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ABSTRACT. In the rank of behavioral rules, imitation-based heuristics has re-

ceived special attention in economics (see [Vega-Redondo, 1997] and [Schlag, 1998]).

In particular, imitative behavior is considered in order to understand the ev-

idences arising in experimental oligopolies which reveal that the Cournot-

Nash equilibrium does not emerge as unique outcome and show that an im-

portant component of the production at the competitive level is observed (see

e.g. [Apesteguia et al., 2007], [Oechssler et al., 2016], [Bigoni and Fort, 2013]

or [Offerman et al., 2002], [Huck et al., 1999]). By considering the pioneer-

ing groundbreaking approach of [Apesteguia et al., 2010], we build a dynam-

ical model of linear oligopolies where heterogeneous decision mechanisms

of players are made explicit. In particular, we consider two different types

of quantity setting players characterized by different decision mechanisms

that coexist and operate simultaneously: agents that adaptively adjust their

choices towards the direction that increases their profit are embedded with

imitator agents. The latter ones use a particular form of proportional imitation

rule that considers the awareness about the presence of strategic interac-

tions. It is noteworthy that the Cournot-Nash outcome is a stationary state

of our models. Our thesis is that the chaotic dynamics arousing from a dy-

namical model, where heterogeneous players are considered, are capable to

qualitatively reproduce the outcomes of experimental oligopolies.

Keywords: Imitation, heterogeneity, dynamic instability, dynamical systems

1. INTRODUCTION

Several experimental oligopoly games of quantity setting players provide im-
portant evidence that the outcome of a competition among real players is not
in line with the Cournot-Nash equilibrium of the corresponding one-shot game.
In particular, such experiments show that none of the relevant notion of equi-
librium, as well as in any other production level, emerges uniquely. In addition,
outcomes where a unique average choice is reached with a Gaussian spread,
due to random factors that affect decision processes, are also excluded. On the
contrary, distributions of choices over a range of the quantity space that gen-
erally includes the Cournot-Nash and the competitive (Walrasian) equilibrium,
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are observed thus implying that no convergence towards a common decision
is achieved. Therefore, it can be concluded that this circumstance is a strong
indication of the fact that agents are not perfectly rational.

However, depending on the particular experimental setup, many peaks in
the quantities’ distributions, that correspond to certain production levels, can
be distinguished. Specifically, the partial prevalence of choices that match with
the Cournot-Nash production level is clearly recognizable in the histograms
presented, for example, in [Offerman et al., 2002] or in [Bigoni and Fort, 2013].
The time series presented in [Oechssler et al., 2016] also reveals the occur-
rence of quantities at that level. This fact can be interpreted as an indirect
indication of the presence of a relevant component of rationality within the deci-
sion mechanisms that determine the behavior of agents. Furthermore, from the
same experiments as well as in many others, it emerges also that, besides the
Cournot-Nash, the competitive production level is systematically observed (see
a.g. [Huck et al., 1999], [Apesteguia et al., 2007], [Huck et al., 2004], [Bigoni and Fort, 2013],
[Oechssler et al., 2016], [Friedman et al., 2015]). This fact can be interpreted
as an indirect indication of the presence of the imitative behavior at the light of
the result provided by [Vega-Redondo, 1997] that gives the theoretical under-
pinning for the emergence of the competitive equilibrium when imitative-based
decision mechanism is assumed. More precisely, in [Vega-Redondo, 1997], the
author considers a symmetric oligopoly of quantity setting agents that “imitate
the best” by selecting the quantities that brought the highest profits in the pre-
vious period. Therefore, accounting for an arbitrarily small, but non-vanishing,
mutation probability in agents’ strategies, the competitive outcome is observed
almost certainly in the long run, namely it is a stochastically stable state. “The
intuition of this result is straightforward: whenever price is higher than marginal
cost, the agent with the highest quantity makes the largest profit (being thus
imitated) and vice versa if profits are negative” ([Huck et al., 1999]).

What can be guessed from such empirical evidences is that both the imita-
tion and rationality behaviors are not sufficient to individually explain the exper-
imental outcomes. However, those results suggest that the decision mecha-
nisms of players may be represented as made up by heterogeneous compo-
nents, specifically rationality and imitation. In this view, models for real decision
mechanisms can be provided by embedding together different behaviors that
concur together to decision processes. A first attempt towards this direction is
provided in [Huck et al., 1999] and then taken up by [Apesteguia et al., 2010].
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In those papers, the authors follow a direct approach by considering an ex-
plicit expression for individual behavior, modeled as a mixed combination of
different adaptive decision mechanisms involved simultaneously in decision
processes. Specifically, in [Apesteguia et al., 2010], imitation (in the sense of
[Vega-Redondo, 1997]), best reply, fictitious play and relative profit maximiza-
tion are considered. Together with those deterministic behavioral rules, the
authors consider also a relevant contribution of random factors affecting deci-
sion processes in order to reproduce distributions of choices over the quantities’
space observed in experiments. The stochastic model they get is characterized
by not having any absorbing state but only a large absorbing set. We note that,
besides this last generic result, the analysis of that model is limited only to
simulations.

Here we echo the thought suggested by [Apesteguia et al., 2010] and de-
velop a theoretical model of linear oligopolies of quantity setting players that
considers explicit expressions of different decision mechanisms that coexist
and operate simultaneously thus representing heterogeneous behaviors in the
population. The model we consider is characterized by a deterministic struc-
ture and it is here studied analytically, together with its dynamical properties,
going beyond a pure simulative approach. In particular we show that unpre-
dictable dynamics related to experimental outcomes could be qualitative repre-
sented by the chaotic dynamics that the heterogeneity in decision mechanisms
can give rise, with no need of any stochastic perturbation. In other words, ex-
perimental evidences, i.e. the distribution of choices and in the absence of
convergence towards a common decision, can be understood through dynam-
ical instabilities. This is a direct consequence of the approach suggested by
[Apesteguia et al., 2010] since it is the presence of heterogeneities among de-
cision mechanisms that determines complex dynamical scenarios. In this view
we assert that chaotic dynamics are suitable modeling tools to represent the
repeated decisions observed in experimental oligopolies. We then compare
the outcomes of the model with those arising in experiments and reported in
the cited literature.

Specifically, we introduce the heterogeneity among behaviors by consider-
ing different kinds of players. The first decision mechanism we consider is the
gradient rule, first introduced in [Bischi and Naimzada, 2000], and we call the
players that use such rule “gradient” agents. The second decision mechanism
we consider is a kind of proportional imitation rule (similar to the one intro-
duced in [Schlag, 1998]) that prescribes, at each period, the choice given by
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the weighted average of the previous period quantities, whose importance is
proportional to the payoff they have respectively generated. We call the players
that use such rule “imitator ” agents. Such a particular form imitation accounts
for the fact that imitator agents are aware about the presence of strategic inter-
actions. Indeed, within the framework of experimental oligopolies, it is common
knowledge that the price is a decreasing function of the total amount of goods
in the marked, which in turn is determined by the choices of all players. The
awareness about the presence of strategic interactions thus turns into the con-
sciousness that an action that brought high profit in the previous period may
not produce so good a result in the present time because of changes in envi-
ronmental conditions. This indeterminacy about the profits that an action will
produce is the reason that led us to consider such a prudent imitative behavior.

We note that the imitation rule here considered does not provide any profit-
based selection. This marks the main difference from those rules considered by
[Vega-Redondo, 1997] and by [Schipper, 2009] where players make a careless
and incautious selection among the quantities to imitate. Indeed, according
to the rule defined by [Vega-Redondo, 1997] every player refuses to imitate
every strategy that did not produce the best result, while, according to the rule
defined by [Schlag, 1998], every player refuses to imitate every strategy that
has produced lower profits than his own.

Finally, it is worth noting that the model here derived accounts for hetero-
geneities only at a collective level, namely only different players characterized
by their own decision mechanisms made up by a single behavior are consid-
ered. As deepened within the concluding part of the present work, a future
stream of research may concern the study of a more structured model where
heterogeneities also at an individual level, where mixed behaviors operate si-
multaneously in the decision mechanism of a single player, are taken into ac-
count.

The paper is organized as follows. In Section 2 we derive the model and
we study it both with analytical and numerical tolls. Conditions for the stability
of stationary states are provided, as well as comments on the role of the most
relevant parameters in determining stability properties are given. In Section
3 we compare the outcomes of experimental oligopolies with the dynamical
scenarios provided by the model. Section 4 concludes.
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2. THE MODEL

Let’s consider a set of identical quantity setting agents N = {1, 2, ..., N}
that compete in the same market for an homogeneous good, whose demand
is summarized by a linear inverse-demand function P (Q) = max{a − bQ, 0}.
Let’s denote by qi,t the quantity of goods that the generic i-th agent, with i ∈ N ,
sells in the market at time-period t. Furthermore, all the agents bear the same
constant marginal production cost c, so that the generic i-th agent earns the
profit

(2.1) πi = P (Q)qi − cqi

We characterize the oligopoly by introducing heterogeneous decision mecha-
nisms, used to decide how much quantity of goods to produce, by considering
a population structured into two groups of agents of different kinds. The first
group, denoted by N G ⊆ N and with numerosity NG := |N G|, includes bound-
edly rational players that use the gradient rule, first proposed in [Bischi and Naimzada, 2000],
that will be called gradient players. The second group, denoted byN I ⊆ N and
with numerosity N I := |N I|, includes agents that adopt an imitation-based de-
cision mechanism, which will be discussed later, and that will be called im-
itator players. Clearly it is N G ∪ N I ≡ N and NG + N I = |N | := N .
The population’s splitting can be summarized by the fraction ω of imitators,
that is ω = N I/N . Consequently, the fraction of gradient players is given by
NG/N = (N −N I)/N = 1− ω.

Within the experimental oligopoly framework, the informational set provided
to each agent usually includes his own previous period quantity and the re-
lated profit as well as those of his competitors (see [Friedman et al., 2015],
[Apesteguia et al., 2010] and [Offerman et al., 2002] for example). It results
that each agent does not have any knowledge of the demand function. Tak-
ing into account such a circumstance, we assume that a portion of the agents
involved in the experiment use the informational set provided to them trying to
infer how the environment will respond to their own production changes by an
empirical estimate of the marginal profit. More precisely, we assume that the i-
th player in a certain groupN G mimics the simple heuristics according to which
individual choice is adaptively adjusted based on past performances as follows:

(2.2) qt+1 − qt ∝ G(t, t− 1), where G(t, t− 1) =
π(qt)− π(qt−1)

qt − qt−1
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According to (2.2), the next period quantity is increased or decreased provided
that the ratio G(t, t − 1) is positive or negative respectively which, in turn, cor-
responds to having obtained higher or lower profits w.r.t. a variation in the
production. As a result, the next quantity is increased or decreased along the
trend that would lead to a rise in profits in the previous time-period, being im-
plicitly assumed that the trend followed by the profit is maintained also in the
next time. This implies that each player has static expectations, meaning by this
that each of them believes that his competitors replicate the same choices per-
formed at the previous time. It is here assumed that the decision mechanism
that some agents in the subgroup N G adopt, comes from the heuristics (2.2)
where the incremental relation G(t, t− 1) is replaced by its local approximation
provided by the marginal profit ∂πi(q)/∂qi. More precisely, the i-th player in
the first group N G, to which we will refer below as gradient player, adapts at
each time-period t+1 his past decision qi,t taking into account only his individ-
ual choice and the related profit according to the gradient rule as introduced in
[Bischi and Naimzada, 2000]:

qi,t+1 : = qi,t + γqi,t
∂πi(q)

∂qi

∣∣∣∣
q=qt

(2.3)

= qi,t + γqi,t (a− c− bQ−i,t − 2bqi,t)

where Q−i,t =
∑

j 6=i qj,t denotes the aggregate quantity that agent i observes
in the market produced by the others at time t and i ∈ N G. The parameter γ
accounts for the reactivity of gradient players determining the amount of vari-
ation in quantity in the direction of increasing profits. The second equality in
(2.3) is obtained within the linear oligopoly framework here considered.

On the contrary, we consider in the second group N I, those players that
adopt decisions taking into account not only their own past choices and related
profits but also those of their competitors. The simplest heuristics that real-
izes such a decision mechanism is imitation. In particular, we consider imitator
players characterized by a decision mechanism which is a kind of proportional
imitation rule (similar to that introduced in [Schlag, 1998]) that prescribes, at
each period, the choice given by the weighted average of the previous pe-
riod quantities, whose importance is proportional to the payoff they have re-
spectively generated. We call the players that use such rule “imitator ” agents.
Such a particular form of imitation accounts for the fact that imitator agents are
aware about the presence of strategic interactions. Indeed, generally, within the
framework of experimental oligopolies, it is common knowledge that the price is
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a decreasing function of the total amount of goods in the market, which in turn
is determined by the choices of all players. The awareness about the presence
of strategic interactions thus turns into the consciousness that an action that
brought high profit in the previous period may not produce so good a result in
the present time because of changes in environmental conditions. This inde-
terminacy about the performances that an action will produce is the reason that
led us to consider such a prudent imitative behavior.

We note that the imitation rule here considered does not provide any performance-
based selection. This marks the main difference from the rules considered by
[Vega-Redondo, 1997] and by [Schipper, 2009] where players make a careless
and incautious selection among the quantities to imitate. Indeed, according to
the rule defined by [Vega-Redondo, 1997] every player refuses to imitate every
strategy that did not produce the best result, while, according to the rule de-
fined by [Schlag, 1998], every player refuses to imitate every strategy that has
produced lower profits than his own.

According to the prudent imitation rule as described above, the generic j-th
imitator chooses, at time-period t, the quantity

qI
j,t+1 =

∑
qk∈At

π(qk)qk∑
qk∈At

π(qk)
(2.4)

where At denotes the set of quantities chosen at time-period t. From the re-
currence (2.4) it follows that the strategies of imitators are the same after the
first time period. This means that qI

j,t+1 = qI
k,t+1 = qI for every j, k ∈ N I and

for t > 1.
In what follows we assume that all the players are characterized by the same

initial conditions, namely qi,0 = qj,0 for all i, j ∈ N . In this event, players of
each kind will make the same choices in each time step. It results that gradient
agents will make the same choices in successive periods, that is qi,t = qj,t

for every t > 0 and for every i, j ∈ N G, so their collective behavior can be
described in terms of a single gradient representative agent whose production
at time t is provided by the new variable qG

t . Similarly, in each period t, the
imitator agents’ productions is at the same level for all of them, that is qi,t = qj,t

for every t > 0 and for every i, j ∈ N I. Again, the collective behavior of such
players can be described in terms of a single imitator representative agent
whose production at time t is provided by the new variable qI

t.
Based on the above assumptions, the collective behavior of the whole het-

erogeneous population ofN players is described by the following 2-dimensional
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discrete-time dynamical system:

T :

 qG
t+1 = qG

t + γqG
t

(
a− b

(
(N(1− ω) + 1)qG

t + ωNqI
t

)
− c
)

qI
t+1 =

πI
t

πI
t + πG

t

qI
t +

πG
t

πI
t + πG

t

qG
t

(2.5)

where

πG
t =

(
a− c− bN

(
(1− ω)qG

t + ωqI
t

))
qG
t(2.6)

πI
t =

(
a− c− bN

(
(1− ω)qG

t + ωqI
t

))
qI
t(2.7)

Proposition 1. The dynamical system (2.5) has the stationary state EN given
by

EN = (qN, qN) where qG
N = qI

N = qN :=
a− c

b(N + 1)
(2.8a)

The model (2.5) has further stationary states EL located along the half line
L := {(x, y) | x = 0, y > 0} (where qG = 0 and qI = y).

Proof. See Appendix 5.1 �

It is noteworthy that the stationary state EN of the dynamical system (2.5)
corresponds to the Cournot-Nash notion of equilibrium in the linear oligopoly
outlined above. Finally, the further stationary states that are located along the
half line L represent states of the system where the decision mechanism of
gradient players results in vanishing productions, meaning by this that they are
excluded from the competition. At the stationary states belonging to L, the only
active agents in the market are the imitator ones.

2.1. Local stability analysis: extreme homogeneous cases. The model
(2.5) derived above provides two different types of agents characterized by
heterogeneous decision mechanisms. Under the usual assumption of identi-
cal agents starting from identical initial conditions, that model reduces to a one
dimensional dynamical system if only a type is present. In the case where only
identical imitator agents are present, that corresponds to ω = 1, the dynamics
is simply given by the replication of initial conditions, that is qI

t+1 = qI
t = qI

0.
Otherwise, if only gradient players are present, that corresponds to ω = 0, the
model (2.5) reduces to

(2.9) qG
t+1 = qG

t + γqG
t

(
a− b(N + 1)qG

t − c
)

The nontrivial fixed point of that recurrence is again the Cournot-Nash produc-
tion level E1D

N = qN, the stability condition of which is obtained by imposing that
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the slope of the map (2.9) lies in the unitary interval:

(2.10)
∣∣∣∣∂qG

t+1

∂qG
t

∣∣∣∣ < 1 ⇒
(
1

2
− 1

γ(a− c)

)
< 0

From this last result it can be noted that, in the framework of linear oligopoly
where only gradient players compete among them, the stability of the symmetric
Cournot-Nash equilibrium E1D

N does not depend on the parameter N . This
result is noteworthy since gradient players are similar to best replier players for
which the Theocharis’ rule apply, that is the Cournot-Nash equilibrium is stable
up to N < 3 (see [Theocharis, 1960]).

2.2. Local stability analysis: general case.

Proposition 2. The stationery stateEN is locally asymptotically stable provided
that

ω > ωf : =
3

2

N + 1

N

(
1

2
− 1

γ(a− c)

)
(2.11)

ω < ωns : =
1

2

N + 1

N

(
1

γ(a− c)
+ 1

)
(2.12)

The fixed point EN undergoes to a flip bifurcation at ω = ωf and to a Neimark-
Saker bifurcation at ω = ωns.

The stationary states on L = (0, y), with y > 0, are (hyperbolic) stable fixed
points whenever

(2.13) y > Yns :=

(
a− c− 1

γ

)
1

bωN

At y = Yns the point (0, y) undergoes to a Neimark-Saker bifurcation.

Proof. See Appendix 5.2 �

The destabilizing role of the parameters γ and N is now considered. For in-
creasing values of γ the fixed point EN loses its stability. Indeed, for sufficiently
small values of γ and for whatever values of the other parameters, EN is stable:

lim
γ→0

ωf → −∞(2.14)

lim
γ→0

ωns → +∞(2.15)

and both conditions (2.11) are fulfilled. The stability region in the plane γ − ω
is shown in figure 2.1. Furthermore, there are values of γ for which, given any
set of the other parameters’ values, the stationary state EN can never be stable.
This happens if ωf > ωns whereby both conditions (2.11) can never be satisfied
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FIGURE 2.1. The stability regions of EN in the γ − ω plane.
The blue line marks the occurrence of the flip bifurcation, while
the orange line marks the occurrence of the Neimark-Saker bi-
furcation. The grey region represents points where both condi-
tions (2.11) are satisfied. The other parameters are: a = 10,
b = c = 1 and N = 5.

and this occurs given that γ(a − c) > 8. Those stability and instability results
can be interpreted at the light of the meaning of γ as a measure of the reactive-
ness of gradient players. Indeed, small values of γ induces small production
changes along the direction of increasing profits provided by the marginal profit
∂π(q)/∂q and the optimum quantity is bit by bit approached even if changes
in the profit function, due to collective action of players that determine the vari-
ation of the total output Qt =

∑
i∈N qi,t, occur. On the contrary, at values of

γ beyond the threshold value 8/(a − c), no convergence is achieved due to
strong changes of outputs beyond the optimum values of profits, even when
their changes along the competition take place.

Those analytical considerations are confirmed by numerical simulations, see
figures 2.2 and 2.3, where the bifurcation diagrams of the dynamical variables
qI, qG are presented as the parameter γ increases.

The role of the parameter N in determining the stability features of the
stationary state EN is conditioned by the values of γ. Indeed, provided that
γ(a − c) > 8, otherwise EN is always unstable, different bifurcation succes-
sions are observed. In particular, if γ(a − c) 6 2, the values of ωf are non
positive and the fixed point EN can lose its stability only through a Neimark-
Saker bifurcation for increasing values of N (see figure 2.4 left panel). Indeed
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FIGURE 2.2. Bifurcation diagrams varying γ forN = 5, a = 10,
b = c = 1 and ω = 0.8. Left. Bifurcation diagram of qG (black)
and the value of qG

N (red). Center. Bifurcation diagram of qI and
the value of qI

N (red). Right. Basin of attraction at γ = 0.39
where grey points generate convergent trajectories towards the
5-period cycle whereas orange points originate unfeasible tra-
jectories.

FIGURE 2.3. Bifurcation diagrams varying γ forN = 5, a = 10,
b = c = 1 and ω = 0.4. Left. Bifurcation diagram of qG (black)
and the value of qG

N (red). Center. Bifurcation diagram of qI and
the value of qI

N (red). Right. Basin of attraction at γ = 0.5244
where grey points generate convergent trajectories towards the
chaotic attractor whereas orange points originate unfeasible
trajectories.

it is:

lim
N→0

ωf → −∞ provided that γ(a− c) < 2(2.16)

Furthermore, for sufficiently small values of N , EN is stable

lim
N→0

ωns → +∞(2.17)
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and both conditions (2.11) are met. On the contrary, if γ(a − c) > 2, a double
threshold is observed as shown in figure 2.4, right panel. In this latter case the
fixed point EN is unstable for sufficiently small values of N :

lim
N→0

ωf → +∞ provided that γ(a− c) > 2(2.18)

lim
N→0

ωns → +∞(2.19)

and the first condition (2.11) can never be satisfied. It is worth noticing that the

FIGURE 2.4. The stability regions of EN in the N − ω plane.
The blue line denotes the occurrence of the flip bifurcation,
while the orange line denotes the occurrence of the Neimark-
Saker bifurcation. The grey region denotes the points where
both the conditions (2.11) are satisfied. Left. γ = 0.2. Right.
γ = 1. The other parameters are: a = 10, b = c = 1.

double threshold is present when the amount of imitator agents is greater than
the gradient agents. This fact can be understood by observing that the second
condition (2.11) can be violated provided that ω > 1/2:

lim
N→∞

ωns =
1

2

(
1

γ(a− c) + 1

)
>

1

2
(2.20)

Those analytical considerations are confirmed by numerical simulations, see
figure 2.5 and 2.6, where the bifurcation diagrams of the dynamical variables qI,
qG are presented as the parameterN increases in both cases where γ(a−c) <
2 and γ(a− c) > 2.

A last comment is devoted to outline the destabilizing role of the fraction of
imitator agents ω. From figure 2.1 it can be guessed that at small values of γ the
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FIGURE 2.5. Bifurcation diagrams varying N for γ(a − c) <
2. Parameter are a = 10, b = c = 1, ω = 0.9 and γ =
0.2. Left. Bifurcation diagram of qG (black) and the value of
qG

N (red). Center. Bifurcation diagram of qI and the value of qI
N

(red). Right. Basin of attraction at N = 11 where grey points
generate convergent trajectories towards the chaotic attractor
whereas orange points originate unfeasible trajectories. White
points generate trajectories convergent to L.

FIGURE 2.6. Bifurcation diagrams varying N for γ(a− c) > 2.
Parameter are a = 10, b = c = 1, ω = 0.9 and γ = 0.5.
Left. Bifurcation diagram of qG (black) and the value of qG

N (red).
Right. Bifurcation diagram of qI and the value of qI

N (red).

stationary state EN is stable for whatever value of ω. Such a result is consistent
with the interpretation of γ as the reactiveness of gradient players that leads
the oligopoly to the achievement of the Cournot-Nash equilibrium provided that
quantity changes are fairly gradual. Moreover, in the range γ > 2/(a − c), a
flip bifurcation occurs at ω = ωf and an increase of ω retrieves the stability of
EN. If, also, γ > (N + 1)/((N − 1)(a − c)) a double instability threshold is
present and the Neimark-Saker bifurcation occurs at ω = ωns, thus implying
that a further increase of ω causes the loss of stability of EN. The first stability
result is somehow expected and can be interpreted by saying the imitators give



14EXPERIMENTAL OLIGOPOLIES MODELING: A DYNAMIC APPROACH BASED ON HETEROGENEOUS BEHAVIORS.

inertia to the system, meaning by this that they do not generate new choices by
choosing some among those that are already present, with the effect of slowing
down the dynamics. In this event the trend provided by gradient players, and
followed by imitators, turns to be convergent. However, the second instability
result, which is due to a prevalence of imitators, may appear as a surprising
result as their action tends to replicate past choices. However, if their inertia
is very important, final decisions are not achieved causing the emergence of
cyclic trajectories after a Neimark-Saker bifurcation. Finally, if γ > 8/(a − c),
the stationary stateEN is always unstable. At the light of previous interpretation,
such a fact is due to an overcrowding of too reactive gradient players or to an
excessive inertia introduced by imitators, or to both such factors.

3. EXPERIMENTAL OLIGOPOLIES MODELING

In this section we discuss whether to represent experimental oligopoly dy-
namics by using the model (2.5). The starting point is the main result aris-
ing from experimental oligopolies where no single production level, and then
even no notions of equilibria such as the Cournot-Nash or the competitive (Wal-
rasian) production levels, emerges as the unique outcome of the competition.
Instead, the choices of agents are confined and distributed over a wide range
in the quantity space in which, generally, the Cournot-Nash and the competitive
notions of equilibria are included. This circumstance, found in most of the ex-
periments, is the main coordination phenomenon that spontaneously emerges
(see for example [Oechssler et al., 2016], [Bigoni and Fort, 2013] [Bosch-Domènech and Vriend, 2003]
or [Offerman et al., 2002]). As those evidences do not reveal the prevalence
of a unique common choice, one concludes that no convergence towards a
common decision is achieved. Repeated decisions seems to be mainly unco-
ordinated and, sometimes, erratic. However, weak phenomena of coordination
and synchronization around the Cournot-Nash and the competitive equilibria
are found in most of the experiments (see for example [Oechssler et al., 2016],
[Friedman et al., 2015], [Apesteguia et al., 2010], [Bigoni and Fort, 2013]) even
though they were characterized by different setups designed to reveal spe-
cific features of the behaviors of real players. As an example, great atten-
tion is aimed either to show how the informational set the agents were pro-
vided with induces a particular decision mechanism rather than another (see
[Offerman et al., 2002] or [Apesteguia et al., 2007]) or to reveal the effect of the
decision time (see [Friedman et al., 2015]).
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In particular, the systematic emergence of the competitive notion of equilib-
rium is detected, thus suggesting, at the light of the result provided in [Vega-Redondo, 1997],
that the imitative behavior constitutes a partial component of the decision mech-
anism of the player. Analogously, the systematic occurrence of decisions that
match with the Cournot-Nash production level suggests that the rational behav-
ior can be thought as a further component of the same decision mechanism.
However, both the imitative and the rational behaviors are not sufficient to indi-
vidually explain the experimental outcomes. If so, decisions would match with a
singular notion of equilibrium and the corresponding production level would be
observed with an eventual Gaussian spread due to random factors that affect
decision processes. On the contrary, the presence of such weak coordinations
suggests that the decision mechanisms of agents may include both compo-
nents of rational behavior and imitative behavior.

An attempt to describe the experimental evidences by considering an explicit
model for the agents’ decision mechanisms is provided first in [Huck et al., 1999]
and, later, in [Apesteguia et al., 2010]. In those papers, the decision mech-
anism of agents is considered as if it were made up of different behavioral
components, substantially related to rational behavior and imitative behavior,
simultaneously involved in decision processes. Together with those determin-
istic behavioral rules, the authors also consider a relevant contribution of ran-
dom factors affecting the decision processes to reproduce the distributions of
choices over the quantities’ space observed in experiments.

Here we echo the thought suggested by [Huck et al., 1999] and [Apesteguia et al., 2010]
in order to derive the model (2.5) which describes the competition among play-
ers in a linear oligopoly framework by providing explicit expressions for their
decision mechanisms made up by heterogeneous components (gradient rule
and imitation) that coexists and operate simultaneously. Players’ decisions are
thus modeled as mixed processes. At the same time, differently from the above
cited literature, our model is characterized by having a deterministic structure
and we show that the unpredictable empirical dynamics, taking place within
a finite range of the quantity space that includes both the Cournot-Nash and
the competitive production levels, can be qualitative represented by the chaotic
dynamics that are originated by heterogeneous decision mechanisms, with no
need of any stochastic perturbation. Indeed, the distribution of choices over the
quantity space and the absence of convergence towards a common decision
can be understood through dynamical instabilities. This is a direct consequence
of the approach suggested by [Apesteguia et al., 2010] since it is exactly the
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presence of heterogeneities among decision mechanisms that determines the
complexity of dynamical scenarios. In this view we assert that chaotic dynamics
can represent experimental outcomes.

It is worth noticing that our modeling purpose does not claim to qualitative
reproduce each specific finding from the various experiments provided in the lit-
erature. The model only grasps the main qualitative evidences outlined above.
In this view, the parameters’ selection is performed in order to make the model
capable to give rise to a wide range of complex dynamics in order to represent
the rich outcomes from experiments. This is facilitated by the fact that relations
among parameters placing the dynamical scenarios within chaotic regimes al-
low to perform a not too much accurate selection. In particular, the stability re-
lations (2.11)), as well as the bifurcation diagrams provided in figures 2.2, 2.3,
2.5 and 2.6, reveal that chaotic regimes persist in a wide range (with positive
measure) of parameters’ spaces (look at white regions in figures 2.1 and 2.4).
We finally note that the usage of a linear demand function and constant mar-
ginal costs is in line with the underlying oligopoly framework usually adopted
in experiments and the values of fundamentals, such as the maximum price a
and the marginal cost c, are selected to maintain the numerical values of the
Cournot-Nash and the competitive production levels distinct between them.

Furthermore, in order to make our description closer to the real world exper-
imental conditions, we consider the possibility for the imitator agents to make
mistakes in choosing their own strategies. The sources of error may rely both
on the information retrieval, namely how the knowledge about the latests quan-
tities and related profits in the oligopoly is obtained, and on the evaluation of
the weighted sums (2.4). However, we do not wish to describe in full details
such noise effects and we assume that such perturbations can be modeled by
an additive white and Gaussian noise. So the model (2.5) can thus be rewritten
as follows:

T :

 qG
t+1 = qG

t + γqG
t

(
a− b

(
(N(1− ω) + 1)qG

t + ωNqI
t

)
− c
)

qI
t+1 =

πI
t

πI
t + πG

t

qI
t +

πG
t

πI
t + πG

t

qG
t + ξt

(3.1)

where ξt is the noise that, at each time period, is assumed to be a white Gauss-
ian random variable with 0 mean and variance σ2.

In figures 3.1 and 3.2 some simulations of the model (3.1) for different sets
of parameters are shown. Time series related to the same simulations are
presented in figure 3.3. In those figures the main coordination phenomenon
that confines choices to a finite range of the quantity space, that includes the
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Cournot-Nash and the competitive equilibria, is well represented. Furthermore,
the weaker coordination that makes those notions of equilibrium especially vis-
ited, highlighted by the high frequencies around that production levels, is also
reproduced. More precisely, in the simulations related to the histograms in fig-
ure 3.1 and to the time series on the top of figure 3.3, the dynamical instabilities
are due to a high reactiveness of gradient players. Choices jump on both sides
of the Cournot-Nash equilibria as a result of the loss of stability of EN through
the flip bifurcation and spread away from it to cover a portion of the feasible
region due to the overshooting actions of gradient players. Differently, in the
simulations related to the histograms in figures 3.2 and to the time series on
the bottom of figure 3.3, the dynamical instabilities arise from the preponder-
ance of imitators and the choices oscillate around the Cournot-Nash equilibria
as a result of the loss of stability of EN through the Neimark-Saker bifurca-
tion. Both the simulations highlight that the presence of imitators brings the
oligopoly towards high competitive levels and quantities between the Cournot-
Nash and the competitive equilibria are visited with significantly high frequency
w.r.t. other choices. However, it can be further noted that the overshooting ac-
tion of gradient players makes the outcome particularly undetermined whether
such a rational-like behavior prevails. On the contrary, the preponderance of
imitation behavior brings to a less erratic dynamics as a result of the regularity
of the oscillations aroundEN. The distribution of quantities is characterized by a
greater smoothness than in the previous case, meaning by this that differences
among the frequencies of choices close to each other are, on average, less
pronounced. Such occurrences are almost preserved even in the presence
of small noise perturbations which, despite giving further instability to chaotic
dynamics, do not affect the qualitative behavior of trajectories. At the light of ex-
perimental outcomes, in such a modeling framework imitation behavior seems
to be not so preponderant in favor of the prevalence of the gradient decision
mechanism.

Finally we focus on the possibility to observe such complex scenarios de-
pending on initial conditions. In this section we provide some simulations that
reveal the complexity not only in terms of chaotic trajectories but also with re-
spect to basins of attraction of the attracting sets of the model (2.5). Indeed,
such simulations reveal the circumstance that the Cournot-Nash equilibrium
EN, or a chaotic attractor that is originated once it has lost its stability, is not
globally attracting. This path dependence provides a further modeling tool to
describe the experimental outcomes and the possibilities to observe chaotic
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FIGURE 3.1. Frequencies obtained for the first 50 iterations of
the model (2.5). Parameters are N = 5, a = 10, b = c = 1,
γ = 0.52, ω = 0.4. Left. Unperturbed simulation. Right. Noisy
model with σ2 = 0.04.

FIGURE 3.2. Frequencies obtained for the first 50 iterations of
the model (2.5). Parameters are N = 11, a = 10, b = c = 1,
γ = 0.2, ω = 0.9. Left. Unperturbed simulation. Right. Noisy
model with σ2 = 0.1.

dynamics are conditioned upon the choice of initial conditions. From an inter-
pretative point of view, this gives value to the selection of the initial choices in
the experiments that are represented, in such a modeling framework, precisely
by initial conditions. An example is represented in figure 3.4 where a chaotic
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FIGURE 3.3. Time series of the first 50 iterations of the model
(2.5). From the top down to the bottom parameters are as in
figures 3.1 and 3.2 respectively. In particular on the left the
unperturbed cases (σ2 = 0) are shown and, on the right, the
perturbed ones (σ2 = 0.04; 0.1 from the top down to the bot-
tom).

cycle, originated from a Neimark-Saker bifurcation of EN, together with its basin
of attraction are shown.

FIGURE 3.4. A dynamical scenario from the model (2.5) where
a chaotic cycle (black) around EN (black dot) and its basin of at-
traction (grey points) are depicted. From the orange points un-
feasible trajectories are originated. Finally, white points gener-
ate trajectories towards the half line L. Parameters areN = 10,
a = 10, b = c = 1, γ = 0.25, ω = 0.8.

Furthermore, the model (2.5) may give rise not only to a unique attractor, but
also to the presence of multi-stabilities, that is the presence of two different at-
tracting sets that coexist together. A first evidence of their presence is provided
by the bifurcation diagrams presented in figures (3.5). This aspect is better
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FIGURE 3.5. Bifurcation diagrams of qG and qI, respectively on
the left and on the right, as the parameter γ varies. The coex-
istence of two attractors is observed. Parameters are N = 5,
a = 10, b = c = 1, and ω = 0.6.

understood by looking at the basins of attraction of these two attractors in the
phase space of the model (2.5) shown in figure 3.6. The coexistence of multi-
ple attractors introduces a further degree of complexity that the model is able to
represent. Again, in order to observe chaotic trajectories, not only the stability
properties of the equilibrium point EN matter, but initial conditions matter too.
From an interpretative point of view this confirms the relevance of initial choices
in experiments and adds a further contribution in terms of indeterminacy within
the experimental outcomes modeling framework.

4. CONCLUSION

Within the modeling framework outlined first by [Huck et al., 1999] and later
by [Apesteguia et al., 2010], we derived an explicit expression of decision mech-
anisms of quantity setting players that compete in a linear oligopoly frame-
work in order to model their behaviors on the basis of empirical observations.
Experimental results, indeed, show that no convergence towards a common
decision is achieved and several distributions of choices over a range of the
quantity space, that includes generally the Cournot-Nash and the competitive
(Walrasian) equilibrium, are observed. The same experiments further suggest
that real agents decide how much to produce by the simultaneous operating of
different and coexisting behavioral components, the two main of which may be
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FIGURE 3.6. A dynamical scenario from the model (2.5) where
a 4-period cycle (blue dots), originated from the fixed point EN

(black dot) through a flip bifurcation, and its basin of attraction
(grey points) are present together with a further chaotic attrac-
tor, the basin of which is represented by the set of brown points.
The other orange points originate unfeasible trajectories. Pa-
rameters are N = 5, a = 10, b = c = 1, γ = 0.76062, ω = 0.6.

represented by rationality and imitation. We found that the dynamical scenar-
ios arising from the model (2.5), derived by considering the presence of het-
erogeneous behaviors, are capable to qualitatively reproduce the experimental
outcomes by means of dynamical instabilities and chaotic trajectories even in
the absence of stochastic perturbations. Simulations of (2.5) reveal that the
main coordination phenomenon that limits choices to a finite range of the quan-
tity’s space is explained by the coexistence of rational and imitative behaviors.
Furthermore, the same heterogeneity is capable to represent the weaker coor-
dination that makes the Cournot-Nash and the competitive equilibria especially
visited in simulations.

We finally note that a future stream of research can be devoted to deepen the
dynamical consequences by considering also heterogeneities at an individual
level, namely where mixed behaviors operate simultaneously in the decision
mechanism of a single player. Indeed, the model here discussed is derived
by assuming heterogeneity only on a collective basis, where different players,
characterized by their own decision mechanisms made up by a single behavior,
are considered. A first step in this direction can be taken for an N -player dy-
namic oligopoly assuming that each agent’s decision mechanism consists of a
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mixed combination of the gradient rule and the imitative rule, as derived above.
Further on, introducing positive parameters σi 6 1, with i = 1, ..., N , that
weight the importance of the heterogeneous components within each decision
mechanism, it results the following N -dimensional recurrence:

qi,t+1 = σi

(
q1,t + γqi,t

∂π(q(t)

∂qi,t)

)
+ (1− σi)

(∑
qk∈A(t) π(qk)qk∑

qk∈A(t) πk

)
, i = 1, ..., N

(4.1)

where i ∈ N marks the i-th player. By assuming identical initial conditions, the
model (4.1) reduces to the one considered in this paper (2.3) only if σi = 1 for
i ∈ N G ⊆ N and σi = 0 otherwise. However, even if the consequences by con-
sidering heterogeneities both at a collective and at an individual level have to
be deepened, complexities arising from these two different situations give rise
to significantly different outcomes. Indeed, letting σi = σj for all i, j = 1, ..., N ,
each player has an identical mixed decision mechanism to its competitors and
the whole N -player dynamic game can be described in terms of a one dimen-
sional recurrence at an aggregate level, thus having qualitatively different fea-
tures rather than the model (2.3) which is a two dimensional one.
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5. APPENDIX

5.1. Proof of Proposition 1. The fixed points of (2.5) are the solutions of the
following equations:

T :

 qG = qG + γqG
(
a− b

(
(N(1− ω) + 1)qG + ωNqI

)
− c
)

qI =
πI

πI + πG
qI +

πG

πI + πG
qG

(5.1)

which reduces to: qG
(
a− b

(
(N(1− ω) + 1)qG + ωNqI

)
− c
)
= 0

qIπG = qGπG
(5.2)

The second equation in (5.1) holds true both if qI = qG or if πG = 0, thus fixing,
at least, two stationary states for the dynamical recurrence (2.5).

5.1.1. The first stationary state of (2.5) at which qI = qG. In this occurrence,
the stationary production level of the representative best replier matches with
the Cournot-Nash production level in a linear oligopoly and it is obtained by
using the former equality together with the first equation in (5.1), thus giving
qG = qN := (a − c)/b(N + 1). This, together with the equality qI = qG = qN,
fixes the same Cournot-Nash production level for the representative imitator
agent. The point EN = (qN, qN) is shown to be a stationary state of (2.5).

5.1.2. Other stationary states of (2.5) at which πG = 0. Since πG = (a − c −
bN((1−ω)qG +ωqI)qG the condition πG = 0 is matched if, alternatively, qG = 0

or (a − c − bN((1 − ω)qG + ωqI) = 0. In the first occurrence every production
level of imitators is a stationary state, that is from the second recurrence in
(2.5) one gets qI

t+1 = qI
t = qI

0. So, every point that belongs to the line L :=

{(0, x) | x > 0} is a stationary state. In the second event one gets, from the
first equation in (5.2), the following correspondence

(5.3) qG =
a− c− bωNqI

bN(1− ω)

By using the relation (5.3) into the equation πG = 0 one gets qI =
a− c
bωN

which,

in turn, implies that qG = 0. It follows that such stationary state, given by

(0,
a− c
bωN

), is included in the set L.

5.2. Proof of Proposition 2. The stability properties of the stationary states
EN and those included in the set L are studied by using the characteristic poly-
nomial of the Jacobian matrix J(qG, qI) of the system (2.5) evaluated at those
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fixed points. For the sake of completeness the Jacobian matrix J(qG, qI) is here
presented.

J(qG, qI) =


qIqI + 2qIqG − qGqG

(qI + qG)2
qGqG + 2qIqG − qIqI

(qI + qG)2

−γbωNqG 1 + γ
(
a− c− b(2(N(1− ω) + 1)qG + ωNqI)

)


5.2.1. Stability ofEN. The characteristic polynomial of JN = J(qN, qN) is pN(λ) =

λ2 − trJNλ+ detJN where trace trJN and the determinant detJN of JN are

trJN =
3

2
− γ(a− c) + γωN

a− c
N + 1

detJN =
1

2
(1− γ(a− c)) + γωN

a− c
N + 1

From the Jury’s stability condition, the Cournot-Nash equilibrium EN is stable
provided that

p(1) =
1

2
γ(a− c) > 0 always

p(−1) = 3− 3

2
γ(a− c) + 2γωN

a− c
N + 1

> 0 ⇔ γ(a− c)
(
3

2
− 2ωN

N + 1

)
< 3

detJ(EN) < 1 ⇔ γ(a− c)
(
1

2
− ωN

N + 1

)
> −1

2

from which the conditions in Proposition 2 follow.

5.2.2. Stability ofL. The characteristic polynomial of the Jacobian matrix JL =

J(0, y) computed along the set L is pL(λ) = λ2 − trJLλ + detJL where the
trace trJL and the determinant detJL are

trJL = 2 + γ(a− c− bωNy)

detJL = 1 + γ(a− c− bωNy)

The Jury’s stability condition for the stability of the points in L are as follows:

p(1) = 0(5.4)

p(−1) = 3 + γ(a− c− bωNy) > 0 always(5.5)

detJL = 1 + γ(a− c− bωNy) < 1 ⇔ y >

(
a− c− 1

γ

)
1

bωN
(5.6)

In particular, from the first condition P (1) = 0 one gets that points in L are
hyperbolic fixed points. Indeed, they are characterized by the 1-valued eigen-
value related to the horizontal direction. So their stability derives only from
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their transversal attractiveness determined by the third condition in (5.6) (that
corresponds to (2.13) in Proposition 2), thus implying that the the point (0, y)

undergoes a Neimark-Saker bifurcation at y =

(
a− c− 1

γ

)
1

bωN
.
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