
limitations into consideration by design. This led to our
proposed strategies for traffic volume estimation and flow

cardinality-based volumetric DDoS detection, which can be
executed by the commodity hardware switch at our disposal.

Finally, focusing on RQ4, we realized that implementing
many different monitoring tasks in the same hardware switch
is not currently feasible. Even though this limitation may be
solved by next-generation data plane programmable hardware,
we proposed an alternative to be adopted in the short term:
only summarized and relevant flow and packet statistics are
collected in the data plane and sent to the SDN controller,
which is then in charge of executing a wide range of mon-
itoring tasks using such information. Even though this is a
workaround, it is a first step to offload part of computation
needed by multiple monitoring tasks to the data plane.

IV. CONCLUSION

The complexity of carrying out high-speed monitoring in
today’s computer networks hinders a prompt detection of
network anomalies and failures. Exploiting programmable
data planes for network monitoring purposes has become an
appealing solution, as monitoring data can be collected at line
rate while ensuring fast packet processing. The contribution
of this thesis is thus to deeply investigate the opportunities
arising in this area.

We proposed different approaches and evaluated them by
also comparing with the state of the art. Our results show
that (partially) offloading monitoring operations to the pro-
grammable data plane is both feasible and beneficial, espe-
cially to reduce the amount of data that needs to be forwarded
to a collector. Some contributions of this thesis have been
carried on within the GN4-3 project, whose goal is to upgrade
the pan-European GÉANT [54] network. We believe that
our efforts may be useful to move a step forward towards
a better network management of next generation high-speed
telecommunication networks.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the EC within the H2020 Research and Innovation
program, Grant Agreement No. 856726 (GN4-3 project).

REFERENCES

[1] N. Duffield, C. Lund, and M. Thorup, “Charging from Sampled Network
Usage,” in ACM Internet Measurement Workshop (IMW), 2001.

[2] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” in ACM Special Interest Group on Data Communication
(SIGCOMM), 2002.

[3] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True, “Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience,” IEEE/ACM Transactions On Networking,
vol. 9, no. 3, pp. 265–279, 2001.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained
Traffic Engineering for Data Centers,” in ACM COnference on Emerging
Networking EXperiments and Technologies (CoNEXT), 2011.

[5] A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using Traffic
Feature Distributions,” in ACM SIGCOMM Computer Communication
Review, vol. 35, no. 4, 2005.

[6] C. Wang, T. T. Miu, X. Luo, and J. Wang, “SkyShield: a Sketch-
based Defense System Against Application Layer DDoS Attacks,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 3, pp.
559–573, 2018.

[7] Y. Liu, W. Chen, and Y. Guan, “Identifying High-cardinality Hosts from
Network-wide Traffic Measurements,” IEEE Transactions on Depend-
able and Secure Computing, vol. 13, no. 5, pp. 547–558, 2016.



[8] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm
Origin Identification Using Random Moonwalks,” in IEEE Security and
Privacy (SP), 2005.

[9] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New Streaming
Algorithms for Fast Detection of Superspreaders,” in Network and
Distributed System Security Symposium (NDSS), 2005.

[10] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” in ACM Special Interest Group on Data Communication
(SIGCOMM), 2013.

[11] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central Control
Over Distributed Routing,” in ACM Special Interest Group on Data
Communication (SIGCOMM), 2015.

[12] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever, “An Industrial-scale Software Defined Internet
Exchange Point,” in USENIX Networked Systems Design and Implemen-
tation (NSDI), 2016.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM Computer Communication Review, vol. 38,
no. 2, 2008.

[14] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network Monitoring in OpenFlow Software-defined Networks,” in
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2014.

[15] “NetFlow,” http://www.cisco.com/warp/public/732/Tech/netflow.
[16] P. Bosshart, D. Daly, G. Gibb et al., “P4: Programming Protocol-

independent Packet Processors,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 3, pp. 87–95, 2014.

[17] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in ACM Special Interest Group on Data Communication
(SIGCOMM), 2016.

[18] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers,” in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2016.

[19] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” in ACM Special Interest Group on Data Communication
(SIGCOMM), 2018.

[20] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“SketchVisor: Robust Network Measurement for Software Packet Pro-
cessing,” in ACM Special Interest Group on Data Communication
(SIGCOMM), 2017.

[21] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter Detection Entirely in the Data Plane,” in ACM
Symposium on SDN Research (SOSR), 2017.

[22] R. Ben-Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz,
“Network-wide Routing-oblivious Heavy Hitters,” in IEEE/ACM Sym-
posium on Architectures for Networking and Communications Systems
(ANCS), 2018.

[23] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide Heavy
Hitter Detection with Commodity Switches,” in ACM Symposium on
SDN Research (SOSR), 2018.

[24] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian:
Separate and Guard Hot Items in Data Streams,” in ACM International
Conference on Knowledge Discovery & Data Mining (SIGKDD), 2018.

[25] G. Cormode, “Count-min sketch,” in Springer Encyclopedia of Database
Systems, pp. 511-516, 2009.

[26] S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, and Z. Zhu,
“Protocol Oblivious Forwarding (POF): Software-defined Networking
with Enhanced Programmability,” IEEE Network, vol. 31, no. 2, pp.
58–66, 2017.

[27] “Intel Tofino,” https://www.intel.it/content/www/it/it/products/
network-io/programmable-ethernet-switch/tofino-series.html.

[28] “Mininet,” http://mininet.org/.
[29] D. Ding, M. Savi, and D. Siracusa, “Estimating Logarithmic and

Exponential Functions to Track Network Traffic Entropy in P4,” in
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2020.

[30] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “Incremental Deployment
of Programmable Switches for Network-wide Heavy-hitter Detection,”
in IEEE Conference on Network Softwarization (NetSoft), 2019.

[31] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “An Incrementally-
deployable P4-enabled Architecture for Network-wide Heavy-hitter De-

tection,” IEEE Transactions on Network and Service Management,
vol. 17, no. 1, pp. 75–88, 2020.

[32] D. Ding, M. Savi, and D. Siracusa, “Tracking Normalized Network
Traffic Entropy to Detect DDoS Attacks in P4,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[33] D. Ding, M. Savi, F. Pederzolli, and D. Siracusa, “INVEST: Flow-based
Traffic Volume Estimation in Data-plane Programmable Networks,” in
IFIP Networking Conference, 2021.

[34] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa, “In-
network Volumetric DDoS Victim Identification Using Programmable
Commodity Switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191–1202, 2021.

[35] D. Ding, “Design and Development of Network Monitoring Strategies
in P4-Enabled Programmable Switches,” PhD Thesis, 2021. [Online].
Available: https://dingdamu.github.io/papers/PhD thesis DAMU.pdf

[36] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the Power of Flexible Packet Processing for
Network Resource Allocation,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[37] A. Lakhina, M. Crovella, and C. Diot, “Characterization of Network-
wide Anomalies in Traffic Flows,” in ACM SIGCOMM Conference on
Internet Measurement (IMC), 2004.

[38] Z. Zhou and B. Hajek, “Per-flow Cardinality Estimation Based On Vir-
tual LogLog Sketching,” in Annual Conference on Information Sciences
and Systems (CISS), 2019.

[39] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice:
Algorithmic Engineering of a State of the Art Cardinality Estimation
Algorithm,” in International Conference on Extending Database Tech-
nology (EDBT), 2013.

[40] M. Durand and P. Flajolet, “LogLog Counting of Large Cardinalities,”
in European Symposium on Algorithms, 2003.

[41] C. E. Shannon, “A Mathematical Theory of Communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[42] L. Jiang, D. Shah, J. Shin, and J. Walrand, “Distributed Random Access
Algorithm: Scheduling and Congestion Control,” IEEE Transactions on
Information Theory, vol. 56, no. 12, pp. 6182–6207, 2010.

[43] K. Wu, L. Chen, S. Ye, and Y. Li, “A Load Balancing Algorithm
Based on the Variation Trend of Entropy in Homogeneous Cluster,”
International journal of Grid and Distributed Computing, vol. 7, no. 2,
pp. 11–20, 2014.

[44] Y. Gu, A. McCallum, and D. Towsley, “Detecting Anomalies in Network
Traffic Using Maximum Entropy Estimation,” in ACM SIGCOMM
Conference on Internet Measurement (IMC), 2005.

[45] P. Bereziński, M. Szpyrka, B. Jasiul, and M. Mazur, “Network Anomaly
Detection Using Parameterized Entropy,” in IFIP International Con-
ference on Computer Information Systems and Industrial Management
(CISIM), 2015.

[46] A. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading Real-time
DDoS Attack Detection to Programmable Data Planes,” in IEEE/IFIP
Symposium on Integrated Network and Service Management (IM), 2019.

[47] X. Ma and Y. Chen, “DDoS Detection Method Based on Chaos Analysis
of Network Traffic Entropy,” IEEE Communications Letters, vol. 18,
no. 1, pp. 114–117, 2013.

[48] A. Wagner and B. Plattner, “Entropy Based Worm and Anomaly Detec-
tion in Fast IP Networks,” in IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise (WETICE),
2005.

[49] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
The Analysis of a Near-optimal Cardinality Estimation Algorithm,” in
Discrete Mathematics and Theoretical Computer Science, 2007.

[50] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an Effective and
Scalable Anomaly Detection and Mitigation Mechanism on SDN Envi-
ronments,” Computer Networks, vol. 62, pp. 122–136, 2014.

[51] K. Kalkan, L. Altay, G. Gür, and F. Alagöz, “JESS: Joint Entropy-based
DDoS Defense Scheme in SDN,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 10, pp. 2358–2372, 2018.

[52] R. Wang, Z. Jia, and L. Ju, “An Entropy-based Distributed DDoS
Detection Mechanism in Software-defined Networking,” in IEEE Trust-
com/BigDataSE/ISPA, 2015.

[53] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), 2013.

[54] “GÉANT Network,” http://https://www.geant.org/.

 http://www.cisco.com/warp/public/732/ Tech/netflow
https://www.intel.it/content/www/it/it/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.it/content/www/it/it/products/network-io/programmable-ethernet-switch/tofino-series.html
http://mininet.org/
https://dingdamu.github.io/papers/PhD_thesis_DAMU.pdf
http://https://www.geant.org/

	Introduction
	Challenges in the adoption of programmable data planes for network monitoring enhancement
	Goals, research questions, and approaches
	Contributions to challenges

	Thesis overview
	Estimation of logarithmic and exponential functions in P4 ding2019estimating
	Network-wide heavy-hitter detection robust to partial deployment 8806649ding2020incrementally
	Flow cardinality estimation ding2021tracking
	Network traffic entropy estimation ding2019estimatingding2021tracking
	Network-wide total traffic volume estimation ding2021invest
	Per-destination flow cardinality-based DDoS detection ding2021network
	Network traffic entropy-based DDoS detection ding2021tracking
	Combination of multiple tasks in a single commodity switch

	Revisiting the research questions
	Conclusion
	References

