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Abstract We prove two results on the generic determinacy of Nash equilibrium in 
voting games. The first one is for negative plurality games. The second one is for 
approval games under the condition that the number of candidates is equal to three. 
These results are combined with the analogous one obtained in De Sinopoli (Games 
Econ Behav 34:270–286, 2001) for plurality rule to show that, for generic utilities, 
three of the most well-known scoring rules, plurality, negative plurality and approval, 
induce finite sets of equilibrium outcomes in their corresponding derived games—at 
least when the number of candidates is equal to three. This is a necessary requirement 
for the development of a systematic comparison amongst these three voting rules and 
a useful aid to compute the stable sets of equilibria Mertens (Math Oper Res 14:575– 
625, 1989) of the induced voting games. To conclude, we provide some examples of 
voting environments with three candidates where we carry out this comparison. 
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1 Introduction 
 

The Gibbard–Satterthwaite Theorem teaches us that we must limit the number of 
desirable properties that we can ask of our voting systems. But collective decisions 
still need to be made whose outcome is legitimized by the participation in the decision 
process of all the individuals that will be affected by its outcome. This paper is a 
contribution to a positive research agenda that aims at understanding how the electoral 
system determines the political outcome. 

An electoral system must be judged in terms of how it maps the constituency’s 
preferences into the set of possible political outcomes. For this reason, it is impor- 
tant to describe the incentives created by the different voting games generated by the 
different electoral systems and to characterize, in as much detail as possible, their 
sets of equilibrium outcomes. The first step of this process is to qualify what we 
mean by equilibrium. Often voting games have unreasonable Nash equilibria that do 
not successfully capture plausible voting behavior. Farquharson (1969) suggested the 
sophisticated voting principle: reasonable equilibria must survive iterated deletion of 
dominated strategies. Within the more general framework of finite games, the litera- 
ture on equilibrium refinements has proposed a number of other equilibrium concepts 
and rationality requirements.1 It seems that Mertens’ stability (Mertens 1989) is the 
equilibrium concept that satisfies the most comprehensive list of desirable game theo- 
retical properties, including stability against iterated deletion of dominated strategies. 
Therefore, it appears to be the most suitable tool to make equilibrium analysis in voting 
games. 

Of course, the task of comparing voting procedures would be much more feasible 
if there always was a unique equilibrium outcome. Unfortunately, it is often the case 
that uniqueness can only be obtained after imposing restrictive assumptions that are 
not necessarily compelling in every voting situation. Thus, it seems that we have to 
put up with multiplicity of equilibria if we want to deal with a broader realm of voting 
environments and that we should, at best, hope for finiteness in the set of equilibrium 
outcomes. However, this is again impossible if we do not restrict the set of possible 
preference profiles that the electorate can have. We have to, at least, restrict attention 
to generic preferences (i.e. generic points in the space of utility vectors) to obtain  
an appealing terrain where we can analyze voting systems and make comparisons 
amongst them.2 

Indeed, De Sinopoli (2001) shows that, for generic plurality games, the set of Nash 
equilibrium outcomes is finite. (Under plurality, each voter votes for just one candidate, 
the candidate with the most votes wins the election and ties are broken randomly). In 
this paper, we first obtain the analogous result for negative plurality. (Under negative 
plurality, each voter casts a negative vote for just one candidate, the candidate with the 
least negative votes wins the election and ties are broken randomly.) Secondly, we prove 
that under approval voting and generic utilities the set of equilibrium distributions with 
at most three candidates in their support is finite. (Under approval voting, each voter 

 
1 See van Damme (1991) for an excellent review. 
2 Debreu (1970) makes an analogous argument but in the context of pure exchange economies. See also 
Harsanyi (1973), Park (1997), Govindan and McLennan (2001), Govindan and Wilson (2001). 
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casts a ballot that gives one and only one approval vote to as many candidates as she 
wants, the candidate with most approval votes wins the election and ties are broken 
randomly.) These results imply that, if utilities are generic, then each of the stable sets 
of the voting games generated by plurality, negative plurality and approval (with three 
candidates) maps into a unique outcome. Ideally, we would like to obtain the general 
result for approval for an arbitrary number of candidates. We hope that our detailed 
analysis of negative plurality and the partial result for approval help shed light on this 
general case. 

These results can be used to compare plurality, negative plurality and approval 
in some voting environments with three candidates. As we have already mentioned, 
stable sets satisfy iterated deletion of dominated strategies (and the specific order of 
deletion does not matter), i.e. each stable set contains a stable set of the game obtained 
by deleting dominated strategies. Therefore, proving that, for generic preferences, 
each stable set maps into a unique outcome implies that, generically, a dominance 
solvable game has a unique stable outcome. Uniqueness of equilibrium outcomes is an 
important property in voting scenarios. It is argued by Myerson and Weber (1993) that 
the number of equilibrium outcomes has political significance because the larger the 
number of equilibria, the wider is the scope for focal manipulation by political leaders. 
Moreover, there already are results available that give sufficient conditions such that 
plurality, negative plurality and approval voting games are dominance solvable (e.g. 
Dhillon and Lockwood (2004) and Buenrostro et al. (2013)) which can therefore be 
read as sufficient conditions so that those voting games have a unique stable outcome. 
It follows that the set of voting games that are dominance solvable is quite relevant 
because they generate a unique stable outcome whose computation is very tractable. 

For instance, De Sinopoli et al. (2013) compute stable outcomes in a family of 
voting environments where plurality seems to do better than approval. In each of those 
examples, there is a unique stable outcome in the approval voting game and in such an 
outcome the Condorcet winner is never elected. On the other hand, plurality always 
generates a stable set where the Condorcet winner is elected with probability one. In 
turn, we illustrate the main results in this paper by computing the stable outcomes 
generated by plurality, negative plurality and approval voting in some voting environ- 
ments. In particular, along the same lines as Myerson (2002), we consider a voting 
environment where plurality generates discriminatory equilibria in which a univer- 
sally preferred candidate is not regarded as a serious contender (Example 1). We also 
present a voting environment where negative plurality generates too few discrimi- 
natory equilibria, further implying that in every equilibrium outcome, a universally 

disliked candidate is considered a serious contender (Example 2). As in Myerson 
(2002), approval voting gives a good balance between plurality and negative plurality 
in those environments. Furthermore, we present a robust voting environment where 
the unique stable outcome of the negative plurality selects the Condorcet loser with 
probability one (Example 3). To conclude, we also show that there exists an open set 
of utilities where negative plurality seems to outperform approval voting (Example 4). 

In the next section we introduce the voting model in general terms. It can be easily 
specialized to approval, plurality and negative plurality voting. Section 3 contains 
results on the generic determinacy of Nash equilibria in negative plurality and approval 
games. It also introduces some basic properties of stable sets (Mertens 1989) and 
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combines them with the previous results to derive some properties about the stable 
sets of equilibria in generic plurality, negative plurality and approval voting games. 
These are used in the last section to study several simple examples that show some 
of the ways in which the set of equilibrium outcomes varies as we change the voting 
system. Proofs for the generic determinacy of Nash equilibrium in negative plurality 
and approval voting are in the Appendix. 

 
2 The voting model 

 
We consider an election with electorate N  ≡ {1,..., n} and set of candidates K ≡ 
{1,..., k}. Each voter i ∈ N casts a ballot vi ∈ V ⊂ Zk , where V is the set of ballots 

i i entries as candidates where, for every candidate c ∈ K vc is the number of votes 
, i 

given by voter i to candidate c. 
An electoral system must specify the set V of permissible ballots and an elec- 

tion rule that selects a winning candidate from K for  each  ballot  profile  v 
(v 1,..., vn) V V N . For example, in an election with three candidates, the 
set of possible ballots Vp allowed by plurality rule consists of four elements, namely, 
(1, 0, 0), (0, 1, 0), (0, 0, 1) and (0, 0, 0)—the zero vector corresponds to abstention. 
The set of ballots Va allowed by approval voting is obtained by enlarging the set of 
ballots allowed by plurality rule with (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1).3 

Finally, the set of ballots available under negative plurality is Vnp ( 1, 0, 0), 
(0, 1, 0), (0, 0, 1), (0, 0, 0) . 

Let .6.  (K ) denote the set of probability distributions on K . It is reasonable to choose 
an election rule  p : V  → .6.  (K ) that makes the candidates that obtain more support 
more likely to win. Given a ballot profile v ∈ V , the set of winning candidates is 

 

W(v) = c ∈ K : 

 

  

i =1 
vc ≥ 

 

  

i =1 
vd for all d ∈ K 

 
. (2.1) 

And the probability p(c v) that candidate c wins the election if voters cast the ballot 
profile v is 

p(c   v) 0 if c ∈/ W (v), 
1/#W(v) if c ∈ W(v). 

Henceforth we fix the election rule p to be as defined in (2.2). 
Voter i ’s set of mixed strategies is I:i ≡ .6. (V ). As usual, I: ≡ 

Tin 

(2.2) 
 
 

I:i is the set of 
mixed strategy profiles. The probability attached to the ballot profile v = (v1,..., vn) 
by the mixed strategy profile σ = (σ1,..., σn) is σ(v) ≡ 

Tin σi (vi ). Therefore, the 
 

p(c  σ) v V σ(v) p(c v). 
Within this framework, a set of possible ballots V together with a utility vector u 

defines a voting game (V , u). The utility vector specifies for each voter i and each 
 

3 Given the election rule below, (1,1,1) is equivalent to abstention (0, 0, 0). 

n n 

probability that candidate c σ is 
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candidate c, the utility ui (c) to voter i if candidate c gets elected. Therefore, once 
the electoral system is fixed, a voting game is given  by a point in u   U    Rnk .    
The expected utility derived by voter i , if voters play according to the mixed strategy 
profile σ , is computed in the usual manner Ui (σ) c K p(c σ)ui (c). 

Given a voting game (V , u), a Nash equilibrium is a strategy profile σ such that 
for every voter i and every ballot vi , 

Ui (σ) ≥ Ui (σ−i , vi ). 

3 Strategic stability and sophisticated voting 
 

We begin this section with a positive result on the generic determinacy of Nash equilib- 
ria in negative plurality and approval voting games.4 De Sinopoli (2001) already shows 
that generic plurality games have finitely many equilibrium outcomes. Here we use the 
term “generic subset” meaning that its complement is a closed, lower-dimensional, 
semi-algebraic subset of utilities.5 Having fixed a generic subset, we often refer to 
its elements as generic points. Hence we will talk of a generic game if its associated 
utility vector belongs to the generic space where the determinacy results holds. 

In the Appendix we prove the following two propositions. 

Proposition 1 For generic negative plurality games, the set of Nash equilibrium out- 
comes is finite. 

Proposition 2 For generic approval voting games, the set of Nash equilibrium out- 
comes that only place positive probability on three or fewer candidates is finite. 

Whether or not the result extends to the set of all Nash equilibrium outcomes in 
approval games remains an open question. 

As an application, we use these genericity results to establish a link between strate- 
gic stability (Mertens 1989) and sophisticated voting (Farquharson 1969) in negative 
plurality and approval voting games. 

It is well-known that the reduced game that is obtained after applying iterated dele- 
tion of dominated strategies may depend on the order of elimination.6 Farquharson 
(1969) avoids this problem when defining sophisticated voting by deleting every dom- 
inated strategy present in each round. Following De Sinopoli (2000), we eliminate this 
restriction and define an outcome as sophisticated if it can be isolated by at least one 
order of deletion of dominated strategies. (That is, e.g., a voting game can have more 
than one sophisticated outcome). 

On the other hand, we have strategic stability as defined by Mertens (1989, p. 585). 
 

4 Govindan and McLennan (2001) offer a counterexample that shows that this result does not extend to 
general games. 
5 A set is semi-algebraic if it is defined by a finite system of polynomial inequalities. A function or a 
correspondence is semi-algebraic if its graph is a semi-algebraic set. Every set and correspondence defined 
in this paper is semi-algebraic. 
6 Typically, voting games do not have strictly dominated strategies. Here and throughout the paper, by 
dominated strategy we mean a weakly dominated strategy. 
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Mertens’ stable sets satisfy a number of desirable properties that make them an 
appealing concept to analyze, among others, voting games. We do not need the precise 
definition of Mertens’ stability, but only the following three properties (cf. Mertens 
(1989)): 

(α) Every game has a stable set. 
(β) Stable sets are connected sets of admissible (i.e. undominated) equilibria. 
(γ ) A stable set contains a stable set of every game that is obtained after deleting 
a dominated strategy. 

Note that, in our voting games, property (γ ) implies that, for each sophisticated 
outcome, every stable set contains a strategy profile that generates it. Combining these 
properties we obtain: 

 
Proposition 3 If a voting game has finitely many Nash equilibrium outcomes and it 
has a sophisticated outcome then this is the unique sophisticated outcome of the game. 
Furthermore, it is also the unique stable outcome of the game. 

 
Proof Property (β) ensures that every strategy profile in each stable set generates the 
same outcome. By assumption, there are finitely many Nash equilibrium outcomes, 
hence, finitely many stable outcomes. Property (γ ) implies the desired result.         nu 

The main result of this paper readily follows from combining Propositions 1, 2, and 
3. 

 
Theorem 1 If a generic negative plurality game has a sophisticated outcome then it 
is unique and it coincides with the unique stable outcome of the game. Moreover, the 
same result holds for generic approval voting games with a sophisticated outcome 
such that three or fewer candidates win with positive probability. 

 
De Sinopoli (2001) shows that the analogous result holds for generic plurality 

games. In the next section, we use these results to compute the stable sets of equilib- 
ria in some simple examples and to show some ways in which the electoral system 
determines the political outcome. 

 
 

4 Comparing voting systems 
 

In what follows we take the viewpoint that the Condorcet winner, whenever it exists, 
is the most desirable alternative from a social perspective and that the Condorcet loser 
is the least desirable alternative. We begin with the formal definitions: 

 
Definition 1 (Condorcet Winner). A candidate c ∈ K is the Condorcet winner if 

#
 

i ∈ N  : ui (c) > ui (d)
l 

> #
 

i ∈ N  : ui (c) < ui (d)
l   

for all d /= c. 
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Furthermore, we say that a candidate c ∈ K is a weak-Condorcet winner if 

#
 

i ∈ N  : ui (c) > ui (d)
l 

≥ #
 

i ∈ N  : ui (c) < ui (d)
l   

for all d ∈ K , and 

#
 

i ∈ N  : ui (c) > ui (d  )
l 

> #
 

i ∈ N  : ui (c) < ui (d  )
l   

for some d   /= c. 

If the Condorcet winner exists then it is unique. On the other hand, if there is a 
weak-Condorcet winner then it may not be the only one. The definitions of Condorcet 
loser and weak-Condorcet loser are the obvious ones. 

We consider voting environments with three candidates that are always labelled 
a, b and c. Note that, with three candidates, each voter has only two undominated 
strategies: under approval, (1) approving her best candidate and (2) approving her two 
best candidates; under plurality, (1) voting for her best candidate and (2) voting for her 
second-best candidate; under negative plurality, (1) voting against her worst candidate 
and (2) voting against her second-best candidate. To economize on notation, we may 
say that a voter has preferences u (ua, ub, uc) if the utility value that she derives 
when candidate a, b or c wins the election is, respectively, ua, ub and uc. 

Before continuing we remark that every voting environment that we consider has 
a neighborhood where every property that we derive for the corresponding plurality, 
negative plurality and approval voting games holds. Therefore, there is an open set of 
utilities that is contained in the generic set of Theorem 1 for which the corresponding 
voting games have these same properties. 

 

4.1 Discriminatory equilibria 
 

Using Poisson games, Myerson (2002) studies voting rules in terms of their tendency 
to admit discriminatory equilibria, that is, equilibria in which voters disregard a can- 
didate as not a serious contender. He finds that plurality rule tends to generate too 
many discriminatory equilibria while negative plurality tends to generate too few. 
Furthermore, approval seems to give a good balance between the two. 

To illustrate the results in the previous section we consider two examples where we 
compute the stable outcomes of the plurality, negative plurality and approval games. 
In the first one, analogously to Myerson (2002), we show how a universally liked 
candidate can win with probability zero in a stable set of a plurality game. We borrow 
Myerson’s terminology “above the fray” to indicate candidate a’s privileged position 
in the election. 

 
Example 1 (Above the fray). There are three candidates a, b and c and, for some 
integer m > 1, 2m voters grouped into two equally sized subsets. Voters in the first 
subset have preferences a     b     c and voters in the second subset have preferences 
a c b. From a social perspective it is clear that candidate a is the most preferred 
alternative. Furthermore, b, c is the set of weak-Condorcet losers. Nonetheless, the 
plurality game has a stable set where voters in the first subset vote for b and voters in the 
second subset vote for c. It is easy to see that this strategy combination is a strict Nash 
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equilibrium and, therefore, a singleton stable set.7 On the other hand, the approval game 
is dominance solvable. In every undominated strategy profile, every voter approves 
candidate a. Therefore, the approval games has a unique stable outcome which is 
the election of candidate a with probability one. It can also be proven that, once we 
eliminate dominated strategies, every Nash equilibrium of the negative plurality game 
leads to the election of candidate a too.8 By properties (α), (β) and (γ ), candidate a 
wins with probability one in the unique stable outcome of the negative plurality game. 

We have just illustrated how negative plurality may eliminate discriminatory equi- 
libria. Paralleling Myerson (2002) we now show that negative plurality may, in fact, 
generate too few discriminatory equilibria, which can also be harmful. 

Again, we borrow the phrase “one bad apple” from Myerson to express the idea 
that the existence of one bad candidate can spoil the whole election. 

Example 2 (One bad apple). There are three candidates a, b and c and, for some 
integer m, 3m voters that are grouped into three equally sized subsets. Voters in the first 
subset have utility function (3, 1, 0), voters in the second subset have utility function 
(1, 3, 0) and voters in the third subset have preferences that are either a    b    c or 
b   a    c. It should be clear that from a social perspective, candidate c should not 
win the election. The negative plurality game has a stable set such that voters in the 
first subset vote against b, voters in the second subset vote against a and voters in 
the third subset vote against c. The strategy profile is a strict Nash equilibrium and, 
therefore, a singleton stable set. 

In turn, both the approval voting game and the plurality game are dominance solv- 
able.9 The unique sophisticated equilibrium leads to the election of the Condorcet 
winner in both games (in this example this could be candidate a, b, or both could be 
weak-Condorcet winners). By Theorem 1 this is the unique stable outcome under both 
plurality and approval. 

 
 

4.2 Electing Condorcet Losers 
 

We now show a striking property of negative plurality. In an election where the Con- 
dorcet loser exists, negative plurality may select it with probability one. 

 

Example 3 (Negative plurality selects the Condorcet loser with probability one in the 
unique stable outcome). Take five voters with preferences 

 
 

7 Every strict equilibrium is an absorbing retract (Kalai and Samet 1984) and every absorbing retract 
contains a stable set (Mertens 1992, p. 562). 
8 This comes from the fact that, in every undominated strategy profile, no voter casts a negative vote 
against a. Furthermore, in any undominated strategy profile such that some other candidate also receives 
zero negative votes some voter has an incentive to deviate. 
9 Note that in either system, no voter votes for candidate c, therefore, the voting game is reduced to a 
two-candidate contest between candidates a and b. 
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u1 = u2 = (3, 0, 1) 
u3 = u4 = (0, 3, 1) 

u5 = (3, 2, 0). 

Candidate a is the Condorcet winner and candidate c is the Condorcet loser. The nega- 
tive plurality game is dominance solvable. First, eliminate every dominated strategy in 
the game (for each voter, the only undominated strategies are voting against her worst 
candidate and voting against her second best candidate). In the reduced game, voter 3 
and 4’s dominant strategy is to vote against a. After we eliminate voting against c from 
the strategy sets of voters 3 and 4, voter 5’s dominant strategy is voting against c. In 
the last round of elimination, we find that voting against c is a dominated strategy for 
voters 1 and 2, hence, these voters vote against b. Under the resulting strategy profile, 
candidate a collects 2 negative votes, candidate b also collects 2 negative votes, and 
candidate c collects just one negative vote. Therefore, in the unique stable outcome of 
the negative plurality game, the Condorcet loser wins the election. 

Consider now approval voting. In the first round of elimination, keep only the strate- 
gies where every voter approves her most preferred candidate and does not approve her 
least preferred one. In the next round, we find that voter 1 and 2’s dominant strategy 
is to approve only candidate a. Given that, voters 2 and 3 approve only candidate b. 
Finally, voter 5 approves candidate a, which makes a the winner of the election. 

Hence, there are robust voting environments where negative plurality selects the 
Condorcet loser with probability one. Nonetheless, plurality and approval suffer from 
a similar flaw too. In Example 1, we have seen how plurality rule can generate a stable 
outcome where the set of weak-Condorcet losers wins with probability one. Similarly, 
the generic approval game in De Sinopoli et al. (2013, Example 2) has a unique stable 
outcome where the set of weak-Condorcet losers also wins with probability one. 

 
4.3 More on Approval Voting 

 
Approval voting has received a lot of attention by the literature on political economy, 
see for instance Brams and Fishburn (1978), Fishburn and Brams (1981), or more 
recently, Brams and Sanver (2006). However, De Sinopoli et al. (2013) provide a 
family of examples where approval seems to be outperformed by plurality. Even if 
one decides to advocate for approval voting over other voting systems, it is important 
to understand its limitations and the kind of situations where it is not the ideal voting 
system. In any case, we think that these examples prove that none of the voting systems 
considered here is unambiguously superior to the rest. 

In the next example, we compare approval voting with negative plurality.  There 
is a unique weak-Condorcet winner and a unique weak-Condorcet loser. Moreover, 
every voter prefers the weak-Condorcet winner to the weak-Condorcet loser. In the 
unique stable outcome of the approval game both candidates are elected with the 
same probability. In the negative plurality game, the unique stable outcome has the 
weak-Condorcet winner being elected with probability one. 
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Example 4 Take six voters with preferences: 
 

u1 = u2 = u3 = (1, 3, 0) 
u4 = u5 = u6 = (3, 0, 2) 

Candidate a is the unique weak-Condorcet winner: it ties with b and wins against c in 
pairwise contests. Meanwhile candidate b ties with both a and c in pairwise contests. 
It follows that c is the unique weak-Condorcet loser. 

The approval game is dominance solvable. Let us identify strategies (ballots) with 
the collection of candidates approved by the voter. First eliminate dominated strategies 
so that voters 1, 2 and 3 are left with b and ab and voters 4, 5 and 6 are left with a and 
ac. Take voter 1, she will approve candidate b for sure. But when considering whether 
or not approving her second-ranked candidate a she knows that a will receive at least 
3 approval votes, that b will receive exactly 3 approval votes (counting hers) and that 
c will receive at most 3 approval votes. Since the only case in which approving a pays 
off for voter 1 is when a and c are the only two candidates tied at the top and this case 
is impossible, approving both a and b is dominated by approving only b. The same is 
true for voters 2 and 3. 

Voter 4 approves candidate a anyway.  It follows that she knows that both a  and 
b will receive exactly three approval votes and c at most 2. So the only case where 
approving c matters is when it takes exactly 2 votes. In such a case, voter 4 prefers a 
three-way lottery among the three candidates to a two-way lottery between candidates 
a and b. The analysis is symmetric for voters 5 and 6, hence, they all will approve 
both a and c. 

This yields a unique stable outcome where the three candidates are elected with 
probability 1/3. That is, both the weak-Condorcet winner and the weak-Condorcet 
loser are elected with the same probability even though every voter strictly prefers a 
to c. On the other hand, the negative plurality game is also dominance solvable (we 
leave the analysis to the reader) and leads to a unique stable outcome where candidate 
a is elected with probability one. 
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Appendix 1: Generic determinacy of Nash equilibrium in negative plurality 
games 

 
Henceforth, for every i ∈ N we fix the set of pure strategies to be equal to 

 
Vnp ≡ 

 
(v1,..., vk ) ∈ {0, −1}k : vc ∈ {0, −1}

  
. (4.1) 

c∈K 
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With slight abuse of notation we denote by c both candidate c K and the ballot 
that gives a negative vote to candidate c. When that is the case, we say that a voter casts 
a negative vote against c or, simply, that she votes against c. The symbol 0 represents 
abstention. Therefore, we may write Vnp 0 K . 

Before proving Proposition 1 we point out one complication of the analysis of 
negative plurality. There are examples robust to slight utility perturbations such that, 
even if more than one candidate wins with positive probability, abstention can be a 
best response for some voters. Note that the same is not true with plurality or approval 
because voting for the most preferred candidate among those who win with positive 
probability always yields a strictly larger payoff than abstention (as long as the voter 
is not completely indifferent among all the winning candidates). 

Example 5 Consider a negative plurality voting game with set of voters N 
1, 2, 3, 4  and set of candidates K a, b, c, d . Writing ui (ui (a), ui (b), ui (c), 

ui (d)) for voter i ’s utility vector, voters’ preferences are given by: 

u1 = (0, 0, −1, 0), u2 = (4, 3, 0, 6), u3 = (6, 3, 0, 4), u4 = (0, −ε, −1, 0). 

where ε  > 0 is a suitable small number.  A Nash equilibrium of this voting game  
is σ = (c, 1 a + 1 b, 1 b + 1 d, 0). Under this Nash equilibrium, candidates a and d 
win with probability 3/8, and candidate b wins with probability 1/4. Note that for 
voter 4, voting against b, her least preferred candidate among those who win with 
positive probability, is not a best response. The reason is that if voter 4 votes against b 
then candidate c, her least preferred candidate overall, wins with positive probability. 
Moreover, every game in a neighborhood has a close by Nash equilibrium with the 
same characteristics. 

Nevertheless, we must point out that both abstention and voting against candidate 
c are best responses for voter 4 and that abstaining is always a dominated strategy (by 
voting against the least preferred candidate overall). 

Thus, in a Nash equilibrium of a negative plurality game, a voter may find it optimal 
to abstain even in close races. It should also be clear that voting against a candidate 
that wins with zero probability is “similar” to abstention in the sense that, once we 
fix the behavior of the rest of the voters, it does not affect the probability distribution 
over winning candidates. 

We focus on Nash equilibria of negative plurality where more than one candidate 
wins with positive probability. We call such Nash equilibria nondegenerate equilibria. 

Definition 2 The Nash equilibrium σ is nondegenerate if the probability distribution 
p(σ) ≡ ( p(c | σ))c∈K that it induces on candidates satisfies p(c | σ) < 1 for every 
c ∈ K . 

Given that there are exactly k probability distributions where only one candidate 
wins (the point masses on the elements of K ), it is enough to prove that the set of 
equilibrium distributions induced by nondegenerate equilibria is finite. 

Recall that W(v) is the set of candidates that receive the least negative votes 
under the ballot profile v. Given some collection C of ballot profiles, let us write 
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the carrier of σ . Note that C (σ) has a product structure, i.e. C (σ) = i ∈N Ci (σi ), 
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W (C) = 
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v∈C  W (v). For any strategy profile σ we let C (σ ) ≡ {v : σ (vTi) > 0} denote 
 

where Ci (σi )   vi    V  σi (vi )> 0 . Any strategy profile σ with carrier C satisfies p(c σ) < 1 for every c K if and only if #W(C)> 1. Therefore, if #W(C)> 1 
we say that the carrier C is nondegenerate. Given a nondegenerate carrier C , we can 
construct the set of candidates that cannot win if voter i  abstains. Every ballot in   
Ci that consists of a negative vote against one of such candidates is equivalent to 
abstention. That set of ballots, together with abstention, is denoted Ai (C). In sym- 
bols, Ai (C)    Ci  W(C  i ). Note that for any vi , vi

     Ai (C) and any v  i      C  i 
we have W(v i , vi )  W(v i , vi

  ) and, consequently, if C (σ) C we also have 
p(c σ i , vi ) p(c σ i , vi

 ) for every c K . 
Insofar as we aim to establish a result that holds for generic utilities, we can restrict 

the analysis to utility vectors where no player is indifferent between two candidates. 
The set of all such utility vectors is denoted Ũ . The set Ũ  is obtained removing a finite 
number of lower-dimensional hyperplanes from U and its closure coincides with U . 
Assumption 1  For every voter i ∈ N and every pair of candidates c, d ∈ K we have 
ui (c) /= ui (d). 

We fix a point u  ∈ Ũ , a nondegenerate carrier C and a Nash equilibrium σ such 
that C (σ) = C . Take an arbitrary ballot profile v∗ ∈ C that satisfies vi

∗ ∈ Ai (C) 
whenever Ai (C) /= ∅ (otherwise vi

∗ is an arbitrary element of Ci ). For each i ∈ N, 
let K̂i        Ci     Ai (C)    vi

∗   . 
Since σ is a Nash equilibrium, for each voter i N and each pure strategy c Ci , 

the following equality holds: 
   

p(d | σ−i , c)ui (d) =
 
p(d | σ−i , vi

∗)ui (d). 

Subtracting from both sides voter i ’s expected utility if she abstains and letting 
π(d | σ−i , c) ≡ p(d | σ−i , c) − p(d | σ−i , 0), we can rewrite the previous equality 

  
π(d | σ−i , c)ui (d) = 

   
π(d | σ−i , vi

∗)ui (d). (4.2) 

For each voter i , let us select from (4.2) the equalities corresponding to ballots c ∈ K̂i . 
Rearranging those equalities, for all c ∈ K̂i , we obtain: 

− π(d | σ−i , c) − π(d | σ−i , vi
∗) ui (d) 

d∈K̂i 

= π(d | σ−i , c) − π(d | σ−i , vi
∗) ui (d). (4.3) 

d∈/ K̂i 

Therefore,  for  each  voter  i  ∈  N  we  have  k̂i   ≡  # K̂i   equalities.  Suppose  that  we 
know the values assumed by ui  over candidates in K \K̂i . We call this vector ui

∗. We 
can interpret the k̂i   equalities as a system of k̂i   equations in k̂i   unknowns; the set 

as: 



Stable outcomes of approval, plurality, and negative plurality games  
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of unknowns being the values assumed by u over candidates in  K̂i . Let us call this 
vector of unknowns ui

◦ so that ui  = (ui
◦, ui

∗). We let XC  denote the k̂i  × k̂i  matrix of 
coefficients of this system of equations. Hence, the (c, d)-th entry of X is 

 
XC (c, d) = −π(d | σ−i , c) + π(d | σ−i , vi

∗). (4.4) 

We need to show that the matrix XC is always invertible. To this end, we need the 
next Lemma. Recall that a square matrix is an M-matrix (Ostrowski 1955, p. 95) if 
all diagonal elements are strictly positive, all nondiagonal elements weakly negative, 
and all principal minors of all orders strictly positive. 

 
Lemma 1 (Ostrowski 1955, p. 97). Let TI be an n × n M-matrix and let π = 
(π1,...,π j  , . . . ,  πn) be a weakly positive vector. The determinant of the n × n matrix 
X whose (i, j)-th element is given by Xij = TIij + π j is strictly positive. 

Note that the matrix TIC whose (c, d)-th element is −π(d | σ−i , c) and the vector (π(d|σ−i , vi
∗))d∈K̂i  

decompose the matrix X    in the way described in Lemma 1. There- C 

fore, our task is to prove now that TIC is an M-matrix and that (π(d | σ−i , v∗)) ˆ is 
i 

a weakly positive vector. We start with the latter result. 
i d∈Ki 

Lemma 2  Every element of the vector (π(d | σ−i , vi
∗))d∈K̂i   

is weakly positive.   

Proof Recall that we chose vi
∗ so that vi

∗     Ai (C) if Ai (C) . If vi
∗      Ai (C) then 

π(d  σ i , vi
∗)   0 for every candidate d because vi

∗ is equivalent to abstention. If vi
∗ / 

Ai (C) then a negative vote against candidate vi
∗ can never decrease the probability 

that some other candidate d /= vi
∗ gets elected, therefore, π(d | σ−i , vi

∗) ≥ 0 for every 
d ∈ K̂i  (note that vi

∗ ∈/ K̂i  by definition). nu 

To prove that TIC is an M-matrix we proceed in several stages. The first one is to 
show some properties about its entries. 

Lemma 3 The following assertions hold: 

(i) Every nondiagonal element of TIC is weakly negative. 
(ii) Every diagonal element of TIC is strictly positive. 

(iii) Every row in TIC adds up to some weakly positive number. 

Proof Part (i) follows from the proof of Lemma 2. 
To prove part (ii) we need to show that a negative vote against a candidate always 

decreases the probability that she wins the election. For any c ∈ K̂i we have c ∈/ Ai (C), 
so there exists a ballot profile v−i C−i such that c is the candidate that collects the 
least number of negative  votes under (v  i , 0). If some other candidate receives as 
many negative votes, or just one negative vote more than c, then candidate c wins with 
less probability under (v−i , c) than under (v−i , 0). Given that every ballot profile in 
C  i receives positive probability under σ i we obtain p(c   σ i , c)< p(c   σ i , 0). 
Hence, suppose that candidate c receives at least two negative votes fewer than any 
other candidate under every  ballot profile such that candidate c  wins with  positive 
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probability. The carrier C is nondegenerate, so there must be another ballot profile 
vi

 such that c is not the only candidate that receives the least negative votes under (v−
  

i , 0). Since C−i has a product structure, we can obtain the ballot profile v−
  

i  from v−i 
by changing one coordinate at a time. During this process we must find some ballot 
profile v i C i such that, under (v i , 0), candidate c either obtains as many negative 
votes as some other winning candidate or wins the election outright but collecting just 

one negative vote fewer than another candidate. Given that every ballot profile in C−i 
receives positive probability under σ−i , we conclude again that p(c | σ−i , c)< p(c | 
σ−i , 0). 
Part (iii) follows because the decrease π(c σ i , c) in the probability that candidate 

c gets elected when player i votes negatively for c is necessarily equal to the increase 
in the probability that some candidate d ∈ K \{c} is elected. That is, 

 

−π(c | σ−i , c) = 
d∈K \{c} 

π(d | σ−i , c) ≥ 
d∈K̂i \{c} 

π(d | σ−i , c), 

 

with strict inequality whenever π(d   | σ−i , c) > 0 for some candidate d   ∈/ K̂i . nu 

In view of Lemma 3(i)–(ii), to prove that TIC is an M-matrix we now just need  
to show that all principal minors of all orders are strictly positive. To establish this, 
we use result C9 in Plemmons (1977) which says that it is enough to prove that all 
real eigenvalues of TIC are strictly positive. The next Lemma is the first step in this 
direction. 

Lemma 4 The real part of every eigenvalue of TIC is weakly positive. 

Proof The Gershgorin Circle Theorem (Gershgorin 1931) tells us that every eigen- 
value of a square matrix A a can be found in one of the closed disks D a R 
with center acc and radius Rc   d c acd  . Therefore, every eigenvalue of TIC lies 
in some closed disk with center the strictly positive (by Lemma 3(ii)) real number 
−π(c  | σ−i , c) and with radius d∈K̂i \{c} π(d | σ−i , c). Lemma 3(iii) implies that 
the real part of every eigenvalue of TIC is weakly positive. nu 

In order to prove that every real eigenvalue is indeed strictly positive we now show 
that TIC is nonsingular. Lemma 3(i)–(iii) show that TIC is a dominant diagonal matrix. i i 
Recall that a matrix A (acd ) is dominant diagonal if acc d c acd for every 
row c. 

Price (1951) gives the following bound on the determinant A of a dominant diag- 
onal matrix: 

I1 
 

|acc|− 
   

|acd |
   

≤ | A|. (4.5) 
c 

Now we can prove: 
d>c 

Lemma 5 The matrix TIC in nonsingular and, therefore, the matrix XC is also non- 
i i 

singular. 
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Proof Reorder the rows and columns of TIC so that columns (rows) corresponding 
to voter i ’s more preferred candidates appear before columns (rows) corresponding 
to voter i ’s  less preferred candidates. With this reordering of the matrix, if c 
σ i , c) d>c π(d σ i , c) then the decrease in the probability that candidate c 
is elected is equal to the increase in the probability that candidates worse than c 
(according to voter i ’s preferences) win the election. This provides a contradiction 
because, using Assumption 1, voter i ’s utility from voting against c would be strictly 
lower than under abstention, which contradicts the fact that σ is a Nash equilibrium. 
Consequently, π(c   σ i , c)> d>c π(d σ i , c) for every candidate c. 

In light of Lemma 3(i)–(ii) we can apply Eq. (4.5) to TIC knowing that every term 
on the left-hand side of (4.5) is strictly positive. Therefore, TIC is nonsingular and, 
given that we already established that every real eigenvalue of this matrix is weakly 
positive, TIC is also an M-matrix. We can now apply Lemma 1 to conclude that XC is i i 
nonsingular. nu 

Therefore, if for each voter i we know ui
∗ then we can reconstruct the entire vector 

of utilities u using the strategy profile σ and the system of Eq. (4.3). This allows us 
to construct a continuous function (u∗,σ) ≡→ (u∗, u◦) from the set of Nash equilibria 
with carrier C  to the set of utility vectors Ũ . The next step of the proof is to apply 
the following result to such a function. It follows from the Generic Local Triviality 
Theorem (Bochnak et al. 1998). 

 
Lemma 6 (Govindan and Wilson 2001) Let X and Y be semialgebraic subsets of Rm 

and let f : X → Y be a continuous semi-algebraic function. If dim(X ) ≤ dim(Y ) 
then, for generic y ∈ Y, f −1(y) is a finite or empty set. 

We now have all the necessary ingredients to prove Proposition 1: 
 

Proposition 1 For generic negative plurality games, the set of probability distribu- 
tions on candidates induced by Nash equilibria is finite. 

 
Proof  If only one candidate can win under the carrier C (i.e. if # v C W(v) 1) 
then the set of equilibrium distributions induced by Nash equilibria with carrier C is a 
singleton and, therefore, necessarily finite. Hence, let the carrier C be nondegenerate. 

Furthermore, let us first consider those carriers C such that Ai (C), i.e. the set of 
votes equivalent to abstention, satisfies #Ai (C) 1 for every player i . 

Given a utility vector u, the set of Nash equilibria of the corresponding nega-  
tive plurality game is denoted by NEnp(u). The graph of the Nash equilibrium sub- 
correspondence that contains only Nash equilibria with carrier C is 

 
GNEC ≡  

 
(σ, u) ∈ I: × Ũ  : σ ∈ NEnp(u) and C (σ ) = C 

l 
. 

 

Write EC   for the projection of GNEC   on I: and on those coordinates of Ũ  that 
contain, for each voter i , her utility to candidates in K \K̂i  (that is, those coordinates 
of Ũ  where we can find the entries of the subvector u∗ = (u∗

1 , . . . , u∗
n )). 
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onto I: K × Ũ . That is, in this projection, we only eliminate those components 

np i ∈N 
on I: and on those coordinates of Ũ  

np 

We write EOC for the projection of GNEOC 

Lemma 5 implies that there is a continuous function  f C C    → Ũ  mapping 
(u∗, σ ) into u = (u◦, u∗). The function  f C  is also semi-algebraic. Since dim(Ũ ) = 
nk, in view of Lemma 4, the only thing remaining to show is dim(EC ) nk. 

For each voter i , the dimension of her subset of strategies that have carrier Ci  is 
dim (.6.  (Ci )) = #Ci  − 1  = k̂i  (recall that we assumed that #Ai (C) ≤ 1 for every 

player i ). Therefore, the dimension of GNEC   is at most 
 

i ∈N  k̂i + nk. Consequently, 

dim 
(

EC 
) 

≤ 
  

k̂i  + nk − 
  

k̂i  = nk. 
i ∈N i ∈N 

Applying Lemma 6 to the function  f C  : EC   → Ũ  shows that for generic games 
u     Ũ  the set of Nash equilibria with carrier C is finite. 

We now consider those carriers C such that #Ai (C) > 1 for some player i . As 
argued before, Example 5 shows that there is an open set of utilities for which the 
negative plurality game has a continuum of Nash equilibria so, clearly, we cannot 
hope to prove that for generic games u      Ũ  the set of Nash equilibria with carrier 
C is finite. However, in that example, different Nash equilibria contained in the same 
continuum only differ on how the strategy of each player i assigns probabilities over 
the different elements of Ai (C). Moreover, different such assignments do not affect 
the resulting probability distribution on candidates because elements of Ai (C) are all 
equivalent to abstention. 

Recall that, for each player i , we defined K̂i   ≡ Ci \(Ai (C) ∪ {vi
∗}). (Also recall 

that our choice of vi
∗ was such that vi

∗ ∈ Ai (C) whenever such a set was nonempty.) 

With abuse of notation, let I: K̂ ≡ 
Tin RK̂i . We define as GNEOC   the projection of 

  of the strategy profile that we do not need to compute the equilibrium outcome p(σ).10 

Note that dim 
(

GNEOC  
) 

≤ 
  

k̂i  + nk. 

where we can find the entries of the subvector u∗ (u∗
1 , . . . , u∗

n ). For each player i , the 
values that her mixed strategy assumes on Ai (C) are neither needed to construct the 
system (4.3) nor used to show that it always has a solution. Hence, Lemma 5 implies that 
there is a continuous function gC   : EOC   → Ũ  mapping (u∗, σ ) into u = (u◦, u∗). 
The proof  now  follows the same lines as before. The only difference  is that  when 
applying Lemma 6 to the function gC    : EOC    → Ũ  we conclude that for generic 

games u ∈ Ũ  the set (gC )−1(u) is finite so that 
  

p(σ ) : σ ∈ NEnp(u) and C (σ ) = 

C 
l 

is also finite. nu 
 

 
10 Note that we do not need to know how any voter i distributes probability among elements in Ai (C). 
This distribution only affects the distribution of probability between ballot profiles with the same set of 
winning candidates and different number of negative votes for losing candidates. 
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Appendix 2: Generic determinacy of Nash equilibrium in approval games with 
three candidates 

 
In this section we fix the set of candidates K  a, b, c , Hence, we write each player’s 
set of pure strategies as Va  abc, ab, ac, bc, a, b, c, 0 , where each ballot represents 
the set of candidates approved by the voter. 

As in the case of negative plurality, we point out the main complication that we face 
when trying to prove that for generic approval voting games the set of equilibrium 
outcomes is finite. The next example is a generic approval game with three candidates 
and a continuum of Nash equilibria. 

 
Example 6 Consider an approval game with set of candidates K a, b, c and five 
voters with preferences: 

 

u1 = u2 = (4, 2, 1), 
u3 = (1, 4, 3), 
u4 = u5 = (2, 1, 3) 

Consider the following continuum of Nash equilibria of this game: 
 

  
 3 

a + 2 
γ ab + 2 

(1 − γ )b, ab,
 2 

bc + 3 
b, c, c) : 0 ≤ γ ≤ 1

 
. 

At every point in this continuum, voter 1 faces with probability 2 a ballot profile 
where candidates a, b, and c receive, respectively, 1, 2, and 3 approval votes. With 
the remaining probability 3 , voter 1 faces a ballot profile where candidates a, b, and 
c receive, respectively, 1, 2, and 2 approval votes. Thus, voter 1 can make candidate 
a win with positive probability by approving that candidate as long as she does not 
approve candidate b as well. In more general terms, we can think of ballots b and ab as 
being equivalent from the viewpoint of voter 1 in the sense that, given the opponents’ 
behavior, they generate the same probability distribution over winning candidates. 

Note that every Nash equilibrium in the continuum induces the same probability 
distribution ( pa, pb, pc) = ( 3 , 1 1 , 1 1 ). Voters 2, 4 and 5 are playing a strict best 
reply while voters 1 and 3 equilibrate each other’s expected utilities by playing mixed 
strategies. Hence, every game in a neighbourhood of this one has a continuum of Nash 
equilibria with the same characteristics. 

 
Besides K    a, b, c  and the set of possible ballots Va , we also fix the set of voters 

N , and a utility vector u that satisfies Assumption 1. Take a Nash equilibrium σ such 
that every candidate wins with positive probability, i.e. letting C ≡ C (σ), we have 
W(C) = K . 

Given the carrier C , we partition Ci into equivalence classes. Two ballots vi , vi ∈ 
Ci are equivalent if W(v−i , vi ) = W(v−i , vi

 ) for every v−i ∈ C−i . For instance, 
in Example 6, strategies b and ab are equivalent for voter 1 because W(v−1, b) = 
W(v−1, ab) for every v−1 ∈ {ab}× {b, bc}× {c}× {c}. 
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For the time being we focus on a voter i with preferences a i b i c. Furthermore, 
with slight abuse of notation, we let a denote the ballot that approves candidate a, b 
denote the ballot that approves candidate b, and ab denote the ballot that approves 
both candidate a and candidate b. 
Lemma 7 Let C be the carrier of a Nash equilibrium σ of an approval game with set 
of candidates K ≡ {a, b, c}. Suppose W(C) = K and let player i have preferences 
a >-i b >-i c. Then, 

(i) abstention is not in Ci , 
(ii) no ballot in Ci approves candidate c, and 

(iii) if b ∈ Ci and ab ∈ Ci then ab and b belong to the same equivalence class in Ci . 
Proof We start with part (i). Looking for a contradiction let v (0, v i ) C be such 
that a W(v). If, under v, candidate a is tied in the first place with other candidate 
then we are done because a would be a better response to σ than abstention. If a 
wins unopposed under v then substitute, for one voter at a time, the ballot where they 
approve a to some other ballot in their carrier where they do not. Given W(C) K 
and the fact that C has a product structure, proceeding in this way we must find a 
ballot profile v (0, v i ) such that, either a is tied in the first place with some other 
candidate or candidate a receives just one vote fewer than the winning candidates. 
In either case, this shows that approving candidate a is a better response to σ than 
abstention, thus, v / C . 

To prove (ii) by contradiction let vi Ci be a ballot that approves candidate c and 
let vi

    be the ballot that we obtain from vi by removing the approval vote for c. Ballot 
vi

     is also best response against σ−i and it is not a better response than vi only if the 
additional approval vote for c in vi does not increase the probability that c wins. That 
means that for every v i such that c W(v i , vi

 ), under (v i , vi
 ), candidate c must 

receive at least one approval vote more than candidates a and b. At least one such a 
v i exists because c W(C). In turn, for every v i C i such that c / W(v i , vi

 ) 
candidate c  must receive at least two approval votes fewer than a  and b. There is  
at least one such a v i   because a, b   W(C). Since C  i  has a product structure,   
by changing the ballot of one voter at a time we must find a v i  such that, under    
(v i , vi

 ) candidate c is either tied at the first place or just one approval vote behind the 
winning candidates. Such a v i receives positive probability under σ i and, therefore, 
vi

 is a better response than vi against σ i . We conclude that no ballot in Ci approves 
candidate c. 

Let us move to (iii). If b Ci then ab is also a best response against σ  i because C 
is the carrier of a Nash equilibrium and voter i ’s utility can never decrease when her 
most preferred candidate receives an additional approval vote. Furthermore, ab is not 
a better response only if that additional approval vote does not increase the probability 
that a wins. That is, if W (v−i , b) = W (v−i , ab) for every v−i  ∈ C−i . un 

A consequence of this Lemma is that Ci is partitioned into at most two equivalence 
classes. When this is indeed the case and voter i has preferences a i b i c, for any 
Nash equilibrium σ with carrier C , we can write 

   
p(d | σ−i , a)ui (d) =

 
p(d | σ−i , ab)ui (d). 



 

 

 

| /= |− 
   

                
|

 − |   =  |  − |−  
          

 

(We show below that a and ab cannot belong to the same equivalence class, so we are 
in fact taking a and ab to be the representatives of the two equivalence classes in Ci .) 
Rearranging, 

 
p(b   σ i , ab) p(b   σ i , a) ui (b) p(a   σ i , a) p(a σ i , ab) ui (a) 

+
 
p(c | σ−i , a) − p(c | σ−i , ab)

 
ui (c). 

We want to show that if ui (a) and ui (c) are known then we can use the equilibrium 
strategy to find out ui (b). That is true as long as p(b σ i , ab) p(b σ i , a). The 
next Lemma establishes that this is indeed the case. 

 
Lemma 8 Let C be the carrier of a Nash equilibrium of an approval game with set of 
candidates K ≡ {a, b, c}. Suppose W(C) = K and take a player i with preferences 
a >-i b >-i c. If ab, a ∈ Ci then ab and a do not belong to the same equivalence class. 

Proof The proof follows the same lines as the proof of Lemma 7(ii). Assume that 
W(v−i , a) = W(v−i , ab) for every v−i ∈ C−i . This implies that for every v−i ∈ C−i 
such that b ∈ W(v−i , a), under (v−i , a), candidate b receives at least one approval 
vote more than a and c. There is at least one such a v−i because b ∈ W(C). In turn, in 
every v−

  
i  ∈ C−i such that b ∈/ W (v−

  
i , a), under (v−

  
i , a), candidate b receives at least 

two approval votes fewer than the winner. There is at least one such a v−
  

i  because a, 
c ∈ W(C). Since C−i has a product structure, by changing the ballot of one voter at a 
time we must find a v−

   
i  such that, under (v−

   
i , a), candidate b is either tied at the first 

place or just one approval vote behind the winning candidates. For such v−
   

i  we have 
W (v−

   
i , a) /= W (v−

   
i , ab). un 

Thus, in more general terms, if we know the utility derived by each voter from her 
top- and bottom-ranked candidates then there is a semi-algebraic continuous function 
that, knowing σ , gives us the whole vector of utilities.11 Paralleling the proof of 
Proposition 1, in the proof of the next proposition we apply Lemma 6 to such a 
function. 

 
Lemma 9 For generic approval voting games with three candidates, the set of Nash 
equilibrium outcomes is finite. 

 
Proof Clearly, there are three probability distributions such that just one candidate 
wins with positive probability. If only two candidates win with positive probability 
then the strategic interaction reduces to the one in a plurality voting game. In such  
a case, a similar argument to the one applied in De Sinopoli (2001) proves that for 
generic utilities the set of Nash equilibria where two candidates win with positive 
probability is finite. 

Thus, take a nondegenerate carrier C such that all three candidates win with positive 
probability. Given a utility vector u, let NEa(u) be the set of Nash equilibria of the 

 
11 In this case the system of equations is quite simple. For each voter whose set of pure best responses has 
two or three elements we only have one equation and one unknown. 
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corresponding approval voting game. The graph of the Nash equilibrium sub-corres- 
pondence that contains only Nash equilibria with carrier C is 

GNEC  ≡ 
 
(σ, u) ∈ I: × Ũ  : σ ∈ NEa(u) and C (σ ) = C 

l 
. 

We have dim(GNEC ) ≤ 
 n (#Ci − 1) + nk. Let N̂ be the set of voters i with two 

to each voter i ∈ N̂ if her second-ranked candidate wins the election. Write Ũ ∗ for the 
projection of Ũ  on the corresponding coordinates so that u∗ ∈ Ũ ∗. Letting n̂ = # N̂ , 
we obtain dim(Ũ ∗) = nk − n̂. Furthermore, let EOC  be the projection of GNEC  on 
Ũ ∗ and on those coordinates of the strategy space that capture the probability with 

which each voter only approves her corresponding top-ranked candidate. That is, EOC 

contains just the part of the strategy profile that we actually need to compute the set 
of Nash equilibrium outcomes for a given Nash equilibrium with carrier C .12 

We argued above that there is a semi-algebraic continuous function  f C  : EOC → 
Ũ  mapping (u∗, σ ) into u      (u◦, u∗). We have dim(Ũ )    nk. Hence, in order to 
apply Lemma 6, we now prove that dim(EOC ) nk. However, for every voter i such 
that Ci has two equivalence classes the set of possible probabilities that she can attach 
to the ballot that just approves her top-preferred candidate is one dimensional. Thus, 
we obtain: 

dim 
(

EOC 
) 

≤ n̂ + dim(Ũ ∗) = n̂ + nk − n̂ = nk. 
Applying Lemma 6 to the function  f C  : EOC  → Ũ  shows that for generic games 

u ∈ Ũ  the set of outcomes induced by Nash equilibria with carrier C is finite. Since 
there are only finitely many carriers, the desired result follows. nu 
Remark 1 Extending the result to any number of candidates is challenging. Vaguely 
speaking, to apply Lemma 6, for each player, we need to recover as many utility values 
as the dimensionality of the set of probability distributions that that player can induce 
by changing her strategy. However, note that if the number of candidates is x then the 
number of strategies is 2x . Hence, it seems that we need a better understanding about 
how the set of best replies looks like in an approval voting game. Note, for instance, 
that Nash equilibrium strategies are not necessarily sincere (De Sinopoli et al. 2006), 
that is, if a voter approves a candidate c she does not necessarily also approve every 
candidate that she prefers to c. 

We now finish the proof of Proposition 2. 
Proposition 2 For generic approval voting games, the set of probability distributions 
on three or fewer candidates induced by Nash equilibria is finite. 
Proof Take an arbitrary set of candidates  K  and a Nash equilibrium σ that induces 
a probability distribution that gives positive probability to exactly three candidates, 
say, c1, c2 and c3. Construct a three-candidate approval game by choosing those three 

 
12 Note that we do not need to know how a voter distributes probability between two elements of an 
equivalence class. This distribution only affects the distribution of probability between ballot profiles with 
the same set of winning candidates and different number of approval votes for losing candidates. 

contains the utility 
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candidates. Interpreting ballots under approval as subsets of candidates, we define 
the strategy profile σ of the three-candidate game by σi

 (vi
 ) = {vi :vi

 ⊂vi } σi (vi ) for 
every i N and every vi

 c1, c2, c3 .13 It is not difficult to see that σ is a Nash 
equilibrium of the three-candidate approval game. A similar thing can be done if two 
candidates win with positive probabilities. Finally, we note that the set of degenerate 
distributions on candidates is necessarily finite. nu 
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13 The strategy σ is well defined. Candidates c1, c2 and c3 (and only them) all win with positive probability 
under σ . Hence, if σ is an equilibrium, every voter approves at least one of them in every pure strategy that 
is played with positive probability. 
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