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1 Introduction

The compressible to incompressible limit in Euler equations is widely studied in the literature, see
for instance the well known results [6, 9, 10, 11, 12, 14], the more recent [15], the review [13] and
the references therein. For the case of Navier–Stokes equations, we refer for instance to [7, 8]. The
usual setting considers regular solutions, whose existence is proved only for a finite time, to the
compressible equations in 2 or 3 space dimensions. As the Mach number vanishes, these solutions
are proved to converge to the solutions of the incompressible Euler equations, while only a weak*
convergence holds for the pressure.

Here, we recover the same convergence results, in a 1D setting, but within the framework of
weak entropy solutions proved to exist for all times. In particular, L1-convergence is proved for
all positive times and the space regularity of solutions is L1 ∩BV.

In the present 1D setting, a compressible to incompressible limit over all the real line is of no
interest. One may then consider two compressible immiscible fluids, say a gas and a liquid, letting
the liquid tend to become incompressible. The limiting procedure basically yields a boundary
value problem for the gas, while the boundary between the fluids turns into a solid wall. Indeed,
an incompressible fluid in 1D is essentially a solid.

Therefore, below we consider a droplet of a compressible inviscid fluid that fills the segment
[a, b] and is surrounded by another compressible inviscid fluid filling the rest of the real line. The
fluids are assumed to be immiscible. For simplicity, we refer to the fluid forming the droplet as to
a liquid, while its complement is labeled as gas. In the isentropic (or isothermal) approximation,
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this whole system can be described by







































































































{

∂tρg + ∂x(ρg vg) = 0
∂t(ρg vg) + ∂x

(

ρg vg
2 + pg(ρg)

)

= 0
x∈R \ [a(t), b(t)] gas

{

∂tρl + ∂x(ρl vl) = 0
∂t(ρl vl) + ∂x

(

ρl vl
2 + pl(ρl)

)

= 0
x∈ [a(t), b(t)] liquid

{

ȧ(t) = vg
(

t, a(t)−
)

ḃ(t) = vg
(

t, b(t)+
)

kinetic
relations
(immiscibility)

{

vg
(

t, a(t)−
)

= vl
(

t, a(t)+
)

vg
(

t, b(t)+
)

= vl
(

t, b(t)−
)

mass
conservation

{

pg
(

ρg(t, a(t)−)
)

= pl
(

ρl(t, a(t)+)
)

pg
(

ρg(t, b(t)+)
)

= pl
(

ρl(t, b(t)−)
)

momentum
conservation.

(1.1)

Here, ρl is the density of liquid in the droplet, vl is its speed and pl = pl(ρl) is the pressure law,
while ρg, vg and pg denote the analogous quantities for the gas. The above conditions not only
ensure the conservation of mass, but also prevent any exchange of matter between the two fluids.
In particular, they do not mix but, clearly, there is exchange of information between the two fluids,
thanks to the global conservation of momentum. Note also that these conditions obviously ensure
the energy conservation at the interfaces, while shocks lead to the dissipation of energy in the
interior of the 2 fluids. Indeed, as is well know [5], energy plays here the role of the mathematical
entropy. The above kinetic relations provide a link between the fluid interfaces and the fluid
speeds.

Passing to the incompressible limit in the liquid phase, we expect to obtain the system































































{

∂tρg + ∂x(ρg vg) = 0
∂t(ρg vg) + ∂x

(

ρg vg
2 + pg(ρg)

)

= 0
x∈R \ [a(t), b(t)] gas;







ρl = ρ̄l

v̇l =
pg(t,a(t−))−pg(t,b(t+))

(b(t)−a(t)) ρ̄l

x∈ [a(t), b(t)] liquid;











vg
(

t, a(t)−
)

= ȧ(t)

vg
(

t, b(t)+
)

= ḃ(t)

vl(t) = ȧ(t) = ḃ(t)

mass and
momentum
conservation,

(1.2)

consisting of a conservation law describing the compressible gas coupled with an ordinary differ-
ential equation for the incompressible droplet. We recall that (1.2) is known to be well posed,
see [1, Proposition 3.1].

Since we assume the two phases immiscible, a natural choice is to pass to Lagrangian coordi-
nates, so that the interfaces between the two phases become stationary.
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In these coordinates, introducing the total mass m of the liquid, the above system (1.1) reads:















































































{

∂tτg − ∂zvg = 0
∂tvg + ∂zpg(τg) = 0

z ∈R \ [0,m] gas

{

∂tτl − ∂zvl = 0
∂tvl + ∂zpl(τl) = 0

z ∈ [0,m] liquid

{

vg (t, 0−) = vl (t, 0+)
vg (t,m+) = vl (t,m−)

mass
conservation

{

pg
(

τg(t, 0−)
)

= pl
(

τl(t, 0+)
)

pg
(

τg(t,m+)
)

= pl
(

τl(t,m−)
)

momentum
conservation,

(1.3)

while its incompressible limit in the liquid phase, i.e., (1.2) in Lagrangian coordinates, becomes















































{

∂tτg − ∂zvg = 0
∂tvg + ∂zpg(τg) = 0

z ∈R \ [0,m] gas;

v̇l =
pg(t,0−)−pg(t,m+)

m
liquid;

{

vg (t, 0−) = vl(t)
vg (t,m+) = vl(t)

mass and momentum
conservation.

(1.4)

Problems (1.1) and (1.3), respectively (1.2) and (1.4), are well posed in L1 globally in time, see [4,
Theorem 2.5], respectively [2, Theorem 3.6].

The main result of this paper states the rigorous convergence of (1.1) to (1.2) or, equivalently,
of (1.3) to (1.4). In this very singular limit, the sound speed c̄ in the liquid phase tends to +∞; the
density converges to a fixed reference value ρ̄; the graph of the pressure law becomes vertical and
the eigenvectors of the Jacobian of the flow tend to coalesce. In [9, 10, 11, 12, 13], this behavior is
reproduced requiring that ‖∇p‖ → +∞. Here, similarly, we fix the constant initial specific volume
τ̄l of the liquid and locally describe the liquid phase in Lagrangian coordinates in a neighborhood
of τ̄ through the pressure law

pη(τ) = p̄− η2(τ − τ̄l) so that τη(p) = τ̄l −
1

η2
(p− p̄) where η =

c̄

τ̄l
, (1.5)

where, c̄ is the Eulerian sound speed and η is the Lagrangian sound speed.

Informally, we present here the main result of the present paper. The rigorous statement is
in Section 2. More precisely, points 1. and 2. in Theorem 1.1 are consequences of Theorem 2.3,
while point 3. follows from Theorem 2.4.

Theorem 1.1. Fix in the gas phase a pressure law satisfying (p) and the pressure law (1.5) in
the liquid phase.

1. There exists a nontrivial set of initial data D such that the Cauchy problem consisting of (1.1)
is well posed for all initial data in D and for all c̄ sufficiently large.

2. The initial data in D in the liquid phase are incompressible, i.e., they have a constant density
ρ̄l and speed v̄l.

3. For any initial data in D, the solution to the Cauchy problem (1.1) converges as c̄ → +∞
and the limit solves (1.2). In particular, in the liquid phase:

(i) the density converges in L1

loc
to ρ̄l, which is constant in space and time;
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(ii) the velocity converges in L1

loc
to a function vl = vl(t) which is constant in space and

whose time evolution is specified in (1.2);

(iii) the pressure weak* converges in L∞ to the linear interpolation of the values of the gas
pressure at the liquid boundaries, for almost every time t ≥ 0.

Remark that the convergences stated above extend the classical result [9] to the case of non smooth,
albeit 1D, solutions.

The present setting comprises also the case of the compressible to incompressible limit on the
free boundary value problem in which only the liquid is present and it is constrained in the moving
strip [a(t), b(t)], with prescribed pressure along the boundaries.

As usual in the study of non smooth solutions to 1D systems of conservation laws, see [3, 5],
we exploit the wave front tracking techniques, so that the desired estimates follow from suitable
bounds on the approximate solutions. A first key analytical difficulty in obtaining the present
result lies in the need for bounds in the total variation of solutions that are uniform when the
sound speed tends to +∞. A very careful choice of the parametrization allows to control the
interactions of waves against the phase boundaries.

Within the liquid phase, waves may well bounce back and forth with a diverging speed. This
phenomenon requires an ad hoc procedure to bound the total number of interaction points in
the ε-approximations. In turn, we are able to use the wave front tracking algorithm in [3], but
without the need of nonphysical waves. A further consequence of these possible bounces is that
the total variation of the pressure along lines x = x̄ grows unboundedly, which is why only a
weak* convergence of the pressure is possible. Nevertheless, we recover the Newton law for the
incompressible liquid thanks to the bounds on the total variation and to the conservative form
of (1.3) and (1.4).

The next Section presents the rigorous setting for (1.3) and (1.4). First, the well posedness
of (1.3) proved in [4, Theorem 2.5] is improved to obtain uniform estimates that allow to pass to
the incompressible limit. Then, Theorem 2.4 presents our main result. Section 3 is devoted to
the analytical proofs. There, we highlight the key modifications to the standard procedure [3, 5],
without repeating the now classical wave front tracking constructions.

2 The Compressible → Incompressible Limit

Throughout, we identify the state u of the fluid by (τ, v) or (p, v), once an invertible pressure law
p = p(τ) is assigned. Given a function u : R → R

+ × R, we denote

(τg, vg) = ug = uχ
R\[0,m]

and (τl, vl) = ul = uχ
[0,m]

.

In Lagrangian coordinates, a standard assumption on the pressure law is

(p) p ∈ C4(R+;R+) is such that p′(τ) < 0 and p′′(τ) > 0 for all τ > 0.

Recall the definition of solution or (1.3):

Definition 2.1. Fix a gas state ūg and a liquid state ūl. Denote ū = ūg + (ūl − ūg)χ[0,m]
. Let

T > 0 be fixed. By solution to (1.3) we mean a map

u ∈ C0

(

[0, T ]; ū+ (L1 ∩BV)(R;R+ × R)
)

such that:

1. it is a weak entropy solution to

{

∂tτg − ∂zvg = 0
∂tvg + ∂zpg(τg) = 0

in [0, T ]× (R \ [0,m]);
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2. it is a weak entropy solution to

{

∂tτl − ∂zvl = 0
∂tvl + ∂zpl(τl) = 0

in [0, T ]× [0,m];

3. for a.e. t ∈ [0, T ], the conditions at the junction

{

pg
(

τg(t, 0−)
)

= pl
(

τl(t, 0+)
)

vg (t, 0−) = vl (t, 0+)
and

{

pg
(

τg(t,m+)
)

= pl
(

τl(t,m−)
)

vg (t,m−) = vl (t,m+)
are satisfied.

Above, the continuity in C0
(

[0, T ]; ū+ (L1 ∩BV)(R;R+ × R)
)

is understood with respect to the
L1 norm.

In the case of the mixed model (1.4), we adapt [2, Definition 3.1] to the present situation.

Definition 2.2. Fix a gas state ūg. Let T > 0 be fixed. By solution to (1.4) we mean a pair of
functions

(u, vl) ∈ C0

(

[0, T ]; ūg + (L1 ∩BV)(R \ [0,m];R+ × R)
)

×W1,∞([0, T ];R) (2.1)

such that:

1. u is a weak entropy solution to

{

∂tτg − ∂zvg = 0
∂tvg + ∂zpg(τg) = 0

in [0, T ]× (R \ [0,m]);

2. vl is a solution to v̇l =
1
m

(

pg
(

τg(s, 0−)
)

− pg
(

τg(s,m+)
)

)

on [0, T ];

3. the conditions at the interface

{

vg (t, 0−) = vl(t)
vg (t,m+) = vl(t)

are satisfied for a.e. t ∈ [0, T ].

The definitions of solutions to the Cauchy problems for (1.3) and (1.4) are an immediate adaptation
of the definitions above.

Aiming at the rigorous compressible → incompressible limit, we need new estimates on the
compressible problem (1.3), improving analogous results in [4, Theorem 2.5].

Theorem 2.3. Fix a state ūg in the gas phase and a state ūl in the liquid phase. Let pg satisfy (p)
and pη be as in (1.5). Then, there exist positive ∆, δg, η∗, L such that for all η > η∗ and for suitable
positive δηl , L

η, problem (1.3)– (1.4) generates a semigroup

Sη : R+ ×Dη → Dη

with the following properties:

1. Dη ⊇
{

u ∈ ū+ (L1 ∩BV)(R;R+ × R) : TV(ug) < δg and TV(ul) < δηl
}

;

2. Sη is a semigroup: Sη
0 = Id and Sη

t1
◦ Sη

t2
= Sη

t1+t2
;

3. Sη is Lipschitz in u: for any u1, u2 in Dη and for all t ∈ R
+

∥

∥

∥S
η
t u

1 − Sη
t u

2
∥

∥

∥

L1

≤ Lη ·
∥

∥

∥u1 − u2
∥

∥

∥

L1

;

4. Sη is Lipschitz in t: for any u in Dη and for all t1, t2 ∈ R
+, setting (τη, vη)(t) = Sη

t u

∥

∥

∥τηg (t1)− τηg (t2)
∥

∥

∥

L1(R\[0,m])
≤ L |t1 − t2|

∥

∥τηl (t1)− τηl (t2)
∥

∥

L1([0,m])
≤ 1

η
L |t1 − t2|

∥

∥vη(t1)− vη(t2)
∥

∥

L1(R)
≤ L |t1 − t2| ;
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5. if u ∈ Dη is piecewise constant then, for t small, the map Sη
t u locally coincides with the

standard Lax solutions to the Riemann problems for (1.3) at the points of jump, at x = 0
and at x = m;

6. for all u ∈ Dη, the map t → Sη
t u is an entropy solution to (1.3) with initial datum u in the

sense of Definition 2.1;

7. if u ∈ Dη, then for all t ≥ 0 and η ≥ η∗, calling
(

τη(t), vη(t)
)

= Sη
t u

TV
(

pη
(

τηl (t, ·)
)

)

+TV

(

pg

(

τηg (t, ·)
)

)

< ∆

ηTV
(

vηl (t, ·)
)

+ η2 TV
(

τηl (t, ·)
)

< ∆;

(2.2)

8. if u ∈ Dη, then for all η ≥ η∗, calling
(

τη(t), vη(t)
)

= Sη
t u

TV
(

τηg (·, x)
)

+TV
(

vηg (·, x)
)

+TV

(

pg

(

τηg (·, x)
)

)

≤ ∆ x∈R \ [0,m] ; (2.3)

9. for a.e. x1, x2 with either x1, x2 < 0 or x1, x2 > m

∫ t

0

∥

∥

∥uη
g(s, x2)− uη

g(s, x1)
∥

∥

∥ ds ≤ L |x2 − x1| . (2.4)

The points 2., 3., 5. and 6. follow from [4, Theorem 2.5]. To obtain the a priori estimates in
points 1., 7. and 8., we have to substantially improve the wave front tracking construction in [4],
devising and exploiting a different parametrization of the Lax curves. These estimates allow to
obtain the key Lipschitz type estimates at point 4. and 9., where the dependence of the Lipschitz
constants on η, where present, is explicit.

Remark that point 8. above may not hold in the liquid phase, since the total variation of the
pressure therein may well blow up. The proof of Theorem 2.3 is deferred to Section 3.

The bounds above have a key role in proving our main result below.

Theorem 2.4. Fix a state ūg in the gas phase and a state ūl in the liquid phase. Let p satisfy (p)
and pη be as in (1.5). Then, with reference to the semigroup Sη and its domain Dη constructed
in Theorem 2.3, there exist positive δ∗ and η∗ such that for all uo

g ∈ ūo
g + L1(R \ [0,m];R+ × R)

with TV(uo
g) < δ∗:

1. the function uo = uo
g χ

R\[0,m]
+ ūl χ[0,m]

is in Dη for all η > η∗;

2. the limit (τ∗, v∗) = limη→+∞ Sη
t u

o is well defined and in Dη for all t ∈ R
+ and η > η∗;

3. τ∗(t, x) = τ̄l and v∗(t, x) = vl(t) for all (t, x) ∈ R
+ × [0,m], with vl ∈ W1,∞(R+;R);

4. for all x̄ ∈ R, the traces converge in the sense that

lim
η→+∞

∫ t

0

∥

∥uη(s, x̄±)− u∗(s, x̄±)
∥

∥ ds = 0 ;

5. let ug = u∗ χ
R\[0,m]

. Then, the map t →
(

ug(t), vl(t)
)

solves (1.4) in the sense of Defini-

tion 2.2;

6. as η → +∞, the map pη ◦ τηl weak* converges in L∞ to a function pl ∈ L∞(R+× [0,m];R+)
such that

pl(t, 0+) is well defined and equals pg
(

τg(t, 0−)
)

for a.e. t ∈ R
+ ,

pl(t,m−) is well defined and equals pg
(

τg(t,m+)
)

for a.e. t ∈ R
+ ,

pl(t, x) =
(

1− x
m

)

pg
(

τg(t, 0−)
)

+ x
m
pg
(

τg(t,m+)
)

for a.e. t ∈ R
+ .
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The proof of Theorem 2.4 is deferred to Section 3.
Observe that from the Eulerian coordinates’ point of view, the locations of the boundaries of

the liquid phase can be recovered through a time integration:

aη(t) = ao +

∫ t

0

vηg (s, 0−) ds a(t) = ao +

∫ t

0

vl (s) ds

bη(t) = bo +

∫ t

0

vηg (s,m+) ds b(t) = bo +

∫ t

0

vl (s) ds .

The boundaries of the two phases turns out to be Lipschitz continuous functions and moreover
aη → a, bη → b uniformly on compact sets as η → +∞. Moreover, point 2. in Definition 2.2
justifies the usual relation between the acceleration of the droplet and the pressure difference on
its sides.

3 Technical Details

We collect below a few facts about he p-system in Lagrangian coordinates

{

τt − vx = 0
vt +

[

p(τ)
]

x
= 0 .

t ∈ [0,+∞[ , x ∈ R

The eigenvalues are

λ1(τ, v) = −
√

−p′(τ) λ2(τ, v) =
√

−p′(τ) (3.1)

so that the Lax shock and rarefaction curves in the (p, v)–plane are

S1(u, σ) =





p− σ

v −
√

(

τ (p− σ)− τ(p)
)

σ



 if σ < 0

R1(u, σ) =







p− σ

v −
∫ p−σ

p

√

−τ ′(π) dπ






if σ > 0

S2(u, σ) =





p+ σ

v −
√

−
(

τ (p+ σ)− τ(p)
)

σ



 if σ < 0

R2(u, σ) =







p+ σ

v +

∫ p+σ

p

√

−τ ′(π) dπ






if σ > 0

(3.2)

Fix a state ūl and using the pressure (1.5), the Lax curves take the form

L1(u, σ) =

[

p− σ
v + σ

η

]

and L2(u, σ) =

[

p+ σ
v + σ

η

]

. (3.3)

Proof of Theorem 2.3. In view of [4, Theorem 2.5], it is sufficient to prove only the estimates
at 1. and (2.2). To this aim, we construct approximate solutions through an algorithm different
from that in [4]. Once a subsequence of these approximate solutions is proved to converge, by the
properties of the Standard Riemann Semigroup [3], it is known that the present approximations
converge to the solution constructed in [4].
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Definition of the Algorithm. Fix ε > 0. We approximate the initial datum uo by a sequence
uo
ε of piecewise constant initial data with a finite number of discontinuities such that

∥

∥uo
ε − uo

∥

∥

L1 ≤
ε. At each point of jump in the approximate initial condition, we solve the corresponding Riemann
problem using the front tracking algorithm as stated in [3, Chapter 7]. We approximate each
rarefaction wave by a rarefaction fan by means of (non-entropic) shock waves. Similarly to what
happens in the general case [3, Chapter 5], there exists a constant δo > 0 such that each of the
above Riemann problems has a unique approximate solution as long as TV(uo) < δo.

This construction can be extended up to the first time t1 at which two waves interact. At time
t1, the so constructed functions are piecewise constant with a finite number of discontinuities. We
can thus iterate the previous construction at any subsequent interaction, provided suitable upper
bounds on the total variation of the approximate solutions are available. These bounds essentially
rely on the interaction estimates below.

As it is usual in this contest, see [3], we may assume that no more than 2 waves interact at
any interaction point. Moreover, rarefaction waves, once arisen, are not further split even if their
size exceeds the threshold ε after subsequent interactions, with other waves or with the phase
boundaries. Besides, we call λ̂η an upper bound for the moduli of the propagation speeds of all
waves.

Specific to the present construction, is our choice to parametrize the Lax curves as in (3.2)
and, hence, waves’ sizes are measured through the pressure variation σ between the two states on
the sides of the wave.

Interaction Estimates. We recall the classical Glimm interaction estimates, see [3, Chapter 7,
formulæ (7.31)- (7.32)], which holds for any smooth parametrization:

σ+
1

σ−
1

σ+
2

σ−
2

σ+
1

σ+
2

σ′′
2 σ′

2

Figure 1: Left, an interaction between waves of different families. Right, an interaction between
waves of the same family.

∣

∣

∣
σ+
1 − σ−

1

∣

∣

∣
+
∣

∣

∣
σ+
2 − σ−

2

∣

∣

∣
≤ C ·

∣

∣

∣
σ−
1 σ

−
2

∣

∣

∣

∣

∣

∣σ+
1 − (σ′ + σ′′)

∣

∣

∣+
∣

∣

∣σ+
2

∣

∣

∣ ≤ C ·
∣

∣σ′σ′′
∣

∣

(3.4)

where we used the notation described in Figure 1. The estimates on the waves’ sizes in the case
of interactions involving the interface are as follows. In the case of Figure 2,

∣

∣

∣
σ+
1

∣

∣

∣
≤ C

∣

∣

∣
σ−
2

∣

∣

∣
and

∣

∣

∣
σ+
2

∣

∣

∣
≤ C

∣

∣

∣
σ−
2

∣

∣

∣
(3.5)

while in the case of Figure 3,
∣

∣

∣σ+
1

∣

∣

∣+
∣

∣

∣σ+
2

∣

∣

∣ =
∣

∣

∣σ−
2

∣

∣

∣ . (3.6)

Note that the constant C above depends only on quantities related to the gas phase, is uniformly
bounded when ug varies in a compact set and, in particular, is independent from η.
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σ−
2

σ+
1

σ+
2

ug
ul

u−
g

u+
g

u+
l

b

b

b

σ−
2σ+

1

σ+
2

u−
g

u+
g = u+

l

ug = ul

Figure 2: Notation used in the interaction estimates involving the phase interface.

σ+
2

σ−
1

σ+
1

ul

ug

u−
l

u+
l

u+
g

b

b

b

σ+
2 σ+

1

σ−
1

ug = ul

u+
g = u+

l

u−
l

Figure 3: Interaction estimate at the gas–liquid interface in the (p, v) plane. Note that the two
states u+

g and u+
l have different specific volumes but, due to the interface conditions, share the

same pressure and the same speed.

Bounds on the Total Variation. We follow the classical techniques based on Glimm func-
tionals, see [3]. To this aim, introduce the quantities

V −
g =

2
∑

i=1

∑

xα<0

Kg−
i

∣

∣σi,α

∣

∣ Vl =Kl

2
∑

i=1

∑

xα∈[0,m]

∣

∣σi,α

∣

∣ V +
g =

2
∑

i=1

∑

xα>m

Kg+
i

∣

∣σi,α

∣

∣

Q−
g =

∑

A−

g

∣

∣σi,ασj,β

∣

∣ Q+
g =

∑

A+
g

∣

∣σi,ασj,β

∣

∣

Υ−
g =V −

g +H Q−
g Υ+

g =V +
g +H Q+

g

where A−
g , respectively A+

g , is the set of pairs of approaching waves both with support in x < 0,

respectively x > m. The weights Kg±
i , Kl and H are defined below. They are positive numbers

independent from η.
Define Υ = Υ−

g + Vl +Υ+
g and consider the various case:

Case 1: An interaction in the interior of the liquid phase. then, thanks to the choice (1.5), we
have that ∆Υ = ∆Vl = 0.

Case 2: An interaction at the interface. Consider first the case of Figure 2. Then,

∆Υ = ∆Υ−
g +∆Vl

= ∆V −
g +H∆Q−

g +∆Vl

≤ Kg−
1

∣

∣

∣σ+
1

∣

∣

∣−Kg−
2

∣

∣

∣σ−
2

∣

∣

∣+H
∣

∣

∣σ+
1

∣

∣

∣

∑

xα<0

|σα|+Kl

∣

∣

∣σ+
2

∣

∣

∣
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≤









Kg−
1 +Kl +H

∑

xα<0

|σα|



C −Kg−
2







∣

∣

∣σ−
2

∣

∣

∣ ,

while in the symmetric situation we get

∆Υ ≤









Kg+
2 +Kl +H

∑

xα>m

|σα|



C −Kg+
1







∣

∣

∣σ−
1

∣

∣

∣ .

In the case of Figure 3:

∆Υ = ∆Υ−
g +∆Vl

= ∆V −
g +H∆Q−

g +∆Vl

≤ Kg−
1

∣

∣

∣
σ+
1

∣

∣

∣
+H

∣

∣

∣
σ+
1

∣

∣

∣

∑

xα<0

|σα|+Kl

∣

∣

∣
σ+
2

∣

∣

∣
−Kl

∣

∣

∣
σ−
1

∣

∣

∣

= Kg−
1

∣

∣

∣σ+
1

∣

∣

∣+H
∣

∣

∣σ+
1

∣

∣

∣

∑

xα<0

|σα| −Kl

∣

∣

∣σ+
1

∣

∣

∣

≤



Kg−
1 +H

∑

xα<0

|σα| −Kl





∣

∣

∣
σ+
1

∣

∣

∣
,

while in the symmetric situation we get

∆Υ ≤



Kg+
2 +H

∑

xα>m

|σα| −Kl





∣

∣

∣σ+
2

∣

∣

∣ ,

Case 3: An interaction in the interior of the left gas phase. Then, the classical estimates (3.4)
ensure that the standard Glimm functional decreases, i.e.,

∆Υ = ∆Υ−
g

= ∆V −
g +H∆Q−

g

≤ (Kg−
1 +Kg−

2 )C
∣

∣

∣σ−
1 σ−

2

∣

∣

∣+H(Cδ − 1)
∣

∣

∣σ−
1 σ−

2

∣

∣

∣

≤
(

(Kg−
1 +Kg−

2 )C −H/2
) ∣

∣

∣
σ−
1 σ−

2

∣

∣

∣
and

∆Υ = ∆Υ−
g

= ∆V −
g +H∆Q−

g

≤ (Kg−
1 +Kg−

2 )C
∣

∣σ′ σ′′
∣

∣+H(Cδ − 1)
∣

∣σ′ σ′′
∣

∣

≤
(

(Kg−
1 +Kg−

2 )C −H/2
)

∣

∣σ′ σ′′
∣

∣

in the two cases of Figure 1, provided δ is sufficiently small and H is sufficiently large.

We now choose Kg−
1 = Kg+

2 = 1, Kl = 2, Kg+
1 = Kg−

2 = 4C, H = 4(1 + 2C)C and finally
δ = min

{

1/(2C), 1/(2H)
}

, obtaining that ∆Υ ≤ 0 at any interaction. Indeed, in the different
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cases considered above, we have:

Case 1: ∆Υ = 0

Case 2, Figure 2, left boundary: ∆Υ ≤ −C
2

∣

∣

∣
σ−
2

∣

∣

∣

Case 2, right boundary: ∆Υ ≤ −C
2

∣

∣

∣
σ−
1

∣

∣

∣

Case 2, Figure 3, left boundary: ∆Υ ≤ − 1
2

∣

∣

∣σ+
1

∣

∣

∣

Case 2, right boundary: ∆Υ ≤ − 1
2

∣

∣

∣σ+
2

∣

∣

∣

Case 3, different families: ∆Υ ≤ −C
∣

∣

∣
σ−
1 σ−

2

∣

∣

∣

Case 3, same family: ∆Υ ≤ −C
∣

∣σ′ σ′′
∣

∣ .

(3.7)

This implies that the map t → Υ(t) decreases along the wave front tracking approximate solution,
independently from ε. This, thanks to the pressure law (1.5) and to the ad hoc choice of the
parametrization (3.3), leads to the following bounds uniform in ε:

TV
(

pεl (t)
)

≤ Υ(t) ≤ Υ(0) ;
η2 TV

(

τεl (t)
)

≤ Υ(t) ≤ Υ(0) ;
η TV

(

vεl (t)
)

≤ Υ(t) ≤ Υ(0) .
(3.8)

Bounds on the Number of Interactions. To be sure that the algorithm can be continued
for all times one needs to prove that interaction times do not accumulate in finite time.

Fix a positive ε and refer to the ε–approximate wave front tracking solution uε defined above.
Assume there exists a first time t∞ > 0 such that the point (t∞, x∞) is the limit of a sequence
(tn, xn) of interaction points, with tn < tn+1 for all n.

Claim: x∞ 6∈ ]0,m[. By contradiction, assume that x∞ ∈ ]0,m[. Then, for suitable positive
∆t and ∆x, the trapezoid

T =
{

(t, x) ∈ R
+ × R : t ∈ [t∞ −∆t, t∞] and |x− x∞| ≤ ∆x+ λ̂η(t∞ − t)

}

is contained in R
+ × [0,m]. No waves can enter the sides of T and a finite number of waves is

supported along the lower side of T . Hence, only a finite number of interactions may take place
inside T and no new waves are created therein, due to (1.5) in R

+ × [0,m]. This contradicts
(t∞, x∞) being the limit of an infinite sequence of distinct interaction points, proving the claim.

We can thus assume that x∞ ≥ m.

t∞

(tn, xn)

F

t = 0 I0

Figure 4: Left, an example of the set F . Right, an interaction point in I0. Solid lines represent
waves in F , dashed ones are waves not in F .

Call F the set of segments in [0, t∞]× [m,+∞[ that support discontinuities in uε and can be
connected forward in time along discontinuities in uε to one of the points (tn, xn), see Figure 4.
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(tn, xn)

I1 I2
σ′′ σ′

Figure 5: Left and center, examples of interaction point in the set I1. Right, an interaction point
in I2. Solid lines represent waves in F , dashed ones are waves not in F .

Call I the set of all interaction points in uε in the strip [0, t∞] × [m,+∞[. With reference to
figures 5 and 6, remark that I can be partitioned as follows:

I0 =
{

(t, x) ∈ I : x > m and no wave entering (t, x) is in F
}

I1 =

{

(t, x) ∈ I : x > m, at most 1 wave exiting (t, x) is in F
and the two interacting waves are in F

}

I2 =
{

(t, x) ∈ I : x > m and at least 2 outgoing waves of the same family are in F
}

I3 =

{

(t, x) ∈ I : x = m, the wave entering (t, x) from R
+ × [m,+∞[ is in F

and the outgoing wave is not in F

}

I∞ =

{

(t, x) ∈ I : x > m, the 2 waves exiting (t, x) are one of the first family,
one of the second and both belong to F

}

∪
{

(t, x) ∈ I : x = m and the outgoing wave in R
+ × [m,+∞[ is in F

}

I3

x = m

I∞ I∞

x = m

Figure 6: Left, an example of interaction point in I3. Center, respectively right, an interaction
point in I∞ at x > m, respectively along the boundary. Solid lines represent waves in F , dashed
ones are waves not in F , the thick line is the (right) phase boundary.

Claim: The set I2 is finite. Refer to Figure 5, right. When two waves of the same family
arise, they are rarefactions with total size bigger than ε. Hence, the interacting waves are shocks
of the same family with sizes σ′, σ′′ satisfying

∣

∣σ′ σ′′
∣

∣ > ε/C. Hence, ∆Υ < −ε and this can
happen only a finite number of times.

Claim: The sets I1 and I3 are finite. Call Z(τ) the number of segments in F that intersect
the line t = τ . Z may increase only at the interactions in I2, hence a finite number of times.
Then, at each interaction in I1 and in I3 it decreases at least by 1. Thus, I1 and I3 are finite.

Thus, in the partition above of I, only the sets I0 and I∞ can be infinite. Let τ∞ ∈ ]0, t∞[ be
such that all the interactions in I in the time interval [τ∞, t∞[ are in I0 or in I∞.

Claim: x∞ > m. Let tn ∈ ]τ∞, t∞[. Then, xn ≥ m and it is possible to follow waves in F only
of the second family converging to x∞. Waves of the second family have positive speed, hence
x∞ > xn ≥ m.
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Claim: (t∞, x∞) does not exist. Let (tn, xn) be sufficiently near to t∞, x∞, so that xn −m >

λ̂η(t∞− tn) and tn > τ∞. Then, the phase boundary x = m can not be reached following waves of
the first family in F that exit (tn, xn). On the other side, by the definition of F , (t∞, x∞) should
be reached starting from (tn, xn) following waves only of the first and only of the second family in
F that connect points in I∞. However, following waves of the first family one reaches a strictly
decreasing sequence of points xnj

, so that x∞ = infj xnj
< xn, whereas along waves of the second

family one reaches a strictly increasing sequence of points xni
, so that x∞ = supi xni

> xn. This
contradicts the existence of (t∞, x∞).

Lipschitz Continuity in Time. Let uε(t) = (pε, vε)(t) denote the ε-solution constructed above.
Introduce the following upper bound for the characteristic speeds in the gas phase Λ =

∥

∥

√
p′
∥

∥

C0

and note that the characteristic speed in the liquid phase is η. Then, by the above definition of
the approximate solution and by the parametrization (3.3), see also [3, Chapter 7, formula (7.9)],
if t1 < t2,

∥

∥vε(t1)− vε(t2)
∥

∥

L1
≤

(

Υ−
g

(

uε(t1)
)

+Υ+
g

(

uε(t1)
)

)

Λ |t1 − t2|+ Vl

(

uε(t)
)

|t1 − t2|
≤ Υ(uε

o)(1 + Λ)|t1 − t2| . (3.9)

Passing now to the pressure, the same computations lead to:

∥

∥pε(t1)− pε(t2)
∥

∥

L1(R\[0,m])
≤

(

Υ−
g

(

uε(t1)
)

+Υ+
g

(

uε(t1)
)

)

Λ |t1 − t2|
∥

∥pε(t1)− pε(t2)
∥

∥

L1([0,m])
≤ η Vl

(

uε(t)
)

|t1 − t2|

and the parametrization (3.2)–(3.3) give the following bounds on the specific volume

∥

∥

∥τεg (t1)− τεg (t2)
∥

∥

∥

L1(R\[0,m])
≤ C

(

Υ−
g

(

uε(t1)
)

+Υ+
g

(

uε(t1)
)

)

Λ |t1 − t2|

≤ C Υ(uε
o)Λ|t1 − t2| (3.10)

∥

∥τεl (t1)− τεl (t2)
∥

∥

L1([0,m])
≤ 1

η
Vl

(

uε(t)
)

|t1 − t2| ≤ 1

η
Υ(uε

o)|t1 − t2| . (3.11)

The Limit. Let εk be a sequence converging to 0 as k → +∞. Then, the sequence uεk of εk-wave
front tracking solutions satisfies Helly Compactness Theorem. By the uniqueness of the Riemann
Semigroup constructed in [4, Theorem 2.5], any of its converging subsequences converge to the
unique semigroup of entropy solutions constructed therein. Then, the L1-lower semicontinuity of
the total variation allows to pass the bounds (3.8) to the limit k → +∞, proving both inequalities
in (2.2).

Concerning point 1, we have to show that there is a constant δg independent from η and a
positive δηl , such that all functions in the domain

{

u ∈ ū+ (L1 ∩BV)(R;R+ × R) : TV(ug) < δg and TV(ul) < δηl

}

satisfy Υ < δ. By standard properties of the Riemann problem, it is easy to show that if the
total variation of the initial data is sufficiently small, independently from η, then Υ−

g +Υ+
g < δ/2.

Concerning the liquid phase, the choice (1.5) allows to compute the exact solution to any Riemann
problem and obtain the estimate

Vl = Kl TV
(

pη
(

τl(0+)
)

)

=
Kl

2

[

η2 TV
(

τl(0)
)

+ ηTV
(

vl(0)
)

]

where we have also used (1.5). Therefore, choosing δηl < δ/(Kl η
2) implies Υ < δ.
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Point 9. By (p) and (3.1), the line x = x̄ is noncharacteristic. Fix η, ε and a point x >
m, the case x < 0 being entirely similar. The estimate we now prove is an analogous to [5,
Formula (14.5.19)] in the present setting.

Introduce the functional

Ξx(t) = TV






pg



τε,ηg (·, x)∣
∣

∣
[0,t]










+

∑

xα∈]m,x[

∣

∣σ2,α

∣

∣+
∑

xα∈]m,+∞[

∣

∣σ1,α

∣

∣+ 4Υ(t)

and observe that it is non increasing in time. Indeed, considering all the possible interactions as
above, we have:

Case 1: Clearly, ∆Ξx = 0.

Case 2: When the interaction is against the left boundary, in both cases of Figure 2 and Figure 3,
clearly ∆Ξx = ∆Υ < 0. When the interaction is as in against the right boundary and the
incoming wave comes from the gas phase, by (3.5) and (3.7), we have

∆Ξ =
∣

∣

∣σ+
2

∣

∣

∣+ 4∆Υ ≤ −C
∣

∣

∣σ−
1

∣

∣

∣ < 0 .

When the interaction is against the right boundary and the incoming wave comes from
the liquid phase, by (3.6) and (3.7), we have:

∆Ξ =
∣

∣

∣
σ+
2

∣

∣

∣
+ 4∆Υ ≤ −

∣

∣

∣
σ+
2

∣

∣

∣
< 0 .

Case 3: If the interaction is in the interior of the left gas phase, then clearly ∆Ξx = ∆Υ < 0.
In the case of an interaction between waves of different families at an interaction point
x̄ ∈ ]m,x[, by (3.4) and (3.7), we have:

∆Ξ =
∣

∣

∣
σ+
2

∣

∣

∣
−
∣

∣

∣
σ−
2

∣

∣

∣
− 4C

∣

∣

∣
σ−
1 σ−

2

∣

∣

∣
≤ −3C

∣

∣

∣
σ−
1 σ−

2

∣

∣

∣
< 0 .

If x̄ > x, then, by (3.4) and (3.7),

∆Ξ =
∣

∣

∣σ+
1

∣

∣

∣−
∣

∣

∣σ−
1

∣

∣

∣− 4C
∣

∣

∣σ−
1 σ−

2

∣

∣

∣ ≤ −3C
∣

∣

∣σ−
1 σ−

2

∣

∣

∣ < 0

and entirely analogous estimates hold when the interacting waves belong to the same
family.

Case 4: We have now to consider also the case of a wave passing through x. Then, by the definition
of Ξ, ∆Ξ = 0.

The monotonicity of Ξ ensures the following estimate on the total variation of the ε-wave front
tracking approximate solution constructed above:

TV
(

uε,η
g (·, x)

)

≤ K0 Ξ(0) ≤ K1 Υ
(

uε,η(0+)
)

≤ K2 ∆

where K1,K2 are constants independent from the initial data, from η and from ε. Fix now x1 and
x2 in the same gas phase. Then, similarly to [5, Formula (14.4.7)],

∫ t

0

∥

∥

∥uε,η
g (s, x2)− uε,η

g (s, x1)
∥

∥

∥ ds ≤ 1

inf
√

−p′g

(

sup
x∈R\[0,m]

TV
(

uε,η
g (·, x)

)

)

|x2 − x1|

≤ K3 ∆ |x2 − x1|

for a suitable K3 independent from the initial data, from η and from ε. By the same arguments
used in the paragraph above, we may pass to the limit ε → 0 obtaining for a.e. x1, x2 the Lipschitz
estimate (2.4), completing the proof of Theorem 2.3. �

14



Proof of Theorem 2.4. Point 1. is a direct consequence of 1 in Theorem 2.3, with δ = δg.
Let ηk be a sequence with limk→+∞ ηk = +∞. Helly Compactness Theorem [3, Chapter 2,

Theorem 2.4] can be applied thanks to the Lipschitz estimates 4. in Theorem 2.3 and ensures that
a subsequence of Sηk

t u converges a.e. to a function u∗ ∈ C0,1
(

R
+; ū+ L1(R;R+ × R)

)

, where
u∗ = (τ∗, v∗), proving point 2.

By (2.2), for all t ∈ R
+, the function u∗ is constant for x ∈ [0,m]. Hence, the bounds at 4. in

Theorem 2.3 ensure that τ∗(t, x) = τ̄ for all (t, x) ∈ R
+ × [0,m] and that v ∈ W1,∞(R+;R),

completing the proof of point 3.
To prove point 4., the case x̄ ∈ [0,m] is immediate by the bounds (2.2) which ensure that the

limit is independent from x in the liquid phase. Assume that x̄ ∈ R \ [0,m] and note that passing
to the limit η → +∞ in 9 of Theorem 2.3, we have

∫ t

0

∥

∥u∗(s, x2)− u∗(s, x1)
∥

∥ ds ≤ L |x2 − x1| (3.12)

for a.e. x1, x2 in the same gas phase. Consider the case of the right trace, the other case being
entirely similar. Let xn be a sequence converging to x̄ from the right of points where 9. in
Theorem 2.3 applies. Using (3.12),

∫ t

0

∥

∥

∥uη
g(s, x̄+)− u∗(s, x̄+)

∥

∥

∥ ds

≤
∫ t

0

∥

∥

∥uη
g(s, x̄+)− uη

g(s, xn)
∥

∥

∥ ds+

∫ t

0

∥

∥

∥uη
g(s, xn)− u∗(s, xn)

∥

∥

∥ ds

+

∫ t

0

∥

∥u∗(s, xn)− u∗(s, x̄+)
∥

∥ ds

≤ 2L|x̄− xn|+
∫ t

0

∥

∥

∥uη
g(s, xn)− u∗(s, xn)

∥

∥

∥ ds

To complete the proof of point 4., pass now to the lim sup as η → +∞ and then to the limit as
n → +∞.

To prove point 5., note that the regularity condition (2.1) clearly holds. Point 1. in Defini-
tion 2.2 is proved passing to the limit in the definition of weak entropy solution, which is possible
by the convergence proved above. Recall now that the integral formulation of (1.3) implies

∫ m

0

(

vηl (t, x)− v̄l
)

dx =

∫ t

0

(

pg

(

τηg (s, 0−)
)

− pg

(

τηg (s,m+)
)

)

ds

and, thanks to the convergence of the traces proved above, in the limit η → +∞ we have

vl(t)− v̄l =

∫ t

0

1

m

(

pg
(

τg(s, 0−)
)

− pg
(

τg(s,m+)
)

)

ds .

which is the integral formulation of point 2. in Definition 2.2. Finally, point 3. in the same
definition immediately follows from the convergence of the traces proved above.

To prove point 6., define

πη(t, x) =











pg

(

τηg (t, x)
)

x ∈ [0,m]

pη
(

τηl (t, x)
)

x ∈ R \ [0,m]

and let ηn be an arbitrary real sequence converging to +∞. Note that the sequence πηn is
uniformly bounded in L∞ by (2.2), hence it admits a subsequence which is weak* convergent to
a limit π ∈ L∞(R+ ×R;R+). Passing to the limit n → +∞ in the definition of weak solution, we
have

∫

R+

∫

R

(

v∗(t, x) ∂tϕ(t, x) + π(t, x) ∂xϕ(t, x)
)

dx dt = 0 (3.13)
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for all ϕ ∈ C1
c(R

+ × R;R). Call now pl = π|[0,m] and remark that in [0,m] the following equality
is satisfied in the sense of distributions:

∂tvl + ∂xpl = 0

showing that, by 3., ∂xpl(t, ·) is constant in x and, hence, the map x → pl(t, x) is linear. The
existence of the traces immediately follows. Moreover, by (3.13), necessarily π(t, 0−) = pl(t, 0+)
and π(t,m+) = pl(t,m−), which shows also the linear interpolation formula and, hence, that pl
is independent from the choice of the sequence ηn �
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