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Abstract

Two compressible immiscible fluids in 1D and in the isentropic approximation are considered.
The first fluid is surrounded and in contact with the second one. As the Mach number of the
first fluid vanishes, we prove the rigorous convergence for the fully non–linear compressible
to incompressible limit of the coupled dynamics of the two fluids. A key role is played by
a suitably refined wave front tracking algorithm, which yields precise BV, L1 and weak*
convergence estimates, either uniform or explicitly dependent on the Mach number.

Keywords: Incompressible limit, Compressible Euler Equations, Hyperbolic Conservation
Laws, Zero Mach Number Limit

2010 MSC: 35L65, 35Q35, 76N99

1 Introduction

This paper is devoted to the compressible to incompressible limit in the equations of isentropic gas
dynamics, a widely studied subject in the literature, see for instance the well known results [12, 13,
14, 15], the more recent [18], the review [16] with the references therein and the monograph [10]
for the Navier Stokes equations. For Euler equations, the usual setting considers regular solutions,
whose existence is proved only for a finite time, to the compressible equations in 2 or 3 space
dimensions. As the Mach number vanishes, these solutions are proved to converge to the solutions
to the incompressible Euler equations.

Consider for instance the isentropic Euler equations in the three dimensional space:{
∂tρ+∇ · (ρu) = 0

∂t (ρu) +∇ · (ρu⊗ u) +∇P (ρ) = 0 ,

P (ρ) > 0 , P
′
(ρ) > 0,

(t, x) ∈ [0,+∞[× R3.

where ρ is the fluid density, u is its speed and P (ρ) is the pressure. For smooth solutions, this
system is equivalent to {

∂tρ+ u · ∇ρ+ ρ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ ∇P (ρ) = 0 .

(1.1)

The Mach number is the ratio between the speed of the particles and the sound speed; it can be
introduced into the equations in at least two different ways [16].

First, following [14], since the incompressible limit can be understood as the limit when the
Mach number tends to zero, one begins by rescaling the fluid velocity u → κu where κ is a
small parameter that eventually converges to zero. In order to capture the motion of the particles
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traveling with a small speed of order of κ one needs a space–time rescaling, xt → κ x
t , which allows

to obtain, in the rescaled variables, the system
∂tρ+ u · ∇ρ+ ρ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ

1
κ2∇P (ρ) = 0 .

(1.2)

Alternatively, the same system is considered in [13], but motivated by the following approach,
see [13, 15]. Consider fluids having equations of state Pκ(ρ), parametrized by κ, such that the

speed of sound

√
P
′
κ(ρ)→ +∞ as κ→ 0:

∂tρ+ u · ∇ρ+ ρ∇ · u = 0

∂tu+ u · ∇u+ 1
ρ∇Pκ (ρ) = 0.

(1.3)

The two approaches coincide if the one parameter family of pressure laws Pκ (ρ) satisfies

P
′
κ (ρ) =

1

κ2
P
′
(ρ) , (1.4)

where P is the fixed pressure law as in (1.2).
In the incompressible limit, the density is constant in time and space so that the functional

dependence of the pressure on the density is lost. Therefore, it is convenient to use the pressure

instead of the density as unknown variable. Since P
′
κ (ρ) > 0, we can take the inverse function

Rκ (p) =
(
Pκ

)−1

(p) and rewrite (1.3) using the pressure p as unknown:
R′κ(p)
Rκ(p) [∂tp+ u · ∇p] +∇ · u = 0

∂tu+ u · ∇u+ 1
Rκ(p)∇p = 0 .

As κ → 0, P
′
κ (ρ) → +∞, therefore R′κ (p) → 0, and Rκ (p) → ρ̄, where ρ̄ is the constant density

at the incompressible limit. Formally, we get the incompressible equations
∇ · u = 0

∂tu+ u · ∇u+ 1
ρ̄∇p = 0 .

In [12, 13] this limit is proved to hold for smooth solutions and small times. The heart of the
matter is finding energy estimates, uniform in the small parameter κ.

Here, we obtain similar convergence results, in a 1D setting, for all times and within the
framework of merely BV weak entropy solutions, following the papers [6, 7, 8, 11].

The next section describes the physical setting. Section 3 presents the key estimates and the
main convergence results. All technical details are deferred to Section 4.

2 Two Immiscible Fluids

In a 1D setting, an incompressible fluid behaves like a solid and its speed is constant in space.
Therefore, we consider two compressible immiscible fluids and let one of the two become incom-
pressible, yielding a singular limit for a free boundary problem. Below, we consider a volume of a
compressible inviscid fluid, say the liquid, that fills the segment [a(t), b(t)] and is surrounded by
another compressible fluid, say the gas, filling the rest of the real line (see Figure 1). We assume
that the gas obeys a fixed pressure law P g (ρ), while for the liquid we assume a one parameter
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Figure 1: The two immiscible fluids: the liquid is in the middle, while the gas fills the two sides.

family of pressure laws Pκ (ρ) such that P
′
κ (ρ) → +∞ as κ → 0. The total mass of the liquid is

fixed:
∫ b(t)
a(t)

ρ (t, x) dx = m. Since the two fluids are immiscible, the introduction of the Lagrangian

coordinate z and of the specific volume τ is a natural choice [17]:

z (t, x) =

∫ x

a(t)

ρ (t, ξ) dξ , τ =
1

ρ
, Pg (τ) = P g

(
1

τ

)
, Pκ (τ) = Pκ

(
1

τ

)
. (2.1)

In these coordinates, the liquid and gas phases become the fixed sets (see Figure 2)

L = ]0,m[ and G = R \ ]0,m[ .

Pg(τ) Pg(τ)Pκ(τ)

0 m

z

Figure 2: In Lagrangian coordinates, the boundaries separating the two fluids are fixed.

On Pg (τ) and Pκ (τ), we require the usual hypotheses and the incompressible limit assumption:

Pg (τ) , Pκ (τ) > 0; P ′g (τ) , P ′κ (τ) < 0; P ′′g (τ) , P ′′κ (τ) > 0; P ′κ (τ)
κ→0−−−→ −∞ . (2.2)

In the isentropic approximation, the dynamics of the two fluids is described by the p-system [9]{
∂tτ − ∂zv = 0

∂tv + ∂zPκ (z, τ) = 0,
where Pκ (z, τ) =

{
Pκ (τ) for z ∈ L
Pg (τ) for z ∈ G,

(2.3)

v(t, z) being the speed of the fluids at time t and at the Lagrangian coordinate z.
The Rankine–Hugoniot conditions for (2.3), applied at z = 0 and z = m, imply the following

interface conditions (conservation of mass and momentum) for a.e. t ≥ 0:{
v (t, 0−) = v (t, 0+)

Pg
(
τ (t, 0−)

)
= Pκ

(
τ (t, 0+)

)
,

{
v (t,m−) = v (t,m+)

Pκ
(
τ (t,m−)

)
= Pg

(
τ (t,m+)

)
.

In other words, the pressure and the velocity have to be continuous across the interfaces. Hence,
the pressure is a natural choice as unknown, rather than the specific volume. Therefore, we
introduce the inverse functions of the pressure laws

Tg(p) = P−1
g (p) , Tκ(p) = P−1

κ (p) , T ′κ (p)
κ→0−−−→ 0 , (2.4)

the last limit being a consequence of (2.2). Rewrite system (2.3) with (p, v) as unknowns{
∂tTκ (z, p)− ∂zv = 0

∂tv + ∂zp = 0 ,
where Tκ (z, p) =

{
Tκ (p) for z ∈ L
Tg (p) for z ∈ G .

(2.5)
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The conditions at the interfaces become continuity requirements on the unknown functions:{
v (t, 0−) = v (t, 0+)

p (t, 0−) = p (t, 0+)

{
v (t,m−) = v (t,m+)

p (t,m−) = p (t,m+)
for a.e. t ≥ 0 . (2.6)

The choice of these unknowns significantly simplifies the study of the Riemann problem at the
interfaces.

Particular care is necessary to select the one parameter family of pressure laws, the main
constraint being the validity of (1.4) for all κ. Indeed, (1.4) ensures that we recover the same
equations obtained through scaling and studied in [12, 13]. The family Pκ (ρ) = 1

κ2P (ρ) chosen
in [12] diverges to +∞ as κ → 0. This is not a problem when studying only one fluid as in [12]
because the pressure enters the equations only through its gradient. In our case, the value of the
pressure is very relevant, since it enters the interface conditions (2.6). Therefore, we cannot allow
the pressure to grow nonphysically to +∞. We fix the density ρ̄ of the incompressible fluid in the
limit and impose that the pressure at that particular density ρ̄ is a constant, independent of κ:

Pκ(ρ̄) = p̄, for all κ ∈ ]0, 1[ . (2.7)

Now, choose a fixed pressure law P = P (ρ) (for instance, an admissible choice is the usual γ–law
P (ρ) = k ργ with γ ≥ 1) and apply conditions (1.4) and (2.7) to get the following expression for
Pκ (ρ), with P (ρ̄) = p̄:

Pκ (ρ) = p̄+
1

κ2

[
P (ρ)− p̄

]
, (2.8)

which, with the substitution ρ = 1
τ , becomes:

Pκ (τ) = p̄+
1

κ2

[
P (τ)− p̄

]
. (2.9)

Finally, in term of the inverse functions Tκ = P−1
κ and T = P−1, we have

Tκ (p) = T
(
p̄+ κ2 (p− p̄)

)
, lim

κ→0
Tκ (p) = T (p̄) =

1

ρ̄
=̇τ̄ . (2.10)

In [7, 11], (2.10) is approximated linearly:

T
(
p̄+ κ2 (p− p̄)

)
≈ T (p̄) + κ2T ′ (p̄) (p− p̄) = τ̄ + κ2T ′ (p̄) (p− p̄) , (2.11)

so that the liquid phase turns out to be governed by a linear system. This approximation makes
all the estimates simpler. Here we study the Cauchy problem in the fully non linear case{

∂tTκ (z, p)− ∂zv = 0

∂tv + ∂zp = 0,
where Tκ (z, p) =

{
T
(
p̄+ κ2 (p− p̄)

)
for z ∈ L

Tg (p) for z ∈ G.
(2.12)

Colombo and Schleper in [8, Theorem 2.5] proved that for any fixed small κ > 0, there exists a
Lipschitz semigroup of solutions to (2.12), but their estimates are not uniform with respect to κ.
Therefore, as κ→ 0 the Lipschitz constant of the semigroup could blow up and its domain could
shrink, becoming trivial. Here, we provide a full set of new estimates either uniform in κ, or with
the dependence on κ made explicit. To this aim, we substantially improve the wave front tracking
construction in [4, 8], devising and exploiting a different parametrization of the Lax curves.

The main result of this paper states the rigorous convergence at the incompressible limit in
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the liquid phase of the solutions to (2.12) to solutions to

{
∂tTg(p)− ∂zv = 0
∂tv + ∂zp = 0

z ∈G gas;

v̇ = p(t,0−)−p(t,m+)
m liquid;{

v (t, 0−) = v(t)
v (t,m+) = v(t)

immiscibility and mass
conservation.

(2.13)

Note that the liquid speed v(t) is independent of the Lagrangian variable z. Therefore, we choose
a constant v in the liquid region at time t = 0 before letting κ→ 0. In this very singular limit, the
sound speed in the liquid phase tends to +∞; the density converges to a fixed reference value ρ̄;
the graph of the pressure law Pκ (τ) becomes vertical and the eigenvectors of the Jacobian of the
flow tend to coalesce. Moreover, the pressure in the liquid wildly oscillates but, remarkably, we
are able to prove the weak? convergence of the pressure to the linear interpolation of the traces of
the pressure at the sides of the liquid region, as is to be expected based on physical considerations.
A linear example, where all the components of this singular limit can be explicitly computed, can
be found in [6].

Recall that problem (2.12), respectively (2.13), is well posed in L1 globally in time, see [8,
Theorem 2.5], respectively [3, Theorem 3.6].

3 Main Result

Throughout, we require that the pressure law Pg in the gas phase and the one parameter family
of pressure laws Pκ in the liquid phase, as defined in (2.9), all satisfy the condition

(P): P ∈ C3(]0,+∞[ ; ]0,+∞[), P ′ < 0 and P ′′ > 0.

The standard choice p(τ) = k/τγ satisfies this condition for all k > 0 and γ ≥ 1.
As a starting point, we provide the rigorous definition of solutions to (2.5), with reference to [4,

Chapter 4, Definition 4.3 and Admissibility Condition 2].

Definition 3.1. Fix T > 0 and κ > 0. By weak solution to (2.5) we mean a map

(p, v) ∈ C0
(

[0, T ]; (L1
loc ∩BV)(R;R+ × R)

)
such that (2.5) holds in distributional sense. The weak solution u is a weak entropy solution
to (2.5) if both its restrictions to L and to G are weak entropy solutions in the sense of [4,
Definition 4.3].

Introduce the mathematical entropy flow q = pv of (2.5), the equalities (p, v)(t, 0−) = (p, v)(t, 0+)
and (p, v)(t,m−) = (p, v)(t,m+) (consequences of the Rankine–Hugoniot conditions) imply that
the entropy flow is continuous and hence that the entropy is conserved across both interfaces.

In the case of (2.13), we recall [2, Definition 2.5].

Definition 3.2. Fix T > 0. By a solution to (2.13) we mean a pair of maps

(p∗, v∗) ∈ C0
(

[0, T ]; (L1
loc ∩BV)(G;R+ × R)

)
vl ∈ W1,∞([0, T ];R)

such that:

1. (p∗, v∗) is a weak entropy solution to

{
∂tTg(p)− ∂zv = 0
∂tv + ∂zp = 0

in [0, T ]× G;
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2. for a.e. t ∈ [0, T ], v̇l(t) = 1
m

(
p∗(t, 0−)− p∗(t,m+)

)
;

3. for a.e. t ∈ [0, T ], v∗(t, 0−) = v∗(t,m+) = vl(t).

The existence of solutions to (2.12) follows from the next theorem, that also provides the basic
estimates for the subsequent compressible to incompressible limit. In this context, a natural re-
quirement is the smallness of the total variation of the initial datum. Aiming at the incompressible
limit, it is natural to introduce the weighted total variation

WTVκ (p, v) = TV (p,R) + TV (v,G) +
1

κ
TV (v,L) (3.1)

whose boundedness requires that the initial total variation of the particles speed in the liquid
vanishes with κ.

Theorem 3.3. Fix the total mass of the liquid m > 0 and a pressure po > 0. Let P, Pg satisfy (P),
define Tg as in (2.4) and Tκ as in (2.10). Then, there exist positive δ, ∆, L, κ∗ with κ∗ < 1 such
that for any κ ∈ ]0, κ∗[, for any initial datum (p̃, ṽ) ∈ L1

loc(R;R+ × R), under the assumptions

WTVκ(p̃, ṽ) ≤ δ , ‖p̃− po‖L∞(R;R) ≤ δ , ṽ(0+) = ṽ(0) and ṽ(m−) = ṽ(m) , (3.2)

problem (2.12) with initial datum (p̃, ṽ) admits a weak entropy solution (pκ, vκ) in the sense of Def-
inition 3.1 defined for all t ∈ R+. Moreover, since the specific volume is τκ(t, z) = Tκ

(
z, pκ(t, z)

)
,

for any t, t1, t2 ≥ 0

WTVκ

(
(pκ, vκ)(t, ·)

)
≤ ∆,

TV
(
pκ(t, ·),L

)
≤ ∆,

∫
L

∣∣pκ(t2, z)− pκ(t1, z)
∣∣dz ≤ 1

κL |t2 − t1| ,

TV
(
vκ(t, ·),L

)
≤ κ∆,

∫
L

∣∣vκ(t2, z)− vκ(t1, z)
∣∣dz ≤ L |t2 − t1| ,

TV
(
τκ(t, ·),L

)
≤κ2∆,

∫
L

∣∣τκ(t2, z)− τκ(t1, z)
∣∣dz≤ κL |t2 − t1| ,

TV
(
pκ(t, ·),G

)
≤ ∆,

∫
G

∣∣pκ(t2, z)− pκ(t1, z)
∣∣ dz ≤ L |t2 − t1| ,

TV
(
vκ(t, ·),G

)
≤ ∆,

∫
G

∣∣vκ(t2, z)− vκ(t1, z)
∣∣dz ≤ L |t2 − t1| ,

TV
(
τκ(t, ·),G

)
≤ ∆,

∫
G

∣∣τκ(t2, z)− τκ(t1, z)
∣∣ dz ≤ L |t2 − t1| ;

(3.3)

for any z, z1, z2 ∈ L

TV
(
pκ(·, z),R+

)
≤ ∆

κ ,
∫
R+

∣∣pκ(t, z2)− pκ(t, z1)
∣∣dt ≤ L |z2 − z1| ,

TV
(
vκ(·, z),R+

)
≤ ∆,

∫
R+

∣∣vκ(t, z2)− vκ(t, z1)
∣∣ dt≤ κL |z2 − z1| ,

TV
(
τκ(·, z),R+

)
≤κ∆,

∫
R+

∣∣τκ(t, z2)− τκ(t, z1)
∣∣dt≤κ2L |z2 − z1| ;

(3.4)

for any z, z1, z2 ∈ G

TV
(
pκ(·, z),R+

)
≤∆,

∫
R+

∣∣pκ(t, z2)− pκ(t, z1)
∣∣dt ≤L |z2 − z1| ,

TV
(
vκ(·, z),R+

)
≤∆,

∫
R+

∣∣vκ(t, z2)− vκ(t, z1)
∣∣dt≤L |z2 − z1| ,

TV
(
τκ(·, z),R+

)
≤∆,

∫
R+

∣∣τκ(t, z2)− τκ(t, z1)
∣∣dt≤L |z2 − z1| ;

(3.5)

for any z, z1, z2 ∈ R

TV
(
pκ(·, z),R+

)
≤ ∆

κ ,
∫
R+

∣∣pκ(t, z2)− pκ(t, z1)
∣∣ dt≤ L

κ |z2 − z1| ,

TV
(
vκ(·, z),R+

)
≤∆,

∫
R+

∣∣vκ(t, z2)− vκ(t, z1)
∣∣dt≤ L |z2 − z1| .

(3.6)

6



The above existence result can be completed with uniqueness and Lipschitz continuous depen-
dence of the solutions on the data exploiting the results in [8, Theorem 2.5]. Note however that
the estimates provided therein, differently from the ones presented here, are not uniform in κ.

We now pass to the key limit κ→ 0.

Theorem 3.4. Fix the total mass of the liquid m > 0 and a pressure po > 0. Let P, Pg satisfy (P),
define Tg as in (2.4) and Tκ as in (2.10). Let δ, ∆, L and κ∗ be as in Theorem 3.3. For any
vo ∈ R and (p̃, ṽ) ∈ L1

loc(R;R+ × R) satisfying

‖p̃− po‖L∞(R;R) < δ , TV (p̃) + TV (ṽ) ≤ δ and ṽ(z) = vo ∀z ∈ [0,m] , (3.7)

the Cauchy problem for (2.12) with initial datum (p̃, ṽ) admits for any κ ∈ ]0, κ∗[ a weak entropy
solution (pκ, vκ) satisfying (3.3) – (3.4) – (3.5) – (3.6).

Moreover, there exist functions

p∗ ∈ C0
(
R+; (L1

loc ∩BV)(G;R+)
)
, pl ∈ L∞(R+ × L;R+),

v∗ ∈ C0
(
R+; (L1

loc ∩BV)(R;R+)
)
, vl ∈ W1,∞(R+;R),

such that (p∗, v∗|G) and vl solve (2.13) with initial datum

(p∗, v∗)(0, z) = (p̃, ṽ)(z) a.e. z ∈ G
vl(0) = vo

in the sense of Definition 3.2. Up to subsequences, as κ→ 0,

vκ (t, ·) → v∗ (t, ·) in L1
loc (R;R) , t ≥ 0

vκ (·, z) → v∗ (·, z) in L1
loc(R+;R), z ∈ R

TV
(
v∗(t, ·),R

)
≤ ∆,

∫
R
∣∣v∗(t2, z)− v∗(t1, z)∣∣dz ≤ L |t2 − t1| , t, t1, t2 ≥ 0,

TV
(
v∗(·, z),R+

)
≤ ∆,

∫
R+

∣∣v∗(t, z2)− v∗(t, z1)
∣∣ dt ≤ L |z2 − z1| , z, z1, z2 ∈ R,

v∗ (t, z) = vl(t), a.e. (t, z) ∈ R+ × L.

(3.8)

pκ (t, ·) → p∗ (t, ·) in L1
loc(G;R), t ≥ 0

pκ (·, z) → p∗ (·, z) in L1
loc(R+;R), z ∈ G

TV
(
p∗(t, ·),G

)
≤ ∆,

∫
G

∣∣p∗(t2, z)− p∗(t1, z)∣∣dz ≤ L |t2 − t1| , t, t1, t2 ≥ 0,

TV
(
p∗(·, z),R+

)
≤ ∆,

∫
R+

∣∣p∗(t, z2)− p∗(t, z1)
∣∣dt ≤ L |z2 − z1| , z, z1, z2 ∈ G,

pκ(·, ·) ?
⇀ pl(·, ·), in L∞(L × R+;R+),

pl(t, z) =
(
1− z

m

)
p∗(t, 0−) + z

mp
∗(t,m+), a.e. (t, z) ∈ R+ × L ,

τκ (·, ·) → τ̄ , uniformly in L × R+.

(3.9)

where the specific volume is τκ(t, z) = Tκ
(
z, pκ(t, z)

)
.

From the Eulerian coordinates’ point of view, the locations of the boundaries of the liquid phase
can be recovered through a time integration. Let x = ao be the initial location of the left interface
that we keep fixed with respect to κ. Since in Theorem 3.4 the initial pressure is chosen inde-

pendently of κ, the initial specific volume in the liquid is given by τ̃κ(z) = T
(
p̄+ κ2

(
p̃(z)− p̄

))
,

which may depend on κ. The total mass m of the liquid is fixed. Hence, the initial location of
the right interface in general depends on κ, say x = bκo . Since τ̃κ(z) → τ̄ as κ → 0, we have
bκo → bo = ao +mτ̄ . Note however that in the particular case of constant initial pressure p̃(z) = p̄
in the liquid, also bκo turns out to be independent of κ.

Let aκ(t) and bκ(t) be the locations of the interfaces (in Eulerian coordinates) at time t for
positive κ, while a(t) and b(t) be the corresponding limits as κ→ 0. Then, we have:

aκ(t) = ao +

∫ t

0

vκ (ξ, 0) dξ a(t) = ao +

∫ t

0

vl (ξ) dξ

bκ(t) = bκo +

∫ t

0

vκ (ξ,m) dξ b(t) = bo +

∫ t

0

vl (ξ) dξ .

(3.10)
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Using Theorem 3.4 we can see that the boundaries of the two phases are Lipschitz continuous
functions of t. Moreover, as κ→ 0, aκ → a and bκ → b uniformly on bounded time intervals. An
explicit expression for these boundaries and their limit in a linear framework can be found in [6].

4 Technical Details

Throughout, we suppose that P, Pg in theorems 3.3, 3.4 satisfy condition (P) and denote by O(1)
a quantity that depends only on P, Pg and on uniform bounds on the initial data.

We define T , Tκ, Tg as in (2.4), (2.10) and collect below a few facts about the p-system in
Lagrangian coordinates using the (p, v) plane. Consider first the gas phase, where

{
∂tTg(p)− ∂zv = 0
∂tv + ∂zp = 0 ,

with eigenvalues

λg1(p, v) = −
√
− 1

T ′g (p)

λg2(p, v) =

√
− 1

T ′g (p)

(4.1)

so that the Lax shock and rarefaction curves are, see also [7],

V g1 (p; po, vo) =


vo −

∫ p

po

√
−T ′g (ξ) dξ p < po

vo −
√
−
(
Tg(p)− Tg(po)

)
(p− po) p ≥ po

V g2 (p; po, vo) =


vo −

√
−
(
Tg(p)− Tg(po)

)
(p− po) p < po

vo +

∫ p

po

√
−T ′g (ξ) dξ p ≥ po .

(4.2)

Similarly, in the liquid phase we have

{
∂tTκ(p)− ∂zv = 0
∂tv + ∂zp = 0 .

with eigenvalues

λκ1 (p, v) = − 1

κ

√
− 1

T ′
(
p̄+ κ2 (p− p̄)

)
λκ2 (p, v) =

1

κ

√
− 1

T ′
(
p̄+ κ2 (p− p̄)

) (4.3)

and the Lax curves are

V κ1 (p; po, vo) =


vo −

∫ p

po

√
−T ′κ(ξ) dξ p < po

vo −
√
−
(
Tκ(p)− Tκ(po)

)
(p− po) p ≥ po

V κ2 (p; po, vo) =


vo −

√
−
(
Tκ(p)− Tκ(po)

)
(p− po) p < po

vo +

∫ p

po

√
−T ′κ(ξ) dξ p ≥ po .

(4.4)

Below we systematically use the parameterizations

σi → V gi (po + σi; po, vo) and σi → V κi (po + σi; po, vo) (4.5)

of the i–Lax curve, σi being a pressure difference. Therefore, differently from the usual habit, we
have that

Lemma 4.1. Fix L, l with L > l > 0 and κ ∈ ]0, 1]. The Lax curves (4.4) admit the representation

V κ1 (p; po, vo) = vo − κ (p− po)F
(
Πκ(p),Πκ(po)

)
V κ2 (p; po, vo) = vo + κ (p− po)F

(
Πκ(po),Πκ(p)

) (4.6)
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i = 1 i = 2
σ1 < 0 ⇒ rarefaction σ2 < 0 ⇒ shock
σ1 > 0 ⇒ shock σ2 > 0 ⇒ rarefaction

Table 1: Types of waves and the signs of the corresponding parameters as in (4.2), (4.4).

p

v

R1 R2

S2 S1

Figure 3: Lax curves (4.4) in the (p, v)–plane.

where

Πκ(p) = p̄+ κ2 (p− p̄) ,

F (x, y) =



∫ 1

0

√
−T ′

(
ϑx+ (1− ϑ)y

)
dϑ x < y ,√

−T ′ (x) x = y ,√∫ 1

0

−T ′
(
ϑx+ (1− ϑ)y

)
dϑ x > y .

(4.7)

Moreover,

1. the function F is of class C1,1([l, L]2;R);

2. both restrictions F
|x≤y

and F
|x≥y

are of class C2([l, L]2;R);

3. for x, y ∈ [l, L], F (x, y) ∈
[√
−T ′(L),

√
−T ′(l)

]
.

The proof follows from standard computations. A property that plays a key role in the sequel is
that the function F above is independent of κ.

Call Fg the function obtained Replacing T with Tg in (4.7). Then, Lemma 4.1 in the case
κ = 1, yields a representation for the Lax curve (4.2) in the gas phase.

Riemann Solvers. The wave front tracking algorithm below is, as usual, based on the (possibly,
approximate) solutions to Riemann problems.

Throughout, we fix a reference pressure po > 0. By Galileian invariance, in the statements
below only speed differences will be relevant.
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Lemma 4.2. There exists a positive δ̄ such that for all κ ∈ ]0, 1] and for any couple of states

(pl, vl), (pr, vr) with
∣∣∣pl − po∣∣∣ + |pr − po| < δ̄ and

∣∣∣vr − vl∣∣∣ < κ δ̄, there exists a unique state

(pm, vm) satisfying

V κ1 (pm; pl, vl) = vm and V κ2 (pr; pm, vm) = vr .

Moreover, ∣∣∣pl − pm∣∣∣+ |pm − pr| ≤ O(1)

∣∣∣pl − pr∣∣∣+

∣∣∣vl − vr∣∣∣
κ

 . (4.8)

A qualitative justification of (4.8) is provided in Figure 4. In the liquid region, the Lax curves
have a slope of order κ (see Lemma 4.1), hence a jump ∆v in the velocity generates waves of order
∆v/κ.

z

t

(pl, vl) (pr, vr)

(pm, vm)
(pm, vm)

v

σ2σ1

σ2σ1

Sκ1

Sκ2

p

(pr, vr)

(pl, vl)

Figure 4: Riemann problem in the liquid. Left, in the (t, z) plane and, right, in the (p, v) plane:

|σ1|+ |σ2| = O(1)
(
|pl − pr|+ |vl − vr|/κ

)
.

Proof. Let ξ = (vr−vl)/κ. We apply the Implicit Function Theorem to G(pm, pl, pr, ξ) = 0 where

G(pm, pl, pr, ξ) = ξ + (pm − pl)F
(

Πκ(pm),Πκ(pl)
)
− (pr − pm)F

(
Πκ(pm),Πκ(pr)

)
to find pm as a function of (pl, pr, ξ), which is possible since the derivative ∂pmG evaluated at
pm = pl = pr = po and ξ = 0 is

∂pmG(po, po, po, 0) = 2F
(
Πκ (po) ,Πκ (po)

)
= 2
√
−T ′

(
p̄+ κ2 (po − p̄)

)
≥ 2
√
−T ′

(
max {p̄, po}

)
> 0

Note also that, in a neighborhood of (po, po, po, 0), all second derivatives of G are bounded uni-
formly in κ, hence the domain of the implicit function contains a neighborhood of (po, po, po, 0)

independent of κ. Finally, vm can be computed as vm = vl − κ (pm − pl)F
(

Πκ(pm),Πκ(pl)
)

, by

Lemma 4.1.
Finally, (4.8) follows from G

(
pl, pl, pl, 0

)
= G (pr, pr, pr, 0) = 0 and the Lipschitz continuity

of the implicit function.

Note that Lemma 4.2 in the case κ = 1 covers the case of Riemann problems in the gas phase
and slightly improves [4, Chapter 5].

The next Lemma refers to the Riemann problem between the gas, on the left, and the liquid,
on the right. The symmetric situation is entirely similar.

Lemma 4.3. There exits a positive δ̄ such that for all κ ∈ ]0, 1] and for any couple of states

(pl, vl), (pr, vr) with
∣∣∣pl − po∣∣∣+|pr − po| < δ̄ and

∣∣∣vr − vl∣∣∣ < δ̄, there exists a unique state (pm, vm)

satisfying
V g1 (pm; pl, vl) = vm and V κ2 (pr; pm, vm) = vr .
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Moreover, ∣∣∣pm − pl∣∣∣ = O(1)

(
κ
∣∣∣pr − pl∣∣∣+

∣∣∣vl − vr∣∣∣) (4.9)

|pm − pr| = O(1)

(∣∣∣pr − pl∣∣∣+
∣∣∣vl − vr∣∣∣) (4.10)

1

κ
|vm − vr| = O(1)

(∣∣∣pr − pl∣∣∣+
∣∣∣vl − vr∣∣∣) (4.11)

Proof. Let ξ = vr − vl. We apply the Implicit Function Theorem to G(pm, pl, pr, ξ) = 0 where

G(pm, pl, pr, ξ) = ξ + (pm − pl)Fg(pm, pl)− κ (pr − pm)F
(
Πκ(pm),Πκ(pr)

)
to find pm as a function of (pl, pr, ξ), which is possible since the derivative ∂pmG evaluated at
pm = pl = pr = po and ξ = 0 is

∂pmG(po, po, po, 0) =
√
−T ′g (po) + κF

(
Πκ (po) ,Πκ (po)

)
≥
√
−T ′g (po) > 0 .

Note also that, in a neighborhood of (po, po, po, 0), all second derivatives of G are bounded uni-
formly in κ, hence the domain of the implicit function contains a neighborhood of (po, po, po, 0)
independent of κ. Moreover, vm can be computed as vm = vl−(pm−pl)Fg(pm, pl), by Lemma 4.1.
Concerning the latter estimates, use G(pm, pl, pr, vr − vl) = 0 to obtain

pm − pl =
vl − vr + κ (pr − pl)F

(
Πκ(pm),Πκ(pr)

)
Fg(pm, pl) + κF

(
Πκ(pm),Πκ(pr)

)
which implies (4.9) and, together with the simple inequality |pm − pr| ≤

∣∣∣pm − pl∣∣∣+ ∣∣∣pl − pr∣∣∣ also

proves (4.10). Finally, the equality vr−vm = κ (pr−pm)F
(
Πκ(pm),Πκ(pr)

)
, together with (4.10),

proves (4.11).

Definition of the Algorithm. We modify the standard construction of the wave front tracking
algorithm, see for instance [4, Chapter 4].

First, we identify the state u by means of the pair (p, v). Indeed, we choose to parametrize
the Lax curves as in (4.2)–(4.4) and, hence, the waves’ sizes are measured through the pressure
difference σ between the two states on the sides of the wave.

Second, we introduce two strips around the two interfaces z = 0 and z = m, where all 1-waves
have speed −1 and all 2-waves have speed 1. This, together with [1, Lemma 2.5], allows to avoid
the introduction of non-physical waves, significantly simplifying the whole procedure.

We consider a representative of the initial datum ũ ∈
(
BV ∩ L1

) (
R,R+ × R

)
such that

ũ(0+) = ũ(0), ũ(m−) = ũ(m). Fix ε > 0. We approximate the initial datum ũ by a sequence ũε

of piecewise constant initial data with a finite number of discontinuities such that:

TV(p̃ε) ≤ TV(p̃) , ‖ũε − ũ‖L1 ≤ ε ,
TV(ṽε;G) ≤ TV(ṽ;G) , ũε(z) = ũ(0) for all z ∈ [−2ε2, 2ε2] ,
TV(ṽε;L) ≤ TV(ṽ;L) , uoε(z) = uo(m) for all z ∈ [m− 2ε2,m+ 2ε2] .

(4.12)

Observe that a possible jump at the interfaces z = 0 and z = m is assigned to the gas region.
At each point of jump in the approximate initial datum, we solve the corresponding Riemann
problem. As usual, see [4, Chapter 4], we approximate each rarefaction wave by a rarefaction fan
consisting of ε-wavelets, each with strength less than ε and traveling with the characteristic speed
of the state to its left. On the other hand, each shock wave is assigned its exact Rankine-Hugoniot
speed. Similarly to what happens in the usual case, there exists a constant δo > 0 such that each
of the above Riemann problems has an approximate solution as long as TV(ũ) < δo. We introduce

11



two strips around the two interfaces z = 0 and z = m, where all 1-waves have speed −1 and all
2-waves have speed +1:

I−ε = [−ε2, ε2]× R+ and I+
ε = [m− ε2,m+ ε2]× R+ .

Hence, assign to all 1-waves entering I−ε ∪ I+
ε speed −1, while all 2-waves entering I−ε ∪ I+

ε are
given speed +1, see Figure 5.

Remark that the actual values attained by the approximate solution are not changed, only the
wave speeds are modified. When exiting these strips, every wave is given back its correct speed.
By this trick, no interaction among waves of the same family may take place in either of the two
strips. This construction can be extended up to the first time t1 at which two waves interact, or
a wave hits one of the interfaces. At time t1, the so constructed approximate solution is piecewise
constant with a finite number of discontinuities. Any such interaction gives rise to a new Riemann
problem solved as at time t = 0, if the interaction is in the interior of the two phases, or as
described in Lemma 4.3, whenever the interaction is along an interface.

Any rarefaction wave, once arisen, is not further split even if its strength exceeds the threshold ε
after subsequent interactions, with other waves or with the phase boundaries. The new rarefaction
waves that may arise at the interfaces are split, if their strength exceeds ε, when they exit the strips
I±ε , since inside the strips they all travel with the same speed. We can thus iterate the previous
construction at any subsequent interaction, provided suitable upper bounds on the total variation
of the approximate solutions are available. As it is usual in this context, see [4, Chapter 7], we
may assume that no more than 2 waves interact at any interaction point, or that no interaction
happens at the boundaries of the two strips, thanks to a small modification of the speed of waves
outside the strips, where necessary.

I−ε I+
ε

0 m

Liquid phase

z

I−ε I+
ε

0 m

Liquid phase

z

Figure 5: Left, the dashed regions are the strips I±ε surrounding the liquid phase. Right, modifi-
cation to the usual wave front tracking algorithm: waves in the strips I−ε and I+

ε are assign speed
1, if belonging to the first family, and −1, if of the second family.

Interaction Estimates. We recall the classical Glimm interaction estimates, see [4, Chapter 7,
formulæ (7.31)–(7.32)], which hold for any smooth parametrization of the Lax curves:∣∣∣σ+

1 − σ
−
1

∣∣∣+
∣∣∣σ+

2 − σ
−
2

∣∣∣ ≤ O(1)
∣∣∣σ−1 σ−2 ∣∣∣ (Figure 6, left),∣∣∣σ+

1

∣∣∣+
∣∣∣σ+

2 − (σ′ + σ′′)
∣∣∣ ≤ O(1)

∣∣σ′σ′′∣∣ (Figure 6, middle),∣∣∣σ+
1 − (σ′ + σ′′)

∣∣∣+
∣∣∣σ+

2

∣∣∣ ≤ O(1)
∣∣σ′σ′′∣∣ (Figure 6, right),

(4.13)

where we used the notation described in Figure 6.
Aiming at the convergence result, we need more careful interaction estimates in the liquid

phase. More precisely, we seek bounds on the constant O(1) above that allow to control its
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σ−2 σ−1

σ+
2σ+

1

(po, vo)

σ′ σ′′

σ+
2σ+

1

(po, vo)

σ′ σ′′

σ+
2σ+

1

(po, vo)

Figure 6: Left, an interaction between waves of different families. Center, an interaction between
waves of the second family. Right, an interaction between waves of the first family.

dependence on κ. Remark that the choice of parametrizing Lax curves by means of pressure
differences plays a key role in this improvement.

Lemma 4.4. There exists a δ̄ > 0 such that if the interacting waves in Figure 6 hit each other in
L and all have sizes less than δ̄, then, the following estimates hold:∣∣∣σ+

1 − σ
−
1

∣∣∣+
∣∣∣σ+

2 − σ
−
2

∣∣∣ ≤ O(1) κ2
∣∣∣σ−1 σ−2 ∣∣∣∣∣∣σ+

1

∣∣∣+
∣∣∣σ+

2 − (σ′ + σ′′)
∣∣∣ ≤ O(1) κ2

∣∣σ′σ′′∣∣∣∣∣σ+
1 − (σ′ + σ′′)

∣∣∣+
∣∣∣σ+

2

∣∣∣ ≤ O(1) κ2
∣∣σ′σ′′∣∣ (4.14)

Proof. Consider first the case of interacting waves of different families, see Figure 6, left. Then,
with straightforward computations, Lemma 4.1 leads to

G(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = 0 (4.15)

where

G1(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = σ+

1 + σ+
2 − σ

−
1 − σ

−
2

G2(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = σ+

1 F
(

Πκ(po + σ+
1 ),Πκ(po)

)
− σ+

2 F
(

Πκ(po + σ+
1 ),Πκ(po + σ+

1 + σ+
2 )
)

−σ−1 F
(

Πκ(po + σ−1 + σ−2 ),Πκ(po + σ−2 )
)

+ σ−2 F
(

Πκ(po),Πκ(po + σ−2 )
)

Note that by 1. and 2. in Lemma 4.1, the function G is of class C2 and since Π′κ (p) = κ2 one can
compute ∥∥∥D2G(σ+

1 , σ
+
2 , σ

−
1 , σ

−
2 )
∥∥∥
L∞

= O(1)κ2 . (4.16)

Moreover, G(0, 0, 0, 0) = (0, 0) and by direct computations, the Jacobian Matrix of G with respect
to σ+

1 and σ+
2 computed at (0, 0, 0, 0) is

∂(σ+
1 ,σ

+
2 )G(0, 0, 0, 0) =

 1 1√
−T ′

(
Πκ(po)

)
−
√
−T ′

(
Πκ(po)

)
 .

∣∣∣det ∂(σ+
1 ,σ

+
2 )G(0, 0, 0, 0)

∣∣∣ = 2
√
−T ′

(
p̄+ κ2 (po − p̄)

)
≥ 2
√
−T ′

(
max {p̄, po}

)
> 0

Hence, the Implicit Function Theorem ensures that (4.15) uniquely defines a map Σκ of class C2

such that (4.15) is equivalent to
(σ+

1 , σ
+
2 ) = Σκ(σ−1 , σ

−
2 )
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for all (σ−1 , σ
−
2 ) in a neighborhood of (0, 0) which can be chosen independently of κ. Moreover,

by (4.16), ∥∥∥D2Σκ(σ−1 , σ
−
2 )
∥∥∥
L∞
≤ O(1)κ2 . (4.17)

By construction, the following equalities are immediate:

Σκ(σ1, 0) = (σ1, 0) , Σκ(0, σ2) = (0, σ2) .

Using (4.17), compute now

∣∣∣Σκ1 (σ−1 , σ
−
2 )− σ−1

∣∣∣ =

∣∣∣∣∣
∫ 1

0

∂σ−2
Σκ1 (σ−1 , ϑσ

−
2 ) dϑ

∣∣∣∣∣∣∣∣σ−2 ∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
∂σ−2

Σκ1 (σ−1 , ϑσ
−
2 )− ∂σ−2 Σκ1 (0, ϑσ−2 )

)
dϑ

∣∣∣∣∣ ∣∣∣σ−2 ∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫ 1

0

∂2
σ−1 σ

−
2

Σκ1 (ϑ′σ−1 , ϑσ
−
2 ) dϑ′ dϑ

∣∣∣∣∣∣∣∣σ−1 σ−2

∣∣∣
= O(1)κ2

∣∣∣σ−1 σ−2

∣∣∣ .
We now consider the second estimate in (4.14), corresponding to the case of interacting waves

both belonging to the second family. With the notation in Figure 6, middle, we have

G(σ+
1 , σ

+
2 , σ

′, σ′′) = 0 (4.18)

where now

G1(σ+
1 , σ

+
2 , σ

′, σ′′) = σ+
1 + σ+

2 − σ′ − σ′′ ,

G2(σ+
1 , σ

+
2 , σ

′, σ′′) = σ+
1 F

(
Πκ(po + σ+

1 ),Πκ(po)
)
− σ+

2 F
(

Πκ(po + σ+
1 ),Πκ(po + σ+

1 + σ+
2 )
)

+σ′F
(
Πκ(po),Πκ(po + σ′)

)
+ σ′′F

(
Πκ(po + σ′),Πκ(po + σ′ + σ′′)

)
.

Note that by 1, 2 in Lemma 4.1, the function G is of class C2 and since Π′κ (p) = κ2 one can
compute again ∥∥∥D2G(σ+

1 , σ
+
2 , σ

′, σ′′)
∥∥∥
L∞

= O(1)κ2 . (4.19)

Moreover, G(0, 0, 0, 0) = (0, 0) and by direct computations, the Jacobian Matrix of G with respect
to σ+

1 and σ+
2 computed at (0, 0, 0, 0) is, as before,

D(σ+
1 ,σ

+
2 )G(0, 0, 0, 0) =

 1 1√
−T ′

(
Πκ(po)

)
−
√
−T ′

(
Πκ(po)

)
 .

Hence, as before, the Implicit Function Theorem ensures that (4.18) uniquely defines a map Σκ

of class C2 such that (4.18) is equivalent to

(σ+
1 , σ

+
2 ) = Σκ(σ′, σ′′)

for all (σ′, σ′′) in a neighborhood of (0, 0) which can be chosen independently of κ. Moreover.∥∥∥D2Σκ(σ′, σ′′)
∥∥∥
L∞
≤ O(1)κ2 . (4.20)

By construction, the following equalities are immediate:

Σκ(σ′, 0) = (0, σ′) , Σκ(0, σ′′) = (0, σ′′) .
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so that, using (4.20)∥∥Σκ(σ′, σ′′)− (0, σ′ + σ′′)
∥∥

=
∥∥∥(Σκ(σ′, σ′′)− (0, σ′ + σ′′)

)
−
(
Σκ(σ′, 0)− (0, σ′)

)∥∥∥
=

∥∥∥∥∥σ′′
∫ 1

0

(
∂σ′′Σ

κ(σ′, ϑσ′′)− (0, 1)
)

dϑ

∥∥∥∥∥
=

∥∥∥∥∥σ′′
∫ 1

0

((
∂σ′′Σ

κ(σ′, ϑσ′′)− (0, 1)
)
−
(
∂σ′′Σ

κ(0, ϑσ′′)− (0, 1)
))

dϑ

∥∥∥∥∥
=

∣∣σ′σ′′∣∣∥∥∥∥∥
∫ 1

0

∫ 1

0

∂2
σ′σ′′Σ

κ(ϑ′σ′, ϑσ′′) dϑdϑ′

∥∥∥∥∥
= O(1) κ2

∣∣σ′ σ′′∣∣ ,
completing the proof of the second estimate in (4.14). The case of two interacting waves both
belonging to the first family in Figure 6, right, is entirely similar.

The estimates on the waves’ sizes in the case of interactions involving the interfaces are as
follows.

Lemma 4.5. There exist positive δ̄, c and κ∗ < 1 such that, if all the interacting waves in Figure 7
have strength less than δ̄, then the following estimates hold:∣∣∣σ+

1

∣∣∣ ≤ O(1) κ
∣∣∣σ−1 ∣∣∣ +

(
1 +O(1) (κ+ δ̄)

) ∣∣∣σ−2 ∣∣∣∣∣∣σ+
2

∣∣∣ ≤ (1− c κ)
∣∣∣σ−1 ∣∣∣ +

(
2 +O(1) δ̄

) ∣∣∣σ−2 ∣∣∣ (4.21)

uniformly for all κ ∈ ]0, κ∗[. Moreover:

σ+
1 + σ+

2 = σ−1 + σ−2 and



σ−1 = 0 ⇒


∣∣∣σ+

2

∣∣∣− ∣∣∣σ+
1

∣∣∣ =
∣∣∣σ−2 ∣∣∣ ,

σ−2 σ+
2 ≥ 0 and σ−2 σ+

1 ≤ 0 .

σ−2 = 0 ⇒


∣∣∣σ+

1

∣∣∣+
∣∣∣σ+

2

∣∣∣ =
∣∣∣σ−1 ∣∣∣ ,

σ−1 σ+
1 ≥ 0 and σ−1 σ+

2 ≥ 0 .

(4.22)

Proof. In the present case, we have

G(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = 0 (4.23)

where

G1(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = σ+

1 + σ+
2 − σ

−
1 − σ

−
2

G2(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = σ−2 Fg(po, po + σ−2 )− κσ−1 F

(
Πκ(po + σ−1 + σ−2 ),Πκ(po + σ−2 )

)
+σ+

1 Fg(po + σ+
1 , po)− κσ

+
2 F

(
Πκ(po + σ+

1 ),Πκ(po + σ+
1 + σ+

2 )
)

with G(0, 0, 0, 0) = 0 and Jacobian matrix

∂(σ+
1 ,σ

+
2 )G(0, 0, 0, 0) =

 1 1√
−T ′g (po) −κ

√
−T ′

(
Πκ(po)

)

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σ−2

σ+
2

(po, vo)

σ+
1

σ−1

Liquid phase

Figure 7: Notation for the proof of Lemma 4.5: σ−1 , coming from the liquid phase, and σ−2 , coming
from the gas phase, hit against the phase boundary generating σ+

2 in the liquid phase and σ+
1 in

the gas phase.

∣∣∣∣det ∂(σ+
1 ,σ

+
2 )G(0, 0, 0, 0)

∣∣∣∣ =
√
−T ′g (po) + κ

√
−T ′

(
Πκ(po)

)
≥
√
−T ′g (po) > 0

and moreover
D2G(σ+

1 , σ
+
2 , σ

−
1 , σ

−
2 ) = O(1)

uniformly in κ, which allows to apply the Implicit Function Theorem in the same neighborhood

of radius δ̄ for all small κ, yielding a map Σκ(σ−1 , σ
−
2 ) =

(
σ+

1 , σ
+
2

)
such that

D2Σκ(σ−1 , σ
−
2 ) = O(1) (4.24)

locally in (σ−1 , σ
−
2 ) and uniformly in κ. Moreover,

DΣκ(0, 0)

= −
[
D(σ+

1 ,σ
+
2 )G(0, 0, 0, 0)

]−1

D(σ−1 ,σ
−
2 )G(0, 0, 0, 0)

= 1√
−T ′g (po)+κ

√
−T ′(Πκ(po))

κ
√
−T ′

(
Πκ(po)

)
1√

−T ′g (po) −1


 1 1

κ
√
−T ′

(
Πκ(po)

)
−
√
−T ′g (po)


= 1√

−T ′g (po)+κ
√
−T ′(Πκ(po))

 2κ
√
−T ′

(
Πκ(po)

)
−
√
−T ′g (po) + κ

√
−T ′

(
Πκ(po)

)√
−T ′g (po)− κ

√
−T ′

(
Πκ(po)

)
2
√
−T ′g (po)


which shows that the following bound DΣκ(0, 0) = O(1) hold uniformly in κ. This, together
with (4.24), implies

DΣκ(σ−1 , σ
−
2 ) = O(1) ,

so that

Σκ(σ−1 , σ
−
2 ) = O(1)

(∣∣∣σ−1 ∣∣∣+
∣∣∣σ−2 ∣∣∣) (4.25)

since Σκ(0, 0) = 0. Solve now G2(σ+
1 , σ

+
2 , σ

−
1 , σ

−
2 ) = 0 for σ+

1 , use the bound (4.25) and the

estimates
∣∣∣σ−1 ∣∣∣, ∣∣∣σ−2 ∣∣∣ < δ̄ to obtain:

σ+
1 = −Fg(po, po + σ−2 )

Fg(po + σ+
1 , po)

σ−2 +
F
(

Πκ(po + σ−1 + σ−2 ),Πκ(po + σ−2 )
)

Fg(po + σ+
1 , po)

κσ−1 (4.26)
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+
F
(

Πκ(po + σ+
1 ),Πκ(po + σ+

1 + σ+
2 )
)

Fg(po + σ+
1 , po)

κσ+
2 (4.27)

≤
(
1 +O(1) δ̄

) ∣∣∣σ−2 ∣∣∣+O(1) κ
∣∣∣σ−1 ∣∣∣+O(1) κ

(∣∣∣σ−1 ∣∣∣+
∣∣∣σ−2 ∣∣∣)

= O(1) κ
∣∣∣σ−1 ∣∣∣+

(
1 +O(1) (κ+ δ̄)

) ∣∣∣σ−2 ∣∣∣
which gives the first estimate in (4.21). To obtain the second one, use G1(σ+

1 , σ
+
2 , σ

−
1 , σ

−
2 ) = 0

and (4.26)–(4.27):1 + κ
F
(

Πκ(po + σ+
1 ),Πκ(po + σ+

1 + σ+
2 )
)

Fg(po + σ+
1 , po)

σ+
2 (4.28)

=

1− κ
F
(

Πκ(po + σ−1 + σ−2 ),Πκ(po + σ−1 )
)

Fg(po + σ+
1 , po)

σ−1 +

(
1 +

Fg(po, po + σ−2 )

Fg(po + σ+
1 , po)

)
σ−2 (4.29)

which implies the second in (4.21), since for a suitable c > 0,

F
(

Πκ(po + σ+
1 ),Πκ(po + σ+

1 + σ+
2 )
)

Fg(po + σ+
1 , po)

≥ c ,

F
(

Πκ(po + σ−1 + σ−2 ),Πκ(po + σ−1 )
)

Fg(po + σ+
1 , po)

≥ c ,

Fg(po, po + σ−2 )

Fg(po + σ+
1 , po)

≤ 1 +O(1) δ̄ .

To prove (4.22), note that in the case σ−1 = 0, (4.28)–(4.29) imply that σ+
2 and σ−2 have the

same sign. On the other hand, by (4.26)–(4.27)

σ+
1 =

(
−F (po, po + σ−2 )

F (po + σ+
1 , po)

+O(1) κ

)
σ−2

so that σ+
1 and σ−2 have different signs whenever κ is sufficiently small, proving the first equality

on the right in (4.22).
Assume now that σ−2 = 0, so that σ+

1 + σ+
2 = σ−1 . By (4.28)–(4.29), σ−1 and σ+

2 have the same

sign for κ small. The second inequality in (4.21) then ensures that
∣∣∣σ+

2

∣∣∣ < ∣∣∣σ−1 ∣∣∣ and hence also σ+
1

has the same sign of σ−1 and σ+
2 .

Remark that a wave refracted at the phase boundary remains of the same type, whereas the
reflected wave changes type when it comes from the liquid and remains of the same type when it
comes from the gas, see Table 1 and (4.22).

At any fixed positive time t, the approximate solution is a piecewise constant function uε(t) =∑
α uα χ[zα,zα+1[

. If t is not an interaction time, we denote by σα the size of the wave supported

at zα and introduce the potentials

VGin =
∑
α∈Gin

|σα| VGout =
∑

α∈Gout

|σα| VL =
∑
α∈L

|σα|

QG =
∑

(α,β)∈AG

∣∣σα σβ∣∣ QL =
∑

(α,β)∈AL

∣∣σα σβ∣∣
Υ = Kin VGin + VGout +KL VL +HG QG + κ2HLQL ,

(4.30)
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where Kin,KL, HG and HL are constants independent of κ to be precisely defined below. Above,
we denoted
Gin 2-waves supported in ]−∞, 0[ and 1-waves supported in ]m,+∞[.
Gout 1-waves supported in ]−∞, 0[ and 2-waves supported in ]m,+∞[.
L all waves supported in the liquid phase L.
AG pairs of approaching waves supported in the gas phase.
AL pairs of approaching waves supported in the liquid phase.

Here, we define as approaching two waves both supported in the same interval ]−∞, 0[, ]0,m[ or
]m,+∞[, either of the same family and when one of the two is a shock, or of different families
with the one of the first family on the right.

Lemma 4.6. There exist weights Kin,KL, HG and HL, all greater than 1, κ∗ ∈ ]0, 1[ and a
positive δ̄ such that, for all κ ∈ ]0, κ∗[ and piecewise constant initial data ũε with the corresponding
approximate solution uε constructed by the algorithm above satisfying Υ(uε(0+)) < δ̄, the function
t→ Υ

(
uε(t)

)
is non increasing. Moreover, calling σα, σβ the waves interacting at time t̄ and point

z̄, with σα coming from the left, the following estimates hold:

z̄ ∈ G ∆Υ ≤ −
∣∣σα σβ∣∣

z̄ = 0 ∆Υ ≤ −|σα| − κ
∣∣σβ∣∣

z̄ ∈ L ∆Υ ≤ −κ2
∣∣σα σβ∣∣

z̄ = m ∆Υ ≤ −κ |σα| −
∣∣σβ∣∣ .

(4.31)

Proof. Denote by C, with C > 1, a positive constant bounding from above all O(1) appearing
in (4.13), (4.14) and (4.21). Choose δ̄ > 0 such that δ̄ < 1/(2C), and ũε such that Υ

(
uε(0+)

)
< δ̄.

Suppose that at time t̄ there is an interaction and that Υ
(
uε(t̄−)

)
< δ̄. Consider the dif-

ferent interactions separately. Begin with an interaction in G, as in Figure 6, using (4.13) and
definitions (4.30):

∆VGin ≤ C
∣∣σα σβ∣∣ ∆QG ≤ C

∣∣σα σβ∣∣δ̄ − ∣∣σα σβ∣∣ ≤ − 1
2

∣∣σα σβ∣∣
∆VGout ≤ C

∣∣σα σβ∣∣ ∆QL = 0
∆VL = 0 ∆Υ ≤ (C Kin + C − 1

2 HG)
∣∣σα σβ∣∣ .

Consider an interaction in the liquid phase, as in Figure 6, using (4.14) and definitions (4.30):

∆VGin = 0 ∆QG = 0
∆VGout = 0 ∆QL ≤ (C κ2 δ̄ − 1)

∣∣σα σβ∣∣ ≤ − 1
2

∣∣σα σβ∣∣
∆VL ≤ C κ2

∣∣σα σβ∣∣ ∆Υ ≤ κ2 (C KL − 1
2 HL)

∣∣σα σβ∣∣
Consider now the case z̄ = 0, the case z̄ = m being entirely analogous. By (4.21), for κ + δ̄
sufficiently small so that C(κ+ δ̄) < 1, it follows, using definitions (4.30), that:

∆VGin ≤ −|σα| ∆QG ≤ 2 δ̄ |σα|+ C κ δ̄
∣∣σβ∣∣

∆VGout ≤ 2|σα|+ C κ
∣∣σβ∣∣ ∆QL ≤ 3 δ̄ |σα|+ δ̄

∣∣σβ∣∣
∆VL ≤ 3|σα| − c κ

∣∣σβ∣∣ ∆Υ ≤
[
2−Kin + 3KL + (2HG + 3κ2HL)δ̄

]
|σα|

+κ
[
C − cKL + (C HG + κHL)δ̄

] ∣∣σβ∣∣
To complete the proof, observe that choosing

1. KL so that C − cKL ≤ −2;

2. Kin so that 2−Kin + 3KL ≤ −2;

3. HG so that C(1 +Kin)− 1
2 HG ≤ −1;

4. HL so that C KL − 1
2 HL ≤ −1;

5. δ̄ so that (C HG +HL)δ̄ ≤ 1 and (2HG + 3HL)δ̄ ≤ 1.
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ensures that (4.31) holds. The proof is concluded by induction on the interaction times.

Lemma 4.7. With the algorithm defined above, if the piecewise constant initial datum ũε is chosen
so that Υ(uε(0+)) < δ̄, with δ̄ as in Lemma 4.6, (uε(t) being the approximate solution constructed
above) then there exists no cluster point of interaction points.

Proof. By contradiction, call t∗ the first time at which a cluster point (t∗, z∗) of interaction points
appears.

First, assume that z∗ 6= 0 and z∗ 6= m. Call U a neighborhood of (t∗, z∗) not intersecting the
interfaces z ∈ {0,m}. The interactions where there are more than one outgoing waves of the same
family are those where

• two waves of the same family hit against each other originating a rarefaction fan of the other
family of total size bigger than ε; and

• a wave hits an interface, resulting in a new reflected rarefaction larger than ε which is
eventually split as it reaches the boundary of the strip.

Because of the estimates (4.13), (4.14), (4.21) and (4.31), at any of these interactions ∆Υ ≤ − κ
C ε.

Hence, these interactions may take place only a finite number of times. An application of [1,
Lemma 2.5] contradicts the existence of (t∗, z∗).

Assume now z∗ = 0, the case z∗ = m being entirely equivalent. For a small positive η, choose
a trapezoid Nη contained in I−ε of the form

Nη =

{
(t, z) ∈ I− : t ∈ ]t∗ − η, t∗[ and

∣∣∣∣ z − z∗
t− t∗ − η

∣∣∣∣ ≤ 2

}
.

By construction, finitely many waves cross the lower side ofNη and no wave may enterNη along the
two sides. Inside Nη, any wave can generate another wave at most once, when it hits the interface
z = z∗. Inside Nη waves propagate with speed either 1 or −1 and at interactions between waves
with different speeds, no new wave is produced. Hence, the total number of interaction points
inside Nη is finite. This contradicts the existence of a cluster point of interaction points.

To ensure that the value of the functional at t = 0+ is sufficiently small in order that all the
above interaction estimates hold true, we need some conditions on the total variation of the initial
data. The standard estimates on the solution of the Riemann problem (see [4, Chapter 5]) imply
that, in the gas, it is sufficient that the initial datum has sufficiently small total variation. On the
other hand, in the liquid, the estimates on the Riemann problem depend on the small parameter
κ, as shown in (4.8), see also Figure 4. All this justifies the introduction of the weighted total
variation (3.1).

Lemma 4.8. Consider δ̄ as defined in Lemma 4.2 and let (p̃ε, ṽε) = ũε : R→ R+×R be piecewise
constant, continuous at z = 0 and z = m such that ‖p̃ε − po‖L∞ < δ̄. If uε is the approximate
solution constructed above, then, there exists a positive C, which can be chosen bounding from
above all O(1) appearing in (4.13), (4.14) and (4.21), such that

1

C
WTVκ(ũε) ≤ Υ(uε(0+)) ≤ C WTVκ(ũε)

with WTVκ defined as in (3.1) and Υ as in (4.30) with the weights Kin,KL, HG and HL chosen
as in Lemma 4.6.

Proof. Let σα be the sizes of the waves in uε(0+) and zα be their locations. Consider the estimate
on the left. The strength of a wave is the absolute value of the pressure difference between the
states on its sides, therefore, because of the weights’ choice in Lemma 4.6 (they are all greater
than 1), we have

TV(p̃ε) ≤ TV(pε(0+)) =
∑
α

|σα| ≤ Υ(uε(0+)) .
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The slopes of Lax curves in the gas do not depend on κ (4.2), hence, along a Lax curve, the jump
in the speed is uniformly controlled by the jump in the pressure:

TV(ṽε;G) ≤ TV(vε(0+);G) ≤ O(1)
∑
α

|σα| ≤ O(1) Υ(uε(0+)) .

Finally, in the liquid we use (4.6) which shows that along a Lax curve in the liquid, the jump in
the speed is controlled by κ times the jump in the pressure:

TV(ṽε;L) ≤ TV(vε(0+);L) ≤ O(1)κ
∑
α

|σα| ≤ O(1)κΥ(uε(0+)) .

This concludes the proof of the left estimate.
Passing to the right inequality, recall the usual bound Υ(uε(0+)) ≤ O(1)

∑
α |σα| which clearly

holds also for Υ as defined in (4.30). Proceed using the classical estimate for the solutions to the
Riemann problems in the gas and (4.8) in the liquid:

Υ(uε(0+)) = O(1)
∑
α

|σα|

= O(1)

∑
zα∈G̊

|σα|+
∑
zα∈L

|σα|


= O(1)

 ∑
zα∈G̊

(∣∣p̃ε(zα+)− p̃ε(zα−)
∣∣+
∣∣ṽε(zα+)− ṽε(zα−)

∣∣)

+
∑
zα∈L

(∣∣p̃ε(zα+)− p̃ε(zα−)
∣∣+

1

κ

∣∣ṽε(zα+)− ṽε(zα−)
∣∣)

= O(1) WTVκ(ũε) ,

completing the proof.

Proposition 4.9. Fix a positive pressure po and let P g, P satisfy (P). There exist constants
δ,∆, L, κ∗ > 0, with κ∗ < 1, such that, for any κ ∈ ]0, κ∗[, for any piecewise constant ini-
tial datum ũ = (p̃, ṽ), continuous at the points z = 0, z = m, satisfying WTVκ(ũ) ≤ δ and
‖p̃− po‖L∞ ≤ δ, the wave front tracking approximate solution uκ,ε = (pκ,ε, vκ,ε) to the Cauchy
problem for (2.12) can be constructed for all times t ≥ 0. Moreover, given the specific volume as
τκ,ε (t, z) = Tκ

(
z, pκ,ε (t, z)

)
, the following estimates hold.

For any t, t1, t2 ≥ 0

WTVκ

(
uκ,ε(t, ·)

)
≤ ∆,

TV
(
pκ,ε(t, ·),L

)
≤ ∆,

∫
L

∣∣pκ,ε(t2, z)− pκ,ε(t1, z)∣∣dz ≤ 1
κL |t2 − t1| ,

TV
(
vκ,ε(t, ·),L

)
≤ κ∆,

∫
L

∣∣vκ,ε(t2, z)− vκ,ε(t1, z)∣∣dz ≤ L |t2 − t1| ,

TV
(
τκ,ε(t, ·),L

)
≤κ2∆,

∫
L

∣∣τκ,ε(t2, z)− τκ,ε(t1, z)∣∣dz≤ κL |t2 − t1| ,

TV
(
pκ,ε(t, ·),G

)
≤ ∆,

∫
G

∣∣pκ,ε(t2, z)− pκ,ε(t1, z)∣∣dz ≤ L |t2 − t1| ,

TV
(
vκ,ε(t, ·),G

)
≤ ∆,

∫
G

∣∣vκ,ε(t2, z)− vκ,ε(t1, z)∣∣dz ≤ L |t2 − t1| ,

TV
(
τκ,ε(t, ·),G

)
≤ ∆,

∫
G

∣∣τκ,ε(t2, z)− τκ,ε(t1, z)∣∣dz ≤ L |t2 − t1| .

(4.32)
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For any z ∈ L, z1, z2 ∈ L \ ([−ε2, ε2] ∪ [m− ε2,m+ ε2])

TV
(
pκ,ε(·, z),R+

)
≤ ∆

κ ,
∫
R+

∣∣pκ,ε(t, z2)− pκ,ε(t, z1)
∣∣dt ≤ L |z2 − z1| ,

TV
(
vκ,ε(·, z),R+

)
≤ ∆,

∫
R+

∣∣vκ,ε(t, z2)− vκ,ε(t, z1)
∣∣ dt≤ κL |z2 − z1| ,

TV
(
τκ,ε(·, z),R+

)
≤κ∆,

∫
R+

∣∣τκ,ε(t, z2)− τκ,ε(t, z1)
∣∣dt≤κ2L |z2 − z1| .

(4.33)

For any z, z1, z2 ∈ G

TV
(
pκ,ε(·, z),R+

)
≤∆,

∫
R+

∣∣pκ,ε(t, z2)− pκ,ε(t, z1)
∣∣dt ≤L |z2 − z1| ,

TV
(
vκ,ε(·, z),R+

)
≤∆,

∫
R+

∣∣vκ,ε(t, z2)− vκ,ε(t, z1)
∣∣dt≤L |z2 − z1| ,

TV
(
τκ,ε(·, z),R+

)
≤∆,

∫
R+

∣∣τκ,ε(t, z2)− τκ,ε(t, z1)
∣∣dt≤L |z2 − z1| .

(4.34)

For any z, z1, z2 ∈ R

TV
(
pκ,ε(·, z),R+

)
≤ ∆

κ ,
∫
R+

∣∣pκ,ε(t, z2)− pκ,ε(t, z1)
∣∣dt≤ L

κ |z2 − z1| ,

TV
(
vκ,ε(·, z),R+

)
≤∆,

∫
R+

∣∣vκ,ε(t, z2)− vκ,ε(t, z1)
∣∣dt≤ L |z2 − z1| .

(4.35)

Moreover, the maximal size of rarefaction waves is uniformly bounded by a constant, independent
of κ, times ε.

Proof. Choose δ̄ as in Lemma 4.6 and κ∗ as in Lemma 4.5. Define δ = δ̄/C, with C as in
Lemma 4.8. Using the piecewise constant initial data ũ, we use the previously described algorithm
and call uκ,ε the piecewise constant approximate solution so obtained. By Lemma 4.8, we have
Υ
(
uκ,ε(0+)

)
≤ C ·WTVκ (ũ) < δ̄. By Lemma 4.6, the map t → Υ

(
uκ,ε(t)

)
is not increasing so

that Υ
(
uκ,ε(t)

)
< δ̄ for all positive times. Lemma 4.7 ensures that uκ,ε can be constructed for all

times t ≥ 0. Again, Lemma 4.8 implies the estimate

WTVκ

(
uκ,ε(t)

)
≤ C Υ

(
uκ,ε(t)

)
≤ C Υ

(
uκ,ε(0+)

)
≤ C2 WTVκ (ũ) ≤ C2 δ = Cδ̄.

The estimates on the total variation of pκ,ε and vκ,ε in (4.32) immediately follow. To obtain
the bounds on the total variation of the specific volume in the liquid, use (2.10). The Lipschitz
continuity estimates in (4.32) are now a standard consequence, see e.g. [4, Section 7.4], since the
wave propagation speed in the gas is uniformly bounded independently of κ and in the liquid (also
in I±ε ) is bounded by O(1) /κ.

Pass to (4.33). Observe first that from the proof of Lemma 4.6 it follows that

6C3δ̄ ≤ 1 and C ≥ 1 . (4.36)

As usual, we call σα the size of the wave supported at zα. For z ∈ L, define

Υz(t) = Wz(t) + Vz(t) +
3C

κ
Υ(t)

Wz(t) =
∑
τ∈[0,t]

∣∣∆p(τ, z)∣∣
Vz(t) =

∑
α∈Iz(t)

|σα|

Iz(t) =

α : zα ∈ L and the wave at zα is of the

{
first family and zα > z
second family and zα < z


Υ(t) = Υ

(
uκ,ε(t)

)
Note that the sum defining Wz is actually a finite sum, since the total number of waves is finite
by Lemma 4.7. We claim that t→ Υz(t) is non increasing. Indeed, Υz(t) may change its value at
a time t when:
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1. A wave with size σᾱ crosses z and no other interaction occurs. Then, ∆Wz(t) =
∣∣∆p(t, z)∣∣ =

|σᾱ|, ∆Vz(t) = −|σᾱ| and ∆Υ(t) = 0. Hence, ∆Υz(t) = 0.

2. An interaction in G occurs and no wave crosses z. Then, ∆Wz(t) = 0, ∆Vz(t) = 0 and
∆Υ(t) ≤ 0. Hence, ∆Υz(t) ≤ 0.

3. An interaction in L occurs and no wave crosses z. Then, ∆Wz(t) = 0; calling σα, σβ the sizes
of the interacting waves, ∆Vz(t) ≤ Cκ2

∣∣σα σβ∣∣ by (4.14) and ∆Υ(t) ≤ −κ2
∣∣σασβ∣∣ by (4.31).

Hence, ∆Υz(t) ≤ C
(
1− 3

κ

)
κ2
∣∣σασβ∣∣ ≤ 0.

4. A 2-wave with size σα, coming from G, and a 1-wave with size σβ , coming from L, interact at
z̄ = 0. Then, ∆Wz(t) = 0; by Lemma 4.5, ∆Vz(t) ≤ (1−cκ)

∣∣σβ∣∣+(2+Cδ̄)|σα|; by Lemma 4.6

∆Υ(t) ≤ −|σα| − κ
∣∣σβ∣∣. Hence, ∆Υz(t) ≤ (1− cκ− 3C)

∣∣σβ∣∣+
(

2 + Cδ̄ − 3C
κ

)
|σα| ≤ 0.

5. Two waves interact at z = m: the same procedure as above applies.

The remaining times where Υz may change value consist in the superposition of two or more of the
cases considered above and can be dealt superimposing the corresponding inequalities. Therefore,

TV
(
pκ,ε(·, z)

)
= sup

T>0
TV

(
pκ,ε(·, z); [0, T ]

)
= sup

T>0
Wz(T ) ≤ sup

T>0
Υz(T )

≤ Υz(0+) = Vz(0+) + 3C
κ Υ(0+) ≤ ∆

κ

provided ∆ > 2δ̄, completing the proof of the first estimate on the total variation in (4.33). The
remaining total variation bounds in (4.33) follow from the estimates∣∣∆v(t, z)

∣∣ ≤ O(1)κ
∣∣∆p(t, z)∣∣ and

∣∣∆τ(t, z)
∣∣ ≤ O(1)κ2

∣∣∆p(t, z)∣∣
which hold along Lax curves by Lemma 4.1 and (2.10). The Lipschitz continuity estimates in (4.33)
are now a standard consequence, see e.g. [4, Section 7.4], since the wave propagation speed in
L \ ([−ε2, ε2] ∪ [m− ε2,m+ ε2]) is of order 1/κ.

The proof of the estimates (4.34) is obtained from that of (4.33) completed above, formally
setting κ = 1 and with obvious modifications to the definition of Υz.

The estimates on all the real line (4.35) are obtained choosing a common upper bound on the
total variation and a common lower bound on the wave speeds in the liquid, in the gas and in the
two strips I±ε and observing that z 7→ uκ,ε (t, z) is continuous at z = 0, z = m for every t ≥ 0 in
which no wave interacts with the interfaces. Observe that a similar Lipschitz estimate does not
hold for the specific volume τ , since at z = 0 and z = m it is not continuous.

Finally, the estimate on the maximal size of rarefaction waves follows the lines in [4, Section 7.3,
Step 5]. Indeed, call σ̄(t) the size at time t of a rarefaction wave in the wave front tracking
approximation. We claim that, if in the interval [to, τ ] the wave does not leave the phase in which
it is found at time to and does not disappear due to possible interactions with shocks of the same
family, then

∣∣σ̄(τ)
∣∣ ≤ 6

∣∣σ̄(to)
∣∣.

Indeed, consider the liquid phase, let z̄(t) be the location of the wave at time t and define

s(t) =
∣∣σ̄(t)

∣∣ [1 + 6C2 κ2 Vs(t) + 24C3 κΥ(t)
]

Vs(t) =
∑
α∈Is(t) |σα|

Is(t) = {α : zα ∈ L, the wave at zα is approaching the wave at z̄} .

The function t→ s(t) is non increasing in the interval [to, τ ]. Indeed, s(t) may change its value at
the following times:
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1. At time t a wave σα interacts with the wave at z̄(t) and no other interaction occurs. Then,
by (4.14) ∆

∣∣σ̄(t)
∣∣ ≤ Cκ2

∣∣σ̄(t−)σα
∣∣; ∆Vs(t) = − |σα|; ∆Υ(t) < 0. Hence, by (4.36),

∆s(t) = ∆
∣∣σ̄(t)

∣∣ [1 + 6C2κ2Vs(t+) + 24C3κΥ(t+)
]

+
∣∣σ̄(t−)

∣∣ [6C2κ2∆Vs(t) + 24C3κ∆Υ(t)
]

≤ Cκ2
∣∣σ̄(t−)σα

∣∣ [1 + 6C2κ2δ̄ + 24C3κδ̄
]
− 6C2κ2

∣∣σ̄(t−)
∣∣ |σα|

≤ Cκ2
∣∣σ̄(t−)σα

∣∣ [1 + 6C2κ2δ̄ + 24C3κδ̄ − 6C
]

≤ Cκ2
∣∣σ̄(t−)σα

∣∣ [1 + 1 + 4− 6C] ≤ 0 .

2. At time t, an interaction in G occurs and no wave crosses z̄(t). Then, ∆
∣∣σ̄(t)

∣∣ = 0, ∆Vs(t) = 0
and ∆Υ(t) ≤ 0. Hence, ∆s(t) ≤ 0.

3. At time t, an interaction in L occurs and no wave crosses z̄(t). Then, ∆
∣∣σ̄(t)

∣∣ = 0; calling σα,

σβ the sizes of the interacting waves, ∆Vs(t) ≤ Cκ2
∣∣σα σβ∣∣ by (4.14) and ∆Υ(t) ≤ −κ2

∣∣σασβ∣∣
by (4.31). Hence,

∆s(t) ≤
∣∣σ̄(t)

∣∣ [6C3κ4
∣∣σασβ∣∣− 24C3κ3

∣∣σασβ∣∣] ≤ ∣∣σ̄(t)
∣∣ ∣∣σασβ∣∣ 6C3κ3(κ− 4) ≤ 0 .

4. At time t, an interaction occurs at z = 0 and no wave crosses z̄(t). Call σα the size of the
wave coming from G, and σβ the size of the wave coming from L. Then, ∆

∣∣σ̄(t)
∣∣ = 0. By

Lemma 4.5, ∆Vs(t) ≤ (1 − cκ)
∣∣σβ∣∣ + (2 + Cδ̄)|σα|; by Lemma 4.6 ∆Υ(t) ≤ −|σα| − κ

∣∣σβ∣∣.
Hence,

∆s(t) ≤
∣∣σ̄(t)

∣∣ [6C2κ2
(

(1− cκ)
∣∣σβ∣∣+ (2 + Cδ̄)|σα|

)
− 24C3κ

(
|σα|+ κ

∣∣σβ∣∣)]
≤ 6C2κ

∣∣σ̄(t)
∣∣ [κ((1− cκ)

∣∣σβ∣∣+ (2 + Cδ̄)|σα|
)
− 4C

(
|σα|+ κ

∣∣σβ∣∣)]
≤ 6C2κ

∣∣σ̄(t)
∣∣ [κ ∣∣σβ∣∣ (1− cκ− 4C) + |σα|

(
2κ+ Cκδ̄ − 4C

)]
≤ 0

5. Two waves interact at z = m: the same procedure as above applies.

The remaining times where s(t) may change value consist in the superposition of two or more of
the cases considered above and can be dealt superimposing the corresponding inequalities proved
above. Therefore s(τ) ≤ s(to) which implies

∣∣σ̄(τ)
∣∣ ≤ ∣∣σ̄(to)

∣∣ 1 + 6C2κ2Vs(to) + 24C3κΥ(to)

1 + 6C2κ2Vs(τ) + 24C3κΥ(τ)
≤
[
1 + 6C2δ̄ + 24C3δ̄

] ∣∣σ̄(to)
∣∣ ≤ 6

∣∣σ̄(to)
∣∣

This proves the claim in the liquid. In the case of a wave in the gas, the argument is similar: it is
sufficient to set κ = 1 in the definition of s(t) and make the obvious modifications to the map Vs.

Finally, we observe now that when a wave crosses the interfaces, the refracted wave has a
strength given by the strength of the incoming wave times a constant bounded uniformly with
respect to κ, for instance we can choose 3C (see Lemma 4.5). Moreover, when a rarefaction is
born, its strength is less than ε and it can cross at most an interface once. Therefore, also the last
claim of the Proposition is proved with the constant 1944C2ε.

Proof of Theorem 3.3. Use δ,∆, L, κ∗ > 0 as defined in Proposition 4.9 and choose any
κ ∈ ]0, κ∗[. Fix a suitable sequence εν strictly decreasing to 0. Approximate the initial datum
ũ = (p̃, ṽ) with an approximate, piecewise constant initial datum ũεν satisfying (4.12), so that
WTVκ (ũεν ) ≤WTVκ (ũ) ≤ δ, ‖p̃εν − po‖L∞ ≤ δ.

Proposition 4.9 ensures that it is possible to construct a wave front tracking εν–approximate
solution (pκ,εν , vκ,εν ) that satisfies all properties stated therein.
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Using (4.32) and (4.35), a repeated application of Helly Theorem [4, Theorem 2.4], ensures the
convergence of a suitable subsequence, which we still denote by uκ,εν , to a function uκ = (pκ, vκ)
in the following sense

lim
ν→+∞

∥∥(pκ,εν , vκ,εν )(t, ·)− (pκ, vκ)(t, ·)
∥∥
L1([−M,M ];R+×R)

= 0, for any t ≥ 0, M > 0

lim
ν→+∞

∥∥(pκ,εν , vκ,εν )(·, z)− (pκ, vκ)(·, z)
∥∥
L1([0,M ];R+×R)

= 0, for any z ∈ R, M > 0

(pκ, vκ) (0, ·) = (p̃κ, ṽκ) (·).

Passing to the limit in (4.32), (4.33), (4.34), (4.35), we obtain (3.3), (3.4), (3.5) and (3.6).
Since the bounds on the total variation are uniform in ε and since the strength of rarefactions

is uniformly bounded by a constant times ε, standard techniques in wave front tracking [4, Section
7.4] can be used to show that the limit uκ is a weak entropy solution to (2.12) in the open regions
z < 0, 0 < z < m, z > m. By (3.6), we have that the map z → uκ(·, z) is continuous in L1,
in particular it is continuous across z = 0 and z = m. Therefore, uκ trivially satisfies there the
Rankine-Hugoniot conditions and the entropy (in)equality. Hence, uκ is a weak entropy solution
to (2.12) in all R+ × R. �

Proof of Theorem 3.4. By (3.7), WTVκ(ũ) < δ so that Theorem 3.3 applies, ensuring the
existence of a solution uκ = (pκ, vκ) to (2.12) satisfying (3.3), (3.4), (3.5) and (3.6).

Since κ < 1, from (3.3) and (3.6) we have for vκ:

TV
(
vκ(t, ·),R

)
≤ ∆,

∫
R
∣∣vκ(t2, z)− vκ(t1, z)

∣∣ dz ≤ L |t2 − t1| , t, t1, t2 ≥ 0,
TV

(
vκ(·, z),R+

)
≤ ∆,

∫
R+

∣∣vκ(t, z2)− vκ(t, z1)
∣∣dt ≤ L |z2 − z1| , z, z1, z2 ∈ R. (4.37)

Helly Theorem [4, Theorem 2.4] implies the existence of a subsequence (that we call again vκ)
converging to a limit v∗ in the sense of (3.8). From the bound in (3.3) on the total variation of
vκ or from the Lipschitz estimate in (3.4) for vκ in the liquid, it is straightforward to obtain that
v∗(t, z) = vl(t) for all z ∈ L and t ≥ 0, where vl(t) is a function which depends on time only,
completing the proof of (3.8) and of 3. in Definition 3.2.

The same procedure can be carried out for the pressure in the gas region, proving the first four
lines in (3.9). Observe that for the pressure, we cannot apply Helly Theorem in the liquid since
there the estimates blow up as κ→ 0. Because of the strong convergence in the gas region of both
the velocity and the pressure, the limit u∗ = (p∗, v∗) satisfies 1. in Definition 3.2 and the initial
condition u∗(0, z) = ũ(z) a.e. z ∈ G.

The uniform convergence of τκ in the liquid is a straightforward consequence of (2.10) and of
the uniform bound on the L∞ norm of pκ.

Since the pressure is uniformly bounded, we have a weak? convergence (possibly passing to

further subsequences) pκ
?
⇀p∗ in L∞

(
R+ × R,R

)
[5, Section 4.3 Point C.]. If we define pl = p∗|R+×L

we get the fifth line in (3.9).
By (3.3) and (3.6), the second equation in (2.12) can be written in integral form in [t1, t2]×L:∫ m

0

vκ (t1, z) dz −
∫ m

0

vκ (t2, z) dz +

∫ t2

t1

pκ (t, 0) dt−
∫ t2

t1

pκ (t,m) dt = 0. (4.38)

Now, we use the strong convergence of both pκ and vκ in the gas region and the fact that in L,
v∗ is constant to obtain

m
[
vl (t2)− vl (t1)

]
=

∫ t2

t1

p∗ (t, 0) dt−
∫ t2

t1

p∗ (t,m) dt .

Setting t1 = 0 and t2 = t in the last expression above,

vl (t) = vl (0) +
1

m

∫ t

0

[
p∗ (s, 0)− p∗ (s,m)

]
ds = vl (0) +

1

m

∫ t

0

[
p∗ (s, 0−)− p∗ (s,m+)

]
ds

24



which means that vl is Lipschitz continuous and satisfies 2. in Definition 3.2.
Observe that the non linear term Tκ (z, pκ) converges strongly to

τ∗(t, z) =

{
τ̄ for z ∈ L,
Tg
(
p∗(t, z)

)
for z ∈ G,

hence we can pass to the limit in (2.12) in distributional sense to obtain{
∂tτ
∗ − ∂zv∗ = 0

∂tv
∗ + ∂zp

∗ = 0,
in R+ × R. (4.39)

Since in the liquid region v∗ (t, z) = vl(t) with vl Lipschitz continuous, the second equation in (4.39)
becomes

∂zp
∗(t, z) = −v̇l(t) in R+ × L.

Therefore there exists a measurable function β(t) such that the function

pl(t, z) = −zv̇l(t) + β(t)

can be chosen as a representative of the limit pressure p∗ restricted to the liquid. This implies the
existence of the two limits

lim
z→0+

pl(t, z) = β(t), lim
z→m−

pl(t, z) = β(t)− zv̇l(t).

The fourth line in (3.9) ensures the existence of the corresponding limits from the gas region:

lim
z→0−

p∗(t, z) = p∗(t, 0), lim
z→m+

p∗(t, z) = p∗ (t,m) , a.e. t ∈ R+,

hence Rankine-Hugoniot conditions for (4.39) applied along z = 0 and z = m imply that the right
and the left limit of the pressure must coincide along z = 0 and z = m for a.e. t ≥ 0. Therefore,
we have {

p∗(t, 0) = β(t)

p∗(t,m) = −mv̇l(t) + β(t)
for a.e. t ≥ 0,

which implies the remaining equality to be proved in (3.9). �
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