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Abstract. We solve a general vector variational inequality problem in
a finite - dimensional setting, where only approximation sequences are
known instead of exact values of the cost mapping and feasible set. We
establish a new equivalence property, which enables us to replace each
vector variational inequality with a scalar set-valued variational inequal-
ity. Then, we approximate the scalar set-valued variational inequality
with a sequence of penalized problems, and we study the convergence of
their solutions to solutions of the original one.
Keywords: Vector variational inequality; non-stationarity; set-valued
mappings; approximation sequence; penalty method; coercivity condi-
tions.

1. Introduction

Let D be a nonempty convex set in the real n-dimensional space Rn,
and let G : D → Rn be a mapping. Then one can define the variational
inequality problem (VI, for short), which is to find an element x∗ ∈ D such
that

(VI) 〈G(x∗), y − x∗〉 ≥ 0 ∀y ∈ D.

VIs give a suitable common format for various applied problems and are
closely related with other general problems in nonlinear analysis, such as
fixed point, optimization, complementarity, and equilibrium problems; see,
e.g., [4]–[9] and the references therein. Moreover, there exist various exten-
sions of the usual scalar VIs, in particular, vector VIs, which are closely
related with vector optimization problems; see [6]–[8] for more details.

We recall that the usual vector variational inequality problem (in short,
VVI) is to find an element x∗ ∈ D such that

(VVI) G(x∗)(y − x∗) /∈ −intC ∀y ∈ D,

where G is a single-valued mapping from D into L(Rn,Rm), and C is some
ordering cone of Rm with intC 6= ∅ (see Section 2). Clearly, VVI is an ex-
tension of VI in the case m = 1 and C is the non-negative ray. Note that
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each value G(x) is an m×n matrix. However, exact values of the cost map-
ping G, ordering cone C, and feasible set D may be unknown for many real
problems. This situation is clearly invoked by the usual calculation errors
and incompleteness of information about the problem under solution. As
a result, one can only deal with problems arising from suitable approxima-
tions {Dk}, {Gk} and {Ck} of the set D, the mapping G and the cone C,
respectively.

Our aim is to investigate convergence properties of the approximated
problems, following the lines of [12] and [13], where convergence of some
penalty based methods for limit variational inequality problems in finite-
dimensional spaces was obtained. These approximations do not require spe-
cial concordance of parameters, and their convergence will be established
under suitable coercivity conditions, not necessarily related to any mono-
tonicity assumptions.

The paper is organized as follows: first, we establish a new equivalence
property, which enables us to replace each VVI with a scalar set-valued
variational inequality. Then, we approximate the scalar set-valued varia-
tional inequality with a sequence of penalized problems, and we study the
convergence of their solutions to solutions of the original one.

2. Preliminary results

In this section we collect some preliminary notions, and some known re-
sults about VVIs. Furthermore, in view of the approximated problems con-
sidered in the sequel, we provide some known facts about generalized mixed
variational inequalities. The setting is finite-dimensional; every Euclidean
space will be endowed by the usual scalar product 〈·, ·〉 inducing the Eu-
clidean norm ‖ · ‖. In particular, B(a, r) will denote the open ball centered

at a with radius r, and B(a, r) its closure.
Let us recall that a nonempty set C ⊂ Rm is called a convex cone if

λC ⊆ C for all λ > 0, and C + C = C. A cone C is called pointed if
C ∩ (−C) = {0}, where 0 denotes the zero vector. A set X is called solid if
its interior, denoted by intX, is nonempty. Also, a nonempty set X is called
proper if it is contained properly in Rm, i.e. X 6= Rm. If C is a convex and
proper cone, then 0 /∈ intC.

Given a convex, proper and solid cone, we can introduce the order �C in
Rm as follows:

x �C y ⇐⇒ x− y ∈ intC.

In the case where

C = Rm+ = {z ∈ Rm : zi ≥ 0 i = 1, . . . ,m},

we have the weak Paretian order. Note that the cone C is not supposed
to be a closed set, since there are some orderings, such as the lexicographic
one, whose cones are not closed.

Given a set K in Rm, define

S(K) = K ∩ S(0, 1), P (K) = convS(K),

where S(0, 1) = {z ∈ Rm : ‖z‖ = 1}, and convA denotes the convex hull of
the set A. Furthermore, the polar (or conjugate) cone of a set K in Rm is
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given by

K∗ = {q ∈ Rm : 〈p, q〉 ≥ 0, ∀p ∈ K}.
It is clear that K∗ is a convex and closed cone. If K is itself a cone in Rm,
then K∗∗ = K. Moreover, if the cone K is proper, convex and solid, then
K∗ has nonzero elements due to the separation theorem.

In the next lemma a characterization of the interior points of closed and
convex cones is provided.

Lemma 2.1. (see e.g. [11, Lemma 1]).

i. Let K be a subset of Rm. If p ∈ intK, then

〈p, q〉 > 0 ∀q ∈ K∗ \ {0}.

ii. Let K be a convex and closed cone in Rm. Suppose that

〈p, q〉 > 0 ∀q ∈ K∗ \ {0};

then, p ∈ intK (i.e. intK 6= ∅).

Let us consider the following VVI: find x∗ ∈ D such that

G(x∗)(y − x∗) /∈ −int(C), ∀y ∈ D,

where D ⊆ Rn, and G = [G1, G2, . . . , Gm]>, with Gj : Rn → Rn for every
j = 1, 2, . . . ,m.

For every element q ∈ C∗ \ {0} we define the scalarized problem (VIq, for
short): find a point xq ∈ D such that

(VIq) 〈G(xq)(y − xq), q〉 ≥ 0 ∀y ∈ D,

or, equivalently,

〈G>(xq)q, y − xq〉 ≥ 0 ∀y ∈ D.

Remark 2.2. From Lemma 2.1, it is easy to prove that any solution of
VVI is a solution of problem VIq, for some q ∈ C∗ \ {0}. As a matter of
fact, if x∗ is a solution of VVI, from the convexity of D it follows that the
set G(x∗)(D− x∗) is convex; moreover, it contains 0, and does not intersect
−intC. By the separation theorem, there exists q ∈ Rn\{0} such that, for all
y ∈ D and all v ∈ −intC, one has 〈G(x∗)(y− x∗), q〉 > 〈v, q〉. It follows that
〈v, q〉 < 0 for all v ∈ −intC, and 〈v, q〉 ≤ 0 for all v ∈ −C. Hence q ∈ C∗,
and x∗ is a solution of VIq. In addition, any solution of problem VIq, with
q ∈ C∗ \ {0}, is a solution of VVI.

In order to replace the original VVI with an equivalent formulation, we
define the set-valued mapping F : Rn → Π(Rn) as follows:

(2.1) F (x) = {f ∈ Rn : f = G>(x)q =
m∑
j=1

Gj(x)qj , q ∈ P (C∗)}.

Here and below Π(A) denotes the family of all nonempty subsets of a set A.
The set-valued map F is trivially nonempty, compact and convex valued in
Rn, and the set P (C∗) is compact. Under the assumption of continuity of
the maps Gj , by adapting the proof of Theorem 16.34 in [3], we can easily
show that F is upper semicontinuous.
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Let us now consider the following generalized variational inequality prob-
lem (GVI, for short): find an element x∗ ∈ D and f∗ ∈ F (x∗) such that

(GVI) 〈f∗, y − x∗〉 ≥ 0 ∀y ∈ D.
The problem GVI turns out to be equivalent to the problem VVI, as the

next proposition shows:

Proposition 2.3. VVI is equivalent to GVI, where the mapping F is defined
in (2.1).

Proof: If x∗ is a solution of VVI, then it solves problem VIq for some q ∈
C∗\{0}, as a consequence of Lemma 2.1. Hence we can take q′ = (1/‖q‖)q ∈
S(C∗). This means that x∗ is a solution of GVI, with f∗ = G>(x∗)q′.

Conversely, let x∗ be a solution of GVI. Then it solves VIq for some
q ∈ P (C∗). By definition, there exist elements qi ∈ S(C∗) and numbers
αi > 0 such that

q =
∑
i∈I

αiq
i,

∑
i∈I

αi = 1,

where I is a finite set of indices. Fix any point y ∈ D. Then, there exists
an index l ∈ I such that

〈G(x∗)(y − x∗), ql〉 ≥ 0,

hence, by Lemma 2.1,

G(x∗)(y − x∗) /∈ −intC.

Therefore x∗ solves VVI. 2

By the proposition above, existence results for VVI can be obtained by
investigating the equivalent GVI. This is a special case of the more general
generalized mixed variational inequality (GMVI, for short; see e.g. [13]),
which is to find an element x∗ ∈ D and f∗ ∈ F (x∗) such that

(GMVI) 〈f∗, y − x∗〉+ h(y)− h(x∗) ≥ 0 ∀y ∈ D,
where h : D → R, and F : D → Π(Rn).

In the following we will consider the problem GMVI under the following
basic assumptions:

(A) D is a nonempty, closed and convex set, h : D → R is a lower semicon-
tinuous and convex function, F : D → Π(Rn) is upper semicontinuous,
with nonempty, convex, and compact values on D.

Let us recall some existence results for GMVI.

Proposition 2.4. (see [13, Proposition 2]). If A holds and D is bounded,
then GMVI has a solution.

In case the set D is unbounded, some proper coercivity conditions are
required. To this purpose, let us recall that a function µ : Rn → R is said
to be weakly coercive with respect to a set D if there exists ρ ∈ R such that
the set

D(µ, ρ) := {x ∈ D : µ(x) ≤ ρ}
is nonempty and bounded. For every f ∈ F (x), set

∆(f, h, x, y) = 〈f, y − x〉+ h(y)− h(x).
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We take the following coercivity condition:

(C) There exist a convex function µ : Rn → R, which is weakly coercive
with respect to the set D, and a number r such that, for any point
x̄ ∈ D \D(µ, r) and any f̄ ∈ F (x̄) with

(2.2) inf
x∈D(µ,r)

∆(f̄ , h, x̄, x) ≥ 0,

there is a point z ∈ D such that

(2.3)
min{∆(f̄ , h, x̄, z), µ(z)− µ(x̄)} < 0,

and
max{∆(f̄ , h, x̄, z), µ(z)− µ(x̄)} ≤ 0.

The following existence result holds :

Proposition 2.5. [13, Theorem 1] If A and C are fulfilled, then GMVI has
a solution.

We can somewhat strengthen the above assertion by specializing (2.3),
in order to be able to localize the solutions by considering the following
coercivity condition:

(C′) There exist a convex function µ : Rn → R, which is weakly coercive
with respect to the set D, and a number r such that for any point
x̄ ∈ D \ D(µ, r) and any f̄ ∈ F (x̄) satisfying (2.2) there is a point
z ∈ D such that µ(z) ≤ µ(x̄) and

(2.4) ∆(f̄ , h, x̄, z) < 0.

Corollary 2.6. If A and C′ are fulfilled, then GMVI has a solution, and
all the solutions are contained in D(µ, r).

Proof: It is enough to note that (2.4) implies (2.3), hence existence of
solutions of GMVI follows from Proposition 2.5. Due to (2.4), all these
solutions belong to D(µ, r). 2

3. Convergence of penalized approximation problems

Converting VVIs into GVIs enables us to apply the penalty approach.
Following some ideas in [12], [13], we intend to establish existence results for
the ‘limit’ problem VVI by investigating the cluster points of the solutions of
penalized approximation problems that are defined in terms of more regular
data.

In the sequel, we will suppose that D is a set of the form

(3.1) D = V ∩W,
where V,W are convex and closed sets in the space Rn. In general, V
represents geometric constraints, whereas W corresponds to “functional”
ones. To identify the points of this latter set, a suitable penalty function
will be used, that is a function P : Rn → R such that

P (w)

{
= 0 w ∈W,
> 0 w /∈W.

We now define approximations of the data D, G and C. Let {Vk} be a
sequence of closed, convex subsets of Rn such that
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(A1) LsVk ⊆ V, where Ls denotes the topological limit superior, i.e.,

LsVk = {x ∈ Rn : xnk
→ x with xnk

∈ Vnk
}.

The set W will be approximated via perturbed penalty functions well be-
haved with respect to {Vk}, i.e., a sequence of nonnegative functions Pk :
Rn → R such that

(A2) i. Pk is lower semicontinuous and convex;
ii. if xk ∈ Vk, xk → x, and lim inf Pk(xk) = 0, then P (x) = 0, i.e.,
x ∈W ;

iii. for every w ∈ V ∩W, there exists {vk}, with vk ∈ Vk and vk → w
such that Pk(vk) = 0 for k large enough.

This means that the set W is approximated implicitly with a sequence {Wk}.
In addition, condition A2-iii admits, for some elements of the sequence
{Wk}, to be empty.
The convex, proper and solid cone C in Rm will be approximated by a
sequence of convex, proper and solid cones {Ck} satisfying

(A3) LsC∗k ⊆ C∗.
Denote by Gk the mapping

Gk = [Gk1, G
k
2, . . . , G

k
m]> : Rn → L(Rn,Rm),

and by F k the set-valued map F k : Rn → Π(Rn), defined as follows:

F k(x) = {f ∈ Rn : f = (Gk)>(x)q =
m∑
j=1

Gkj (x)qj , q ∈ P (C∗k)}.

Let us consider the following assumptions concerning the mappings Gkj :

(A4) i. Gkj is continuous, for every j, k;

ii. for every sequence {xk}, with xk ∈ Vk and xk → x, the set

{Gkj (xk), j = 1, 2, . . . ,m, and k ∈ N}

is bounded;
iii. if xk ∈ Vk, xk → x, fk ∈ F k(xk) and fk → f, then f ∈ F (x).

Remark 3.1. Property A4-ii implies that the sets F k(xk) are uniformly
bounded, for every convergent sequence {xk} with xk ∈ Vk.

For each k, let us now consider the problem GMVIk: find x∗k ∈ Vk and

f∗k ∈ F k(x∗k) such that

(3.2) 〈f∗k , y − x∗k〉+ τk(Pk(y)− Pk(x∗k)) ≥ 0, ∀y ∈ Vk,

where τk is a penalty parameter such that τk → +∞.
First of all, we need the following technical result:

Lemma 3.2. Suppose A3 holds. Then each limit point of any sequence
{qk}, qk ∈ P (C∗k), belongs to P (C∗).

Proof: Note that by A3 each limit point of the sequence {qk} belongs to
C∗. Without loss of generality suppose that qk → q̄. Then for each k there
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exist elements qk,i ∈ S(C∗k) and numbers αki ≥ 0, i = 1, . . . ,m+ 1 such that

(3.3) qk =
m+1∑
i=1

αki q
k,i,

m+1∑
i=1

αki = 1.

For each fixed i we have the bounded sequence {qk,i}. Besides, the sequence
{αk} with αk = (αk1 , . . . , α

k
m+1)

> is also bounded. Hence, taking m + 2

times proper subsequences, if necessary, we can suppose that qk,i → q̄i

for i = 1, . . . ,m + 1 and αk → ᾱ, where, again by A3, q̄i ∈ S(C∗) for
i = 1, . . . ,m+ 1, and

m+1∑
i

ᾱi = 1, ᾱi ≥ 0, i = 1, . . . ,m+ 1.

By (3.3),

q̄ =

m+1∑
i=1

ᾱiq̄
i,

hence q̄ ∈ P (C∗). 2

In order to provide existence results for (3.2), in the sequel we will assume
the following coercivity condition (see, for instance, [12]):

(C1) for each k = 1, 2, . . . , there exist a convex function µk : Rn → R,
which is weakly coercive with respect to the set Vk, and a number
σk such that for any point u ∈ Vk \Vk(µk, σk) there is a point v ∈ Vk,
µk(v) ≤ µk(u) such that Pk(v) ≤ Pk(u) and Gk(u)(v− u) ∈ −intCk.

Remark 3.3. i. Condition C1 implies condition C′, by taking D = Vk,
r = σk, x̄ = u, z = v, h = τkPk and f̄ ∈ Fk(u). Indeed, take any point
u ∈ Vk \ Vk(µk, σk); then, by C1, there is v ∈ Vk with µk(v) ≤ µk(u) such
that Pk(v) ≤ Pk(u) and Gk(u)(v − u) ∈ −intCk. Then, for any qk ∈ P (C∗k),

we have 〈qk, Gk(u)(v − u)〉 < 0 due to Lemma 2.1. It follows that

〈qk, Gk(u)(v − u)〉+ τk(Pk(v)− Pk(u)) < 0.

C′ follows by setting f̄ =
∑m

j=1G
k
j (u)qkj .

ii. In case the sets Vk are bounded, condition C1 can be trivially satisfied
by taking, for instance, µk(x) = 0 and σk ≥ 0, for every k.

The following result holds:

Theorem 3.4. Let {Vk} and {Pk} satisfy A1-4. Suppose that C1 is ful-
filled. Then

i. the problem GMVIk has at least a solution x∗k, and all the solutions
belong to Vk(µk, σk);

ii. any cluster point x∗ of a sequence of solutions {x∗k} is a solution of the
problem VVI.

Proof: Assertion i. follows directly from Corollary 2.6 and Remark 3.3-i.
Concerning ii., by A1, we get that x∗ ∈ V. Let us show that x∗ ∈ W. From
(3.2), there exists f∗k ∈ F k(x∗k) such that

(3.4) 0 ≤ Pk(x∗k) ≤ τ−1k 〈f
∗
k , y − x∗k〉+ Pk(y), ∀y ∈ Vk.
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Take any w ∈ V ∩W ; from A2-iii, there exists {xk}, with xk ∈ Vk such that
xk → w and Pk(xk) = 0 for k large enough. Therefore, by choosing y = xk
in (3.4), we get

0 ≤ Pk(x∗k) ≤ τ−1k 〈f
∗
k , xk − x∗k〉.

Denote by x∗nk
a subsequence converging to x∗. From assumption A4-ii we

get that

0 ≤ lim inf Pk(x
∗
nk

) ≤ lim τ−1nk
〈f∗nk

, xnk
− x∗nk

〉 = 0,

i.e., lim inf Pk(x
∗
nk

)→ 0. From A2-ii, it follows that P (x∗) = 0, i.e. x∗ ∈W.
Let us prove that x∗ is indeed a solution of VVI. First of all, we have already
shown that x∗ ∈ D. Let z ∈ D; from A2-iii there exists zk ∈ Vk such that
zk → z, and Pk(zk) = 0. From (3.2) and the assumptions on Pk we get

〈f∗k , zk − x∗k〉 ≥ τkPk(x∗k) ≥ 0.

From A4-ii, there exists a subsequence {f∗mk
} such that f∗mk

→ f∗. It is
easy to show, from A3 and A4-iii, that f∗ ∈ F (x∗). Taking k → ∞ in the
inequality above, the assertion easily follows. 2

4. Existence results

In the previous section we focused on conditions entailing existence of
solutions of the approximating problems. Moreover, we found out that any
cluster points of a sequence of solutions provides a solution of the ‘limit’
problem. In order to apply Theorem 3.4, we are interested in sufficient
conditions on the data leading to the existence of cluster points for any
sequence of solutions of the problems {GMVIk}.

Following some literature on this subject (see, for instance, [12]), the first
result takes into account some additional assumptions involving the weakly
coercive functions µk and the scalars σk associated to condition C1.

Proposition 4.1. Let C1 be satisfied for every k, and assume that the next
conditions are fulfilled:

(C2) If vk ∈ Vk and ‖vk‖ → +∞, then lim inf
k→∞

µk(vk) ≥ σ′′;
(C3) lim sup

k→∞
σk ≤ σ′ < σ′′.

Then, any sequence of solutions {x∗k} has a cluster point.

Proof: From Theorem 3.4, every solution x∗k belongs to Vk(µk, σk), there-
fore µk(x

∗
k) ≤ σk. Assumptions C2 and C3 gives the assertion. 2

Let us now denote by dH(A,B) the Hausdorff distance between two
nonempty sets A,B ⊂ Rm, defined as follows:

dH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d denotes the distance endowed by the Euclidean norm. In particular,
if both sets are bounded, then dH(A,B) ∈ R.

Proposition 4.2. Suppose that the following assumptions hold:

(B) i. there exists x̃ ∈ ∩kVk such that Pk(x̃) = 0;
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ii. for any {zk}, with zk ⊂ Vk and ‖zk‖ → +∞,

min
q∈P (C∗)

〈G>(zk)q, zk − x̃〉
‖zk − x̃‖

→ +∞;

iii. set dk(x) = dH(Fk(x), F (x)); if zk ∈ Vk and ‖zk‖ → +∞, then
lim supk dk(zk) ∈ R.

Then, any sequence of solutions {x∗k} admits a cluster point.

Proof : Let us argue by contradiction, by assuming that ‖x∗k − x̃‖ → +∞.
Since x∗k is a solution for GMVIk, there exists f∗k ∈ Fk(x∗k) such that

〈f∗k , y − x∗k〉+ τk(Pk(y)− Pk(x∗k)) ≥ 0, ∀y ∈ Vk.

Set y = x̃; then, from B-i, we get, for every k,

〈f∗k , x̃− x∗k〉 ≥ τkPk(x∗k)) ≥ 0.

From the definition of dk in B-iii, and the closedness of the set F (x) for all
x ∈ D, there exists φk ∈ F (x∗k) such that

(4.1) ‖φk − f∗k‖ ≤ dk(x∗k),

and

〈φk, x̃− x∗k〉+ 〈f∗k − φk, x̃− x∗k〉 ≥ 0,

implying that

(4.2)
〈φk, x∗k − x̃〉
‖x∗k − x̃‖

≤
〈f∗k − φk, x̃− x∗k〉
‖x∗k − x̃‖

.

Note that

φk = G(x∗k)
>qk, for some qk ∈ P (C∗);

in particular, from B-ii, we have that

〈φk, x∗k − x̃〉
‖x∗k − x̃‖

→ +∞.

As a matter of fact, from (4.1) we have that

〈f∗k − φk, x̃− x∗k〉
‖x∗k − x̃‖

≤ ‖f∗k − φk‖ ≤ dk(x∗k).

Therefore, from (4.2), we get

+∞ = lim sup
k

dk(x
∗
k),

contradicting the assumption B-iii. 2

Remark 4.3. In case C = C∗ = Rm+ , condition B-ii reduces to the usual
coercivity condition for the components Gj , j = 1, 2, . . . ,m :

〈Gj(zk), zk − x̃〉
‖zk − x̃‖

→ +∞, ∀j = 1, 2, . . . ,m.

If C = Clex, where Clex denotes the cone associated to the lexicographic
order, the C∗ is given by

C∗ = {q ∈ Rm : q = (t, 0, . . . , 0), t ≥ 0},
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and P (C∗) = {e1}. Thus, condition B-ii reduces to the usual coercivity
condition for the first component G1 of G only:

〈G1(zk), zk − x̃〉
‖zk − x̃‖

→ +∞.

Under different conditions, another existence result can be stated in the
framework of C-monotone maps G. Let us first recall that G : Rn ⊆ Rn →
L(Rn,Rm) is said to be C-monotone on D ⊆ Rn if

(G(x′)−G(x))(x′ − x) ∈ C, ∀x′, x ∈ D.
This is equivalent to say that the map x 7→ G>(x)q is monotone on D, for
every q ∈ P (C∗).

In the sequel, we will suppose that the set D has nonempty interior.
Denote by x a point in int(D). From Lemma 2 in [2] (see also [1]), for any
q ∈ P (C∗), there exist positive numbers rq = rq(x) and cq = cq(x) such that

(4.3) 〈G>(x)q, x− x〉 ≥ rq‖G>(x)q‖ − cq(‖x− x‖+ rq), ∀x ∈ D;

in particular, cq = supx∈B(x,rq)
‖G>(x)q‖ < +∞.

Proposition 4.4. Let x ∈ int(D), and set

r′ = inf
q∈P (C∗)

rq, r′′ = sup
q∈P (C∗)

rq, c′ = sup
q∈P (C∗)

cq.

Suppose that A2-iii holds, and the following assumptions are satisfied:

(B′) i. the map G : Rn → L(Rn,Rm) is C-monotone on D;
ii. for every β ∈ R the set

Lβ(G) := {x ∈ Rn : sup
q∈P (C∗)

‖G>(x)q‖ ≤ β‖x‖}

is bounded;
iii. set d′k(x) = supa∈Fk(x),b∈F (x) d(a, b); if zk ∈ Vk and ‖zk‖ → +∞,

then lim supk d
′
k(zk) ∈ R;

iv. r′ > 0, r′′, c′ ∈ R.
Then, any sequence of solutions {x∗k} admits a cluster point.

Proof : Let x ∈ D and f ∈ F (x). Then, there exists q ∈ P (C∗) such that
f = G>(x)q. Therefore,

〈f, x− x〉 ≥ rq‖f‖ − cq(‖x− x‖+ rq),

i.e.
rq‖f‖ ≤ 〈f, x− x〉+ cq(‖x− x‖+ rq).

From B′-iv,

(4.4) r′‖f‖ ≤ 〈f, x− x〉+ c′(‖x− x‖+ r′′).

Let now x∗k be a solution of GMVIk. Then, for some f∗k ∈ Fk(x∗k),
〈f∗k , y − x∗k〉+ τk(Pk(y)− Pk(x∗k)) ≥ 0 ∀y ∈ Vk.

From assumption A2-iii, there exist vk ∈ Vk, vk → x such that Pk(vk) = 0
for any k. Therefore, from the previous inequality, taking into account the
nonnegativity of Pk, we get

(4.5) 〈f∗k , vk − x∗k〉 ≥ 0.
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From (4.5), for any fk ∈ F (x∗k) we have

〈fk, x∗k − x〉 = 〈fk − f∗k , x∗k − x〉+ 〈f∗k , x∗k − x〉
≤ 〈fk − f∗k , x∗k − x〉+ 〈f∗k , x∗k − vk〉+ 〈f∗k , vk − x〉
≤ 〈fk − f∗k , x∗k − x〉+ 〈f∗k , vk − x〉
≤ d′k(x∗k)‖x∗k − x‖+ 〈f∗k , vk − x〉.

From (4.4), setting x = x∗k, we have

r′‖fk‖ ≤ 〈fk, x∗k − x〉+ c′(‖x∗k − x‖+ r′′),

therefore

r′‖fk‖ ≤ d′k(x∗k)‖x∗k − x‖+ 〈f∗k − fk, vk − x〉+
+ 〈fk, vk − x〉+ c′(‖x∗k − x‖+ r′′)

≤ (c′ + d′k(x
∗
k))‖x∗k − x‖+ d′k(x

∗
k)‖vk − x‖+ ‖fk‖‖vk − x‖.

Since vk → x, there exists an integer k′ such that (r′ − ‖vk − x‖) > r′/2.
Rearranging the terms we have:

r′/2‖fk‖ ≤ (r′ − ‖vk − x‖)‖fk‖ ≤ (c′ + d′k(x
∗
k))‖x∗k − x‖+ d′k(x

∗
k)‖vk − x‖

for any k ≥ k′.
Suppose that ‖x∗k‖ → +∞. Then, from B′-iii, the sequence {d′k(x∗k)} is

bounded from above, and therefore there exists a positive β such that

‖fk‖ ≤ β‖x∗k‖.
In particular, supq∈P (C∗) ‖G>(x∗k)q‖ ≤ β‖x∗k‖, i.e. x∗k ∈ Lβ(G), contradict-

ing the boundedness assumption B′-ii. 2
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