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SUMMARY

Gravitational-wave observations of binary black holes allow new tests of general
relativity (GR) to be performed on strong, dynamical gravitational fields. These
tests require accurate waveform models of the gravitational-wave signal; other-
wise waveform errors can erroneously suggest evidence for new physics. Existing
waveforms are generally thought to be accurate enough for current observations,
and each of the events observed to date appears to be individually consistentwith
GR. In the near future, with larger gravitational-wave catalogs, it will be possible
to perform more stringent tests of gravity by analyzing large numbers of events
together. However, there is a danger that waveform errors can accumulate
among events: even if the waveformmodel is accurate enough for each individual
event, it can still yield erroneous evidence for new physics when applied to a large
catalog. This paper presents a simple linearized analysis, in the style of a Fisherma-
trix calculation that reveals the conditions under which the apparent evidence for
new physics due to waveform errors grows as the catalog size increases. We esti-
mate that, in the worst-case scenario, evidence for a deviation from GR might
appear in some tests using a catalog containing as few as 10--30 events above a
signal-to-noise ratio of 20. This is close to the size of current catalogs and high-
lights the need for caution when performing these sorts of experiments.

INTRODUCTION

The detection of gravitational waves (GWs) by LIGO (LIGO Collaboration, 2015) and Virgo (Virgo Collabo-

ration, 2015) has made possible new tests of general relativity (GR) in the strong-field regime (Yunes and

Siemens, 2013; Berti et al., 2015; Yunes et al., 2016; LIGO and Virgo Collaborations, 2019, 2020b). Numerous

detections of binary coalescences have beenmade so far (mostly binary black holes) and in the coming years

the size of this catalog of detections will continue to grow (LIGO and Virgo Collaborations, 2018). Further-

more, observations of GWs in different frequency bands will reveal new types of sources and enable other,

complementary tests of GR. As the sensitivity of the instruments improve, the signal-to-noise ratios (SNRs) of

the loudest individual events will increase and such tests will become increasingly stringent.

However, care must be taken when interpreting the results of these test or we risk incorrectly claiming ev-

idence for new physics.

Among the wide range of possible tests of GR are parametric tests. These involve the introduction of addi-

tional degrees of freedom to the theory, which are described by one or more new parameters. These addi-

tional quantities are then measured along with the astrophysical source parameters. Frameworks for per-

forming parametric tests include both the introduction of artificial coefficients to various terms in the

waveform (for a review, see Will 2014) and extensions involving specific beyond-GR theories, such as those

motivated by quantum gravity (Yunes et al., 2016). (See Chua and Vallisneri 2020 for a discussion of possible

drawbacks of parametric tests.)

As most GW signals will have an SNR close to detection threshold (Schutz, 2011; Chen and Holz, 2014),

combining information from multiple signals is an attractive avenue to perform stronger tests. The way

different events are put together crucially depends on the test one wishes to perform (Zimmerman

et al., 2019). For GR modifications with parameters that are thought to be common among all the events
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in the catalog (for instance, the mass of the graviton), one should multiply the individual likelihoods on the

deviation parameters to find the combined, catalog-level likelihood on the deviation. If instead each event

can have a different, independent deviation parameter value (for instance, addition black hole degrees of

freedom, aka hairs) one should instead find the combined, catalog evidence by multiplying the individual

event Bayes’ factors. These possibilities represent the two extrema of a broader class of catalog tests where

the non-GR parameters follow some distribution that can depend on the GR quantities (such as masses and

spins), and can be tackled using a hierarchical Bayesian approach (Isi et al., 2019). Some of the analyses pre-

sented by LIGO and Virgo Collaborations, (2020b) were carried out within this framework.

Tests of GR can be affected by inaccuracies in the GW signal models used to analyze the data (Lindblom et al.,

2008; Pürrer and Haster, 2020). Waveform systematics can erroneously lead to evidence for a deviation from

GR. In other words, even if GR is the correct description of nature, unmodelled waveform systematics can lead

us to believe the opposite. Going beyond single events, in this paper we explore the role of waveform system-

atics when usingmultiple signals in a catalog to test GR. For each event, we employ a simplified linear analysis,

similar to that by Cutler and Vallisneri (2007); Vallisneri and Yunes (2013); Gair andMoore (2015), and study how

systematic waveform errors introduce biases in the beyond-GRparameters. By studying the two extreme cases

highlighted above—GR deviations which are common and different among events—we extend the linear

analysis to show how the effects of waveform systematics can accumulate as the size of the catalog grows.

Even if the imperfect waveform model is good enough to safely analyze each of the events individually, it

may induce evidence for beyond-GR physics with arbitrarily high confidence when applied to a large catalog.

This serves to highlight the dangerous and insidious nature waveform systematics in GW catalogs.

This paper is organized as follows. We first derive the building blocks of our analysis by investigating the

impact of systematics on single events. We then illustrate how those ingredients enter a catalog analysis.

We then present the results of our findings applied to two sets of simulated event catalogs of increasing

complexity. Finally, we draw our conclusions.
Linear signal analysis: single events

In order to establish how the evidence for new physics scales with the individual event SNR and the number of

events in the catalog, we use a simplified, linearized signal analysis, in the spirit of a Fisher matrix calculation.

In the following analysis, it is assumed that GR is the correct description of nature. For each individual GW

event the observed data contains a sum of instrumental noise, n, and a GW signal. Here, we restrict our

analysis to the case when a single interferometer is involved in the observation; the extension to multiple

interferometers is straightforward and does not significantly change the following arguments. The

observed data, s, can be written

s = n+ hðaTr = 0; qTrÞ+DhðqTrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GW Signal

: (Equation 1)

The true signal is (hopefully) close to our waveformmodel, hða = 0; qÞ, but will inevitably include somemodeling

error, denotedherebyDhðqÞ. Ourmodel, hða; qÞ, is a function of theparameters that describe the source inGR, qi .

This includesboth intrinsic (masses, spins, etc.) andextrinsic (sky position, distance, etc.) quantities. The true source

parameters (which are unknown a priori) are denoted by qTr. The model error is also a function of q (for example,

regions of parameter space with asymmetric mass ratios and strong spin precession will typically have larger

model errors; Pürrer and Haster 2020). As we are searching for parameterized deviations from GR, our model,

hða; qÞ, is also a function of at least one modified gravity parameter, a. This parameter quantifies the deviation

from GR and we assume it is defined such that GR is smoothly recovered in the limit a/0.

The analysis of the single GW event in Equation 1 involves performing Bayesian parameter inference over

the combined parameter space lhða; qÞ. Assuming the instrumental noise is Gaussian, the likelihood

Lða; qÞhPðsja; qÞ is given by

logLða; qÞ = � 1

2
js� hða; qÞj2 + c;

= � 1

2
jn� dhða; qÞ+DhðqTrÞj2 + c:

(Equation 2)
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The norm is defined as j,j2 = h ,j ,i, where angle brackets denote the usual signal inner product (Thorne,

1987; Moore et al., 2015). The constant c is an unimportant normalization, and we have defined dhða; qÞh
hða; qÞ� hðaTr; qTrÞ, where qTr and aTr = 0 denote the true parameters. For simplicity, we assume that the

prior on l is approximately flat within the range that L has significant support; therefore, the likelihood

is proportional to the Bayesian posterior distribution.

If the SNR is large, then the posterior is expected to be strongly peaked in a relatively narrow region around

qTr and aTr. We assume that this region is small enough that the model can be approximated as being linear

in all parameters. We Taylor-expand our model about the true parameters as follows:

dhða; qÞz vh

va

���
ð0;qTrÞ

a +
vh

vq i

���
ð0;qTrÞ

dq i + .

=
vh

vlm

���
lTr

dlm + O�dl2�: (Equation 3)

We have defined dq = q� qTr, and dl= l� lTr and all derivatives are evaluated at the true parameters (here-

after, this will be omitted from our notation). The index m labels the components of the combined param-

eter vector, lm. Hereafter, we retain only leading order terms in dl.

The likelihood in Equation 2 is peaked at the maximum likelihood (ML) parameters, lML, which are defined

implicitly by

vlogL
vl

���
l= lML

= 0: (Equation 4)

Using Equations 2 and 3, this can be solved to find

lML = lTr +Dlstat +Dlsys; (Equation 5)

where (using Einstein summation convention)

Dlmstat =
�
G�1

�mnD
n

����vhvlnE; (Equation 6)

� � � ��vh�

Dlmsys = G�1 mn

DhðqTrÞ��vln ; (Equation 7)

and Gmn is the Fisher matrix,

Gmn =

�
vh

vlm

����vhvln
�
: (Equation 8)

From Equation 5, it can be seen that the ML parameters are close to the true source parameters but shifted

by both statistical and systematic errors. The statistical error Dlstat depends on the random noise realiza-

tion, n, in the observed data. The systematic error Dlsys depends on the model error Dh.

Now that we have found the location of themaximum likelihood, wemay evaluate the second derivatives of

Equation 2, vmvnlogL, at theML parameters and expand the log likelihood to second order about this point.

Doing this, we find

logLðlÞz c 0 � 1

2
Gmnðl� lMLÞmðl� lMLÞn; (Equation 9)

where c0 is another unimportant normalization constant. Within the approximations that have been made,

the likelihood (and the posterior) is approximately a multivariate Gaussian on the parameters l with mean

vector lMLhðaML; qMLÞ and covariance matrix G�1.

We wish to use the observed data to test GR. Therefore, we investigate the 1D marginalized posterior on

the a parameter to see if it is peaked away from the GR value, a = 0. Because the full posterior in Equation 9

is a multivariate Gaussian, the 1D marginalization integral can be carried out analytically. The 1D margin-

alized posterior on the a parameter reads

PðaÞ =
Z

dq Lðq;aÞ=
exp

�
� ða�aMLÞ2

2s2a

	
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

a

p ; (Equation 10)
iScience 24, 102577, June 25, 2021 3
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where aML = astat +asys, and

astat =
�
G�1

�0n�
n

����vhvln
�
; (Equation 11)

� � � ��vh�

asys = G�1 0n

DhðqTrÞ��vln ; (Equation 12)� �00 h � �ij i�1
s2
a = G�1 = G00 � G0i g

�1 Gj0 : (Equation 13)

where gij =Gij is the lower-right block of the Fisher matrix, and in the final equality we have used the block-

matrix inversion formula.

The optimal SNR, defined as rðlÞ = jhðlÞj, is a convenient measure of the strength of the signal. In order to

investigate the scaling with the SNR, r, it will be convenient to separate it from the other parameters by

defining the normalized model bh = h=r, with
��bh�� = 1. We also define the normalized Fisher matrix bGmn =

Gmn=r
2 and the normalized model error Dbh = Dh=r.

It will also be convenient to rescale the deviation parameter (i.e. redefine a/kawhere k is a constant) such

that bG00h
��vbh=va��2 = 1. We are always free to perform such a rescaling and this does not interfere with our

earlier choice of placing flat priors on all parameters.

We also assume that bG0ih<vbh=va��vbh=vqi>= 0 where is0, i.e. the deviation parameter induces waveform

changes which are orthogonal to those arising from changes in all the GR parameters. Although this is

probably rarely true in practice, it is a conservative assumption in the sense that it makes the problem of

waveform systematics as severe as possible byminimizing the estimate for sa [see Equation 13], while keep-

ing asys fixed, thereby maximizing the chances that the model errors lead us to erroneously claim to have

seen a deviation from GR. It is this worst-case scenario, which we choose to study here in order to better

understand when we need to worry about waveform systematics.

Under these simplifying assumptions and conventions, the statistical fluctuations in the deviation, given

in Equation 11, are distributed as a Gaussian random variable, astat = z=r where z � N ð0; 1Þ. Further-
more, the expression for the standard deviation of the distribution, given in Equation 13, simplifies to

sa = 1=r. This just leaves the systematic offset in the deviation parameter in Equation 12, which can be

written as

asys = ðbG�1Þ00
*
DbhðqTrÞ��� vbh

va

+
=
���DbhðqTrÞ ��� cosi ; (Equation 14)

where the first equality follows from Equation 12 and our assumption that bG0i = 0, the second equality fol-

lows from our renormalization of a such that
��vbh =va

�� = 1, and i is defined as the angle between the signals

DbhðqTrÞ and vbh=va. The quantity i has the interpretation of an angle if the signals (which are discretely

sampled time series) are thought of as being very high-dimensional vectors in some signal space,

S Rhigh dim. The angle i encodes information on how the model error couples with the deviation parameter.

The worst-case scenario is when jcosij is maximal and occurs when i= 0 or p; therefore, we set cosi= G 1 in

the following. The norm of the model error,
��Dbh��, is related to the mismatch which is commonly defined in

GW applications as (e.g. Lindblom et al., 2008)

M = 1�
�bh +Dbh���bh���bh����bh +Dbh��= 1� cosfz

f2

2
; (Equation 15)

where f is the generalized angle between the signals bh and bh +Dbh. Provided the Dbh is small, the angle f

will also be small and is bounded above by f<
��Dbh��. The exact value of f will depend on the details of the

model error and can be considered to be quasi-random. If the signal space dimensionality is large, and if

Dbh is a random vector, then the distribution of f-values will be peaked near the maximum value. Therefore,

we set f=
��Dbh�� and, using the small angle approximation in Equation 15, obtain
4 iScience 24, 102577, June 25, 2021
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Mz

��Dbh��2
2

: (Equation 16)

Finally, using Equation 16 to eliminate Dbh from Equation 14, the systematic error is asys =
ffiffiffiffiffiffiffiffiffiffi
2Mp

cosi. In

summary, the 1D marginalized posterior on the GR deviation parameter a is given by Equation 10, with

astat =
z

r
; (Equation 17)ffiffiffiffiffiffiffiffiffiffip
asys = 2Mcosi ; (Equation 18)
1

sa =
r
; (Equation 19)

where z � N ð0; 1Þ is a random number associated with the noise realization and cosi=G1 is a random

choice of sign associated with the model error, Dbh.
Note that the systematic offset does not scale with SNR. Therefore, there always exists a critical SNR above

which we are in danger of erroneously claiming a deviation from GR. When analyzing a single GW event for

a deviation fromGR, we are safe from the effects of model errors if asys � sa. From Equations 17, 18, and 19,

we see that the average size statistical error equals the systematic error when r = 1=
ffiffiffiffiffiffiffiffiffiffi
2Mp

; therefore, we

are safe from the effects of model errors if r � 1=
ffiffiffiffiffiffiffiMp

.

Because the posterior in Equation 2 is Gaussian, it is possible to evaluate the Bayesian evidence integral

analytically. Doing so, and letting k =dimðqÞ [hence dimðlÞ = k + 1Þ], gives

ZnonGR h

Z
dl LðlÞ= ec0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞk + 1

det Gmn

s
: (Equation 20)

Because our waveform model hða; qÞ is an extension of GR, it includes GR as a sub-model. The GR sub-

model is the hypersurface a= 0 of the full model. Using the same assumptions described above for the

full model, the GR likelihood (and hence the posterior) on this hypersurface can be found from Equation 2

and is given by

logLGRðqÞ = c 0 � 1

2
G00a

2
ML �

1

2
ðq� qMLÞiGijðq� qMLÞj ; (Equation 21)

where i; j˛f1; 2.; kg label the components of q. The evidence for the GR sub-model can also be evaluated

analytically and reads

ZGR h

Z
dq LGRðqÞ= ec0�Gaaa

2
ML=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞk
det Gij

s
: (Equation 22)

The odds ratio (or Bayes’ factor) in favor of a deviation from GR is defined as

BhP

A

ZnonGR

ZGR
; (Equation 23)

where P is the prior odds ratio in favor of a deviation from GR and A=amax � amin is the prior range on a

which must be included to account for the differing prior volumes between the models. Computing the

Bayes’ factor in this manner between nested models is known as the Savage-Dickey density ratio (Dickey,

1971). Under our conservative assumption that bG0i = 0, the Fisher matrix has a block diagonal structure and

det Gmn = G00det Gij. The Bayes’ factor simplifies to

B =
P

A

ffiffiffiffiffiffiffi
2p

G00

s
exp


1

2
G00a

2
ML

�
: (Equation 24)

Recalling that aML =astat +asys and G00 =s�2
a and using the results in Equations 17, 18, and 19 gives

logB = log

 
P

A

ffiffiffiffiffiffi
2p

p

r

!
+

�
z + r

ffiffiffiffiffiffiffiffiffiffi
2Mp

cosi
�2

2
: (Equation 25)

Note that the first term in Equation 25, known as the Occam penalty, decays slowly with increasing

SNR. However, the second term in Equation 25 grows rapidly. This reveals again, in another guise,
iScience 24, 102577, June 25, 2021 5
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the existence of a critical SNRabovewhichwe are in danger of erroneously claiming a deviation fromGRdue

to model errors. From the final term in Equation 25, we again conclude that when analyzing individual GW

events for deviations from GR we are safe from the effects of waveform systematics if r � 1=
ffiffiffiffiffiffiffiMp

.

Linear signal analysis: event catalogs

The previous section considered tests of GR with a single GWevent and concluded that we expect our anal-

ysis to be robust against the effects of waveform systematic errors provided r � 1=
ffiffiffiffiffiffiffiMp

. When we are in

the situation that no single event in the catalog shows a clear deviation from GR, it is desirable to combine

all the observed events to ‘‘dig deeper’’ and perform more stringent tests of GR. This section extends the

linearized analysis of the previous section and investigates the impact of waveform systematics on such cat-

alog tests.

A GW catalog contains N events, indexed by m˛f1; 2;.;Ng. As described in the previous section, each

event provides us with an independent measurement of the deviation parameter and the likelihoods for

thesemeasurements, PmðaÞ, are all Gaussian of the form in Equation 10 with parameters given by Equations

11, 12, and 13, or Equations 17, 18, and 19. We replace z/zm, r/rm, cosi/cosim andM/Mm to distin-

guish different events.

There are different ways of combining the information from multiple events. Two particularly simple ways

are (i) multiplying the 1Dmarginalized posteriors on a and (ii) multiplying the odds ratios (Zimmerman et al.,

2019). These approaches can been seen as two extrema of a more generic hierarchical-inference strategy

(Isi et al., 2019). In particular, the former assumes that the deviation parameter takes the same value for each

event in the catalog while latter assumes that the parameter takes an independent value for each event. We

consider each approach in turn.

Multiplying likelihoods

Under the assumption that the deviation takes the same value in each event of the catalog, the combined

posterior on the deviation parameter is given by the product of the independent likelihoods in each of the

N events:

PsameðaÞ =
YN
m= 1

PmðaÞ= 1ffiffiffiffiffiffi
2p

p exp

�
�
�
a� asame

ML

�2
2
�
ssame
a

�2 	 : (Equation 26)

The product of several Gaussian distributions with known means and variances is another Gaussian, the

mean and variance of which are given by

asame
ML =

�
ssame
a

�2XN
m= 1

aML;m

s2
a;m

; (Equation 27) !�1=2
ssame
a =

XN
m= 1

s�2
a;m : (Equation 28)

Using the combined catalog posterior on the deviation parameter in Equation 26, we can now compute

combined Bayes’ factor in favor of a deviation from GR. This is computed using the Savage-Dickey density

ratio and reads (see e.g. Sivia and Skilling 2006)

Bsame =
P

A

ffiffiffiffiffiffi
2p

p
ssame
a exp

�
1

2


asame
ML

ssame
a

�2	
: (Equation 29)

Multiplying Bayes’ factors

Each catalog event provides some evidence for or against a deviation from GR which is quantified by the

Bayes’ factor Bi in Equation 25. Under the assumption that the deviation takes independent values in each

event, the combined Bayes’ factor in favor of a deviation from GR is given by the product

Bdiff =
YN
m= 1

Bm: (Equation 30)
6 iScience 24, 102577, June 25, 2021
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Simple event catalogs

In this section, we perform Monte-Carlo simulations of highly simplified, mock GW catalogs. It is assumed

throughout that GR is the correct description of nature, but that our GR waveforms contain modeling er-

rors. The purpose of these simulations is to understand under what situations model errors might lead

us to mistakenly think that we have observed a deviation from GR.

For simplicity, in this section it is assumed that all events in the catalog have the same SNR, r. It is also

assumed that all events have the same amount of modeling error and that this leads to a mismatch value

ofM= 10�3 in each event. Finally, in this section the effects of instrumental noise are also neglected; i.e. it

is assumed that the specific noise realization in each observed GW event is n = 0, which corresponds to

setting z = 0 for each event. All of these assumptions are relaxed in the later sections where more realistic

catalogs are considered.

We simulate a mock catalog by first choosing the number of events to be considered, N. We then choose

the value of the SNR, r. All that remains is to choose the value of cosi=G1 for every event; this is done in

two ways described below.

We can then compute the evidence in favor of a deviation from GR either under the assumption that the

deviation parameter takes the same value for each event [Bsame, see Equation 29; i.e. multiplying likeli-

hoods] or else under the assumption that the deviation takes independent values in each event [Bdiff ,

see Equation 30; i.e. multiplying Bayes’ factors]. We consider these two cases in turn.

Multiplying likelihoods

Each individual event, labeled by m˛f1; 2;.;Ng, gives a measurement of the deviation parameter. Under

the assumptions described above, and neglecting the statistical fluctuations due to the noise, the likeli-

hood on a from this measurement is a 1D Gaussian with a mean aML;m =asys;m given by Equation 18 and

a standard deviation sa;m given by Equation 19.

Multiplying these likelihood functions together gives a single, combined catalog measurement of the de-

viation parameter. The likelihood from this combined measurement is also a 1D Gaussian with a mean and

standard deviation given by Equations 27 and 28 respectively. These expressions simplify further to give

asame
ML =

ffiffiffiffiffiffi
2p

p

N

XN
m= 1

ðcosimÞ ; (Equation 31)

1

ssame
a = ffiffiffiffi

N
p

r
: (Equation 32)

The Bayes’ factor in favor of a deviation from GR that comes from this combined catalog measurement of a

was derived in Equation 29 and simplifies further here to give

logBsame = log

 
P

A

ffiffiffiffiffiffi
2p

pffiffiffiffi
N

p
r

!
+
Mr2

N

 XN
m= 1

cosim

!2

: (Equation 33)

The heat maps in Figure 1 show the numerical, Monte-Carlo results for the Bayes’ factor Bsame under

two possible scenarios. The left panel of Figure 1 illustrates a case where the model errors differ

among events such that they are equally likely to favor positive and negative value for a. We mimic

this scenario by randomly selecting either cosi= 1 or cosi= � 1 for each event. The right panel of Fig-

ure 1 illustrates the case where the model errors are such that they always tend to favor a deviation of

a with the same sign. We mimic this scenario by always choosing cosi= + 1 in every event. In reality,

the situation is likely to be somewhere in between these two extreme possibilities. The real distribution

of cosi will depend on the astrophysical population of sources and any detection biases. Unless we are

very unlucky, the modeling error is unlikely to always resemble exactly the same type of deviation from

GR. However, because we analyze all GW events using the same waveform model the modeling

errors are also not independent between events. For simplicity, the results in Figure 1 are scaled to

P = A = 1.

It is possible to understand analytically the distinctly different scaling of logBsame observed in the

two panels of Figure 1. First, we consider a case where the model errors are such that they always tend
iScience 24, 102577, June 25, 2021 7



Figure 1. The log Bayes’ factor, logBsame, in favor of a deviation from GR under the assumptions that the

deviation parameter takes the same value in all events

These results were obtained for the highly simplified mock GW event catalogs described in the main text; in particular,

this assumes that each of the N events has the same SNR, r, and the same model mismatch error, M = 10�3, and we

neglect noise fluctuations by setting z = 0. Left panel: the model errors are equally likely to favor positive or negative a

(cosi=G1 randomly in all events); in this case the model errors do not accumulate strongly when combining the catalog

events. The speckled pattern comes from the random, Monte-Carlo choices for cosi in each event and would tend to

average out if we simulated multiple catalog realizations. Right panel: the model errors always favor positive a (cosi= 1 in

all events); in this case the model errors accumulate rapidly as the number of events increases andBsame increases withN.

The yellow lines shows the analytic prediction of the threshold logBsamez10 above which model errors might cause us to

erroneously claim to have detected a deviation fromGR; the horizontal line in the left hand comes from Equation 35, while

the line in the right hand figure comes from Equation 34. In both panels the analytic predictions for the threshold follow

the contours of the heatmap.
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to favor a deviation of a with the same sign (right panel). In this case cosim = + 1 for every event and we sim-

ply have that
P

mcosi = N. For large catalogs, the expression for the Bayes’ factor in Equation 33 now

becomes

logBsamezMNr2 : (Equation 34)

The logarithm term is neglected as we are mainly interested in the limiting behavior for large N and r.

If we choose an arbitrary threshold Bayes’ factor (say,Bthreshold = e10) above which we will claim to have seen

evidence for a deviation from GR, then rearranging Equation 34 gives an expression for the threshold SNR

as a function of catalog size. This is plotted as the yellow curve in the right panel of Figure 1, where it can be

seen to follow the contours of the heatmap. We see that even if r � 1=
ffiffiffiffiffiffiffiMp

, and our waveform model is

comfortably good enough to analyze each event individually, there always exists a critical catalog size

about which the Bayes’ factor in favor of a deviation from GR exceeds any threshold. In this case, as the

catalog size increases there is a growing danger of erroneously claiming to detect a deviation from GR

due to the model error.

Second, we consider the case where the model errors differ among events such that they are equally likely

to favor positive and negative value for a. This scenario was mimicked in our toy model by choosing cosim =

G1 randomly. Therefore, the term
P

mcosi is a new random variable, and in the limit of large catalog size

(i.e. as N/N) the central limit theorem implies that this will be normally distributed as
P

mcosi � N ð0;ffiffiffiffi
N

p Þ. It follows that the combination ðPmcosiÞ2=N appearing in Equation 33 is now distributed as a c2

random variable with 1 degree of freedom and has an expectation value of 1. Therefore, the expectation

value for the Bayes’ factor in Equation 33 becomes

logBsamezMr2 : (Equation 35)

Again, we neglect the logarithm term as it is unimportant in the limit of large r. This expression can be re-

arranged to find the threshold SNR above whichBsame exceeds the threshold; this is plotted as the horizon-

tal yellow line in the left panel of Figure 1. Note the very different scaling from that in Equation 34; in this
8 iScience 24, 102577, June 25, 2021



Figure 2. The log Bayes’ factor, logBdiff, in favor of a deviation from GR under the assumption that the deviation

parameter takes independent values in each event

These results were obtained for the highly simplified mock GW event catalogs described in the main text. In this situation,

the two cases where the model errors equally favor positive and negative a (cosi = G1) and where they always favor

positive a (cosi = 1) give identical results. The yellow lines shows the analytic prediction in Equation 36 of the threshold

logBdiff = 10 above which model errors might cause us to erroneously claim to have detected a deviation from GR; this

prediction closely follows the contours of the heatmap. Here, the model errors accumulate only if the SNR in each

individual event is above a critical value, riar� = 55:68 [see Equation 37]. If the individual event SNRs are below this critical

value then the Bayes’ factor actually decreases with increasing catalog size leading us to (correctly) favor the GR

hypothesis.
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case, the model errors do not accumulate as the catalog size increases and the danger of erroneously

claiming a deviation from GR does not increase with N.

Multiplying Bayes’ factors

Figure 2 shows the results of another Monte-Carlo analysis, this time combining the catalog events under

the assumption that the GR deviation parameter takes independent values in each event. As discussed

above, this corresponds to multiplying together the Bayes’ factors for each individual catalog event in or-

der to obtain the combined Bdiff catalog Bayes’ factor in favor of a GR deviation.

Again, we consider a simplified GW catalog containing N events each at the same SNR, r. As before, we

further assume that each event has the same mismatch,M = 10�3, due to modeling errors and we neglect

the statistical fluctuations due to noise by setting z = 0 for each event. Again, we could consider both a sce-

nario where the model errors equally favor positive and negative a (i.e. randomly selecting cosimG 1) and a

scenario where the model errors always favor positive a (i.e. always setting cosim = 1). However, in this

worst-case scenario, these two possibilities give identical results (inspecting Equation 25 we see that,

when setting z = 0, the individual event Bayes’ factor Bm depends only on cosi2m).

The heatmap in Figure 2 shows the numerical, Monte-Carlo results for the Bayes’ factor Bdiff . As before, it is

possible to understand analytically the observed scaling of logBdiff . The Bayes’ factor for each individual

event is given by Equation 25 (with z = 0, as we are neglecting statistical noise fluctuations in this section).

The combined log Bayes’ factor Bdiff is simply the sum of the individual log Bayes’ factors and is given by

logBdiffzN

"
log

 
P

A

ffiffiffiffiffiffi
2p

p

r

!
+ Mr2

#
: (Equation 36)

This expression can be rearranged to find the SNR at which the Bayes’ factor exceeds the threshold for

claiming evidence for a deviation from GR. This predicted threshold SNR is plotted as a yellow line in Fig-

ure 2 for the choice Bthreshold = e10.

In this case, we see a qualitatively new behavior as the catalog size, N, increases. Whenever a new event is

added to the catalog, there is a competition between the model error [second term in Equation 36] which
iScience 24, 102577, June 25, 2021 9



ll
OPEN ACCESS

iScience
Article
tends to increase the Bayes’ factor in favor of a deviation from GR and the Occam penalty [first term in

Equation 36] which tends to do the opposite. Which effect ends up winning depends on the SNR. There

exists a critical SNR, r�, above which the Bayes’ factor increases with N and this is given by the solution to

log


Ar�ffiffiffiffiffiffi
2p

p
P

�
= Mr2� ; (Equation 37)

which in our example where P=A= 1 and M= 10�3 is r� = 55:68. Below this critical SNR we are safe from

model systematics and the Bayes’ factor in favor of a deviation from GR actually decreases as the catalog

grows. In the large-N limit and within the assumption of this model, this implies that evidence against GR

grows (is suppressed) in catalogs made of events with SNR r>r� (r<r�).
More realistic event catalogs

The GW catalogs considered in the previous section were rather unrealistic. The SNR of each event was the

same; the mismatch was the same for every waveform, and the statistical fluctuations due to individual

noise realizations were ignored. In this section, we relax these assumptions and perform Monte-Carlo sim-

ulations of more realistic catalogs.

We simulate catalogs of N events where the SNR of individual events are drawn from a PðrÞfr�4 distribu-

tion, which is the expected distribution for a population of sources in a Euclidean universe with no cosmo-

logical evolution in the merger rate (Schutz, 2011; Chen and Holz, 2014). The lower (upper) cutoffs in the

SNR distribution where chosen to be rlow = 20 (rhigh = 200). Our results are somewhat sensitive to the lower

cutoff of the SNR distribution; the value of 20 used here is larger than the usual LIGO/Virgo detection

threshold r/8 because: (i) we do not want to invalidate the assumptions behind the linearized analysis

which are only expected to hold for large SNR, and (ii) it is reasonable to expect that delicate analyzes

such as tests of GR will only be performed on a subset of loud events. This was done, for example, in

the recent analysis by LIGO and Virgo Collaborations, (2020b) where none of the marginal triggers with

false alarm rate >10�3yr�1 were investigated.

Instead of fixing the mismatch at a single valueM= 10�3 for all events, we now allow the mismatch to differ

between events by drawing this from a distribution with lower (upper) cutoffs of Mlow = 10�4 (Mhigh =

10�2). The choice of these cutoffs is roughly motivated by the accuracy of existing models and the results

from Figure 13 of Blackman et al. (2017). The shape distribution of M between these limits is difficult to

predict as it will depend on the waveform models used, on where in parameter space this model perform

best/worst, and on the distribution of the event properties such as mass ratio and spins presented to us

nature in the catalog. All of these are difficult to predict. However, given existing observations, we expect

most events will be nearly equal mass and with low spins (LIGO and Virgo Collaborations, 2020a), where our

waveform models perform relatively well (although a small number of more exotic events should be ex-

pected). Therefore, the distribution of M will be skewed toward low values. Here, we consider two possi-

bilities: a bad case PðMÞfM�1 and a good case PðMÞfM�2.

The log Bayes’ factors obtained from the catalogs assuming the deviation takes the same value in every

event (i.e. Bsame; multiplying likelihoods) are shown in Figure 3. We consider the same two cases for cosi

as was done for the simplemock catalogs. In the left hand panel we see that the Bayes’ factor does not scale

strongly with the size of the catalog; this agrees with the results in the left panel of Figure 1 obtained using

the simpler catalogs. In the right hand panel, we see that the Bayes’ factor in favor of a deviation from GR

increases rapidly with the size of the catalog. This is also in agreement with the results in the right panel of

Figure 1 obtained using the simpler catalogs.

The results for the log Bayes’ factors obtained assuming that the deviation parameter takes independent

values in each event (i.e. Bdiff ; multiplying the individual Bayes’ factors) are shown in Figure 4. Again, we

consider both cosi=G1 and cosi = 1. We see very similar behavior in both cases (consistent with the

identical results found for the simple catalogs). In both panels we see that the Bayes’ factor scales

strongly with the size of the catalog but that it can either increase or decrease depending on the distri-

bution of the mismatches. This behavior can be understood from the results in Figure 2 obtained using

the simpler catalogs. If PðMÞfM�2, most events have very small mismatches and therefore have r< r�
(i.e. below the yellow line in Figure 2) and, as the catalog size increases, the increasing Occam penalty

dominates over the effect of the model error and GR is favored. On the other hand, if PðMÞfM�1, more
10 iScience 24, 102577, June 25, 2021



Figure 3. The log Bayes’ factor, logBsame, in favor of a deviation from GR under the assumption that the deviation

parameter takes the same value in all events

The solid lines indicates the mean value of logBdiff obtained from 104 realisations of the more realistic simulated catalogs

described in the main text while the shaded region between the two paler lines indicates the G1s spread in this set of

simulated catalogs. The dashed horizontal line denotes the threshold logBsame = 10: above this line there is a risk that

model errors cause us to incorrectly claim a deviation from GR, while below this line we correctly conclude that GR is

favored. Left panel: the model errors are equally likely to favor positive or negative a (cosi=G1 randomly in all events); in

this case the model errors do not accumulate strongly when combining the catalog events. Right panel: the model errors

always favor positive a (cosi= 1 in all events); in this case the model errors accumulate rapidly as the number of events

increases and the evidence for a deviation from GR grows with the size of the catalog. Depending on the distribution of the

model errors, misleading evidence for a deviation from GR can appear with catalogs with as few as z10 events above the

minimum SNR of r>20.
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events have larger mismatches and r>r� (i.e. above the yellow line in Figure 2) and, as the catalog size

increases, the accumulating model errors overcome the Occam penalty and a deviation from GR is

favored.
Figure 4. The log Bayes’ factor, logBdiff, in favor of a deviation from GR under the assumption that the deviation

parameter takes independent values in all events

The solid lines indicate the mean value of logBdiff obtained from 104 realisations of the simulated catalog while the

shaded region between the two paler lines indicates the G1s spread in this set of simulated catalogs. The dashed

horizontal line denotes the threshold logBsame = 10. Left panel: the model errors are equally likely to favor positive

or negative a (cosi=G1 randomly in all events). Right panel: the model errors always favor positive a (cosi= 1 in all

events). In both cases we see the evidence for a deviation from GR grows rapidly with the size of the catalog if our

waveformmodels are bad (i.e. PðMÞfM�1) but decreases rapidly if our models are good (i.e. PðMÞfM�2). In the worst

case, misleading evidence for a deviation from GR can appear with catalogs containing as few as z30 events above the

minimum SNR of r>20.

iScience 24, 102577, June 25, 2021 11
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From the results in Figures 3 and 4, in four of the eight ‘‘realistic’’ scenarios considered here the misleading

evidence in favor of a deviation from GR due to the modeling errors accumulates rapidly with increasing

catalog size. This occurs even if the waveform model is good enough to safely analyze each event in the

catalog individually. These results highlight the potentially insidious effects of waveform systematics

when performing testing of GR with catalogs of GW events.
DISCUSSION

Developing waveform models is a challenging task that inevitably involves some approximations,

simplifications, and modeling errors. These include truncating post-Newtonian series at some high

order, neglecting certain physical effects (e.g. tidal terms, subdominant spin effects and orbital

eccentricity) and the finite accuracy in numerical-relativity simulations. If the resulting models

are interpreted at a face value, these systematic offsets can mimic the effect of new physics

beyond GR.

This is a rather generic effect that has long been known about at the level of individual events. In this paper,

we show how this extends to the case when a catalog of events is analyzed for signs of a deviation from GR.

Using a simple, linearized analysis we have studied whether and how fast the modeling errors accumulate

and have shown that it depends on:

1. the alignment of the model errors with the particular deviation from GR under consideration (i.e.

does the modeling error always tend push a in one direction, or does it vary across parameter space

and tend to average out across many different events);

2. how the catalog events are combined to give a test of GR (i.e. whether the deviation is assumed to

take the same value in each event [multiplying likelihoods], independent values [multiplying Bayes’

factors], or some intermediate case);

3. the distribution of waveform modeling errors (i.e. mismatches M) across catalog events, which

in turn depends on the waveform models used and the location of new events in parameter

space.

Furthermore, our idealized calculation shows that this is a rather urgent problem. Erroneous evidence for

new physics from waveform systematics might occur with as few as 10� 30 events at SNR a20. Although

this is a conservative estimate and reflects the worst-case scenario, it is dangerously close to the size of cur-

rent catalogs.

Going forward, our Fisher-like analysis needs to be backed up by injection and recovery campaigns. This

will address more realistically the details of how current waveform models perform when used for a selec-

tion of parameterized tests of GR on catalogs of various sizes.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software

Python3 https://www.python.org

Numpy https://numpy.org version 1.20.0

Scipy https://www.scipy.org/index.html version 1.6.3
RESOURCE AVAILABILITY

Lead contact

Christopher J Moore (moorecj@bham.ac.uk).
Materials availability

This study did not generate new unique reagents.
Data and code availability

This study did not generate any unique dataset.
METHODS DETAILS

All results contained in this paper were all obtained from the Monte-Carlo (MC) simulations described in

the body of the paper. These MC calculations involve drawing, from the distributions described, the

following random numbers for each GW event in the simulated mock catalogs: the signal-to-noise ratio,

mismatch, and model error alignment angle (cosine iota). All calculations were performed using Python

and the standard libraries referenced below. All information necessary to repeat these calculations is

clearly described in the main body of the paper.
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