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Abstract

We present results of three wide-band directed searches for continuous gravitational waves from 15 young
supernova remnants in thest half of the third Advanced LIGO and Virgo observing run. We use three search
pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these
sources, the searches are conducted over a fRequency band spanning from 10 to 2 kiktz n@/evidence of
continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95%
con dence level in sample subbands, estimate the sensitivity in the full band, and derive the corresponding
constraints on theducial neutron star ellipticity andmode amplitude. The best 95% cdence constraints

placed on the signal strain are ¥. 20 ?°and 7.8< 10 2° near 200 Hz for the supernova remnants G3@2and
G65.7+1.2, respectively. The most stringent constraints on the ellipticity-amatle amplitude reacil0 " and

< 10°°, respectively, at frequencies abovd00 Hz for the closest supernova remnant G2862 Vela Jr.

Unified Astronomy Thesaurus concepts: Gravitational wave$678); Gravitational wave astronon{g75);
Supernova remnan{d667); Neutron star$1108

1. Introduction Wette et al202]). This work searches for CWs from SNRs in the
rst half of the third observing ruf®39, which commenced on

Transient gravitational waveWg from compact binary 2019 April 1 and ended on 2020 March @¢ternese et ak015

coalescencefAbbott et al.2019h 20213 have been directly

observed by the Advanced Ladaterferometer Gravitational- Buikema et al2020). . .
Wave ObservatorfAdvanced LIGQ detectorgAasi et al20153 Yqung heutron stars in SNRs_are one potential source of
and the Advanced Virgo detectqfcernese et al.2015. continuous, quasi-monochromatic GWs. If pulsations are

Continuous GWCWS9 have not yet been detected. The most observed in electromagnetiq emission from the _neutron ;tar,
likely sources of CWs detectaltig ground-based interferometers ON€ can search for CWs guided by the ephemerides obtained
are nonaxisymmetric, rapidly réity neutron stars. Searches for T0m those observations, as in, e.g., Abbott {20199 and

CWs have been carried out targeting various isolated sourced bPott et al.(2020. Even so, there is no guarantee that the
including known pulsars with electromagnetic ephemeridesGW'em_'tt'”g quadrupole is phase locked to the electro-
(Abbott et al.2019¢ 20218, neutron stars without ephemerides Magnetic pulsations. When there is no phase locking, search
in the galactic center or in globular clust¢msi et al.2013 ~ algorithms are needed that can track snfafid possibly
Abbott et al.2017 Dergachev et aR019 Piccinni et al.2020), randomly varyinyidisplacements between the gravitational and
neutron stars in binary systergibbott et al.2019d Middleton electromagnetic frequenci@sbbott et al.2019a Beniwal et al.

et al.202Q Zhang et al2021), and young supernova remnants 2021). If the neutron star does not pulsate, it may be observed
(SNRs; Aasi et al2015h Sun et al.2016 Ming et al. 2019 as an X-ray point source, known as a central compact object
Abbott et al.2019e Lindblom & Owen202Q Millhouse et al. (Gotthelf et al2013. In the latter scenario, the maximum GW
202Q Papa et al202Q Beniwal et al202]). Searches have also strain can be inferred from the age of the S{\Rette et al.
been conducted over the whole sky for CWs instead of targeting?008 Riles 2013, as has been done in recent GW searches
at a particular directiogAbbott et al2019f Covas & Sinte202Q (Millhouse et al.202Q Beniwal et al.2021).

Dergachev & Papa02Q Abbott et al.2021¢ Steltner et al2021; A rotating, nonaxisymmetric neutron star has a time-varying
mass quadrupol@rom the point of view of a distant obseryer
284 Deceased, August 2020. and emits GWs at a strain proportional to the stellar ellipticity,


http://astrothesaurus.org/uat/678
http://astrothesaurus.org/uat/675
http://astrothesaurus.org/uat/1667
http://astrothesaurus.org/uat/1108
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which is affected by the nuclear equation of state, the history ofinterpretation are discussed in Secto conclusion is given
strain buildup and diffusion in the crust, and the magnetid in Section 6. The postprocessing procedure applied to the
con guration(Glampedakis & Gualtie2018. For an isolated  candidates idented in each search is presented in
star, young neutron stars may have larger nonaxisymmetriedppendixA. Technical details on the pipelines are described in
than older ones and consequently may produce stronger GWAppendixB.
emissions(Knispel & Allen 2008 Riles 2017. As the star

ages, ohmi¢Haensel et all990, thermal(Gnedin et al2001

Potekhin et al2015, tectonic, or other relaxation processes

work to reduce the asymmetries introduced in the birth process. The target SNRs are selected from the Green supernova
Young neutron stars are therefore promising targets for cwecatalog(Green2019 and the SNRcat, an online catalog of
searches. The GW frequency is proportional to the stellar spifhigh-energy galactic SNRs hosted by the University of
frequency f.. For thermoelastiqUshomirsky et al.200Q Manitoba (Ferrand & Sa-Harb 2012 SNR 2020, as SNRs
Johnson-McDaniel & Owe@013 or magnetic(Cutler 2002 with X-ray point sources are likely to contain neutron stars. Of
poles, the predicted frequency is eithesr 2f,; -mode current  Pipelines, while the remaining 8 are only searched by the
quadrupoles emit at4f,/3 (Andersson1998 Owen et al.  Single-harmonic Viterbi pipeline. The characteristic ages of the
1998 Caride et al.2019, with minor equation-of-state- Neutron stars are inferred from the estimated supernova ages
dependent corrections; also, pinned supigls in neutron stars  liSted in the table. In the three pipelines, we cover parts of
may produce CWs at frequencies proportiongl (done<201Q dlfferent_parameter spaces, (_:or_respondmg to slightly dlffer_ent
Melatos et al2015. assumptions of the characteristic age of the star. See Séction

: ; ; for details for each pipeline.

In young, rapidly rotating neutron stafs,evolves quickly X . .
under the action of gravitational and electromagnetic torquesob-gzreviln5 ?Llj\lnlzsl;,:lj?rr?op(r:?/\\lll(;lijskgls\?vgrsc? deedatljn /ihbebgﬁrgf;|LIGO
(Knispel & Allen2008 Riles2013. R_a_pld spin-down in young 019 Li%dblonH & Owen2028 Millhouse et a(ll 2020 Pa é
SNRs creates challenges for traditional CW search methods.ét ale2020 Additionally, Papa et al(2020 herformedpa
especially over a long observation with durati@ps = 1 yr. ' : ’ . . ;
Most previous searches for SNRs have been restricted to shoiﬁ!?vgéigriﬁarﬁznf%rf Zlét\)/t:r:(zzgoﬂ?c;%%q;“(d@itﬁs ;b;?ggfgm the
(~1 mont) stre.tches of dat¢e.g., Abadie et aIZqu Abbott for three of t%e SNRs, Cassiopeia(Bas A g/ela jr. and
et al. 20199, limited parameter spap(e.g., Llndblom & G347.30.5, using data collected in the second observing run
Owen2020, or have had a high associated computational costof Advanced LIGO(O2), and reported one possible CW
€.g., Sun et al2016 Papa et aI20_2(). Accounting for spin- andidate in G347-3.5. This fully coherent follow-up search
down in a coherent search requires a very large number oﬁ

L ” ...~ uses two stretches of data in Q2.qn~ 4 months each As
templates, which increases computation cost beyond feas'b'“tyindicated in Tabld, only the single-harmonic Viterbi pipeline
Furthermorey, may wander randomly, a phenomenon known (which allows for stochastic spin wandeningearches
as spin wandering or timing noigidobbs et al201Q Shannon G347.30.5 semicoherently using a shoft., Since the
ﬁl‘ CELdeS 2?1?20IzrlcFe) etL a|.20;|!.\2 '?Ségg)ln it aI.20t15| signal-to-noise ratio roughly scales7T!/?, the sensitivity
Zgzr?) S‘S; ?0 ?Jnkngwna{nt:rsnjﬁoryn?agnetogspr?(\el\:ﬁzr Sroiésse resented in Papa et 42020 exceeds that presented here

' . . or G347.30.5, provided that the signal power leaked into
(Cordes & Greensteil981 Melatos & Link 2014. One provi 9 Pow !
computationally efcient alternative to a coherent search is a

adjacent frequency bins due to the spin-down and spin
' . , . N wandering over the coherent duration is negligible. In addition,

semicoherent search in which the integration is calculated;

coherently on blocks of short duratiof.,, and added

he candidate reported in Papa et (@020 was originally
incoherently over the fullypg

identi ed as a subthreshold one. Therefore, it is not surprising
; ) that we do not nd a possible candidate in G34403%.
We apply three semicoherent methods to search for signals
from 15 known young SNRs in the data collected in thet ]
half (6 month3 of O3: the directed Band-Sampled-D&SD) 3. Instrumental Overview and Data

pipeline (Piccinni et al.2018, based on the FrequencyHough  The 03 observing run started on 2019 April 1 at 15:00 UTC
(FH) transform(Astone et al2014h Antonucci et al.2008, and ended on 2020 March 27 at 17:00 UTC. For the search, we
and the single-harmonic Viterbi and dual-harmonic Viterbi yse data collected by the two Advanced LIGO detectors in
pipelines, both based on a hidden Markov mo@t¢MM)  Hanford, WashingtoifH), and Livingston, Louisiané.), and
tracking schemgSun et al.2018 2019. The two Viterbi  Advanced Virgo in the rst half of O3, from the start until 2019
methods achieve a lower sensitivity compared to the BSDQctober 1. This time period is referred to“&3a’ The data
pipeline but take into consideration the uncertainties associatedollected by the two LIGO detectors during the second half of
with the stars stochastic spin evolution, with one of them QO3 (03b), starting from 2019 November 1 until the end of O3,
tracking two harmonics of the starspin frequency simulta-  are used by the BSD pipelif§ection4.1) and dual-harmonic
neously (Sun et al.2018 2019, making the three methods Viterbi pipeline(Section4.3) to cross-check candidates. Data
complementary to each other. collected by Virgo are only used by the BSD pipeline, which
The structure of the paper is as follows. In Secfpnve runs the initial search using individual detectors separately
introduce the 15 young SNR targets, listing their location, (Sectiord.1). In the two Viterbi-based pipelines, the Virgo data
estimated age, and distance. In Sec8pwe brie y describe are not used owing to the detec¢torelatively lower sensitivity,
the interferometric data analyzed. In Seclpwe review each  and the two pipelines both operate on all detectors combined.
of the three search methods and the parameter space coveredlll three pipelines use data collected when the detectors are in
The strain upper limits, estimated sensitivity, and astrophysicalthe nominal low-noise observing mofizavis et al2021). The

2. Targeted Sources

9
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Table 1
The 15 SNRs Covered in This Analysis
Source Age Distance Right Ascension Declination References
(kyr) (kpo) (h:m:g )
G18.9-1.1 2.66.1 1.625 18:29:13.1 —12:51:13 Ranasinghe et §2020, Shan et al(2018),
Harrus et al(2004)
G39.2-0.3/ 3C 396 37.3 6.28.5 19:04:04.7 5:27:12 Shan et €018, Su et al.(2010
Harrus & Slang1999
G65.7+1.2/ DA 495 20 15 19:52:17.0 29:25:53 Karpova et €015, Kothes et al(2008
G93.3+6.9 DA 530 2.97 1.7-3.5 20:52:14.0 55:17:22 Straal & van Leeuwgf19, Jiang et al(2007),
Landecker et al(1999, Foster & Routledg¢2003
G189.14+3.0/IC 443 330 1.41.9 06:17:05.3 22:21:27 Ambrocio-Cruz et @017, Kargaltsev et al(2017),
Swartz et al(2015, Fesen & Kirshnef1980
G266.2-1.2/ Vela Jr. 0.695.1 0.21 08:52:01.4 —46:17:53 Allen et al(20149), Liseau et al(1992
G353.60.7 1640 3.26.1 17:32:03.3 —34:45:18 Klochkov et al(2015, Fukuda et al(2019,
Tian et al.(2009
G1.9+0.3 0.160.26 8.510 17:48:46.9 —27:10:16 Reynolds et a2008, Roy & Pal (2014
G15.9+0.2 0.545.7 6.0-16.7 18:18:52.1 —15:02:14 Reynolds et 82006, Sasaki et al(2018
G111.72.27 Cas A 0.280.35 3.334 23:23:27.9 58:48:42 llovaisky & Leque(@®972, Reed et al(1999,
van den Bergt{1971), Fesen et al(2006
G291.60.Y/ MSH 11-62 1.2110 3.6-10 11:11:48.6 —60:39:26 Roger et a(1986, Moffett et al.(2001),
Harrus et al(2004), Slane et al(2012
G330.2+1.0 0.89.8 4.9-10 16:01:03.1 —51:33:54 McClure-Grifths et al.(200J), Park et al(2009,
Borkowski et al.(2018, Leahy et al(2020
G347.30.5 0.:6.8 0.96.0 17:13:28.3 —39:49:53 Slane et a{1999, Wang et al(1997),

Cassam-Chenai et d2004), Lazendic et al(2003,
Tsuji & Uchiyama(2016

G350.10.3 0.62.5 4.59.0 17:20:54.5 —37:26:52 Gaensler et 42008, Lovchinsky et al(2011),
Yasumi et al(2014), Leahy et al(2020
G354.4+0.0 0.20.5 58 17:31:27.5 —33:34:12 Roy & Pal2013

Note. Sources in the upper half of the table are searched by all three pipelines described irdS8otimces in the bottom half are searched by a single pipeline
described in SectioA.2 The ages and distances listed are consistent with the values used in the previous LIGO(Abbbtsist al.20199.

BSD pipeline(Section4.1) uses low-latency calibrated data For the purpose of this search, where the actual signal
(CO00 frames; Sun et a2020 for H and L detectors and the frequency is unknown, each BSOe is partially corrected
“onlin€’ calibration version for Virgo, after a procedure of for the Doppler modulation in each 1 Hz frequency subband
removing signicant short-duration noise transients, known as using its central frequendgee Piccinni et akR020 for more
“glitche$ (Davis et al.2021), in the Short Fourier Transform detailg. From this partially corrected time series, a collection of
Database(SFDB; Astone et al2005. Tests show that the time-frequency peakgcalled “peakmapy is obtained, by
difference between the C0O0 data, after glitch removal in SFDB,choosing all the local maxima above a given threshold from
and glitch-gated CO1 frames is negligible. The two Viterbi equalized spectrgAstone et al.2005. The equalization is
pipelines(Sections4.2 and4.3) use the high-latency calibrated given by the square modulus of the periodogram divided by the
data(C01 frames; Sun et &020, passed through a procedure average spectrum. In this way also narrow peaks are kept. This
of glitch gating(Zweizig & Riles2020). peakmap is the input of the FH transform, which maps each
time-frequency peak into the intrinsic source frequency and
spin-down (f;, f,) plane at a given reference time. The

4. Search Methods resolution of a single FH map is the size of the bins in the
4.1. BSD template grid
The BSD-directed search pipeline is a hierarchical semi- - 1 )
coherent method based on the FH transf@hmtonucci et al. T Tk,
2008 Astone et al2014l. A previous search using the BSD-
directed search pipeline, pointing to the Galactic center in . 1
Advanced LIGO 02, was reported in Piccinni e{2020. The ey = m @)

pipeline descibed in this section is based on the BSD

framework, i.e., a library of functions that allows the user t0 \yhere 7., is the coherence time, whilE,s is the observa-
freely select a subset of the detector strain databoth — jpng| time. The parametek§ and K ; are the overresolution
frequency and time domairstarting from a collection of basic factors as described in Astone et @141, here chosen as

les(BSD le9 in a special data format. All the properties of a o . ;
the framework are described in Piccinni et(2018, and here Ky=10 andKy = 2. The coherence time scales with the

we only remind the reader that the standard format of the BSDmaximum frequency of the band a/é\_/fmax’ and hence the
les, containing an opportunely down-sampled complex timefrequency and spin-down bin sizes in Equati¢hsand (2)
series, covers a 10 Hz frequency band ardidmonth of data.  change for each 10 Hz band. For a source with rggethe
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Table 2
Sources Searched in the BSD Analy8ection4.1) and the Parameter Space Covered

Source Minimumny,ge (kyr) Teon (hr) f(H2) f (Hz sh

(@100 H3 (@100 H3
G65.7+1.2, G189.1-3.0, G266.21.2 3 8 (10, 600 (-1.06x 107° 1.06x 10719
G353.60.7 27 8 (10, 1000 (-1.17x 107%° 1.17x 10°1Y
G18.9-1.1 4.4 8 (10, 1000 (=7.13x 10719, 7.13x 1071}
G39.20.3 4.7 8 (10, 1000 (—6.75x 10719 6.75x 1071}
G93.3+6.9 5 8 (10, 1000 (—6.34x 107 6.34x 107

Note. The coherence time and the spin-déwumrange scale with the maximum frequency in each 10 Hz frequency band. For each source, we Tegmhthepin-
down' up range used for the frequency bdfa, 10Q Hz wherefax= 100 Hz.

spin-down range is deed as—f, /taige <f <00f,, /tage, candidates are nonastrophysical if they héwedy, but are not
wherefmax is the maximum frequency in each 10 Hz band. In seen in Virgo data, because Virgo is less sensitive than LIGO.
this analysis, the age of the source affects the parameter spader this reason we also postprocessed all the candidates found
investigated, with a wider spin-down range covered when thein coincidence between H and L only. ,

source is younger. When possible, we use the youngest ag? Surviving candldates_ are further |r_1vest|gated through a
estimate available in the SNRcat catalggrrand & Sa- ollow-up process described in Appendix Also, we apply a

. threshold to the Critical RatilCR) pcr, Which measures the
Harb 2012 SNR 2020. On the ther hand, according to the tatistical signicance of a candidate based on the number count
age of the source, we can consider the effects of the second;

_ < ) e _ ssociated with the pixel of the FH map where the candidate
order spin-down as negligible or natdiscussion is reported in  |ies. The thresholtper e iS chosen as the meagmeg plus
AppendixB.1). In this search, we investigate a frequency band one standard deviation of the CR distribution across the
of [10, 60Q Hz for targets with assumeg,e< 3 kyr and a candidates excluding those due to known instrumental lines
wider range of10, 100Q Hz for older sources. We remind the (AppendixA.1.1) and with an inconsistent sigmiance among
reader of the subtle difference when talking about the sourcghe two detectorAppendixA.1.2). For the targets G6541.2,

age estimatevhich is most of the time inferred from the SNR  G189.13.0, and G266:21.2, we use pcrr=4.7; for

age and the characteristic age of the tahich is unknown G18.91.1 and G93.36.9, we usepcrm=4.6; and for
because they have no observed electromagnetic puldationsG393-60.7 and G39:20.3, we uscr = 4.5. The threshold
The maximum coherence time used is 17.8 hr for the frequencfhosen here is less stringent than in Piccinni 2820, where

C the threshold was<6.5, corresponding to the probability of
band[10, 20 Hz and a minimum of 2.5'hr fq©90, 1000 Hz. picking an average of one false candidate over the total number
We search both positive and negatiyeto allow for the

S=a c of points in the parameter space, under the assumption of

possibility of unexpected spin-up. A summary of the parametergayssian noise. For this work, a lower CR threshold is picked

space investigated for each source is shown in Table since we are using some new postprocessing methods, described
The rst set of candidates is selected fromnal FH map,  in AppendixA, which allow us to follow up a higher number of

which is the sum of all the single monthly based FH maps candidates, given the low computational cost of each step.
spanning the same frequency and spin-down ranges. These

candidates are independently selected in each detector,

including Virgo, using the ranking procedure of Astone et al. 4.2. Single-harmonic Viterbi
(20141, where candidates with the highest FH number count AN HMM i f ci h algorith ble of
are kept. At a later stage, coincidences are calculated between n Is an efcient search algorithm capable o

; : andling both spin-down and spin wandering. Previous
Er;?nggzﬂf;‘tjﬁsf:giefégd t;f two LIGO detectors using Zsearches for young SNRs using an HMBun et al.2018

were conducted in the Advanced LIGO O2 data, but no

2 N2 evidence for a GW signal was repor{dtillhouse et al2020).
- Af ﬁ i (3) An HMM models a time-varying signal with underlying
fen Oy hidden(i.e., unobservab)eparameters by treating the hidden

parameters as links in a Markov chain, with each hidden
where Af and Af are the differences between the candidate parameter linked to an observable through a likelihood statistic.
parameters in each data set. A candidate is then selected whépiven an observed sequence, the goal is to infer the most
the coincidence distance is below a given threshold distanceprobable hidden sequence. For a setNgfobservations at
di, in this search chosen equal to 4. The choice of the windowdiscrete timesiz, 7 ,...,zy, 1}, the corresponding discrete
size has been widely discussed in Astone eaiL4l, using  Sttes {q(t), 4(n)..... gy, 1)} (chosen fromN, possible
injected simulated signals. h|ddgn states{ql_,._.:,qNQ}) form a Markov chain with

The coincidence step has been appliest to the pair of ~ transition probabilities fromy, to 7., de ned by A,,=

LIGO candidates. At a later stage, the same coincidence’[q(f+1) = gqlq(t) = g]. For this search, we choose
criterion has been applied between the HL coincidentAg, =A4,, 4 = 1/3 and all otherA,, =0, allowing the
candidates and the most sigeant Virgo candidates. Candi- frequency to remain static or wander up or down one bin for
dates found in triple coincidence were discarded after applyingeach time step. This allows us to track both spin-down and
the postprocessing methods described in AppeAdixow- stochastic spin wandering, which may cause spin-up. Strictly
ever, we cannot conclude with certainty that a pair of LIGO speaking, spin-down is expected to be more rapid than spin-up due
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Table 3
Sources Searched in the Single-harmonic Viterbi Ana(@sstion4.2) and the Parameter Space Covered

Source Minimun,ge (kyr) D (kpo) Teon (hr) f(Hz) f (Hzs™

G1.9+0.3 0.10 8.5 1.0 (31.56, 121.7) (—3.858 x 1078, 3.858 x 107%)
G15.9+0.2 0.54 8.5 1.0 (44.03, 657.1 (—3.858 x 1078, 3.858 x 107%)
G18.9-1.1 4.4 2 1.9 (31.02, 1511) (—1.507 x 1078, 1.507 x 107%)
G39.20.3 3.0 6.2 2.8 (62.02, 459.7 (—1.968 x 1078, 1.968 x 10~%)
G65.741.2 20 15 4.7 (35.10, 1128 (—3.149 x 1079, 3.149 x 107°)
G93.3+6.9 5.0 1.7 1.9 (30.00, 1669 (—1.335 x 1078, 1.335 x 107%)
Gl11.72.1 0.30 3.3 1.0 (25.71, 365.) (—3.858 x 1078, 3.858 x 107%)
G189.1-3.0 3.0 15 14 (26.13, 2000 (—1.968 x 10°%, 1.968 x 10~%)
G266.21.2 0.69 0.2 1.0 (18.36, 839.p (—3.858 x 1078, 3.858 x 107%)
G291.60.1 1.2 35 1.0 (31.97, 1460 (—3.858 x 1078, 3.858 x 107%)
G330.2+1.0 1.0 5 11 (36.57, 1039 (—3.858 x 1078, 3.858 x 107%)
G347.30.5 1.6 0.9 1.0 (21.74, 1947) (—3.858 x 1078, 3.858 x 107%)
G350.10.3 0.60 45 1.0 (31.96, 730.1 (—3.858 x 1078, 3.858 x 107%)
G353.60.7 27 3.2 10 (77.86, 318.3 (—2.295 x 1072, 2.295 x 1079)
G354.4+0.0 0.10 5 1.0 (25.72, 121y (—3.858 x 1078, 3.858 x 107%)

Note. The parameter space for each of the 15 sources is derived using the age and distance estimates in the second and third columns.

to spin wandering, but the exact valueﬂgg);i have minimal effect = and assuming purely gravitational spin-do@vette et al.
on the performance of an HMM, provided they capture the 2008. We also estimate the minimum detectable strain using
behavior of the signal in a broad serf@&inn & Hannan200%, an analytic estimate of the 95% calence sensitivity for a

Suvorova et a|2016 We assume a uniform prior over the initial semicoherent Search, given Wette et a|2008 Sun et al.
state, i.e., I[g(t%)] = Ny . The observations are denoted 2018

{o(to), o(ty),...,o(ty,—1)} and are connected tg(r,) through

unknown parameters. We call the probability of observifng est _ 1207, “1/4

given some stateg(r) the emission probabilityL, = ho™ = OSa () Tobs Teon)™ ©
Plo(t)]q(t)]. Given some observed sequerewe can then

infer the most likely hidden sequengé by maximizing where S,(f) is the noise amplitude spectral density. The
Ny 1 statistical threshol® is de ned by the location in parameter

P(Q*0) = 11[q(t0)] [] LowramwAquqw »- 4) space and typically lies in the range3® < 40. Following

k=1 previous studies for CWs with an HMM, we take=35

(Wette et al2008 Sun et al.2018. The frequency range for
deach source is deed byh§™ < h{%. The parameter space for
each source, includinf.qp, is summarized in Tablg and the
process for dening the parameter space is described in
AppendixB.2.
y We split the data int@Vyang frequency subbands of width
2 Hz to ensure that loud, non-Gaussian noise artifgcts,
lineg are conned to one subband and do not affect the whole
analysis. We overlap the frequency subbands by 0.57 Hz,
ensuring that any signal corresponding to a rapidly spinning
down neutron star can always be contained in a single subband.
For each subband, we apply the Viterbi algorithm outlined

The Viterbi algorithm is an etient implementation of the
inference step, using dynamic programming to sample an
discard unfavorable paths at each time téperbi 1967
Suvorova et al2016.

For our purposes, the hidden state is the true GW frequenc
and the observable is the value of thestatistic, calculated
coherently over a block of duratiofi.,, and width (in the
frequency domain(2T.,.)"'. The F-statistic is a maximum
likelihood Iter for a CW signal of frequency with time
derivativesf, f, etc.(for more details on th& -statistic, please
see Jaranowski et a998. In this search, we compute the
F-statistic as a function gonly and account for spin-down by

) smax | /3 . .max above and obtaitV, frequency paths ending N, different
.choosmgl“cok_l o |f0. |_ . (as in Sun et aI2018,vyhere 0 bins with associated likelihood8. Alternative implementa-
is the maximum/ within Teon, such that the signal should  ions of Viterbi (including Suvorova et al2016 Sun et al.
wander by at most one frequency bin per time step. 2018 used a Viterbi score as their detection statifsiee

We choose our parameter space according to the deteclgection 4.3). This statistic generally required; < N.
ability of a potential signal. First, we estimate the maximum jjjlhouse et al.(2020 demonstrated that this statistic fails to

expected GW strain for a neutron star at distancevith identify an injectedor rea) path forN; ~ N, because the score
characteristic agege and a principle moment of inertig, is calculated for the optimal path relative to other paths in the
using band. If most of the paths overlap, the optimal path is similar to
L other paths in the band. In this search, we have a minimum

Teon=1hr (N;=4391, N, = 14,400, which is suf cient for
hi® = 2.27 x 10‘24(H(i)(”(—yr) almost one-third of ViteQrbi paths to converge ovgks and
D fage (5) consequently lower than the sensitivity of the Viterbi score. To
1, 172 maintain the search sensitivity wiNy ~ Ny, we use the log-

X(W) likelihood £ as our detection statistic. Using the process

gm outlined in AppendixB.2, we determine the 1% false-alarm
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Table 4
Sources Searched in the Dual-harmonic Viterbi Anafgtstion4.3) and the Parameter Space Covered

Source Minimun,ge (kyr) Teon (hr) f. (H2) f. (Hzs™h

G65.7+1.2 20 12 (50, 339 (- 1.34x 10°1°, Q)
G189.1+3.0 20 12 (50, 339 (- 1.34x 107 0)
G353.60.7 27 12 (50, 457 (- 1.34x 10°'° Q)
G18.91.1 4.4 9 (50, 133 (—2.38x 107 0)
G39.20.3 3 9 (50, 99 (—2.38x 10719, Q)
G93.3+6.9 5 9 (50, 150 (- 2.38x 107'° 0)
G266.21.2 5.1 9 (50, 153 (- 2.38x 10°1°, Q)

threshold for each source and denote the correspondingomponentF -statistic, denoted b i(f,) + F.(2f,), whereF;
likelihood Ly,. We follow up all unique frequency paths with and F, are the-statistic outputs computed in two separate
L > Ly, using the procedure described in Appendliand nd frequency bands, arjgds the frequency value in thith bin. We
no CW candidates that cannot be described by nonastrophyuseAf= 1/ (4T..) and 2Af= 1/ (2T, as frequency bin sizes
sical noise. when computingF; andF,, respectively, such that both tfie
and Z, signal components stay in one bin for each time interval
4.3. Dual-harmonic Viterbi Teon Third, we assume that the signal frequency evolution is
dominated by secular spin-down and can be approximated by a

d negatively biased random walk. The unknown spin-down rate

hence the GWs are emitted #t. Zhis assumption is based on lies in the range between zero and the maximum estimated
the fact that the phenomenon of free precession is not clearlyPin-down rate and can vary over time. Hence, we use a
observed in the population of known pulsgd®nes2010. transition probability matrix4, o, = A.q = 1/2, with all
However, the supeuid interior of a star pinned to the crust other entries being zero. The full frequency band is divided into
along an axis nonaligned with any of its principal axes could 1 Hz and 1.5 Hz subbands fGton=12hr andTcon=9hr,
allow the star to emit GWs at bothand Z,, even without free respectively, to parallelize computing. The detection statistic
precessiorfJones201Q Bejger & Krolak2014 Melatos et al. used in this analysis requires that the number of frequency bins
2015. The dual-harmonic emission mechanism motivates N €ach subban(with bandwidthB) is signi cantly larger than
searches combining the two frequency components of a signaii€ total number of tracking stese., 28Tcon>> Topd Tcon-

to improve signal-to-noise ratio. The HMM tracking scheme Thus, forTcon= 9 hr, we choose a 0.5 Hz wider subband such
described in Sectiont.2 has been extended to track two that the requirement is satedd. More details are provided in

frequency components simultaneouéBun et al.2019. The AppendixB.3.

Methods in Sectiond.1 and4.2 assume that the star rotates
about one of its principal axes of the moment of inertia, an

signal model considered in this section consists of odind Seven sources in the top half of Tablwith an assumed age
2f, components, given b§daranowski et al1998 Sun et al. of 7age 2 3 kyr are searched using this method. Due to the fact
2019 that two frequency bands are combined, this method is
. susceptible to noise features present in either band. Coherent
_ 2 2 \ain2 times shorter thar-5 hr and, correspondingly, widekf can
hai = 2h0(1 + cos™u)sin"6 cos 22, @) further degrade the sensitivity. Hence, we do not search the
other eight sources withige < 3 kyr that require a much shorter
hay = hgcos ¢ sin® @ sin 2®, ) Tecon The parameter space covered for each source is listed in
1 _ ) Table 4. The f, range covered in this analysis is hence
by = gho sin2¢ sin 26 sin ®, ©) I£.] € [0, 1/(4T2,)]. The frequency range is determined as
follows. For all seven sources, w& the minimum frequency
hyy = lho sin ¢ sin 20 cos ®, (10) at 50 and 100 Hz fof, and Z,, respectively. We do not search
4 below 50 Hz because the number of instrumental lines in each 1

where. is the inclination angle of the sourdgis the wobble ~ Hz band signicantly increases at low frequencies and the
angle between the starrotation axis and its principal axis of optimal Viterbi paths would be dominated by noise artifacts.
the moment of inertia, andl is the GW signal phase observed '€ maximum frequency is set by the assumed minimum
at the detector. In general, when precession and triaxiality ofCh"’lr""CterIStIC age of the Soumggift@? second column in
the star are included, emission occurs at other frequencies togable 4), assumindf| =1, (n - }) .t;ge (Sun et al.2018
(Zimmermann & Szedenitd979 Van Den Broeck2005 Abbott et al.2019¢, wheren Zﬂﬂ/f* is the braking index,
Lasky & Melatos2013. with £, being the second time derivativefof We assume that

In this analysis, the HMM formulation generally follows the the spin-down of the star is dominated by gravitational
description in Sectiod.2, with three major updates. First, two radiation due to a nonzero ellipticity, i.e.=5.
different coherent times @f.,n= 12 and 9 hr are selected for We use the Viterbi scorg as the detection statistic in the
three sources with,ge2> 20 kyr and four sources withge< dual-harmonic search, which indicates the sigamnce of the
5 kyr, respectively. Second, two frequency components areoptimal Viterbi path obtained in each subband compared to all
tracked simultaneously. The GW signal for each frequencyother paths in that band at thaal step of the tracking. Given
component is assumed to be monochromatic @ygt The that the conditionN; < N, is generally satised with the
signal power in each frequency bin is computed by the two- choices of Teon in this method, the issue described in
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Section4.2 with short Teon~ 1 hr does not happen. The full  corresponding value QfS,l(f) in that band, i.e.,
mathematical denition of S is given in Sun et al2019. We

95% — /
determine a threshold corresponding to 1% false-alarm ho™ " (f) = hxuL (F)NSa(f) - 11
probability Si,=5.47 and Sy =15.33 for Tcon=12hr and The sensitivity plots are presented in Figlrashere we also

Teon= 9 hr, respectively, obtained from Monte Carlo simula- report the indirect age-based limit from Equatign(solid line
tions in Gaussian noise and vexd in real O3a data. The for each target. The best sensitivity is below the indirect age-
results obtained from simulations in O3a interferometric noisebased limit for all the sources. In particular for G65L72,
are consistent with the Gaussian noise thresholds. G189.1-3.0, and G266.21/2/ela Jr., this happens for the full
frequency band analyzed, except for the most disturbed
regions, and for all the detectors. The difference in sensitivity
5. Sensitivity and Constraints among the analyzed targets is caused by the different antenna
. pattern response due to different sky locations of the sources,
_ A total of 42,464, 9236, and 477st-stage candidates are g en \when the same coherence time is used for multiple
identi ed across all SNRs in BSD, single-harmonic Viterbi, sq,rces. We present different curves for each detector; the
and dual-harmonic Vlterbl pipelines. We apply a hlerarch|cal combined: 5% ( ) result would correspond to the one for the
veto procedurg/Appendix A.1) to the full population and |ess sensitive LIGO detector. The best sensitivity at 95%

perform dedicated follow-up analyses on 35, 1, and 25c:on dence level occurs at the Livingston detectdipat 7.8x
candidates for BSD, single-harmonic Viterbi, and dual- 1026 negr 200 Hz for G65-¥1.2 and athg~ 7.7x 1028 for

harmonic Viterbi, respectivelfAppendixA.2). No candidate  539.2-0.3 in the same bucket region.

survives from any pipeline. All are consistent with a

nonastrophysical origin. In this section, we present the 5.2. Single-harmonic Viterbi Constraints
sensitivity of each pipeline and the constraints obtained from

this analysis. We report no evidence of CWs in the single-harmonic

Viterbi search. In this section, we estimate the sensitivity of this
search across 9 of the 15 sources. We estimate the sensitivity
. rst using Equatior{6) and assume that this is a reasonable
3-1. BSD Constrainis represen?atioqn of tkrfe)key parameters determining the sensitiv-
Surviving candidates are all compatible with noisetua- ity, i.e., that between sources the sensitivity of the search is
tions, and no evidence of their presence is found in Virgo O3apredominantly determined by¥.,, So we determine the
and or in the full LIGO O3 data. We compute the constraints sensitivity forTcon=1hr using G266-21.2 and G347-:30.5
on the strain amplitude using a well-established method used ir@nd assume that the variation in sky position for other targets
Piccinni et al.(2020 and described in Dreissigacker et al. with the samel.,, has a negligible effect on sensitivity. This
(2018. The sensitivity curve is obtained from the 95% assumption has been validated through detailed simulations.
con dence level upper limits of 10 randomly selected For each source we set limits on, we inject 100 simulated
frequency subbands of 1Hz each for targets in [th@, signals with xed ho and randomly selegtand f, into ve

1000 Hz frequency band, and nine subbands for the remainingfrequency subbands, selected at random from a set of bands
targets. ThehS” in the subbands is computed with the with no known lines, and which returne® unique paths with
; i PR i : ; L > Ly, in the original search. We then apply the Viterbi
frequentist approach, i.e., injecting 50 signals with a given th SN :
q PP ) g g g algorithm to each injection. We repeat this ferl8 values

amplitude by and computing the corresponding detection = S . ;
ef ciency. The injections are done for each source, assumin f h.o' Each set ofN,_1Q0 injections forms a b!nomlal
istribution, with each injection and search acting as a

the same sky position as the selected source for each injectio emoulli trial with a probability of succes@f ciency p
The spin-down and polanz_atlor) paramet(gmg andy) are We infer the value op givens successes for eacly given
randomly chosen from their uniform distributions. We repeat using the Wilson intervaMWilson 1927

the injections in a given subband using 618 valueg, df the

interval [1.3x 10 2%, 3x 10 %|. The detection etiency for s+ 11— ap/22

a given amplitudeig is given by the fraction of injections p =~ 2

recovered. The actual;°” corresponding to a detection N+ (1 = ap/2)

ef ciency of 0.95 is derived from the sigmoidal of the 1 — ar/2 s(Ny — ) (1 — ap/2)?
detection efciency curve versus the injected amplitude. N+ (1 — ap /2y N 4 ’

Given that the sensitivity tég is proportional to,/S,(f),
which is the noise amplitude spectral density, we compute the (12)
Normalized Upper LiImigNUL), iur (f) = ko™ (/) /\[Si(/),  whereay is the false-alarm probabilitffor each frequency band,
in each of the randomly chosen subbands. We remark that it is th§,e 1 5 sigmoid curveas in Banagiri et aR019 to the set ofig
inverse of the more widely usésensitivity depth (Behnke et al. and the corresponding using the Bayesian inference package

2015. Since the NUL values should follow a linear trend, given . . . - b .
by the dependence of the coherence time used in each 10 Hz bangIIby (Ashton et al2019 with a “”'for”.‘ prior over the sigmoid
parameters. We sample the posterior and, for each sample,

we extrapolate the NUL values of the remaining bands with a 95%

linear t of the NUL versus frequency. In this way we can determine th%go/ as theho corre;ponding tp =95%. We take.
translate the NUL values, interpolated from the lingdor each ~ the averages,” " of this population to be the 95% frequentist

1 Hz band, into thé,,>*(f) curve. The nal hg>%(f) curve is con dence upper limit in that frequency band. For each frequency
then obtained for each detector, by multiplying the NUL values band, we calculate = hy°* /h¢™ at the appropriate frequency,
extrapolated from the lineart in each 1 Hz band by the whereh§* is estimated by Equatidf). Lastly, we nd the mean
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Figure 1. The sensitivity estimati;>* obtained from the BSD search. The dotted curves represent the estighidtéd the full band of H, L, and V detectors
searched by the BSD pipelif€able2). The crosses represent the frequentist strain upper limits at 95%ecme level obtained empirically in the sample subbands

of 1 Hz. Horizontal lines are the so-called indirect age-based limit as in Eq(&ti®he limit is beaten across the full band also using Virgo data, except for the most

disturbed regions, for G65+1.2, G189.%3.0, and G266:2L.2/ Vela Jr. The remaining curves beat the limit on a limited parameter spaae aodl for every
detector.

a across the ve frequency bands and calculate the sensitivity at 172 Hz. The targets with the poorest overall sensitjthiyse
across the full frequency band a$ “ = ah™, plotted as the  with shortT,) place the tightest constraints relative to the age-
curves in Figure2. We overplot the age-based limit from based spin-down limit.

Equation(5) (dashed lingfor each target. Our search is more  The constraints obtained in this search are for a random-walk
sensitive than the age-based limitdl targets except G18.9-1.1, signal model including spin-down and spin wandering. The
G39.2-0.3, G330:21.0, and G353.6-0.7, despite G353.6-0.7 random-walk signal modéhcluding spin-down and spin wander-
having the smallest detectable strain in this searchx21642° ing) and the range of, searchedup to f,"" = 3.9 x 1078
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Figure 2. The sensitivity estimat;>* obtained from the single-harmonic Viterbi search for each source. Multiple sourceg havel hr and have the same
sensitivity; these sources are shown on one plot for a representative source-G26Bt2 blue curves represent the estimaféd in the full band searched by the
single-harmonic Viterbi pipelin€rable3). The orange crosses representfie’ values obtained empirically in the sample subbands. The black dashed line is the
age-based upper limit on the GW strain from Equat®)n

Hz s for T.on=1 hr) mean that thé,>% for this search is less  factor obtained for that band is consistent with the other four
stringent than for the other pipelines in this and other paperspands tested.

which use a diffenat signal modele.g., Taylor expansign
and smaller range of. For G65.7-1.2, one of the injections
at just over 1000 Hz appears to be on a noise spike despite No evidence of CWs is found in the dual-harmonic Viterbi

known noise features beindtered out; however, the scale search. We empirically derive the sensitivity by estimating the

5.3. Dual-harmonic Viterbi Constraints
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