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Since Kolmogorov's work on statistical properties of small scale turbulence in fluid

flows [1], many experiments and theoretical refinements have been attained. One of the main

directions of research is the study of the deviation from the pure self-similarity of the energy

cascade process described by Kolmogorov, which has been interpreted in terms of

intermittency of the observed fluctuations [2]. Intermittency manifests itself as a deviation of

the Probability Distribution Function (PDF) of the fluctuations from gaussianity at small

scales [2]. While in ordinary fluids the statistical properties of turbulence have been well

characterized both theoretically and experimentally, in magnetized fluids only recently this

has been undertaken. In particular up to now this kind of studies has been performed on

velocity and magnetic fluctuations in the solar wind [3].

In this paper we report for the first time evidence for the presence of magnetic

turbulence intermittency in a laboratory plasma confined in a reversed field pinch (RFP)

configuration.

RFX is a large device (R = 2 m, a = 0.457 m) for the magnetic confinement of fusion-

relevant plasmas in RFP configuration. The analyzed data have been collected in 400 kA

discharges. Magnetic fluctuations play a major role in the RFP dynamics, and attain levels of

the order of 1% of the average magnetic field. In RFX two distinct components of the

magnetic fluctuations can be identified: a localized and stationary magnetic perturbation,

originated by tearing modes phase-locked and locked to the wall [4], and a residual high

frequency magnetic activity. This high frequency fluctuations have been studied in the present

work with a pick-up coil housed in a boron nitride measuring head, which has been inserted in

the edge plasma through an equatorial port. The pick-up coil measures the time derivative of

the radial component Br of the magnetic field, with a sampling frequency of 2 MHz.

Measurements have been collected at different values of the insertion X of the probe into the

plasma, X=0 being the position of the inner convolution of the RFX graphite first wall.

The spectral properties of turbulence are usually investigated through Fourier analysis.

However the statistical properties can be studied from the structure functions [1], defined

through S(q)(τ) = <|δBτ|
q> (brackets being ensemble averages), where the stochastic quantities

δBτ(t) = Br(t+τ)-Br(t) represent the magnetic fluctuations at the time scale τ. Due to the plasma



rotation in the toroidal direction [5] it is possible to apply the usual Taylor's hypothesis, which

allows to use time scales in place of spatial scales.

Since the 2nd order structure function is related to the spectral energy in a simple way,

the use of the energy spectrum as a characterization of turbulence suffices only if fluctuations

are normally distributed. On the contrary, if the PDF of δBτ(t) is non gaussian, the process

must in principle be described by using its infinite set of moments. To show that this is the

case, in Fig. 1 we report the PDF's of the normalized fluctuations δBτ/<δBτ
2>1/2 for two

different time scales in a typical discharge.

As a reference we superimpose a gaussian

curve. As can be seen large scale

fluctuations are almost normally

distributed, but the tails of small scale

fluctuations show a deviation from the

gaussian PDF: strongest and rare events

have a probability of occurrence grater than

that expected if they were gaussianly

distributed. This is the distinctive feature

for the presence of intermittency.

We have then investigated the

existence of anomalous scaling laws in magnetic turbulence related to the presence of

intermittency. According to Kolmogorov's picture of turbulence, the q-th order structure

function in the inertial range (the intermediate range of scales between the energy containing

scale and the dissipative scale) scales as S(q)(τ) ~ τ
ξ(q) where ξ(q) = q/3 (the symbol ~ means

that two quantities have the same scaling law). In MHD, due to the Alfvén effect, the scaling

becomes  ξ(q) = q/4 [6]. The presence of intermittency modifies the linear scaling law [2], that

is ξ(q) is recorded as a nonlinear function of q. Energy cascade models, in the multifractal

framework, try to describe the deviation from the linear scaling. In particular the p-model,

which consists in a fragmentation process for the energy through the various scales described

by a two-scale Cantor set with equal partition intervals, predicts ξ(q) = 1 - log2 [p
q/m + (1-p)q/m]

(m = 3 in the fluid-like case [7] and m = 4 in the MHD case [6]). The parameter 0.5 < p < 1,

which describes the "strength" of intermittency (the greater p the stronger the intermittency

effects), is a free parameter. A different model, originally developed by She and Leveque [8],

assumes an infinite hierarchy for the moments of the energy transfer rate and a divergent

scaling law for the most singular dissipative structures. In this case ξ(q) = q/9 + 2[1-(2/3)q/3] in

fluid flows [8], and ξ(q) = q/8 + [1-(1/2)q/4] in MHD flows [9]. This model has no free

parameters. Both models predict the same scaling exponents if p is set equal to 0.7, and the

predictions match the experimental values for fluid turbulence [6,7].
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Figure 1:  PDF of normalized magnetic fluctuations
at two different scales with a gaussian curve
superimposed.



In Fig. 2 we show the 2nd  order

structure function as a function of the

scale τ. The increse of S(2) at scales

larger than the plasma rotation time is

found for all the S(q) and is due to

spurious effects at the largest scales. As

can be seen S(2) has the same shape as in

a low-Reynolds number fluid

turbulence, that is the existence of a

range of scales with a linear relation

between log S(q) and log τ is not so

evident. This is a common feature of

magnetic turbulence, also present in the

solar wind [10]. To overcome this

difficulty we analyze the normalized

scaling exponents through the relation

S(q)(τ) ~ [S(m)(τ)]α(q). In the inertial range

α(q) = ξ(q)/ξ(m). Almost surprisingly

both in fluid flows [11] and in solar

wind [10] a linear relation between log

S(q) and log S(m) extends well outside of

the inertial range, with the same scaling

exponents α(q), thus leading to the so

called Extended Self-Similarity. We

then investigated the behavior of log S(q)

vs. log S(4), and we found that a nice

linear relation is visible almost through-

out the whole range of measurements.

As an example in Fig. 3 we report S(2)

vs. S(4) in log-log scale. Finally, giving

credit to the fact that the scaling

exponents so obtained would represent

the normalized exponents characterizing

the inertial range turbulence, we

obtained the values of α(q) reported in

Fig. 4. The presence of intermittency is

well evidenced as a deviation from the

linear trend  and, at least for this choice

of X, the She-Leveque model

reproduces quite well the values of α(q).
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Figure 3:  S(2)(τ) plotted versus S(4)(τ).
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Figure 2:  2nd order structure functions S(2)(τ) plotted
against the time scale τ. Also shown as vertical dashed
lines are the Alfvén time and the plasma rotation time.
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Figure 4:  Scaling exponents α(q) (black circles)

superimposed with the Kolmogorov's scaling (full line)
and the p-model (with p = 0.7), corresponding to the
She-Leveque model (dashed line). The error bars,
calculated by the standard deviation of the fits
analogous to that in Fig. 3, are within the symbol size
for all values of q.



Indeed, it has been found that the intermittency
is maximum around the position X=0, and it
decreases while going into the plasma (X>0). This is
shown in Fig. 5, where the α(2) and α(6) exponents
are plotted as a function of X. While at X=0 the
values are much different than those of the She-
Leveque model, they tend to be well described by the
model at the most inserted positions. In all cases,
intermittency is present, since the exponents are
substantially different from the Kolmogorov scaling
law. Note however that, by changing the values of p,
that is introducing cascade processes with a different
level of non homogeneity of the energy transfer rate
towards the small scales, the p-model is able to
reproduce all the observed exponents.

In conclusion we found that intermittency is a
characteristic of magnetic turbulence in the RFX
device. The intermittency level is not as high as that
obtained from magnetic turbulence in the solar wind
[12], at least for values of X not so close to the walls.
This might be due to the fact that magnetic

turbulence in the solar wind is strongly influenced by the velocity field, while in RFP devices
the magnetic field appears to be the "main" field. We want to stress that, as in the solar wind,
the normalized scaling exponents do not agree everywhere with those of the standard She-
Leveque model.
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Figure 5:  Scaling exponents α(2) and
α(6) plotted as a function of the insert-
ion X of the probe into the plasma. Also
reported as horizontal lines are the
Kolmogorov values and the values
obtained from the standard intermitt-
ency model.
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